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Abstract
The security of cryptocurrency and decentralized blockchain-maintained assets relies on their owners
safeguarding secrets, typically cryptographic keys. This applies equally to individuals keeping
daily-spending amounts and to large asset management companies. Loss of keys and attackers
gaining control of keys resulted in numerous losses of funds.

The security of individual keys was widely studied with practical solutions available, from
mnemonic phrases to dedicated hardware. There are also techniques for securing funds by requiring
combinations of multiple keys. However, to the best of our knowledge, a crucial question was never
addressed: How is wallet security affected by the number of keys, their types, and how they are
combined? This is the focus of this work.

We present a model where each key has certain probabilities for being safe, lost, leaked, or
stolen (available only to an attacker). The number of possible wallets for a given number of keys is
the Dedekind number, prohibiting an exhaustive search with many keys. Nonetheless, we bound
optimal-wallet failure probabilities with an evolutionary algorithm.

We evaluate the security (complement of failure probability) of wallets based on the number
and types of keys used. Our analysis covers a wide range of settings and reveals several surprises.
The failure probability general trend drops exponentially with the number of keys, but has a strong
dependency on its parity. In many cases, but not always, heterogeneous keys (not all with the same
fault probabilities) allow for superior wallets than homogeneous keys. Nonetheless, in the case of 3
keys, the common practice of requiring any pair is optimal in many settings.

Our formulation of the problem and initial results reveal several open questions, from user studies
of key fault probabilities to finding optimal wallets with very large numbers of keys. But they also
have an immediate practical outcome, informing cryptocurrency users on optimal wallet design.
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1 Introduction

Cryptocurrency systems maintain their state in a database called a blockchain. The state
includes user’s data as well as their token balances. To change their data, and in particular
to order transactions of their funds, users append data structures called transactions to the
blockchain. To authenticate themselves, users include in the transaction a proof of their
(typically pseudonymous) identity.

Unlike common centralized systems, the choice of the authentication method is at the
hands of the users themselves. A user defines, with a blockchain transaction, a predicate for
authentication to access her digital assets. Transaction that access those assets must include
inputs to make this predicate true. The predicate is called a wallet, and it is specified in a
dedicated programming language as a smart contract. Typically, wallets require one or more
cryptographic signatures. The security of a wallet, its probability of not failing, thus relies
on the safekeeping of one or more secrets – private keys maintained by the user.
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In classical systems like bank accounts and credit cards, accounts are identified and users
are insured against theft. They are allowed to revoke and refresh their keys using alternative
authentication techniques [13]. None of those mechanisms apply to cryptocurrencies, and
if a user’s keys are lost or leaked, she immediately loses access to her funds. The problem
applies equally to personal wallets, holding small amounts for daily use, and to large actors
such as companies holding their own1 or their clients’2 funds.

Previous work (§2) proposed techniques to maintain keys [5, 11], including locally-stored
files, possibly encrypted, dedicated hardware [1], hosted online services, paper wallets, and
brain wallets (i.e., committing the key to memory). Other work discovered techniques to
implement threshold signatures [19, 15, 14], where multiple secrets are necessary to produce
a signature but, unlike classical secret sharing [21], the private key is never learnt by any
party. Password-protected secret sharing [2, 17] allows users to store a secret shared between
multiple servers, overcoming server faults, and without the servers learning the secret without
a password. Companies3 and open-source projects4 use wallets that require two keys, or
alternatively one-out-of-two keys, two-out-of-three keys, or more elaborate schemes.

Nonetheless, to the best of our knowledge, the question of how many keys a user should
maintain and what combination is the most secure was never formally explored. This is the
goal of this work.

We model the system (§3) by considering a principal, called an owner, that wishes to
secure cryptocurrency tokens. The owner can store one or more secrets called keys. These
could be cryptographic signing keys, portions thereof, or any other secrets. If only the owner
can access a key we call that key safe. But keys can suffer three types of faults. First,
they can be lost; e.g., in a discarded hard-drive5, a forgotten password6, due to a fire, etc.
Secondly they can be leaked to the adversary, e.g., by gaining access to a machine, keystroke
logging, or guessing [22, 6]. Finally, they can be stolen; this is a combination of the previous
faults, where the adversary gains access to the key and the owner loses access to it. This
could happen, e.g., if the key is controlled by an online service that is compromised, or if an
attacker physically steals a written secret or even a hardware key [16]. There is a certain
probability for each of the keys to suffer each of the faults. Note that the four states cannot
be reduced: the probability of loss and leakage can be 2% each with a theft probability of
either 0 or 1%, for example. For simplicity we assume that fault probabilities of the keys are
independent of one another. We also assume that the owner knows these probabilities.

To secure her funds, the owner locks her tokens in the cryptocurrency system with a smart
contract that can require an arbitrary combination of the keys. For two keys it can require
either key, so if one is lost she can use the other. She could also require both keys, so if one
is leaked the adversary cannot move the tokens. We call the set of possible combinations
defined in the contract a wallet. If a party has the keys for one of the combinations we say
she can satisfy the wallet. The wallet fails if the owner cannot satisfy it or if an adversary
can. The former happens if enough keys are either lost of stolen, and the latter if enough
keys are either leaked or stolen. The owner should choose the best wallet (lowest failure
probability) given the fault probabilities of the keys.

1 https://edition.cnn.com/2021/02/08/investing/tesla-bitcoins/index.html
2 https://www.forbes.com/advisor/investing/best-crypto-exchanges,

https://www.cmegroup.com/markets/cryptocurrencies.html
3 https://keys.casa/, https://zengo.com/
4 https://electrum.readthedocs.io/en/latest/multisig.html
5 https://www.bbc.com/news/uk-wales-south-east-wales-25134289
6 https://www.nytimes.com/2019/02/05/business/quadriga-cx-gerald-cotten.html

https://edition.cnn.com/2021/02/08/investing/tesla-bitcoins/index.html
https://www.forbes.com/advisor/investing/best-crypto-exchanges
https://www.cmegroup.com/markets/cryptocurrencies.html
https://keys.casa/
https://zengo.com/
https://electrum.readthedocs.io/en/latest/multisig.html
https://www.bbc.com/news/uk-wales-south-east-wales-25134289
https://www.nytimes.com/2019/02/05/business/quadriga-cx-gerald-cotten.html
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To analyze wallet design we use two techniques (§4). First, for wallets with up to 5
keys we are able to complete an exhaustive search of the wallet space. By enumerating the
probabilities of all key states and calculating the failure probability of each wallet we can
find the optimal wallet given key fault probabilities.

The wallet space grows super-exponentially with the number of keys prohibiting an
exhaustive search for large wallets. However, we can bound the failure probabilities of the
optimal wallets using evolutionary optimization [10]. Roughly, we construct a population of
wallet candidates and iteratively perturb them and select the best for the next generation.

We begin our analysis (§5) with a detailed review of the optimal wallets for up to 4 keys
with specific fault probabilities. Even with two keys, we find that there are prominent cases
where the owner is better off by using only one key and ignoring the other. This happens with
homogeneous keys (that have the same probabilities) if the theft probability is non-negligible
and the loss and leak probabilities are similar. With three keys, we confirm that the common
2/3 approach [12] is indeed the optimum for a variety of realistic settings. We illustrate why
different optimal wallets are better in different settings by considering the probabilities that
the owner and that the attacker can satisfy a wallet. With four keys, two distinct natural
extrapolations of the 2/3 solution are optimal for a wide range of probabilities, namely either
all pairs or all triads. However, in prominent cases, where theft probability is non-negligible
and loss and leak probabilities are similar, the optimum is a different, asymmetric wallet.

The owner can choose how many keys to use for its wallet. Our next step is therefore to
evaluate the effect of the number of keys of wallet security. As expected, the optimal-wallet
failure probability drops in a general exponential trend with the number of keys. However,
when the theft probability is non-negligible, there is a strong dependence on parity. For
example, when all keys have the same theft probability but no other faults, failure probability
does not improve when adding a key to an odd-key wallet.

Finally, the owner has a choice of which keys to use for its wallet. For example, she could
use a key stored in a mobile-device and two hardware keys, or vice versa. By considering
the design space for 3-key wallets, we find that it is often, but not always, best to have
heterogeneous keys.

We conclude (§6) by reviewing several open directions exposed by this work. These
include user studies to quantify the probabilities of key faults, dependency among key fault
probabilities, and techniques to identify optimal wallets with very large numbers of keys.
However, the results presented here are of immediate importance to users, who can estimate
their keys’ fault probabilities, choose keys wisely, and thus improve the security of their
funds. We intend to open-source the tools presented here.

2 Related Work

No work we are aware of analyzes cryptocurrency wallet design, though many works discuss
tools for wallet design and implement a variety of designs.

Kirstein et al. [18] assume users have two storage tiers, one that is harder to access but
is more secure, and another that is easy to access but is less secure. They design a wallet
contract based on Moser et al. [20] that takes advantage of the two tiers to provide both
good security and good accessibility. Earlier work by Baratam [3] uses a similar technique to
combine a variety of keys with different properties. He combines user-maintained keys with
keys hosted by remote services and proposes a wallet contract to minimize failure probability.
Both of the proposals focus on the mechanics of the wallets, but neither of them describes
the key fault probabilities, analyzes the resultant wallet failure probabilities, or addresses
the choice of type and number of keys.

Tokenomics 2021
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Eskandari et al. [11] provide a taxonomy of individual key storage options, including local
storage, encrypted local storage, offline storage, hosted, etc. Evaluated criteria cover security,
as well as usability and deployability. However, they do not consider multi-key wallets and
overall wallet failures, only the security of individual keys.

Bonneau et al. [5] devote a whole chapter in their Systemization of Knowledge work to
client-side security. In addition to per-key storage options, they also discuss the mechanics
for implementing a symmetric k/n wallet, but not a formal treatment of its superior wallet
security.

In their review of cryptocurrency research challenges, Barber et al. [4] also devote a
chapter to client-side security. But they, too, focus on the properties of individual keys.
They explicitly discuss the threat of benign key loss, but do not consider theft, and do not
quantify fault probabilities and their effect.

3 Model

We explain the reasoning and simplifications resulting in our model (§3.1) followed by the
formal specification (§3.2).

3.1 Rationale
A cryptocurrency user secures her assets by defining arbitrary logic to authorize access to
her assets. We call this logic a wallet. It is implemented in a so-called smart-contract for
the relevant blockchain. Once the wallet is implemented in a smart contract, assets can be
allocated (sent) to it on the blockchain. When issuing commands that affect those assets,
the user publishes a transaction with inputs to the smart contract, and the transaction takes
effect only if the contract authorizes it.

The transaction is first published via a peer-to-peer network, and subsequently placed
in the blockchain by one of its operators, called miners. This mechanism means that the
authentication mechanism should prohibit malicious parties from being able to authenticate
themselves based on observed transactions. Otherwise, miners (or really anyone) [8] could
take advantage and relieve the user of her assets: They would observe a transaction, replace
the order with another, and falsely authenticate.

Therefore, wallets are typically implementing by requiring cryptographic signatures
matching predefined public keys. A wallet can combine any number of signature requirements,
e.g., for two particular public keys, for any pair out of three options, etc. Moreover, the
contract can require only a single signature, but the user partitions her secret into several
parts and combines them offline before issuing a transaction. Either way, the result is the
same – the wallet is secured by a set of secrets we call keys (even if they are parts of a single
cryptographic key) requiring a combination of the keys to authenticate. The wallet is thus a
predicate of this set of keys, and if a party has enough keys to make this predicate true we
say she can satisfy the wallet.

We say a wallet fails if the user loses control of her assets, which could happen due to
two reasons. First, the owner might lose access to keys and not be able to satisfy the wallet.
Secondly, an adversary could gain access to a combination of keys that allows her to satisfy
the wallet and steal the assets. This second option includes scenarios where both parties can
satisfy the wallet. In practice, in such scenarios the parties can enter a bidding war, each
paying more fees, trying to get the miners to place her transaction in the blockchain. The
fees can be arbitrarily high, with the attacker possibly willing to pay almost the entire wallet
amount to make a profit. We therefore consider the wallet failed in such scenarios.
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An owner can add offline security measures to her keys. For example, she could encrypt
locally-stored keys or require a PIN access code to a hardware signing device. These
approaches simply reduce the probability that the attacker gains access to a key but also
increase the probability that the owner loses access [5]. They are thus covered by our model.

An owner might lose access to her keys gradually. For example, she forgets one memorized
key, and after several months loses another paper key due to a basement flood. An adversary
can also gain key access gradually. For example, a hacker steals a hardware signing device
and subsequently retrieves a typed key with a keystroke logger as the user tries to save her
assets.

In our model we flatten such series of events of keys being lost and leaked to probabilities
per key. One can think of those as being evaluated at the time at which the owner wishes
to transact her funds. At this point, there is a certain probability that the adversary had
gained access to the keys, or that the owner had lost access.

3.2 Model Details
An owner maintains a set of n keys k1, . . . , kn. Each key is in one of four states:
safe Only the user has access,
loss No one has access,
leak Both the user and the adversary have access, or
theft Only the adversary has access,
denoted S, i.e., for each 1 ≤ i ≤ n: ki ∈ S = {safe, loss, leak, theft}.

A scenario σ is the state vector of each of the keys, and denote by Σn the set of all
scenarios with n keys, i.e., σ ∈ Σn = (safe, loss, leak, theft)n. Denote by σi the state of key i

in scenario σ.
Denote by σO and σA the binary availability vectors of each of the keys in scenario σ for

the owner and for the adversary, respectively. For the state of key i, σi, the availabilities
are σO

i and σA
i . For example, if σi = safe then σO

i = True and σA
i = False. Table 1

summarizes the translation from state to availability.
The states of the different keys are determined by a probability space specified by

independent probabilities of each of the keys. These probabilities are described by a tuple P

of probability vectors P safe, P loss, P leak and P theft. The probabilities that key i is in each of
the states are denoted P safe

i , P loss
i , P leak

i , and P theft
i for safe, loss, leak, and theft, respectively.

The sum of probabilities for each key i is one, P safe
i + P loss

i + P leak
i + P theft

i = 1.
The probability of a scenario can be calculated given the probability vector tuple. For

example, for three keys, the probability that the first is safe, the second is lost and the third
is leaked is P safe

1 × P loss
2 × P leak

3 . In general: (1c is the indicator function, it equals 1 if the
condition c holds and 0 otherwise)

Pr[σ] =
n∏

i=1

(∑
s∈S

1σi=s × P s
i

)
. (1)

With n keys there are 4n possible states, each key being in one of its four possible states.
We can calculate the probability of each scenario and derive the key availability probabilities
for each party. Table 2 shows 5 scenarios from the 42 = 16 possible with 2 keys.

A wallet w is a predicate of the availability of the n keys. For example, a wallet w that
requires the availability of either keys k1 and k2 or keys k2 and k3 is defined by w(a1, a2, a3) ∆=
(a1 ∧ a2) ∨ (a2 ∧ a3). By slight abuse of notation, for a vector v = (v1, v2, v3) we write w(v)
for w(v1, v2, v3).

Tokenomics 2021
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Table 1 Key state and
availability.

σ i σO
i σA

i

safe True False
loss False False
leak True True
theft False True

Table 2 State enumeration.

σ1 σ2 probability σO σA

safe safe (P safe)2 (True, True) (False, False)
safe loss P safe × P loss (True, False) (False, False)
safe leak P safe × P leak (True, True) (False, True)
safe theft P safe × P theft (True, False) (False, True)
loss safe P loss × P safe (False, True) (False, False)
. . . . . . . . . . . . . . .

We denote by wk/n the wallet that is satisfied by any set of k out of the n keys. The
wallet wAND

n is the wallet requiring all n keys (wn/n), and the wallet wOR
n is the wallet requiring

any of the n keys (w1/n).
A wallet w is successful in a scenario σ if and only if the adversary cannot satisfy it and

the owner can, i.e., w(σO) ∧ ¬w(σA). Otherwise, the wallet has failed in this scenario.
Given a probability vector tuple P , we can calculate for wallet w its success and failure

probabilities, pP
success(w) and pP

failure(w), respectively. For success, we sum the probabilities
of all states where the wallet is successful,

pP
success(w) =

∑
σ∈Σn

Pr[σ] × 1w(σO) × 1¬w(σA) , (2)

and the failure probability is the complement pP
failure(w) = 1 − pP

success(w).
We denote the fact a wallet w is better than wallet w′, i.e., pP

failure(w) < pP
failure(w′) by

w′ ≺P w, omitting the subscript (w′ ≺ w) when P is clear from the context.

4 Methodology

To find the optimal wallet for a given probability vector tuple, we search the entire design
space when possible (§4.1) or use an approximation (§4.2) otherwise.

4.1 Exhaustive Search
For small numbers of keys we can find the optimal wallet by exhaustively calculating the
failure probabilities of all possible wallets. We observe that each wallet is a monotone
boolean function – if a party can satisfy the wallet, being able to access another key will not
prohibit it from satisfying the wallet. The exact number of such functions, the Dedekind
number [9] minus 2 (excluding the constant functions True and False), is only known up
to 8 keys [7, 23, 24]. It grows super-exponentially, making complete coverage of all possible
wallets intractable. Complete coverage also becomes intractable due to the exponentially
growing number of key states (4n).

To enumerate all wallets, we express wallets as a logical or of sets of logical and’s. We call
each set of and-ed keys a combination. For example, for two keys we consider four possible
wallets, requiring one combination of both keys (k1 ∧ k2), requiring either of them (k1) ∨ (k2)
(two combinations), but also the asymmetric options of requiring one (k1) or the other (k2).

We denote by c ⊂ c′ the fact that all keys in combination c are also in combination c′

and say c′ covers c. We exclude wallets where one combination covers another, e.g., (k1 ∧
k2 ∧ k3) ∨ (k1 ∧ k2) as it is the same function as (k1 ∧ k2), which is evaluated.

There are a total of (2n − 1) possible non-zero combinations, and we consider all sets of
those combinations that are not redundant due to one combination covering another.
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Algorithm 1 Wallet enumeration.

1 function enumerateWallets (baseWallet, prevCombi, keyCount)
2 wallets← ∅
3 for combi = next(prevCombi) to lastCombi(n) do
4 if ∄c ∈ baseWallet : c ⊂ combi then (Skip redundant combinations)
5 currWallet← baseWallet ∪ {combi}
6 wallets← wallets ∪ {currWallet} (With new combination)
7 wallets← wallets ∪ enumerateWallets(currWallet, combi, keyCount)

(With new combination and others)
8 return(wallets)

For example, with three keys there are 18 possible wallets, as follows,

(k1), (k2), (k3), (3a)
(k1) ∨ (k2), (k1) ∨ (k3), (k2) ∨ (k3), (3b)
(k1) ∨ (k2) ∨ (k3), (3c)
(k1 ∧ k2), (k1 ∧ k3), (k2 ∧ k3), (3d)
(k1 ∧ k2) ∨ (k3), (k1) ∨ (k2 ∧ k3), (k2) ∨ (k1 ∧ k3), (3e)
(k1 ∧ k2) ∨ (k1 ∧ k3), (k1 ∧ k2) ∨ (k2 ∧ k3), (k1 ∧ k3) ∨ (k2 ∧ k3), (3f)
(k1 ∧ k2) ∨ (k1 ∧ k3) ∨ (k2 ∧ k3), (3g)
(k1 ∧ k2 ∧ k3) . (3h)

We enumerate the wallets recursively, as shown in Algorithm 1. The algorithm utilizes a
lexicographic order of the combinations, implemented with the function next that returns the
next combination in order and last that return the last combination, namely k1, . . . , kn. We
call the algorithm with baseWallet = ∅, prevCombi = 0, and the desired number of keys, n.
The recursive algorithm returns the set of all wallets with all non-redundant subsequent
combinations, considering redundancy with wallets in baseWallet.

4.2 Evolutionary Approximation

To analyze larger numbers of keys, beyond the reach of an exhaustive search, we search the
space with an evolutionary algorithm [10] (Algorithm 2). We bootstrap the algorithm with
a random population – a multiset of npop wallets. The algorithm then iteratively improves
this population. In each iteration i we produce a new generation based on the population of
iteration i − 1.

We first select a multiset of npop wallets as follows. For each selection we consider nselection
wallets uniformly at random (UAR) from iteration i − 1 and select the best (lowest failure
rate) among them. Good wallets are likely to appear multiple times in the new multiset.

We then perturb each wallet in the selection by choosing one of its combinations uniformly
at random and flipping each of its key requirements with independent probability pperturb.
For example, for a three-key wallet combination of k1 ∧ k2, key k1 is removed with
probability pperturb, key k2 is removed with probability pperturb, and key k3 is added with
probability pperturb.

The resultant wallet multiset is then taken as the population of the next iteration. We
repeat this until there is no improvement in wallet failure probability for nstability generations.

Tokenomics 2021
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Algorithm 2 Evolutionary Wallet Optimization.
input : n, P ; npop, nselection, pperturb, nstability

1 pop← npop random wallets
2 δ ← 0 (Convergence counter)
3 best← 0 (Best wallet’s probability)
4 while δ < nstability do (While not stable for long enough)
5 if maxw{pP

success(w)|w ∈ pop} > best then
6 best← maxw{pP

success(w)|w ∈ pop}
7 δ ← 0 (Reset convergence counter)
8 else
9 δ ← δ + 1

10 selected← {{arg maxw{pP
success(w)|w ∈ pop}}} (Keep best wallet)

11 while |selected| < npop do
12 W← choose nselection UAR from pop
13 selected← selected + {{arg maxw{pP

success(w)|w ∈W}}}
14 nextGen← {{}}
15 foreach wallet w in selected do
16 c

$← w ∪ {∅} (Choose UAR a combination in w or an empty combination)
17 c′ ← ∅
18 foreach i ∈ [n + 1] do (With probability pperturb toggle each key)
19 with probability pperturb

20 c′ ← c′ ∪
{
{ki} ki ̸∈ c

∅ ki ∈ c

21 else

22 c′ ← c′ ∪
{
{ki} ki ∈ c

∅ ki ̸∈ c

23 w′ ← w \ {c} ∪ {c′} (Replace perturbed combination)
24 nextGen← nextGen + {w′} (Replace perturbed wallet)
25 pop← nextGen

5 Optimal Wallets

We are now ready to analyze the optimal wallet choices and the resultant probabilities.
We begin (§5.1) by studying in detail optimal wallets with small numbers homogeneous
keys. Next (§5.2) we look at the effect of the number of keys on wallet failure probability.
Finally (§5.3) we turn our attention to optimal wallets for heterogeneous keys.

5.1 Homogeneous Keys

For homogeneous keys we denote state probabilities by P safe, P loss, P leak, and P theft, omitting
the key indices.

5.1.1 One Key

For a wallet with a single key, wSingle(k1) = k1, the probability for success is simply the
probability that the key was neither lost, leaked, nor stolen, i.e.,

psuccess(wSingle) = P safe . (4)
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(a) Failure prob.
Single key.

(b) Failure prob.
k1 ∧ k2.

(c) Failure prob.
k1 ∨ k2.

(d) Best wallet. (e) Best wallet;
P theft = 0.04.

Figure 1 Two-key wallets; P theft = 0.01 unless noted otherwise.

Figure 1a illustrates the success probability of the wallet for different values of P leak

and P loss with a constant P theft = 0.01. The isolines show equal failure probability, indicating
the lowest failure probability reaches 0.01 when P leak = P loss = 0.

5.1.2 Two keys
With two keys several wallets are possible:
AND Require both keys (Figure 1b). For success we require that either both keys are safe,

or one is safe and the other is leaked. If either key is lost or stolen then the wallet fails as
the owner cannot satisfy it.

psuccess(wAND
2 ) = (P safe)2 + 2P safeP leak . (5)

OR Require at least one of the keys (Figure 1c). For success we require that either both
keys are safe or one is safe and the other is lost. If either key is leaked or stolen then the
wallet has failed.

psuccess(wOR
2 ) = (P safe)2 + 2P safeP loss . (6)

The symmetry between these two wallets is clear, and it is evident that when P leak < P loss

the OR wallet is superior, and vice versa. But there is a third option, which simply ignores
one of the keys; since the probabilities are the same for both keys it doesn’t matter which
one:

Single Require that the key is neither lost nor leaked (Figure 1a, Equation 4).

Comparing these probabilities shows that there is a region where using a single key is
more secure than either of the other options – when the loss and leak probabilities are similar.
To be better than the OR wallet, it should hold that (P safe)2 + 2P safeP loss < P safe, and
similarly for the AND wallet, i.e.,

P loss − P leak < P theft ⇒ wOR
2 ≺ wsingle, (7a)

P leak − P loss < P theft ⇒ wAND
2 ≺ wsingle, (7b)

so if |P loss − P leak| < P theft, the optimal 2-key wallet is wSingle.
Figures 1d-1e show which wallet dominates each region in the settings space with theft

probabilities of 0.01 and 0.04. Note that although we draw the full range (fault probabilities
almost up to 1), the practical range is where fault probabilities are small, and the single-key
wallet is optimal in a significant portion of this region.

Tokenomics 2021
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(a) P theft = 0.0. (b) P theft = 0.08.

Figure 2 Three-key optimal wallet for varying theft probability.

5.1.3 Three keys
With three keys there are 18 possible wallets (§4.1). Figure 2 shows the optimal wallets in a
range of settings. In such figures we write i instead of ki to reduce clutter.

We see that the common wisdom in wallet design [12] is correct in a wide range of settings:
The wallet w2/3 = (k1 ∧ k2) ∨ (k2 ∧ k3) ∨ (k3 ∧ k1) is optimal when P loss and P leak are roughly
the same. As expected, the OR wallet (k1 ∨ k2 ∨ k3) is optimal when the loss probability is
much higher than the leak probability, and the AND wallet is optimal when a leak is much
more likely than a loss.

When there is no theft (Figure 2a), symmetric wallets are optimal across the range of loss
and leak probabilities. However, there are regions in the homogeneous settings space where
asymmetric wallets are optimal, using only a pair of the keys, or all three, e.g., (k1 ∧k2)∨ (k3).
This occurs when theft probability is non-negligible, and becomes pronounced when it is
large, as shown for P theft = 0.8 in Figure 2b. Nonetheless, the common w2/3 wallet remains
optimal in the key portion of the space where the fault probabilities are small.

Owner and Adversary Perspectives
To better understand the wallet changes, we explore the probabilities that each of the owner
and adversary can satisfy the optimal wallet. A wallet does not fail if the owner has the
keys and the adversary does not, and this is the probability we aim to maximize. Figure 3c
shows the failure probability of the optimal wallet with P theft = 0.08 and varying values
of P loss and P leak. The black lines show the transition lines between different optimal
wallets (cf. Figure 2). Figures 3a and 3b show the probability that the owner and the
adversary (respectively) can satisfy the optimal wallet.

We observe that the wallet success probability is continuous as expected – a switch from
one wallet to another occurs at the point where their success probabilities are the same.
Figure 3a shows where the owner’s decreasing probability leads to a wallet switch, shown as
a darkening color switching to light across a boundary. Figure 3b shows the contrary, where
the adversary’s increasing probability leads to a wallet switch, shown as a lightning color
switching to dark across a boundary.

5.1.4 Four Keys
When moving to four keys, it is natural to consider an optimal wallet based on the three-key
case, w2/3. But extrapolating to four keys we could require either any pair, w2/4, or any
triad, w3/4. If there is no theft, Figure 4a shows that indeed these two options dominate a
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(a) Owner access probability.
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(b) Adversary access probability.
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(c) Wallet failure probability.

Figure 3 Wallet failure breakdown. P theft = 0.08.

(a) P theft = 0.0. (b) P theft = 0.08.

Figure 4 Best four-key wallets without theft.

wide range of settings. Specifically, if P loss is larger than P leak, then pairs is the right choice,
as less keys are required from the owner. And if P leak is larger than P loss then triads is the
right choice, as more keys are required from the attacker. As expected, the OR wallet is
optimal when loss is very likely and leak isn’t; and the AND wallet is optimal when leak is
very likely but loss isn’t.

When P theft is positive, as in the two-key case, asymmetric solutions become optimal in
a wider range of cases. Figure 4b shows the case for theft probability of 0.08 (taking a large
value to illustrate the effect). The two extrapolations of the 3-key case remain dominant
in many settings. But now, unless P loss and P leak are significantly different, the optimal
wallets are asymmetric.

Figure 5 focuses on the range of smaller fault probabilities, with loss and leak of up
to 0.10, and with more realistic theft probabilities of 0.01 and 0.02. We see that in this
region, asymmetric wallets become dominant in the most practical region. When both P loss

and P leak are roughly similar and below 0.01, the optimal wallet is of the type (1 ∧ 2 ∧ 3) ∨
(1 ∧ 4) ∨ (2 ∧ 4) ∨ (3 ∧ 4) (or any permutation, as the key probabilities are identical).

5.2 Number of keys

The number of keys, has major effect on wallet security. While 2-3 keys might be all that is
necessary or technically feasible for an individual, much larger numbers could be practical
when storing large amounts, e.g., by financial institutions. In such cases, a group of 6
executives, maybe more, can be assigned to keep 6 different keys.

Tokenomics 2021
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(a) P theft = 0.01. (b) P theft = 0.02.

Figure 5 Best four-key wallets without theft – small probabilities.
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(a) P loss = 0.01, P leak = 0.01.
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(b) P theft = 0.01.
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(c) First: P loss = P leak = 0.01;
Next: P theft = 0.01.

Figure 6 Wallets with many keys and one fault type.

We assume all keys have the same fault probabilities and vary the number of keys from 1
to 7. If the only fault is loss with some probability P loss, the optimal wallet is wOR

n , and its
failure probability drops exponentially with the number of keys (Figure 6a). A similar result
is achieved with the wAND

n wallet if only leaks are possible.
In a theft-only setting the result is different (Figure 6b). While the overall trend remains

exponential, the improvement only emerges on odd numbers of keys. With an odd n number,
the best solution is the symmetric n − 1 optimal solution. The figures show the optimal
wallet failure probability, where it can be calculated; with larger numbers of keys they show
the failure probability of the best-guess-wallet. The guesses include all symmetric wallets
with m keys where m ≤ n, i.e., all symmetric wallets for smaller key sets.

In all cases the evolutionary algorithm closely approximates the optima when starting
from a random population, demonstrating its effectiveness. In the next evaluations we
bootstrap with the best symmetric key available, so it can only improve further.

In practice, increasing the number of keys could imply using keys with individual larger
fault probabilities. For example, by assigning key keeping responsibilities to more, less trusted,
individuals. Figure 6c shows the security when the first wallet can be lost or leaked, but not
stolen (P loss = P leak = 0.01), and the rest of the keys can only be stolen (P theft = 0.01).

Figure 7 shows the approximate optimal wallet failure probability with wallets that suffer
only loss and theft with different fault probabilities and different numbers of keys. The
exponential improvement with key number results, for example, in an order-of-magnitude
improvement when theft (loss) probability is a constant 0.01, when using 7 keys with loss
(theft) probability of 0.03 compared to 3 keys with loss (theft) probability of 0.01.
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Figure 7 Failure probability with different fault probabilities.

Table 3 Heterogeneous Keys.

Key 1 Key 2 Key 3
pfailure Wallet

P loss
1 P leak

1 P theft
1 P loss

2 P leak
2 P theft

2 P loss
3 P leak

3 P theft
3

1 0.100 0.000 0.000 0.100 0.000 0.000 0.100 0.000 0.000 0.0010 (1) ∨ (2) ∨ (3)
2 0.000 0.100 0.000 0.000 0.100 0.000 0.000 0.100 0.000 0.0010 (1 ∧ 2 ∧ 3)
3 0.100 0.000 0.000 0.100 0.000 0.000 0.000 0.100 0.000 0.0100 (1) ∨ (2)
4 0.100 0.000 0.000 0.000 0.100 0.000 0.000 0.100 0.000 0.0100 (2 ∧ 3)
5 0.050 0.050 0.000 0.050 0.050 0.000 0.050 0.050 0.000 0.0145 (1 ∧ 2) ∨ (1 ∧ 3) ∨ (2 ∧ 3)
6 0.050 0.050 0.000 0.050 0.050 0.000 0.000 0.100 0.000 0.0122 (1 ∧ 3) ∨ (2 ∧ 3)
7 0.050 0.050 0.000 0.050 0.050 0.000 0.100 0.000 0.000 0.0122 (1 ∧ 2) ∨ (3)
8 0.100 0.000 0.000 0.100 0.000 0.000 0.000 0.000 0.100 0.0100 (1) ∨ (2)
9 0.000 0.000 0.100 0.000 0.000 0.100 0.000 0.000 0.100 0.0280 (1 ∧ 2) ∨ (1 ∧ 3) ∨ (2 ∧ 3)
10 0.000 0.000 0.050 0.000 0.000 0.050 0.000 0.000 0.050 0.0073 (1 ∧ 2) ∨ (1 ∧ 3) ∨ (2 ∧ 3)

5.3 Key Type Choice
Apart from the number of keys, the owner could choose the types of keys she maintains.
For example, she could keep 3 secrets in different safety deposit boxes, or three secrets on
hardware devices held by different people. Alternatively, she could keep one key in a safety
deposit box, another on a hardware device held by a person, and another memorized.

To compare such alternatives, assume the owner has a budget of 0.1 fault probability
per key and can choose three keys such that for each key i: P loss

i + P leak
i + P theft

i = 0.1.
Table 3 shows the optimal wallet and its failure probability for different heterogeneous key
sets. Among these settings, the best wallets are obtained with homogeneous keys that can
either be only lost (Line 1) or leaked (Line 2), and theft is naturally the most problematic.

Figure 8 explores the effects of budget distribution with heterogeneous keys. For all
key combinations, the sum of fault probabilities is 0.1. In all settings we keep the fault
probabilities of keys 1 and 2 constant and vary that of key 3 such that its loss probability
grows from 0 to 0.1 and its leak probability drops from 0.1 to 0.

In all cases, if the loss probability of k3 is very low (and its leak probability is high) it is
required in all combinations, as it is unlikely the owner would not have access to it (this is
not always visible at this resolution). Similarly, if its leak probability is very low then the
optimal wallet can be satisfied only with k3.

With no theft (Figure 8a), if the probabilities for the first two keys are pure, i.e., only
loss or only leak, it is best to have a third key of the same type. However, if they are not
pure (P loss = 0.09, P leak = 0.01), it is better to have the third key of a different type (e.g.,
P loss = 0.01, P leak = 0.09).
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Figure 8 Heterogeneous keys.

The optimal wallets change significantly if we introduce just a bit of theft probability
(Figure 8b, P theft

1 = P theft
2 = 0.01), slightly increasing the fault budget. There is a significant

advantage in taking k3 to be different than the first two, i.e., if they have large loss probability,
it is better to take k3 with small loss probability. With the two keys having P loss = P leak =
0.05, all choices of k3 result in the same wallet failure probability.

6 Conclusion

We present a simple model allowing, for the first time, to analyze the design of cryptocurrency
wallets. Our analysis shows that careful design is necessary for constructing secure wallets –
adding keys provides in general an exponential improvement, but strongly depends on parity;
and choosing whether to add keys of the same type or of a different type depends on the
exact key fault probabilities.

Our results raise questions for future work. First, user studies to quantify key fault
probabilities are critically missing, both for theoretical analysis and to inform users; the
infamous frequency of wallet failures indicates users commonly underestimate the fault
probability of their keys. Secondly, the model can be expanded to consider (the undesirable)
correlation between key faults. Those occur, for example, if a user keeps two keys at the
same location and loses access to it, or if two company employees defect together. Thirdly,
our evolutionary algorithm only reaches a limited number of keys, as the key state space
became too large to evaluate. Techniques for estimating security with larger spaces would
allow to analyze, or at least bound, wallet security with larger numbers of keys.

Nevertheless, the results presented here are of immediate importance to users, who can
estimate their keys’ fault probabilities, choose keys wisely, and thus improve the security of
their funds.
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A Optimal Keys

For two cases we can easily prove what the optimal wallets are.
We often omit the function parameters to reduce clutter. For example, a wallet w and its

sub-expressions are all functions of key availability, but rather than writing w(k1, k2, k3) =
e1(k1, k2, k3) ∨ e2(k1, k2, k3) we suffice with w = e1 ∨ e2.

First, if keys can only suffer loss, the optimal wallet is the wOR
n wallet.

▶ Proposition 1. In a setting where all n keys can only suffer loss, i.e., ∀1 ≤ i ≤ n : P leak
i =

P theft
i = 0, for all wallets w, pP

success(w) ≤ pP
success(wOR

n ).

Proof. Consider a wallet expressed as a DNF comprising m expressions, i.e., w = e1 ∨. . .∨em,
where each ej is a conjunction of one or more key availabilities.

For any key ki, consider the wallet w′ formed by adding another disjunction of that key,
i.e., w′(k1, . . . , kn) = w(k1, . . . , kn) ∨ ki.

Set a scenario σ with a positive probability Pr[σ] > 0. Key i is either safe or lost. In
both cases, it is not available to the adversary, therefore the adversary can satisfy w′ iff it
can satisfy w. If the owner can satisfy w then it can also satisfy w′. Therefore, if wallet w

is successful in σ then wallet w′ is also successful in σ. Therefore, the probability that the
wallet w′ is successful is not smaller than the probability that the wallet w is successful.

We take the wallet w and create a wallet w1(k1, . . . , kn) = w(k1, . . . kn) ∨ k1, and continue
creating a series of wallets such that wj(k1, . . . kn) = wj−1(k1, . . . kn) ∨kj . As we have shown,
each wallet is at least as successful as its predecessor and therefore at least as successful
as w. The last wallet, wn(k1, . . . kn) = w ∨ k1 ∨ · · · ∨ kn, is equivalent to wOR

n , completing
our proof. ◀

Secondly, if keys can only suffer leakage, the optimal wallet is the wAND
n wallet.

▶ Proposition 2. In a setting where all n keys can only suffer leakage, i.e., ∀1 ≤ i ≤ n :
P loss

i = P theft
i = 0, for all wallets w, pP

success(w) ≤ pP
success(wAND

n ).

The proof approach is similar.

Proof. Consider a wallet expressed as a DNF comprising m expressions, i.e., w = e1 ∨. . .∨em,
where each ej is a conjunction of one or more key availabilities.

For any key ki, consider the wallet w′ formed by adding ki to each conjunction,
i.e., w′(k1, . . . , kn) = (e1 ∧ ki) ∨ · · · ∨ (em ∧ ki).

Set a scenario σ with a positive probability Pr[σ] > 0. Key i is either safe or leaked. In
both cases, the owner can access it, therefore the owner can satisfy w′ iff it can satisfy w.
If the adversary cannot satisfy w then it cannot satisfy w′ either. Therefore, if wallet w is
successful in σ then wallet w′ is also successful in σ. Therefore, the probability that the
wallet w′ is successful is not smaller than the probability that the wallet w is successful.

We take the wallet w = e1 ∨ . . . em and create a wallet w1 = (e1 ∧ k1) ∨ · · · ∨ (em ∧ k1).
and continue creating a series of wallets w1, . . . , wn, where wj = ej

1 ∨ · · · ∨ ej
m and for all

2 ≤ j ≤ n and 1 ≤ ℓ ≤ m, we take ej
ℓ = ej−1

ℓ ∧ kj .
As we have shown, each wallet is at least as successful as its predecessor and therefore at

least as successful as w. The last wallet, wn = (e1 ∧ k1 ∧ · · · ∧ kn) ∨ · · · ∨ (em ∧ k1 ∧ · · · ∧ kn)
is equivalent to wAND

n , completing our proof. ◀
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