Secure Computation with Non-Equivalent
Penalties in Constant Rounds
Takeshi Nakai &

The University of Electro-Communications, Tokyo, Japan

Kazumasa Shinagawa =
Ibaraki University, Ibaraki, Japan
National Institute of Advanced Industrial Science and Technology, Tokyo, Japan

—— Abstract

It is known that Bitcoin enables to achieve fairness in secure computation by imposing a monetary
penalty on adversarial parties. This functionality is called secure computation with penalties. Bentov
and Kumaresan (Crypto 2014) showed that it could be realized with O(n) rounds and O(n) broadcasts
for any function, where n is the number of parties. Kumaresan and Bentov (CCS 2014) posed an
open question: “Is it possible to design secure computation with penalties that needs only O(1)
rounds and O(n) broadcasts?” In this work, we introduce secure computation with non-equivalent
penalties, and design a protocol achieving this functionality with O(1) rounds and O(n) broadcasts
only. The new functionality is the same as secure computation with penalties except that every
honest party receives more than a predetermined amount of compensation while the previous one
requires that every honest party receives the same amount of compensation. In particular, both are
the same if all parties behave honestly. Thus, our result gives a partial answer to the open problem
with a slight and natural modification of functionality.

2012 ACM Subject Classification Security and privacy — Cryptography
Keywords and phrases Secure computation, Fairness, Bitcoin
Digital Object Identifier 10.4230/OASIcs.Tokenomics.2021.5

Funding This work was partially supported by JSPS KAKENHI Grant Numbers JP20J21248 and
JP21K17702.

1 Introduction

1.1 Backgrounds

Secure computation enables parties to compute a function whose inputs are their private
data [20]. There are several notions of security, such as privacy, correctness, independence
of inputs, guaranteed output delivery, and fairness. Fairness requires that at the end of a
protocol, either all parties learn the output value or none of them learn it, i.e., no malicious
parties receive their output while some honest parties do not receive output. Unfortunately, it
is known that secure computation cannot achieve fairness in the standard model if a majority
of parties are corrupted [7].

In order to circumvent the impossibility result, there are works to achieve fairness in
secure computation by imposing a monetary penalty on aborting parties [17]. We focus on
achieving fairness by using decentralized digital currency [3, 2, 1, 4, 13], e.g., Bitcoin [18]. In
secure computation on Bitcoin, an aborting party is given a penalty for losing coins, and
honest parties are compensated with coins.

Back and Bentov [3] and Andrychowicz, Dziembowski, Malinowski, and Mazurek [2]
introduced secure computation on Bitcoin. They studied fair lottery protocols that guarantee
any party aborting after learning the result is forced to pay penalties to all other parties.
After that, Bentov and Kumaresan [4] formalized such a model of computation as secure
? Takeshi Nakai and. Kazumasa Shir}agawa;

37 icensed under Creative Commons License CC-BY 4.0
3rd International Conference on Blockchain Economics, Security and Protocols (Tokenomics 2021).
Editors: Vincent Gramoli, Hanna Halaburda, and Rafael Pass; Article No. 5; pp. 5:1-5:16

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:t-nakai@uec.ac.jp
https://orcid.org/0000-0002-8181-8968
mailto:kazumasa.shinagawa.np92@vc.ibaraki.ac.jp
https://orcid.org/0000-0002-5219-1975
https://doi.org/10.4230/OASIcs.Tokenomics.2021.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

5:2

Secure Computation with Non-Equivalent Penalties in Constant Rounds

computation with penalties. In particular, they defined a claim-or-refund functionality F¢g
that plays an important role in secure computation with penalties. In F&g, a sender can
send coins with a puzzle ¢, ,(-) and a round number 7 to a receiver. The receiver gets the
coins if he/she reveals a solution w such as ¢, ,(w) =1 in 7, and the sender gets back the
coins if the receiver does not publish the solution in 7.

Bentov and Kumaresan [4] showed that secure computation with penalties can be realized
for any function in the (For, Féy)-hybrid model, where For is an ideal functionality of
oblivious transfer. Their protocol requires O(n) rounds! and O(n) broadcasts, where n is the
number of parties and the number of broadcasts is the number of transactions. Kumaresan
and Bentov [13] introduced a new functionality F3j;, and showed that secure computation
with penalties could be realized in the (For, Fryp,)-hybrid model with only O(1) rounds.
However, this protocol requires O(n?) broadcasts. In the paper, they posed an open problem
as follows:

Is it possible to design a fair protocol
that needs only O(1) rounds and O(n) broadcasts?

Related works

Kumaresan, Moran, and Bentov [15] extended secure computation with penalties to the
reactive model that can also handle multistage functionalities, such as Texas Holdem poker.
Also, they defined a new security model for the reactive model and proposed a fair protocol in
the reactive model. This paper focuses on the single-stage (i.e., non-reactive) model following
the same setting in [4].

Kumaresan and Bentov [14] improved the efficiency of protocols by amortizing the cost
over multiple executions. Kumaresan, Vaikuntanathan, and Vasudevan [16] reduced the
script complexity of ¢ ,. This paper focuses on reducing the number of rounds and the
number of broadcasts.

There are several works [11, 6, 8] based on the model with stateful contracts, which
is stronger than our model. The model with stateful contracts can be instantiated by an
advanced blockchain technique like Ethereum [19], while our model can be instantiated by
Bitcoin.

1.2 Qur Contributions

We introduce a new functionality, secure computation with non-equivalent penalties, which
is a slightly relaxed variant of secure computation with penalties. It guarantees that each
honest party is compensated with more than a predetermined amount of coins, while secure
computation with penalties guarantees that every honest party is compensated for the same
amount of coins. That is, in secure computation with non-equivalent penalties, two honest
parties may be compensated with different amounts of coins, although they are at least a
predetermined amount.

We show that secure computation with non-equivalent penalties can be realized for
arbitrary functions in the (For, F&g)-hybrid model (See Table 1). Our technical contribution
is to propose a new fair reconstruction protocol, which is a subprotocol of a secure computation

L' In [5], it is stated that one round should be about an hour on Bitcoin to prevent the double-spending
attack. Thus, it implies that a s-round protocol takes about s hours.

T. Nakai and K. Shinagawa

Table 1 Comparison of secure computation protocols with (non-equivalent) penalties.

References # of Rounds # of Broadcasts Compensation Amount
Bentov—Kumaresan [4] O(n) O(n) Equivalent
Kumaresan-Bentov [13] o) O(n?) Equivalent

This work (Sect. 4) o) O(n) Non-equivalent

protocol with (non-equivalent) penalties, with O(1) rounds and O(n) broadcasts. As a result,
we obtain secure computation with non-equivalent penalties with O(1) rounds and O(n)
broadcasts by replacing Bentov-Kumaresan’s fair reconstruction protocol with ours.

We note that our protocol is equivalent to a protocol achieving secure computation
with penalties if all parties behave honestly. Moreover, when we set the least amount of
compensation appropriately, malicious behavior is prevented. We believe that our result
gives a partial answer to the open problem posed by Kumaresan and Bentov [13].

2 Preliminaries

2.1 Basic Notations

For any positive integer ¢ € N, [i] denotes the set of integers {1,...,i}. We denote by n the

number of parties in a protocol. We denote by H C [n] (resp. C C [n]) the set of honest (resp.

corrupted) parties. Since each party is either honest or corrupted, it must hold h 4+ ¢ = n for
h:=|H| and c:=|C|. We denote by k a security parameter. We assume that all parties are
non-uniform probabilistic polynomial-time algorithms in k.

2.2 Secure Computation with Coins

Bentov-Kumaresan [4] introduced a new secure computation model called secure computation
with coins (SCC) model. It is the same model as the standard model except that entities (i.e.,
parties, adversaries, ideal functionalities, and an environment) can deal with a non-standard
entity called coins, which is an atomic entity representing electronic money. Coins are
assumed to be having the following properties.

Coins cannot be duplicated and forged.

No multiple parties hold the same coin simultaneously.

Any parties can transfer their coins to other parties freely.

Each coin is perfectly indistinguishable from one another.

We use the notation coins(:) to express the amount of coins. If a party owning coins(z)
receives coins(y) from another party, then the party holds coins(z + y) as a result.

In the SCC model, some ideal functionalities can deal with coins. We call such a
functionality a special ideal functionality. These functionalities are described with the
superscript *, e.g., Fuy,. We call an ideal functionality without handling coins a standard
ideal functionality. Our protocol is realized in the hybrid model where parties have access to
a standard functionality For, which is the ideal functionality for oblivious transfer, and a
special ideal functionality F¢y, described later.

The SCC model follows the real/ideal simulation paradigm as with the standard secure
computation model. Let IDEALr s z(k,z) denote the output of an environment Z in the
ideal world for realizing an ideal functionality F, where Z (with an auxiliary input z) is

5:3

Tokenomics 2021

5:4

Secure Computation with Non-Equivalent Penalties in Constant Rounds

interacting with an ideal adversary S on security parameter k. Let HYBRID% az(k,2)
denote the output of environment Z in the real (hybrid) world for executing a hybrid pfotocol
7w with an ideal functionality G, where Z is interacting with a real adversary A. The difference
with the standard secure computation is that all entities (i.e., parties, adversaries, special
ideal functionalities, and an environment) can deal with coins: sending coins, storing coins,
and receiving coins.

» Definition 1. Let m be a probabilistic polynomial-time n-party protocol and let F be a
probabilistic polynomial-time n-party (standard or special) ideal functionality. We say that
m SCC realizes F with abort in the G hybrid model (where G is a standard or special ideal
functionality) if for every non-uniform probabilistic polynomial-time adversary A, there
exists a non-uniform probabilistic polynomial-time adversary S such that for every non-
uniform probabilistic polynomial-time environment Z, two families of random variables
{IDEAL# s z(k, 2) } ren,ze{0,1}+ and {HYBRID%,A,z(kyZ)}keN,ze{o,l}* are computationally
indistinguishable.

2.3 Special Ideal Functionalities
2.3.1 Claim-or-refund functionality F,

This functionality F¢y [4] can be seen as an analogue of puzzles with bounty. Roughly
speaking, for a puzzle ¢, , with coins submitted by a sender, a receiver gets the coins if and
only if he/she submits a solution w of the puzzle (i.e., ¢s,(w) = 1). F&g consists of three
phases: deposit, claim, and refund. In the deposit phase, a sender Ps sends to a receiver
P, “conditional” coins together with a circuit ¢, ,. The coins also have a round number 7
specified by the sender. In the claim phase, the receiver P, claims to receive the coins. P,
can receive the coins only if he/she broadcasts the witness w of ¢, (i.e., ¢ ,(w) =1) in 7.
Note that the witness w published in the claim phase is made public to all parties. In the
refund phase, if P. does not claim in 7, then the coins are refunded to the sender P;. See
Algorithm 1 for a formal description of F¢i.% At least one broadcast is necessary to realize
Fé&g on Bitcoin. Thus, the number of calling F¢y corresponds to the number of broadcasts.

We call the message in the deposit phase a deposit transaction. We use the following
“arrow” notation to denote the deposit transaction for the sender P, and the receiver P,.

P, ——— P,

C, T

After making an arrow from Ps to P, as above (i.e., after the deposit phase), P, can claim
to receive coins(c) only if he/she publishes the witness w in round 7. coins(c) is refunded
back to the original holder Ps if P, does not publish w in 7.

2.3.2 Secure computation with penalties .7:}“

This functionality F7 is the same as the standard secure function evaluation except that
aborting parties are forced to pay penalties [4]. In principle, it guarantees the following
properties:

no honest party pays any penalty, and

if a party aborts after learning the output value and does not tell the value to the other

parties, then every party who does not learn the value is compensated with coins.

2[5, 14] show how to realize Fgy using Bitcoin.

T. Nakai and K. Shinagawa

Algorithm 1 Claim-or-refund functionality F&g [4].

Setup The session identifier is sid. Running with parties Py, ..., P, and an ideal adversary
S.
Deposit phase Receiving (deposit, sid, ssid, s, 7, ¢s.r, T, coins(c)) from P, perform the fol-
lowing process.
1) Record the message (deposit, sid, ssid, s,7, ¢s ,, T, C)
2) Send all parties (deposit, sid, ssid, s,T, ¢s r, T, C)
- Ignore any future messages with the same ssid from Ps to P,.
Claim phase Receiving (claim, sid, ssid, s,, ¢5 ,, T, ¢, w) from P, in round 7, perform the
following process.
1) Check the two conditions:
- (deposit, sid, ssid, s, r, ¢s.», T, c) was recorded,
- ¢s,r (w) = 1'
2) If both checks are passed, perform the following process:
2-i) send (claim, sid, ssid, s, 7, ¢s,, T, c,w) to all parties,
2-ii) send (claim, sid, ssid, s, 7, ¢s.r, T, coins(c)) to P,
2-iii) delete the record (deposit, sid, ssid, s, 7, ¢s.r, T, C).
Refund phase In 7 + 1, if the record (deposit, sid, ssid, s,r, ¢s r, T, ¢) was not deleted, then
perform the following process:
1) send (refund, sid, ssid, s,r, ¢s.r, T, coins(c)) to Ps,
2) delete the record (deposit, sid, ssid, s,7, ¢s r, T, C).

See Algorithm 2 for a formal description of F7. The parameters ¢ and d specify the
amounts of coins. At the beginning of the protocol, each party submits coins(d) together
with input x;. If a party aborts after learning the output and does not tell the value to
the other parties, then F7} gives coins(q) to every party who does not learn the output as
compensation. Then, it is important note that the compensation amount is always ¢ for any
parties.

H is a set of honest parties and H' C H is a subset chosen by S, which represents parties
who are compensated. At first glance, it is somewhat strange that S chooses a subset of
honest parties. The reason why H’ is needed is that there are two types of aborting in secure
computation with abort. The first one is that an adversary aborts after obtaining the output
and thus honest parties cannot obtain the outputs. In this case, S chooses H' = H and all
honest parties are compensated with coins(q) although the output is stolen by the adversary.
The second one is that an adversary aborts before obtaining the output so the protocol
just terminates. In this case, S chooses H' C H (possibly empty) and the parties in H' are

compensated with coins(q).?

2.4 Non-malleable secret sharing with public verifiability and public
reconstructibility

A non-malleable secret sharing scheme with public verifiability and public reconstructibility (in
short, pubNMSS) [4] is a variant of non-malleable secret sharing scheme. The share algorithm
of pubNMSS takes a secret s as input, generates “tag-token” pairs (Tag;, Token;);c[n], and

3 H" is required for a technical reason in order to prove the security. See [4] for a detail. In order to
prove the security of our protocol, our new functionality follows the same strategy.

5:5

Tokenomics 2021

5:6

Secure Computation with Non-Equivalent Penalties in Constant Rounds

Algorithm 2 Secure computation with penalties 7} [4].

Setup The session identifier is sid. Running with parties Py, ..., P,, and an ideal adversary
S that corrupts parties {P; };cc. Let d be a parameter representing the safety deposit,
and let ¢ denote the penalty amount.

Input phase Wait to receive the following messages.

- (input, sid, ssid, i, z;, coins(d)) from P; for all i € H
- (input, sid, ssid, {y; }icc, H', coins(h/q)) from S, where H' C H and h/ = |H'|
Output phase Perform the following process.
1) Send (return, sid, ssid, coins(d)) to each P; for i € H.
2) Compute (Y1,-..,yn) < f(T1,...,Zn).
- if A’ =0, then send message (output, sid, ssid,y;) to P; for i € H, and terminate.
- If 0 < W < h, then send (extra, sid, ssid, coins(q)) to P; for each i € H', and
terminate, where h := |H|.
- If ' = h, then send message (output, sid, ssid, {y; }icc) to S.
3) If S returns (continue, sid, ssid, H"), where H” C H, then perform the following
process:
3-i) send (output, sid, ssid,y;) to P; for all i € H,
3-ii) send (payback, sid, ssid, coins((h — h'")q)) to S where h" = |H"|,
3-iii) send (extrapay, sid, ssid, coins(q)) to P; for each i € H".
4) Else if S returns (abort, sid, ssid), send (penalty, sid, ssid, coins(q)) to P; for all : € H.

outputs Token; and (Tagy,..., Tag,) to each party P;. The parties can reconstruct s by
collecting all n tokens. For all i € [n], the parties can verify if the published Token; is valid
with Tag;. The tag-token pairs have the following properties:

all tags (Tagy, ..., Tag,,) leak no information about s,

any sets of £(< n) tokens leak no information about s,

for any i € [n], the adversary cannot generate Token)(# Token;) such that (Tag;, Token})

is a valid tag-token pair.

A pubNMSS scheme can be obtained from the honest-binding commitment, which can
be constructed from one-way functions [9]. Tag; is an (honest-binding) commitment that
is computed by a secret share sh; and a randomness r; as input, and Token; := (sh;,r;).
Namely, the parties can verify if the published Token, = (sh/,r!) is valid by comparing Tag;

and the commitment whose input is sh; and r;. In the following discussions, this verification
corresponds to ¢, in F¢ executions.

3 Existing Protocol for secure computation with penalties

In this section, we introduce Bentov—Kumaresan’s protocol [4] for secure computation with
penalties in the (For, F&g)-hybrid model.

3.1 Bentov—Kumaresan’s Protocol

For a function f, an augmented function denoted by f is defined by a function that takes an
input = and distributes secret shares of the output value f(z). The underlying secret sharing
scheme is non-malleable secret sharing with publicly verifiability and publicly reconstructibility
(Section 2.4). Thus the augmented function f outputs a token Token; (i.e., a share of f(z))
and a set of tags (Tagy,..., Tag,) to party P;.

T. Nakai and K. Shinagawa

Bentov—Kumaresan’s protocol proceeds as follows:

(i) The parties execute a secure computation protocol for f , and then each party P;
obtains a token Token; of f(z) and a set of tags (Tagy,..., Tag,). (Note that this is
the standard computation without Bitcoin).

(ii) For the reconstruction of tokens, the parties execute the fair reconstruction protocol,
where each party P; is forced to broadcast a token Token;. The validity of the submitted
token Token; is verified with the tag Tag;. (Note that this computation is based on
Bitcoin).

It is well known that the OT functionality For is sufficient to achieve secure computa-
tion for any standard functionality [12, 10]. Moreover, this can be performed in constant
rounds [10]. Therefore, the secure computation stage (i) is performed in constant rounds in
the Forp-hybrid model.

The main step of Bentov—Kumaresan’s protocol is the fair reconstruction protocol (ii). By
collecting all tokens, the parties can reconstruct the output value f(z). However, malicious
parties may abort so as to learn the output value while other parties do not. The fair
reconstruction protocol prevents parties from aborting in the reconstruction phase. When
malicious parties abort, they have to pay some amount of money for compensation to honest
parties. It satisfies the following conditions:

(A) No honest party pays any penalty.

(B) If an adversary learns the reconstruction result, but an honest party cannot, then the
honest party is compensated with coins. Furthermore, the compensation amounts are
the same for any honest parties.

Note that honest parties are not guaranteed to receive compensation if an adversary aborts

without learning the output value.

In summary, secure computation with penalties can be realized by executing a secure
computation protocol for f and the fair reconstruction protocol. The next section shows
Bentov-Kumaresan’s fair reconstruction protocol in the F¢y-hybrid model.

3.2 Bentov—Kumaresan’s Fair Reconstruction Protocol

Hereafter, we use T; to denote Token;. Suppose that each party P; has a token T; and a set
of tags (Tagy,..., Tag,) at the beginning of the fair reconstruction protocol. We assume
that all parties agree on the penalty amount ¢, where honest parties are compensated with
coins(¢q) when malicious parties abort with obtaining the output value. In the below, we
successively explain a naive approach, a solution for the two-party setting, and a solution for
the n-party setting.

Naive approach. Suppose that the number of parties is two. A naive approach is to make
a deposit transaction from P; to P, and a deposit transaction of the reverse direction as
follows:

p— ., p, (1)
q,T

p,—51 . p (2)
q,T

The above arrow means that “P, can receive coins(q) only if P, publishes the token Tb,
otherwise coins(q) is refunded back to P;” (see Section 2.3). The bottom arrow is similar.
At first glance, it seems a fair reconstruction protocol satisfying conditions (A) and (B)
in Section 3.1. However, it is not the case. For instance, when P, is malicious, P, can

5:7

Tokenomics 2021

5:8

Secure Computation with Non-Equivalent Penalties in Constant Rounds

steal coins(q) from P; as follows: after establishing transaction (1), P> publishes the token
T, without making transaction (2). As a result, honest P; loses coins(q). This violates
condition (A).

Bentov-Kumaresan’s solution. In order to avoid the above attack, Bentov—Kumaresan’s
fair reconstruction protocol for the two-party setting proceeds as follows:

TyNTs

P P (1)
q,T2

p,— P (2)
q,T1

where the rounds satisfy 71 < 1o. (Hereafter, we assume 7; < 7,41 for any integer i.) P; first
makes a deposit transaction for T A Th. Transaction (1) means that P, can receive coins(q)
only if P, publishes both 77 and T, in 79. Namely, it is necessary that both (Tag;,77) and
(Tag,, T2) are valid tag-token pairs to satisfy ¢s (11 AT>) = 1. After making the first deposit
transaction, P» makes a deposit transaction for 7. Transaction (2) means that P; can
receive coins(q) only if P, publishes 77 in 71. In the claim phase, P; first publishes T3, and
then P publishes both 77 and T5.

It is important to note that P; needs to make transaction (1) first. As a result, P, cannot
claim this transaction without making transaction (2) since Py does not know T3 yet. Also,
the claims are performed in the reverse order of making the transactions, i.e., P; first claims.

If P, aborts after P; claims, then Ps is penalized with coins(q) and P; is compensated
with that coins. Thus, P, needs to publish T in order not to lose coins(q). Also, both
parties never are penalized if they behave honestly. Therefore, the above protocol satisfies
the conditions (A) and (B) in Section 3.1.

We show Bentov-Kumaresan’s solution for the n-party setting on the left side of Figure 1.
As with the two-party case, parties make deposit transactions from the top and claim from
the bottom in the n-party setting. Namely, the parties make transactions (1) to (2n — 2)
and claim transactions (2n — 2) to (1).

Here, we describe an intuitive explanation that Bentov-Kumaresan’s fair reconstruction
protocol satisfies the condition (A) and (B). (See [5] for a formal security proof based on
Definition 1.) It is trivial that no party loses coins if all parties behave honestly. Thus, we
consider the case where there is a party to abort.

Let consider the case where an adversary aborts in the deposit phase. Since no honest
party publishes his/her token, the adversary does not learn the reconstruction result nor
receives any coins from honest parties. This case satisfies the condition (A) and (B).

Let consider the case where an adversary aborts in the claim phase. In order to learn
the reconstruction result, the adversary must collude all parties that have not claimed yet
to learn tokens that are not published. Every honest party holds coins(q) since he/she has
already claimed and has got coins. This case also satisfies the condition (A) and (B).

Efficiency. Bentov—Kumaresan’s fair reconstruction protocol requires n rounds for deposit
phase and n rounds for claim phase, and thus it requires a total of 2n rounds. Also, it
requires 2n — 2 calls of Fg. Recall that the augmented function can be computed in a
constant round for any function. Therefore, for any function, Bentov—Kumaresan’s protocol
for the secure computation with penalties can be SCC realized in the (For, Fég)-hybrid
model with O(n) rounds and O(n) calls of F¢y.

T. Nakai and K. Shinagawa 5:9

Table 2 Comparison of fair reconstruction protocols.

References # of Rounds # of Calling Fog Compensation Amount
Bentov—Kumaresan [4] 2n 2n —2 Equivalent
This work (Sect. 4) 8 3n—4 Non-equivalent

Algorithm 3 Secure computation with non-equivalent penalties F7 -

Setup The session identifier is sid. Running with parties Py, ..., P,, and an ideal adversary
S that corrupts parties {P;};cc. Let d be a parameter representing the safety deposit.
Let g denote the minimum penalty amount.

Input phase Wait to receive the following messages.

- (input, sid, ssid, i, z;, coins(d)) from P; for all i € H
- (input, sid, ssid, {x;}icc, H',coins(} ;e s i) from S, where H' C H and ¢; (> q) is
the penalty amount for each : € H'.
Output phase Perform the following process.
1) Send (return, sid, ssid, coins(d)) to each P, for r € H.
2) Compute (y1,...,Yn) < flx1,...,Zp).
- if = 0, then send message (output, sid, ssid, z,.) to P, for r € H, and terminate.
- If 0 < A’ < h, then send (extra, sid, ssid,coins(¢;)) to P; for each i € H', and
terminate, where h := |H|.
- If A’ = h, then send message (output, sid, ssid, {y; }icc) to S.
3) If S returns (continue, sid, ssid, H"), where H” C H, then perform the following
process:
3-i) send (output, sid, ssid,y;) to P; for all i € H,
3-ii) send (payback, sid, ssid, coins(D_;c s @i — D je g 4j) to S where b = |H"|,
3-iii) send (extrapay, sid, ssid, coins(g;)) to P; for each i € H".
4) Else if S returns (abort, sid, ssid), send (penalty, sid, ssid, coins(q;)) to P; for each
1€ H.

4 Proposed Protocol

In this section, we introduce a special functionality called secure computation with non-
equivalent penalties (Section 4.1). Then we design a protocol achieving this functionality in
the (For, Fég)-hybrid model. In particular, we design a new fair reconstruction protocol in
the F&r-hybrid model (Section 4.3), and putting it with a secure computation protocol for
an augmented function into the Fop-hybrid model as in Section 3.1. Notably, our protocol
requires O(1) rounds and O(n) broadcasts only (See Table 1).

4.1 Secure Computation with Non-equivalent Penalties

In secure computation with penalties Fi all honest parties are compensated with the same
amount of money coins(q). A new functionality, secure computation with non-equivalent
penalties FF neq 18 the same as F except that each honest party is compensated with coins(q)
or more, i.e., the amount of compensation may be different with each party. For example, in
FF neq» We allow the following situation: An honest P is compensated with coins(g) but an
honest P is compensated with coins(2q).

Tokenomics 2021

5:10

Secure Computation with Non-Equivalent Penalties in Constant Rounds

See Algorithm 3 for a formal definition of F7 . The difference with F} is that a
simulator can decide the amount ¢; for each ¢ € H' and inputs coins(}_,. ¢;) while a
simulator in F7 must input coins(h'q) for A" := [H'|. We require that ¢; > ¢ for all i € H’,
where ¢ is the minimum amount of compensation.

We note that compensation happens only when a malicious party has stolen the output
value. That is, 7} and F7 . are the same if all parties behave honestly. By choosing ¢
appropriately, it is possible to prevent malicious behavior, and then we obtain a protocol
with fairness. In this sense, a new functionality F7 ., brings almost the same effect on F7.

4.2 Fair Reconstruction for Secure Computation with Non-equivalent
Penalties

Following Bentov-Kumaresan’s protocol, we construct a fair reconstruction protocol to realize

secure computation with non-equivalent penalties. In order to realize secure computation

with non-equivalent penalties, a fair reconstruction protocol needs to satisfy the following
conditions:

(A) No honest party pays any penalty.

(B*) If an adversary learns the reconstruction result, but an honest party cannot, then the
honest party is compensated with coins. Furthermore, the compensation is more than a
predetermined amount.

Note that the difference between condition (B*) and condition (B) in Section 3.1 is the

amount of compensations only. Namely, our fair reconstruction protocol does not guarantee

that each honest party is compensated with the same amount of coins.

4.3 Our Fair Reconstruction Protocol
Our fair reconstruction protocol proceeds as follows (see also the right side of Figure 1):

Deposit phase

1) Fori e {1,...,n—1}, P, makes a transaction to send P, coins(g) with a circuit ¢; ,
and a round number 74, where ¢; ,(z) =l onlyif e =Ty A--- AT,

2) P, makes a transaction to send P,,_1 coins((n — 1)g) with a circuit ¢,, ,,—1 and a round
number 73, where ¢, p—1(z) =1l onlyif e =T1 A--- AT),_1.

3) Fori € {1,...,n — 2}, P,_1 makes a transaction to send P; coins((n — 1)q) with a
circuit ¢,,—1,; and a round number 75, where ¢,_1(x) =1 only if x = T,,_1 A T;.

4) For i € {1,...,n — 2}, P, makes a transaction to send P,_; coins((n — 2)q) with a
circuit ¢; ,—1 and a round number 71, where ¢; ,—1(x) =1 only if v =T,,_;.

Claim phase
5) P,_1 claims by publishing 7},_; in round 71 and receives coins((n — 2)q) from each of
Pl, e ,Pn_g.
6) For i € {1,...,n — 2}, P; claims by publishing T,,_; A T; in round 75 and receives
coins((n — 1)q) from P, _;.
7) P,_; claims by publishing 73 A- -+ AT, _; in round 73 and receives coins((n — 1)g) from

P,.
8) P, claims by publishing 77 A --- AT, in round 74 and receives coins(q) from each of
Py,...,P,_1.

Our fair reconstruction protocol requires eight rounds and 3n — 4 calls of F¢g. Since
For is sufficient to compute any standard functionality in constant rounds, we can derive
the following theorem. (We defer the proof to the full version.)

T. Nakai and K. Shinagawa

» Theorem 2. Assuming the existing of one-way functions, for every n-party functionality f
there exists a protocol that SCC realizes F7 ., in the (For, Fég)-hybrid model. The protocol
requires O(1) rounds and O(n) calls of F¢g.

4.4 |dea behind Our Protocol

See Figure 2 that shows flows of the claim phase of Bentov—Kumaresan’s fair reconstruction
protocol and ours.* In Bentov—Kumaresan’s protocol, parties publishes his/her token in
serial order, i.e., each token is published in each round. (Token 7} is published in round 7;.)
Thus, their protocol requires O(n) rounds.

On the other hand, our protocol enables to publish multiple tokens in one round to
improve the round complexity. See step 6) in Section 4.3, the parties Py, ..., P,_2 publish
their token in one round.

In the claim phase, our protocol proceeds as follows: We call Py, ..., P,_o middle parties
and P,,_1 aggregator. In round 7y, the aggregator P, _; collects coins from all middle parties
by publishing token 7T;,_1. After that, the middle parties publishes their tokens T7,...,T,_2
and receive coins, which are more than they sent in round 7, from the aggregator P,_; in
round 73. In round 73, the aggregator P,_; receives coins from P, by publishing his/her
token and all of middle parties’ tokens. In the last round 74, P, publishes the last token T,
and receives coins from every other party. As a result, all parties learn the reconstruction
result and every party’s wallet are balanced, i.e., it has neither loss nor gain.

We discuss the amount of coins sent in each transaction to satisfy the conditions (A) and
(B*) below.

The amount of coins. In our protocol, P, receives coins(q) from every other party in
the last round 74. (See Figure 1.) In order to satisfy the condition (A), every wallet of
Py, ..., P,_1 must hold coins(q) at the end of round 73. We show that our protocol satisfies
this condition in Figure 3.

When we decide the amount of coins in rounds 7; and 75, we should note that the
aggregator P,_1 cannot claim in round 73 if at least one of the middle parties abort in round
To. Since the aggregator sends more coins in round 75 than he/she received in round 7y,
his/her wallet holds negative amount of coins at the end of round 72. In order to satisfy the
conditions (A) and (B*), it is necessary to satisfy that the aggregator’s wallet holds positive

amount of coins at the end of round 7, if at least one of the middle parties abort in round 7.

The amounts of coins sent in rounds 71 and 75 are derived as follows.

Suppose that P,_; gets coins(zq) from each of P,...,P,_5 in round 7y, and each of
Py, ..., P,_o get coins((z + 1)q) from P,_; in round 7». In round 72, P,_1’s wallet should
have positive amount of coins unless all of Py, ..., P,_5 claims. Thus, we can derive x from

the following equation: (n — 2)z > (n — 3)(z + 1). The least solution of the equation is
2 = n — 2. Therefore, each middle party sends coins((n — 2)q) to the aggregator in round 7,
and the aggregator sends coins((n — 1)q) to each middle party in round 7.

Security intuition. Let consider the case where one of the middle parties aborts in round
T9. (See Figure 4.) Suppose that P; aborts in round 7o, i.e., he/she does not publish T; and
does not receive coins((n — 1)g) from P,_;. Note that P; must collude with P, to learn the

4 For ease of understanding, Figure 2 omits the transactions (among P, and other parties) in the last
round. (See transactions (1), (2),...,(n — 1) in Figure 1.)

5:11

Tokenomics 2021

5:12

Secure Computation with Non-Equivalent Penalties in Constant Rounds

reconstruction result. Thus, the condition (B*) is satisfied since every wallet of P, ..., P,_1
holds coins(q) as the compensation at the end of the protocol. Furthermore, since no honest
party does not pay a penalty, the condition (A) is satisfied. We can confirm that our protocol
satisfies the conditions (A) and (B*) by the same way in the other cases.

» Remark 3. Compensations to honest parties may not be the same amount of coins. See
P,_1 who receives coins((n — 2)q) from each of Pi,..., P,_5 in round 7;. The amount of
P,,_1’s compensation depends on the number of aborting parties in them. On the other hand,
compensations for other parties are coins(q). Namely, P,_; is the only party who can be
compensated with more than coins(q).

» Remark 4. At first glance, it seems that rounds 73 and 74 need not be separated since P,
can already claim in 73. However, if these rounds are combined into one (i.e., 74 = 73), the
modified protocol violates condition (A). Suppose all but P,, are malicious. First, in the
deposit phase, the adversary makes the n — 1 transactions to P,, honestly. However, after P,
makes the deposit transaction to P,_1, the adversary waits for time to pass without making
the subsequent transactions. Just before the end of 73, the adversary claims the transaction
made by P, and obtains coins((n — 1)q). P,_1 can get that coins back by claiming n — 1
transactions made by the adversary, however P, may not claim due to the lack of time
remaining. As a result, P, may lose the coins, which violates the condition (A).

5 Conclusion

This paper focused on Bentov and Kumaresan’s work [4] in secure computation with penalties.
They showed that secure computation with penalties could be constructed with O(n) rounds
and O(n) broadcasts for any function in the (For, F&g)-hybrid model. Also, it was the open
problem whether the round order could be improved to O(1) with O(n) broadcasts [13].

This paper presented a positive answer to this question in a relaxed setting. In Bentov-
Kumaresan’s protocol, every honest party can be compensated with the same amount of coins
when an adversary aborts after learning the output value. On the other hand, in our setting,
every honest party is guaranteed to be compensated with more than a predetermined amount
of coins, but not the same amount. We formalized this new setting as secure computation
with non-equivalent penalties. We showed that secure computation with non-equivalent
penalties could be realized with O(1) rounds and O(n) broadcasts for arbitrary functions in
the (For, F&g)-hybrid model. In particular, we improved the fair reconstruction protocol [4],
which is a key ingredient for realizing secure computation with penalties.

—— References

1 Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and F.ukasz Mazurek. Fair
two-party computations via bitcoin deposits. In Rainer B6hme, Michael Brenner, Tyler Moore,
and Matthew Smith, editors, Financial Cryptography and Data Security, pages 105-121, Berlin,
Heidelberg, 2014. Springer Berlin Heidelberg.

2 Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz Mazurek. Secure
multiparty computations on bitcoin. In 2014 IEEE Symposium on Security and Privacy, pages
443-458, 2014. doi:10.1109/SP.2014.35.

3 Adam Back and Iddo Bentov. Note on fair coin toss via bitcoin. CoRR, abs/1402.3698, 2014.
arXiv:1402.3698.

4 Iddo Bentov and Ranjit Kumaresan. How to use bitcoin to design fair protocols. In Juan A.
Garay and Rosario Gennaro, editors, Advances in Cryptology — CRYPTO 2014, pages 421-439,
Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

https://doi.org/10.1109/SP.2014.35
http://arxiv.org/abs/1402.3698

T. Nakai and K. Shinagawa

10

11

12

13

14

15

16

17

18

19

20

Iddo Bentov and Ranjit Kumaresan. How to use bitcoin to design fair protocols. Cryptology
ePrint Archive, Report 2014/129, 2014.

Iddo Bentov, Ranjit Kumaresan, and Andrew Miller. Instantaneous decentralized poker. In
Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology — ASIACRYPT 2017,
pages 410440, Cham, 2017. Springer International Publishing.

R Cleve. Limits on the security of coin flips when half the processors are faulty. In Proceedings
of the Fighteenth Annual ACM Symposium on Theory of Computing, STOC ’86, pages 364-369,

New York, NY, USA, 1986. Association for Computing Machinery. doi:10.1145/12130.12168.

Bernardo David, Rafael Dowsley, and Mario Larangeira. Kaleidoscope: An efficient poker
protocol with payment distribution and penalty enforcement. In Sarah Meiklejohn and Kazue
Sako, editors, Financial Cryptography and Data Security, pages 500-519, Berlin, Heidelberg,
2018. Springer Berlin Heidelberg.

Juan A. Garay, Jonathan Katz, Ranjit Kumaresan, and Hong-Sheng Zhou. Adaptively secure
broadcast, revisited. In Proceedings of the 30th Annual ACM SIGACT-SIGOPS Symposium

on Principles of Distributed Computing, PODC 11, pages 179-186, New York, NY, USA, 2011.

Association for Computing Machinery. doi:10.1145/1993806.1993832.

Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious transfer
— efficiently. In David Wagner, editor, Advances in Cryptology — CRYPTO 2008, pages 572-591,
Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

Aggelos Kiayias, Hong-Sheng Zhou, and Vassilis Zikas. Fair and robust multi-party computation
using a global transaction ledger. In Proceedings, Part I, of the 35th Annual International
Conference on Advances in Cryptology — EUROCRYPT 2016 - Volume 9666, pages 705734,
Berlin, Heidelberg, 2016. Springer-Verlag.

Joe Kilian. Founding crytpography on oblivious transfer. In Proceedings of the Twentieth
Annual ACM Symposium on Theory of Computing, STOC ’88, pages 20-31, New York, NY,
USA, 1988. Association for Computing Machinery. doi:10.1145/62212.62215.

Ranjit Kumaresan and Iddo Bentov. How to use bitcoin to incentivize correct computations. In
Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security,

CCS ’14, pages 3041, New York, NY, USA, 2014. Association for Computing Machinery.

doi:10.1145/2660267.2660380.
Ranjit Kumaresan and Iddo Bentov. Amortizing secure computation with penalties. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security,

CCS ’16, pages 418-429, New York, NY, USA, 2016. Association for Computing Machinery.

doi:10.1145/2976749.2978424.

Ranjit Kumaresan, Tal Moran, and Iddo Bentov. How to use bitcoin to play decentralized
poker. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security, CCS 15, pages 195—206, New York, NY, USA, 2015. Association for Computing
Machinery. doi:10.1145/2810103.2813712.

Ranjit Kumaresan, Vinod Vaikuntanathan, and Prashant Nalini Vasudevan. Improvements to
secure computation with penalties. In Proceedings of the 2016 ACM SIGSAC Conference on

Computer and Communications Security, CCS '16, pages 406417, New York, NY, USA, 2016.

Association for Computing Machinery. doi:10.1145/2976749.2978421.
Andrew Y. Lindell. Legally-enforceable fairness in secure two-party computation. In Tal

Malkin, editor, Topics in Cryptology — CT-RSA 2008, pages 121-137, Berlin, Heidelberg, 2008.

Springer Berlin Heidelberg.

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Cryptography Mailing list
at https://metzdowd.com, March 2009.

Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger. Ethereum
project yellow paper, 151:1-32, 2014.

Andrew Chi-Chih Yao. How to generate and exchange secrets. In Proceedings of the 27th
Annual Symposium on Foundations of Computer Science, SFCS ’86, pages 162-167, USA,
1986. IEEE Computer Society. doi:10.1109/SFCS.1986.25.

5:13

Tokenomics 2021

https://doi.org/10.1145/12130.12168
https://doi.org/10.1145/1993806.1993832
https://doi.org/10.1145/62212.62215
https://doi.org/10.1145/2660267.2660380
https://doi.org/10.1145/2976749.2978424
https://doi.org/10.1145/2810103.2813712
https://doi.org/10.1145/2976749.2978421
https://doi.org/10.1109/SFCS.1986.25

5:14 Secure Computation with Non-Equivalent Penalties in Constant Rounds

TiN---NT, TiN---NT,
Pl 1 n 1 n Pn (1)
q,Tn 49,74
TiN---NTy, TiN---NTy,
P, P, 2
@
TiN---NT, TiN---NTy,
Pn,1 Pn (n - 1)
q,Tn q,T4
P TyN--NTp 1 TiN--NT,, 1 P (n)
—1
" (n—1)g,mn—1 (n—1)q,73 "
TN NTp—o Th_1NTp_2
Pn—l = z Pn_g (7’L + 1)
(n—2)q,Tn—2 (n—1)g,72
Tn—l/\TnfS P (’I’L + 2)
n—3
(n—1)q,m2
Tyn_1NTy p
1
(n—1)q,m2
(2n —2)
ThAANToNT3
3q,73
Tnfl
Pn—l
P Ty NT> (77’72)%71
3 P (2n—1)
Trn-1
Pn—l (277’)
(n—2)q,m1
T
PP
,T1
’ Tn—l
Pnfl
(n—2)q,m1
(3n —4)

Figure 1 Bentov—Kumaresan’s fair reconstruction protocol (left) and our fair reconstruction
protocol (right) in the n-party setting: In the deposit phase, the transactions are created from top
to bottom, i.e., (1) to (2n — 2) in the left protocol and (1) to (3n — 4) in the right protocol. In the
claim phase, the transactions are claimed in the reverse direction, i.e., (2n — 2) to (1) in the left
protocol and (3n — 4) to (1) in the right protocol. The horizontal lines separate each round. Namely,
in the deposit (resp. claim) phase, transactions belonging to the same section are created (resp.
claimed) in one round.

T. Nakai and K. Shinagawa

OO OO

Figure 2 Flow of Bentov—Kumaresan’s fair reconstruction protocol (left) and ours (right).

Round 7, Round 7, Round 75
wallet wallet wallet
wallet wallet \ wallet
wallet wallet wallet wallet wallet
| P1|—(n—2)q eoe|Py, —(n—Z)q| Py +q |... P,y +q | | Py +q |...| -2

Figure 3 Coins flow in round 7 to 73 in the case where all parties behave honestly.

5:15

Tokenomics 2021

Secure Computation with Non-Equivalent Penalties in Constant Rounds

Round 7,

wallet
Py 0

WaIIet

P 1 +(n—2)2

VAR

wallet wallet wallet

Round 7,

wallet

P, 0

wallet

wallet wallet wallet

P1 —(n— 2)q —(n—Z)q

(n—z)q| |P2

)

,(nfz)ql | P, | +q |... Pn42| +q |

Figure 4 Coins flow in round 71 to 72 in the case where P; aborts.

	1 Introduction
	1.1 Backgrounds
	1.2 Our Contributions

	2 Preliminaries
	2.1 Basic Notations
	2.2 Secure Computation with Coins
	2.3 Special Ideal Functionalities
	2.3.1 Claim-or-refund functionality F^{*}_{CR}
	2.3.2 Secure computation with penalties F^{*}_{f}

	2.4 Non-malleable secret sharing with public verifiability and public reconstructibility

	3 Existing Protocol for secure computation with penalties
	3.1 Bentov–Kumaresan's Protocol
	3.2 Bentov–Kumaresan's Fair Reconstruction Protocol

	4 Proposed Protocol
	4.1 Secure Computation with Non-equivalent Penalties
	4.2 Fair Reconstruction for Secure Computation with Non-equivalent Penalties
	4.3 Our Fair Reconstruction Protocol
	4.4 Idea behind Our Protocol

	5 Conclusion

