
Streaming Enumeration on Nested Documents
Martín Muñoz #

Pontificia Universidad Católica de Chile, Santiago, Chile
Millennium Institute for Foundational Research on Data, Santiago, Chile

Cristian Riveros #

Pontificia Universidad Católica de Chile, Santiago, Chile
Millennium Institute for Foundational Research on Data, Santiago, Chile

Abstract
Some of the most relevant document schemas used online, such as XML and JSON, have a nested
format. In the last decade, the task of extracting data from nested documents over streams has
become especially relevant. We focus on the streaming evaluation of queries with outputs of varied
sizes over nested documents. We model queries of this kind as Visibly Pushdown Transducers (VPT),
a computational model that extends visibly pushdown automata with outputs and has the same
expressive power as MSO over nested documents. Since processing a document through a VPT can
generate a massive number of results, we are interested in reading the input in a streaming fashion
and enumerating the outputs one after another as efficiently as possible, namely, with constant-delay.
This paper presents an algorithm that enumerates these elements with constant-delay after processing
the document stream in a single pass. Furthermore, we show that this algorithm is worst-case
optimal in terms of update-time per symbol and memory usage.

2012 ACM Subject Classification Theory of computation → Database theory

Keywords and phrases Streaming, nested documents, query evaluation, enumeration algorithms

Digital Object Identifier 10.4230/LIPIcs.ICDT.2022.19

Related Version Extended Version: https://arxiv.org/abs/2010.06037

Funding This work was funded by ANID - Millennium Science Initiative Program - Code ICN17_002.

1 Introduction

Streaming query evaluation [2, 9] is the task of processing queries over data streams in one
pass and with a limited amount of resources. This approach is especially useful on the web,
where servers share data, and they have to extract the relevant content as they receive it. For
structuring the data, the de facto structure on the web are nested documents, like XML or
JSON. For querying, servers use languages designed for these purposes, like XPath, XQuery,
or JSON query languages. As an illustrative example, suppose our data server (e.g. Web
API) is continuously receiving XML documents of the form:

<doc> <a> <c/> <c> </c> </doc> ...

and for each document it has to evaluate the query Q = //a/b (i.e., to extract all b-tags that
are surrounded by an a-tag). The streaming query evaluation problem consists on reading
these documents and finding all b-tags without storing the entire document on memory, i.e.,
by making one pass over the data and spending constant time per tag. In our example, we
need to retrieve the 3rd and 5th tag as soon as the last tag </doc> is received. One could
consider here that the server has to read an infinite stream and perform the query evaluation
continuously, where it must enumerate partial outputs as one of the XML documents ends.

Researchers have studied the streaming query evaluation problem in the past, focusing
on reducing the processing time or memory usage (see, e.g. [13]). Hence, they spent less
effort on understanding the enumeration time of such a problem, regarding delay guarantees

© Martín Muñoz and Cristian Riveros;
licensed under Creative Commons License CC-BY 4.0

25th International Conference on Database Theory (ICDT 2022).
Editors: Dan Olteanu and Nils Vortmeier; Article No. 19; pp. 19:1–19:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mmunos@uc.cl
mailto:cristian.riveros@uc.cl
https://doi.org/10.4230/LIPIcs.ICDT.2022.19
https://arxiv.org/abs/2010.06037
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 Streaming Enumeration on Nested Documents

between outputs. Constant-delay enumeration is a new notion of efficiency for retrieving
outputs [23, 44]. Given an instance of the problem, an algorithm with constant-delay
enumeration performs a preprocessing phase over the instance to build some indices and
then continues with an enumeration phase. It retrieves each output, one-by-one, taking a
delay that is constant between any two consecutive outcomes. These algorithms provide a
strong guarantee of efficiency since a user knows that, after the preprocessing phase, she
will access the output as if the algorithm had already computed it. These techniques have
attracted researchers’ attention, finding sophisticated solutions to several query evaluation
problems [11, 15, 10, 5, 26, 6].

In this work, we investigate the streaming query evaluation problem over nested documents
by including enumeration guarantees, like constant-delay. We study the evaluation of queries
given by Visibly Pushdown Transducers (VPT) over nested documents. These machines are
the natural “output extension” of visibly pushdown automata, and have the same expressive
power as MSO over nested documents. In particular, VPT can define queries like Q above
or any fragment of query languages for XML or JSON included in MSO. Therefore, VPT
allow considering the streaming query evaluation from a more general perspective, without
getting married to a specific language (e.g., XPath).

We study the evaluation of VPT over a nested document in a streaming fashion. Spe-
cifically, we want to find a streaming algorithm that reads the document sequentially and
spends constant time per input symbol. Furthermore, whenever needed, the algorithm can
enumerate all outputs with output-linear delay. The main contribution of the paper is an
algorithm with such characteristics for the class of I/O-unambiguous VPT. We can extend
this algorithm by determinization to all VPT (i.e., in data complexity). Regarding memory
consumption, we bound the amount of memory used in terms of the nesting of the document
and the output weight. We show that our algorithm is worst-case optimal in the sense
that there are instances where the maximum amount of memory required by any streaming
algorithm is at least one of these two measures.

Related work. The problem of streaming query evaluation has been extensively studied in the
last decades. Some work considered streaming verification, like schema validation [45] or type-
checking [38], where the output is true or false. Other proposals [19, 42, 36, 31, 41] provided
streaming algorithms for XPath or XQuery’s fragments; however, extending them for reaching
constant-delay enumeration seems unlikely. Furthermore, most of these works [38, 30, 29]
assumed outputs of fixed size (i.e., tuples). People have also considered other aspects of
streaming evaluation with outputs like earliest query answering [29] or bounded delay [28]
(i.e., given the first visit of a node, find the earliest event that permits its selection). These
aspects are orthogonal to the problem studied here. Another line of research is [12, 13], which
presents space lower bounds for evaluating fragments of XPath or XQuery over streams.
These works do not consider restrictions on the delay to give outputs.

Visibly pushdown automata [4] are a model usually used for streaming evaluation of
boolean queries [38]. In [24, 3], authors studied the evaluation of VPT in a streaming fashion,
but none of them saw enumeration problems. Other extensions [27] for streaming evaluation
have been analyzed but restricted to fixed-size outputs, and constant-delay was not included.

Constant-delay algorithms have been studied for several classes of query languages and
structures [44], as we already discussed. In [10, 5], researchers considered query evaluation
over trees (i.e., a different representation for nested documents), but their algorithms are
for offline evaluation and it is not clear how to extend this algorithm for the online setting.
This research is extended with updates in [7], which can encode streams by inserting new

M. Muñoz and C. Riveros 19:3

data items to the left. However, their update-time is logarithmic, and our proposal can do it
with constant time (i.e., in data complexity). Furthermore, to the best of our knowledge it is
unclear how to modify the work in [7] to get constant update-time in our scenario. Streaming
evaluation with constant-delay enumeration was included in the context of dynamic query
evaluation [34, 16, 40, 37] or complex event processing [33, 32]. In both cases, the input
cannot encode nested documents, and their results do not apply.

2 Preliminaries

Well-nested words and streams. As usual, given a set Σ we denote by Σ∗ all finite words
with symbols in Σ where ε ∈ Σ∗ represents the empty word of length 0.

We will work over a structured alphabet Σ = (Σ<, Σ>, Σ|) comprised of three disjoint sets
Σ<, Σ>, and Σ| that contain open, close, and neutral symbols respectively (in [4, 25] these
sets are named call, return, and local, respectively). Furthermore, we will denote symbols
in Σ<, Σ> or Σ| by <a, a>, and a, respectively. Instead, we will use s to denote any symbol
in Σ<, Σ>, or Σ|. The set of well-nested words over Σ, denoted as Σ<*>, is defined as the
closure of the following rules: Σ| ∪ {ε} ⊆ Σ<*>, if w1, w2 ∈ Σ<*> \ {ε} then w1 · w2 ∈ Σ<*>,
and if w ∈ Σ<*> and <a ∈ Σ< and b> ∈ Σ> then <a · w · b> ∈ Σ<*>. In addition, we will work
with prefixes of well-nested words, that we call prefix-nested words. We denote the set of
prefixes of Σ<*> as prefix(Σ<*>). Also, we will sometimes use w[i] to refer to the i-th symbol
in a word w.

A stream S = s1s2 · · · is an infinite sequence where si ∈ Σ< ∪ Σ> ∪ Σ|. Given a stream
S = s1s2 . . . and positions i, j ∈ N such that i ≤ j, the word S [i, j] is the sequence si · · · sj .
We also use this notation to refer to subsequences of infinite sequences that are not composed
of symbols in Σ. For a stream S , we will always assume that for each i ∈ N, the word S [1, i]
is a prefix of some nested word (i.e., it can be completed to form a nested word). We also
consider a method yield[S] which can be called to access each element of S sequentially.

Visibly pushdown automata. A visibly pushdown automaton [4] (VPA) is a tuple A =
(Q, Σ, Γ, ∆, I, F) where Q is a finite set of states, Σ = (Σ<, Σ>, Σ|) is the input alphabet,
Γ is the stack alphabet, ∆ ⊆ (Q × Σ< × Q × Γ) ∪ (Q × Σ> × Γ × Q) ∪ (Q × Σ| × Q) is the
transition relation, I ⊆ Q is a set of initial states, and F ⊆ Q is a set of final states. A
transition (q, <a, q′, γ) is a push-transition where on reading <a ∈ Σ<, γ is pushed onto the
stack and the current state switches from q to q′. Conversely, (q, a>, γ, q′) is a pop-transition
where on reading a> ∈ Σ> from the input and γ from the top of the stack, the current state
changes from q to q′, and the symbol γ is popped. Lastly, we say that (q, a, q′) is a neutral
transition if a ∈ Σ|, where there is no stack operation.

A stack is a finite sequence σ over Γ where the top of the stack is the first symbol on σ.
For a well-nested word w = s1 · · · sn in Σ<*>, a run of A on w is a sequence ρ = (q1, σ1) s1−→
. . .

sn−→ (qn+1, σn+1), where each qi ∈ Q, σi ∈ Γ∗, q1 ∈ I, σ1 = ε, and for every i ∈ [1, n]
the following holds: (1) if si ∈ Σ<, then there is γ ∈ Γ such that (qi, si, qi+1, γ) ∈ ∆ and
σi+1 = γσi, (2) if si ∈ Σ>, then there is γ ∈ Γ such that (qi, si, γ, qi+1) ∈ ∆ and σi = γσi+1,
and (3) if si ∈ Σ|, then (qi, si, qi+1) ∈ ∆ and σi+1 = σi. A run ρ is accepting if qn+1 ∈ F .
A well-nested word w ∈ Σ<*> is accepted by a VPA A if there is an accepting run of A on
w. The language L(A) is the set of well-nested words accepted by A. Note that if ρ is an
accepting run of A on a well-nested word w, then σn+1 = ε. A set of well-nested words
L ⊆ Σ<*> is called a visibly pushdown language if there exists a VPA A such that L = L(A).

ICDT 2022

19:4 Streaming Enumeration on Nested Documents

A VPA A = (Q, Σ, Γ, δ, I, F) is said to be deterministic if |I| = 1 and δ is a function
subset of (Q × Σ< → Q × Γ) ∪ (Q × Σ> × Γ → Q) ∪ (Q × Σ| → Q). We also say that A
is unambiguous if, for every w ∈ L(A), there exists exactly one accepting run of A on w.
In [4], it is shown that for every VPA there exists an equivalent deterministic VPA of at
most exponential size.

Model of computation. As it is common in the enumeration algorithms literature [10, 21, 44],
for our algorithms we assume the computational model of Random Access Machines (RAM)
with uniform cost measure, and addition and subtraction as basic operations [1]. We assume
that a RAM has read-only input registers where the machine places the input, read-write
work registers where it does the computation, and write-only output registers where it gives
the output (i.e., the enumeration of the results).

3 Streaming evaluation with output-linear delay

We are interested in defining a notion of a streaming enumeration problem: to evaluate a
query over a stream and to enumerate the outputs with bounded delay whenever there is
such. Towards this goal, we want to restrict the amount of resources used (i.e., time and
space) and impose strong guarantees on the delay. As our gold standard, we consider the
notion of output-linear delay defined in [26]. This notion is a refinement of the definition of
constant-delay [44] or linear-delay [21] enumeration that better fits our purpose. Altogether,
our plan for this section is to define a streaming enumeration problem and then provide a
notion of efficiency that a solution for this problem should satisfy.

We adopt the setting of relations to formalize a streaming enumeration problem [35, 8].
First, we need to define what is an enumeration problem outside the stream setting. Let Ω
be an alphabet. An enumeration problem is a relation R ⊆ (Ω∗ × Ω∗) × Ω∗. For each pair
((q, x), y) ∈ R we view (q, x) as the input of the problem and y as a possible output for (q, x).
Furthermore, we call q the query and x the data. This separation allows for a fine-grained
analysis of the query complexity and data complexity of the problem. For an instance (q, x)
we define the set JqKR(x) = {y | ((q, x), y) ∈ R} of all outputs of evaluating q over x.

A streaming enumeration problem is an extension of an enumeration problem R where
the input is a pair (q,S) such that S is an infinite sequence of elements in Ω. We identify
two ways of extending an enumeration problem R that differ in the output sets that are
desired at each position in the stream:
1. The streaming full-enumeration problem for R is one where the objective is to enumerate

the set JqKR(S [1, n]) at each position n ≥ 1.
2. A streaming ∆-enumeration problem for R is one where the objective is to enumerate the

set JqK∆
R(S [1, n]) = JqKR(S [1, n]) \

⋃
i<nJqKR(S [1, i]) at each position n ≥ 1.

These versions give us two different ways of returning the outputs. These notions have been
studied previously in the context of incremental view maintenance [20] and more recently,
for dynamic query evaluation [34, 16]. For the sake of simplification, in the following we
provide all definitions for the full-enumeration scenario. All definitions can be extended to
∆-enumeration by changing JqKR to JqK∆

R .
We turn now to our notion of efficiency for solving a streaming enumeration problem.

Let f : N → N. We say that E is a streaming evaluation algorithm for R with f -update-time
if E operates in the following way: it receives a query q and reads the stream S by calling
the yield[S] method sequentially. After the n-th call to yield[S], the algorithm processes
the n-th data symbol in two phases:

M. Muñoz and C. Riveros 19:5

In the first phase, called the update phase, the algorithm updates a data structure D

with the read symbol and the time spent is bounded by O(f(|q|)).
The second phase, called the enumeration phase, occurs immediately after each update
phase and outputs JqKR(S [1, n]) using D. During this phase the algorithm: (1) writes
#y1#y2# · · · #ym# to the output registers where # is a distinct separator symbol not
contained in Ω, and y1, y2, . . . , ym is an enumeration (without repetitions) of the set
JqKR(S [1, n]), (2) it writes the first # as soon as the enumeration phase starts, and (3) it
stops immediately after writing the last #.

The purpose of separating E ’s operation into an update and enumeration phase is to make an
output-sensitive analysis of E ’s complexity. Moreover, from a user perspective, this separation
allows running the enumeration phase without interrupting the update phase. That is, the
user could execute the enumeration phase in a separate machine, and its running time only
depends on how many outputs she wants to enumerate.

For the enumeration phase, we measure the delay between two outputs as follows:
For an input x ∈ Ω∗, let #y1#y2# · · · #ym# be the output of the algorithm during any
call to the enumeration phase. Furthermore, let timei(x) be the time in the enumeration
phase when the algorithm writes the i-th # when running on x for i ≤ m + 1. Define
delayi(x) = timei+1(x) − timei(x) for i ≤ m. Then we say that E has output-linear delay if
there exists a constant k such that for every x ∈ Ω∗ and i ≤ m it holds that delayi(x) ≤ k · |yi|.
In other words, the number of instructions executed by E between the time that the i-th
and the (i + 1)-th # are written is linear on the size of yi. Note that, in particular, an
output-linear delay implies that the enumeration phase ends in constant time if there is no
output for enumerating.

As the last ingredient, we define how to measure the memory space of a streaming
evaluation. Note that after the n-th call a streaming evaluation algorithm with f -update
time will necessarily use at most O(n · f(|q|)) bits of space. As a refinement of this bound,
we say that this algorithm uses g-space over a query q and stream S if the number of bits
used by it after the n-th call is in O(g(|q|,S [1, n])).

Given a streaming enumeration problem, we say that it can be solved with update-time
f , output-linear delay, and in g-space if there exists an algorithm such as the one described
above. For ∆-enumeration, the notion of streaming evaluation algorithm also applies, even
though it could be the case that one can find such an algorithm for full-enumeration but not
for ∆-enumeration, and vice versa. Finally, the enumeration problem and solutions provided
here are a formal refinement of the algorithmic notions proposed in the literature of streaming
evaluation [29], dynamic query evaluation [16, 34], and complex event processing [33, 32].

4 Visibly pushdown transducers and main result

In this section, we present the definition of visibly pushdown transducers [25] (VPT), which
are an extension of visibly pushdown automata to produce outputs. We use VPT as our
computational model to represent queries with output. This model is general enough to
include any query language for nested documents, like XML or JSON, whose expressive
power is in MSO. After the setting is formalized, we state the main result of the paper.

A visibly pushdown transducer (VPT) is a tuple T = (Q, Σ, Γ, Ω, ∆, I, F) where Q,
Σ, Γ, I, and F are the same as for VPA, Ω is the output alphabet with ε /∈ Ω, and
∆ ⊆ (Q × Σ< × (Ω ∪ {ε}) × Q × Γ) ∪ (Q × Σ> × (Ω ∪ {ε}) × Γ × Q) ∪ (Q × Σ| × (Ω ∪ {ε}) × Q)
is the transition relation. As usual for transducers, a symbol s ∈ Σ< ∪ Σ> ∪ Σ| is an input
symbol that the machine reads and o⌣ ∈ Ω ∪ {ε} is a symbol that the machine prints in

ICDT 2022

19:6 Streaming Enumeration on Nested Documents

an output tape. Furthermore, ε represents that no symbol is printed for that transition.
A run ρ of T over a well-nested word w = s1s2 · · · sn ∈ Σ<*> is a sequence of the form
ρ = (q1, σ1) s1/o⌣1−−−→ . . .

sn/o⌣n−−−−→ (qn+1, σn+1) where qi ∈ Q, σi ∈ Γ∗, q1 ∈ I, σ1 = ε and for
every i ∈ [1, n] the following holds: (1) if si ∈ Σ<, then (qi, si, o⌣i, qi+1, γ) ∈ ∆ for some γ ∈ Γ
and σi+1 = γσi, (2) if si ∈ Σ>, then (qi, si, o⌣i, γ, qi+1) ∈ ∆ for some γ ∈ Γ and σi = γσi+1,
and (3) if si ∈ Σ|, then (pi, si, o⌣i, qi+1) ∈ ∆ and σi = σi+1. We say that the run is accepting
if qn+1 ∈ F . We call a pair (qi, σi) a configuration of ρ. Finally, the output of an accepting
run ρ is defined as: out(ρ) = out(o⌣1, 1) · . . . · out(o⌣n, n) where out(o⌣, i) = ε when o⌣= ε and
(o⌣, i) otherwise. Note that in o⌣1 · · · o⌣n we use ε as a symbol, and in out(ρ) we use ε as the
empty string. Given a VPT T and a w ∈ Σ<*>, we define the set JT K(w) of all outputs of T
over w as: JT K(w) = {out(ρ) | ρ is an accepting run of T over w}.

Strictly speaking, our definition of VPT is richer than the one studied in [25]. In our
definition of VPT each output element is a tuple (o⌣, i) where o⌣ is the symbol and i is the
output position, where for a standard VPT [25] an output element is just the symbol o⌣.
The extension presented here is indeed important for practical applications like in document
spanners [26, 6] or in XML query evaluation [12, 46].

A first reasonable question is to understand what is the expressive power of VPT, namely,
as a formalism for non-boolean query evaluation over nested words. For the Boolean case, it
was shown [4] that VPA describe the same class of queries as MSO over nested words, called
MSOmatch. Formally, fix a structured alphabet Σ and let w ∈ Σ<*> be a word of length n.
We encode w as a structure:(

[1, n], ≤, {Pa}a∈Σ, match
)

where [1, n] is the domain, ≤ is the total order over [1, n], Pa = {i | w[i] = a}, and match
is a binary relation over [1, n] that corresponds to the matching relation of open and close
symbols: match(i, j) is true iff w[i] is an open symbol and w[j] is its matching close symbol.
A MSOmatch formula φ over Σ is given by:

φ := Pa(x) | x ∈ X | x ≤ y | match(x, y) | ¬φ | φ ∨ φ | ∃x.φ | ∃X.φ

where a ∈ Σ, x and y are first-order variables and X is a monadic second order (MSO)
variable. We write φ(X1, . . . , Xn) where X1, . . . , Xn are the free MSO variables of φ (first-
order variables are a special case of MSO variables). Then we write w |= φ(A1, . . . , An) for
A1, . . . , An ⊆ [1, n] when w satisfies φ by replacing each variable Xi with the set Ai. Here,
we assume the standard semantics for MSO logic [39].

Given that VPT is an extension of VPA, it should not be a surprise that we can translate
these results to VPT. In particular, the result in [4] can be easily extended to link VPT with
formulas expressible in MSOmatch.

▶ Proposition 1. Let φ(X1, . . . , Xm) be a MSOmatch formula with m free variables
X1, . . . , Xm. There is a VPT T for which there is a one-to-one correspondence between
the set JT K(w) and the set {(A1, . . . , Am) | w |= φ(A1, . . . , Am)} for any word w ∈ Σ<*>.
Moreover, for every VPT T there is an MSOmatch formula φ(X1, . . . , Xm) for which the same
one-to-one correspondence holds.

In other words, VPT has the same expressive power as MSO over nested words. Given
that fragments of query languages over nested documents (e.g., navigational XPath [47],
JSON Navigational Logic [17]) are usually included in MSO, this shows that VPT is an
expressive formalism for query evaluation over nested documents.

M. Muñoz and C. Riveros 19:7

We say that a VPT T = (Q, Σ, Γ, Ω, ∆, I, F) is input/output deterministic (I/O-
deterministic for short) if |I| = 1 and ∆ is a partial function of the form ∆ : (Q × Σ< × Ω →
Q × Γ) ∪ (Q × Σ> × Ω × Γ → Q) ∪ (Q × Σ| × Ω → Q). On the other hand, we say that T
is input/output unambiguous (I/O-unambiguous for short) if for every w ∈ Σ<*> and every
µ ∈ JT K(w) there is exactly one accepting run ρ of T over w such that µ = out(ρ). Notice
that an I/O-deterministic VPT is also I/O-unambiguous and in both models for each output
there exists at most one run. The definition of I/O-deterministic is in line with the notion of
I/O-deterministic variable automata of [26] and I/O-unambiguous is a generalization of this
idea that is enough for the purpose of our enumeration algorithm. One can show that for
every VPT T there exists an equivalent I/O-deterministic VPT and, therefore, an equivalent
I/O-unambiguous VPT.

▶ Lemma 2. For every VPT T there exists an I/O-deterministic VPT T ′ of size O(2|Q|2|Γ|)
such that JT K(w) = JT ′K(w) for every w ∈ Σ<*>.

In this paper, we are interested on the following streaming enumeration problem for VPT.
Let C be a class of VPT (e.g. I/O-deterministic VPT).

Problem: EnumVPT[C]
Input: a VPT T ∈ C and w ∈ Σ<*>

Output: Enumerate JT K(w)

The main result of the paper is that for the class of I/O-unambiguous VPT, the streaming
full-enumeration version of this problem can be solved efficiently.

▶ Theorem 3. The streaming full-enumeration problem of EnumVPT for the class of I/O-
unambiguous VPT can be solved with update-time O(|Q|2|∆|) and output-linear delay. For the
general class of VPT, it can be solved with update-time O(2|Q|2|∆|) and output-linear delay.

The result for the class of all VPT is a consequence of Lemma 2 and the enumeration
algorithm for I/O-unambiguous VPT (see Section 5 and 6). For both cases, if the VPT is
fixed (i.e., in data complexity), then the update-time of the streaming algorithm is constant.

For the streaming version of EnumVPT, one can have ∆-enumeration with a small loss
of efficiency by solving the full-enumeration problem. Specifically, one can show that for any
I/O-unambiguous VPT T there is an I/O-unambiguous VPT T ′ of linear size with respect to
|T | such that JT ′K(w) = JT K(w) \

⋃
{JT K(w[1, i]) | i < |w|, w[1, i] ∈ Σ<*>} for each w ∈ Σ<*>.

▶ Theorem 4. The streaming ∆-enumeration problem of EnumVPT for the class of I/O-
unambiguous VPT can be solved with update-time O(|Q|2|∆|) and output-linear delay. For the
general class of VPT, it can be solved with update-time O(2|Q|2|∆|) and output-linear delay.

We could have considered a more general definition of VPT to produce outputs for prefix-
nested words. This would be desirable for having some sort of earliest query answering [29]
which is important in practical scenarios. We remark that the algorithm of Theorem 3 can
be extended for this case at the cost of making the presentation more complicated. For the
sake of presentation, we defer this extension to the full version of this paper.

Space lower bounds of evaluating a VPT. This subsection deals with the space used by
the streaming evaluation algorithm of Theorem 3. Indeed, this algorithm could use linear
space in the worst case. In the following we explore some lower bounds in the space needed
by any algorithm, and show that this bound is tight for a certain type of VPT.

ICDT 2022

19:8 Streaming Enumeration on Nested Documents

To study the minimum number of bits needed to solve EnumVPT we need to in-
troduce some definitions. Fix a VPT T and w ∈ prefix(Σ<*>). Let outputweight(T , w)
be the number of positions less than |w| that appear in some output of JT K(w · w′)
for some w · w′ ∈ Σ<*>. Furthermore, for a well-nested word u let depth(u) be the
maximum number of nesting pairs inside u, formally, depth(a) = 0 for a ∈ Σ| ∪ {ε},
depth(u1 · u2) = max{depth(u1), depth(u2)}, and depth(<a · u · b>) = depth(u) + 1. For
w ∈ prefix(Σ<*>), we define depth(w) = min{depth(w′) | w is a prefix of w′}. We can now
state some worst-case space lower bounds for EnumVPT.

▶ Proposition 5.
1. There exists a VPT T such that every streaming evaluation algorithm for EnumVPT

with input T and S requires at least Ω(depth(S [1, n])) bits of space.
2. There exists a VPT T such that every streaming evaluation algorithm for EnumVPT

with input T and S requires at least Ω(outputweight(T ,S [1, n])) bits of space.

In [12, 13], the authors provide lower bounds on the amount of space needed for evaluating
XPath in terms of the nesting and the concurrency (see [12] for a definition). One can show
that the output weight of T and w is always above the concurrency of T and w. Despite this,
one can check that both notions coincide for the space lower bound given in Proposition 5.

The previous results show that, in the worst case, any streaming evaluation algorithm for
VPT will require space of at least the depth of the document or the output weight. To show
that Theorem 3 is optimal in the worst-case, we need to consider a further assumption of our
VPT. We say that a VPT T is trimmed [18] if for every w ∈ prefix(Σ<*>) and every (partial)
run ρ of T over w, there exists w′ and an accepting run ρ′ of T over w · w′ such that ρ is a
prefix of ρ′. This notion is the analog of trimmed non-deterministic automata. Similarly to
Lemma 2, one can show that for every VPT T there exists a trimmed I/O-deterministic VPT
T ′ equivalent to T (i.e., by extending the construction in [18] to VPT). The next result shows
that, if the input to EnumVPT is a trimmed I/O-unambiguous VPT, then the memory
footprint is at most the maximum between the depth and output weight of the input.

▶ Proposition 6. The streaming enumeration problem of EnumVPT for the class of trimmed
I/O-unambiguous VPT can be solved with update-time O(|Q|2|∆|), output-linear delay and
O(max{depth(S [1, n]), outputweight(T ,S [1, n])} × |Q|2|∆|) space for every stream S.

Unfortunately, the algorithm provided in Theorem 3 is not instance optimal, in the sense
of using the lowest number of bits needed for each specific VPT. Note that an instance
optimal algorithm for the streaming enumeration problem of VPT will imply a solution to
the weak evaluation problem, stated by Segoufin and Vianu [45]. This is an open problem in
the area (see [14] for some recent results), so we leave this for future work.

5 Enumerable compact sets: a data structure for output-linear delay

This section presents a data structure, called Enumerable Compact Set (ECS), which is the
cornerstone of our enumeration algorithm for VPT. This data structure is strongly inspired
by the work in [5, 6]. Indeed, ECS can be considered a refinement of the d-DNNF circuits
used in [5] or of the set circuits used in [6]. Several papers [43, 5, 7, 48] have considered
circuits-like structures for encoding outputs and enumerate them with constant delay. The
novelty of ECS is twofold. First, we use ECS for solving a streaming evaluation problem.
Although people have studied streaming query evaluation with enumeration before [34, 16],
this is the first work that uses a circuit-like data structure in an online setting. Second and

M. Muñoz and C. Riveros 19:9

more important, there is a difference in performance if we compare ECS to the previous
approaches. In offline evaluation, constant delay algorithms usually create an initial circuit
from the input, making several passes over the structure, building indices, and then running
the enumeration process. Given time restrictions for the online evaluation, we cannot create
a circuit and do this linear-time preprocessing before enumerating. On the contrary, we
must extend the circuit-like data structure for each data item in constant time and then be
ready to start the enumeration. This requirement justifies the need for a new data structure
for representing and enumerating outputs. Therefore, ECS differs from previous proposals
because each operation must take constant time, and we can run the enumeration process
with output-linear delay, at any time and without any further preprocessing. In the following,
we present ECS step-by-step to use it later in the next section.

Let Σ be a (possibly infinite) alphabet. We define an Enumerable Compact Set (ECS)
as a tuple D = (Σ, V, I, ℓ, r, λ) such that V and I ⊆ V are finite sets of nodes, ℓ : I → V

and r : I → V are the left and right functions, and λ : V → Σ ∪ {∪, ⊙} is a label function
such that λ(v) ∈ {∪, ⊙} if, and only if, v ∈ I. Further, we assume that the directed graph
(V, {(v, ℓ(v)), (v, r(v)) | v ∈ V }) is acyclic. We call the nodes in I inner nodes and the nodes
in V \ I leaves. Furthermore, for v ∈ I we say that v is a product node if λ(v) = ⊙, and a
union node if λ(v) = ∪. We define the size of D as |D| = |V |. For each node v in D, we
associate a set of words LD(v) recursively as follows: (1) LD(v) = {a} whenever λ(v) = a ∈ Σ,
(2) LD(v) = LD(ℓ(v)) ∪ LD(r(v)) whenever λ(v) = ∪, and (3) LD(v) = LD(ℓ(v)) · LD(r(v))
whenever λ(v) = ⊙, where L1 · L2 = {w1 · w2 | w1 ∈ L1 and w2 ∈ L2}.

The size |LD(v)| can be exponential with respect to |D|. For this reason, we say that D
is a compact representation of LD(v) for any v ∈ V . Although LD(v) is very large, the goal
is to enumerate all of its elements efficiently. Specifically, we consider the following problem:

Problem: Enum-ECS
Input: An ECS D = (Σ, V, I, ℓ, r, λ) and v ∈ V .

Output: Enumerate the set LD(v) without repetitions.

Plus, we want to solve Enum-ECS with output-linear delay. To reach this goal we need
to impose two additional restrictions on D. The first restriction is to guarantee that D is
not ambiguous, namely, for each w ∈ LD(v) there is at most one way to retrieve w from D.
Formally, we say that D is unambiguous if D satisfies the following two properties: (1)
for every union node v it holds that LD(ℓ(v)) and LD(r(v)) are disjoint, and (2) for every
product node v and for every w ∈ LD(v), there exists a unique way to decompose w = w1 ·w2
such that w1 ∈ LD(ℓ(v)) and w2 ∈ LD(r(v)). Thus, if D is unambiguous, there will be no
duplicates if we enumerate LD(v) directly, given that there is no way of producing the same
element in two different ways.

The second restriction is to guarantee that, for each node v, there exists an output or,
more specifically, a symbol of an output close to v, in the sense that it can be reached in a
bounded number of steps. This is not always the case for an ECS. For example, consider a
balanced tree of union nodes where all the outputs are at the leaves. One has to traverse
a logarithmic number of nodes from the root to reach the first output. Note that product
nodes do not pose this problem since the number of nodes that have to be traversed to
produce a certain output is proportional to its length. For this reason, we define the notion
of k-bounded ECS. Given an ECS D, define the (left) output-depth of a node v ∈ V , denoted
by odepthD(v), recursively as follows: odepthD(v) = 0 whenever λ(v) ∈ Σ or λ(v) = ⊙, and
odepthD(v) = odepthD(ℓ(v)) + 1 whenever λ(v) = ∪. Then, for a fixed k ∈ N we say that D
is k-bounded if odepthD(v) ≤ k for all v ∈ V .

ICDT 2022

19:10 Streaming Enumeration on Nested Documents

Given the definition of output-depth, we say that v is an output node of D if v is a leaf
or a product node. Note that if D only has output nodes, then it is 0-bounded, and one can
easily check that LD(v) can be enumerated with output-linear delay. Indeed, for a fixed k

the same happens with every unambiguous and k-bounded ECS.

▶ Proposition 7. Fix k ∈ N. Let D = (Σ, V, I, ℓ, r, λ) be an unambiguous and k-bounded
ECS. Then the set LD(v) can be enumerated with output-linear delay for any v ∈ V .

The enumeration algorithm above does not require any preprocessing over D and the
main idea is to perform some sort of DFS traversal over the nodes. By this proposition, from
now we assume that all ECS are unambiguous and k-bounded for some fixed k.

The next step is to provide a set of operations that allow extending an ECS D while
maintaining k-boundedness. Furthermore, we require these operations to be fully-persistent: a
data structure is called fully-persistent if every version can be both accessed and modified [22].
In other words, the previous version of the data structure is always available after each
operation. To satisfy the last requirement, the strategy will consist in extending D to D′ for
each operation, by always adding new nodes and maintaining the previous nodes untouched.
Then LD′(v) = LD(v) for each node v ∈ V , and so, the structure is fully-persistent.

More precisely, fix an ECS D = (Σ, V, I, ℓ, r, λ). In the following, we say that D′ =
(Σ, V ′, I ′, ℓ′, r′, λ′) is an extension of D if, and only if, obj ⊆ obj′ for every obj ∈ {V, I, ℓ, r, λ}.
Further, we write op(I) → O to define the signature of an operation op where I is the input
and O is the output. Then for any a ∈ Σ and v1, . . . , v4 ∈ V , we define the operations:

add(D, a) → (D′, v′) prod(D, v1, v2) → (D′, v′) union(D, v3, v4) → (D′, v′)

such that D′ is an extension of D and v′ ∈ V ′ \ V is a fresh node such that LD′(v′) = {a},
LD′(v′) = LD(v1) · LD(v2), and LD′(v′) = LD(v3) ∪ LD(v4), respectively. We assume that
the union and prod respect properties (1) and (2) of an unambiguous ECS, that is, LD(v1)
and LD(v2) are disjoint and, for every w ∈ LD(v3) · LD(v4), there exists a unique way to
decompose w = w1 · w2 such that w1 ∈ LD(v3) and w2 ∈ LD(v4).

Next, we show how to implement each operation. In fact, the case of add and prod are
straightforward. For add(D, a) → (D′, v′) define V ′ := V ∪ {v′}, I ′ := I, and λ′(v′) = a. One
can easily check that LD′(v′) = {a} as expected. For prod(D, v1, v2) → (D′, v′) we proceed in
a similar way: define V ′ := V ∪ {v′}, I ′ := I ∪ {v}, ℓ′(v′) := v1, r′(v′) = v2, and λ′(v′) = ⊙.
Then LD′(v′) = LD(v1) · LD(v2). Furthermore, one can check that each operation takes
constant time, D′ is a valid ECS (i.e. unambiguous and k-bounded), and the operations are
fully-persistent (i.e. the previous version D is available).

To define the union, we need to be a bit more careful to guarantee output-linear delay,
specifically, the k-bounded property. For a node v ∈ V , we say that v is safe if (1)
odepthD(v) ≤ 1, and (2) if odepthD(v) = 1, then odepthD(r(v)) ≤ 1. In other words, v is safe
if v is an output node, or its left child is an output node, and the right child is either an
output node or has output depth 1. Note that a leaf or a product node are safe nodes by
definition and, thus, the add and prod operations always produce safe nodes. The trick then
is to show that, if v3 and v4 are safe nodes, then we can implement union(D, v3, v4) → (D′, v′)
and produce a safe node v′. For this define (D′, v′) as follows:

If v3 or v4 are output nodes then V ′ := V ∪{v′}, I ′ := I ∪{v′}, and λ(v′) := ∪. Moreover,
if v3 is the output node, then ℓ′(v′) := v3 and r′(v′) := v4. Otherwise, we connect
ℓ′(v′) := v4 and r′(v′) := v3.
If v3 and v4 are not output nodes (i.e. both are union nodes), then V ′ := V ∪ {v′, u1, u2},
I ′ := I ∪ {v′, u1, u2}, ℓ′(v′) := ℓ(v3), r′(v′) := u1, and λ′(v′) := ∪; ℓ′(u1) := ℓ(v4),
r′(u1) := u2, and λ′(u1) := ∪; ℓ′(u2) := r(v3), r′(u2) := r(v4), and λ′(u2) := ∪.

M. Muñoz and C. Riveros 19:11

ℓ(v3) r(v3)

v3

ℓ(v4) r(v4)

v4

u2

u1

v′

Figure 1 Gadget for union(D, v3, v4). Nodes v′, u1, u2, v3 and v4 are labeled as ∪. Dashed and
solid lines denote the mappings in ℓ′ and r′ respectively.

This gadget is depicted in Figure 1 (note that a similar trick is used in [5] for computing an
index over a circuit). This construction has several properties. First, one can easily check
that LD′(v′) = LD(v1) ∪ LD(v2) and so the semantics is well-defined. Second, union can be
computed in constant time in |D| given that we only need to add three fresh nodes, and the
operation is fully-persistent given that we connect them without modifying D. Furthermore,
the produced node v′ is safe in D′, although nodes u1 and u2 are not necessarily safe. Finally,
D′ is 2-bounded whenever D is 2-bounded. This is straightforward to see for first case when v3
or v4 are output nodes. For the second case (i.e., Figure 1), we have to notice that v3 and v4 are
safe, therefore ℓ(v3) and ℓ(v4) are output nodes, and then odepthD′(v′) = odepthD′(u1) = 1.
Further, given that v3 is safe, we know that odepthD(r(v3)) ≤ 1, so odepthD′(u2) ≤ 2. Given
that the output depths of all fresh nodes in D′ are bounded by 2 and D is 2-bounded, then
we conclude that D′ is 2-bounded as well.

By the previous discussion, if we start with an ECS D which is 2-bounded (or empty)
and we apply the add, prod and union operators between safe nodes (which also produce safe
nodes), then the result is 2-bounded as well. Finally, by Proposition 7, the result can be
enumerated with output-linear delay.

▶ Theorem 8. The operations add, prod, and union require constant time and are fully-
persistent. Furthermore, if we start from an empty ECS D and apply add, prod, and union
over safe nodes, the partial results (D′, v′) satisfy that v′ is always a safe node and the set
LD′(v) can be enumerated with output-linear delay for every node v.

It is important to remark that restricting these operations only over safe nodes is a mild
condition. Given that we will usually start from an empty ECS and apply these operations
over previously returned nodes, the whole algorithm will always use safe nodes during its
computation, satisfying the conditions of Theorem 8.

For technical reasons, our algorithm of the next section needs a slight extension of ECS
by allowing leaves that produce the empty string ε. Let ε ̸∈ Σ be a symbol representing
the empty string (i.e. w · ε = ε · w = w). We define an enumerable compact set with ε

(called ε-ECS) as a tuple D = (Σ, V, I, ℓ, r, λ) defined identically to an ECS except that
λ : V → Σ ∪ {∪, ⊙, ε} and λ(v) ∈ {∪, ⊙} if, and only, if v ∈ I. Also, if λ(v) = ε, then
LD(v) = {ε}. The unambiguity restriction is the same for ε-ECS and one has to slightly
extend k-boundedness to consider ε-nodes. However, to support the prod and union operations
in constant time and to maintain the k-boundedness invariant, we need to extend the notion
of safe nodes (called ε-safe) and the gadgets for prod and union.

▶ Theorem 9. The operations add, prod, and union over ε-ECS take constant time and are
fully-persistent. Furthermore, if we start from an empty ε-ECS D and apply add, prod, and
union over ε-safe nodes, the partial results (D′, v′) satisfy that v′ is always an ε-safe node
and the set LD′(v) can be enumerated with output-linear delay for every node v.

ICDT 2022

19:12 Streaming Enumeration on Nested Documents

6 Evaluating visibly pushdown transducers with output-linear delay

The goal of this section is to describe an algorithm that takes an I/O-unambiguous VPT T
plus a stream S , and enumerates the set JT K(S [1, n]) for an arbitrary n ≥ 0 with O(|Q|2|∆|)-
update-time and output-linear delay. We divide the presentation of the algorithm into
two parts. The first part explains the determinization of a VPA, which is instrumental
in understanding our update phase. The second part gives the algorithm and proves its
correctness. Given that a neutral symbol a can be represented as a pair <a · a>, in this section
we present the algorithm and definitions without neutral letters, that is, the structured
alphabet is Σ = (Σ<, Σ>). Thus, from now on we use a for denoting any symbol in Σ< ∪ Σ>.

Determinization of visibly pushdown automata. A significant result in Alur and
Madhusudan’s paper [4] that introduces VPA was that one can always determinize them.
We provide here an alternative proof for this result that requires a somewhat more direct
construction. This determinization process is behind our update algorithm and serves to give
some crucial notions of how it works. We start by providing the determinization construction,
introducing some useful notation, and then giving some intuition.

Given a VPA A = (Q, Σ, Γ, ∆, I, F), we define the following deterministic VPA Adet =
(Qdet, qdet

0 , Γdet, δdet, F det) with state set Qdet = 2Q×Q and stack symbol set Γdet = 2Q×Γ×Q.
The initial state is qdet

0 = {(q, q) | q ∈ I} and the set of final states is F det = {S ∈ Qdet |
S ∩ (I × F) ̸= ∅}. Finally, we define the transition function δdet such that if <a ∈ Σ<,
then δdet(S, <a) = (S′, T ′) where S′ = {(q, q) | ∃p, p′, γ. (p, p′) ∈ S ∧ (p′, <a, q, γ) ∈ ∆} and
T ′ = {(p, γ, q) | ∃p′. (p, p′) ∈ S ∧ (p′, <a, q, γ) ∈ ∆}; if a> ∈ Σ>, then δdet(S, T, a>) = S′ where
S′ = {(p, q) | ∃p′, q′, γ. (p, γ, p′) ∈ T ∧ (p′, q′) ∈ S ∧ (q′, a>, γ, q) ∈ ∆}.

To understand the purpose of this construction, first we need to introduce some notation.
Fix a well-nested word w = a1a2 · · · an. A span s of w is a pair [i, j⟩ of natural numbers
i and j with 1 ≤ i ≤ j ≤ n + 1. We denote by w[i, j⟩ the subword ai · · · aj−1 of w and,
when i = j, we assume that w[i, j⟩ = ε. Intuitively, spans are indexing w with intermediate
positions, like

1
a1

2
a2

3
. . .

n
an

n+1
, where i is between symbols ai−1 and ai. Then [i, j⟩ represents

an interval {i, . . . , j} that captures the subword ai . . . aj−1.
Now, we say that a span [i, j⟩ of w is well-nested if w[i, j⟩ is well-nested. Note that

ε is well-nested, so [i, i⟩ is a well-nested span for every i. For a position k ∈ [1, n +
1], we define the current-level span of k, currlevel(k), as the well-nested span [j, k⟩ such
that j = min{j′ | [j′, k⟩ is well-nested}. Note that [k, k⟩ is always well-nested and thus
currlevel(k) is well defined. We also identify the lower-level span of k, lowerlevel(k), defined
as lowerlevel(k) = currlevel(j − 1) = [i, j − 1⟩ whenever currlevel(k) = [j, k⟩ and j > 1. In
contrast to currlevel(k), lowerlevel(k) is not always well-defined given that it is “one level
below” than currlevel(k) and this may not exist. More concretely, for currlevel(k) = [j, k⟩ and
lowerlevel(k) = [i, j − 1⟩, these spans will look as follows:

1
a1

2
a2

3
. . . <ai−1

i

lowerlevel(k)︷ ︸︸ ︷
ai . . . aj−2

j-1
<aj−1

j

currlevel(k)︷ ︸︸ ︷
aj . . . ak−1

↓
k

ak . . .
n
an

n+1

As an example, consider the word
1
(

2
(

3
)

4
(

5
(

6
)

7
)

8
)

9
. The only well-nested spans besides

the ones of the form [i, i⟩ are [1, 9⟩, [2, 4⟩, [2, 8⟩, [4, 8⟩ and [5, 7⟩, therefore currlevel(8) = [2, 8⟩,
and lowerlevel(7) = [2, 4⟩.

We are ready to explain the purpose of the determinization above. Let w = a1a2 · · · an be
a well-nested word and ρdet = (S1, τ1) a1−→ . . .

ak−1−→ (Sk, τk) be the (partial) run of Adet until
some k. Furthermore, assume τk = Tk · τ for some Tk ∈ Γdet and τ ∈ (Γdet)∗. The connection
between ρdet and the runs of A over a1 . . . ak−1 is given by the following invariants:

M. Muñoz and C. Riveros 19:13

p q

(p, γ, p′) ∈ Tk

p′

(p′, q′) ∈ Sk

q′

push δ

push γ

lowerlevel(k)

currlevel(k)

Open:

p p′

q

push δ

push γ

Close:

p ⃝

p′ q′

q

push δ

push γ pop γ

Figure 2 Left: An example run of some VPA A at step k. Right: Illustration of two nondetermin-
istic runs for some VPA A, as considered in the determinization process.

(a) (p, q) ∈ Sk if, and only if, there exists a run (q1, σ1) a1−→ . . .
ak−1−→ (qk, σk) of A over

a1 . . . ak−1 such that qj = p, qk = q, and currlevel(k) = [j, k⟩.
(b) (p, γ, q) ∈ Tk if, and only if, there exists a run (q1, σ1) a1−→ . . .

ak−1−→ (qk, σk) of A over
a1 . . . ak−1 such that qi = p, qj = q, σk = γσ for some σ, and lowerlevel(k) = [i, j − 1⟩.

On one hand, (a) says that each pair (p, q) ∈ Sk represents some non-deterministic run of A
over w for which q is the k-th state, and p was visited on the step when the current symbol
at the top of the stack was pushed. On the other hand, (b) says that (p, γ, q) ∈ Tk represents
some run of A over w for which γ is at the top of the stack, q was visited on the step when
γ was pushed, and p was visited on the step when the symbol below γ was pushed (see
Figure 2 (left)). More importantly, these conditions are exhaustive, that is, every run of A
over a1 . . . ak−1 is represented by ρdet.

By these two invariants, the correctness of Adet easily follows and the reader can get
some intuition behind δdet(S, <a) and δdet(S, T, a>) (see Figure 2 (right) for a graphical
description). Indeed, the most important consequence of these two invariants is that a
tuple (qj , qk) ∈ Sk represents the interval of some run over w[j, k⟩ with currlevel(k) = [j, k⟩
and the tuple (qi, γ, qj) ∈ Tk represents the interval of some run over w[i, j − 1⟩ with
lowerlevel(k) = [i, j − 1⟩, i.e., the level below. In other words, the configuration (Sk, τk) of
Adet forms a succinct representation of all the non-deterministic runs of A. This is the
starting point of our update algorithm, that we discuss next.

The streaming evaluation algorithm. In Algorithm 1 we present the update phase for
solving the streaming version of EnumVPT. The main procedure is UpdatePhase, that
receives an I/O-unambiguous VPT T = (Q, Σ, Γ, Ω, ∆, I, F) and a stream S , reads the next
k-th symbol and computes the set of outputs JT K(S [1, k]). More specifically, it constructs an
ε-ECS D and a vertex vout such that LD(vout) = JT K(S [1, k]) if S [1, k] is well-nested and
∅ otherwise. After the UpdatePhase procedure is done, we can enumerate LD(vout) with
output-linear delay by calling the enumeration phase, that is, by applying Theorem 9.

Towards this goal, in Algorithm 1 we make use of the following data structures: First of
all, we use an ε-ECS D = (Σ, V, I, ℓ, r, λ), nodes v ∈ V , and the functions add, union, and
prod over D and v (see Section 5). For the sake of simplification, we overload the notation of
these operators slightly so that if v = ∅, then union(D, v, v′) = union(D, v′, v) = (D, v′). We
use a hash table S which indexes nodes v in D by pairs of states (p, q) ∈ Q × Q. We denote
the elements of S as “(p, q) : v” where (p, q) is the index and v is the content. Furthermore,
we write Sp,q to access the node v. We also use a stack T that stores hash tables: each
element is a hash table which indexes vertices v in D by triples (p, γ, q) ∈ Q × Γ × Q. We
assume that T has the standard stack methods push and pop where if T = tk · · · t1, then
push(T, t) = t tk · · · t1 and pop(T) = tk−1 · · · t1. We write ∅ for denoting the empty stack or

ICDT 2022

19:14 Streaming Enumeration on Nested Documents

for checking if T is empty. Similarly to S, we use the notation Tp,γ,q to access the nodes in
the topmost hash-table in T (i.e. T is a stack of hash tables). We assume that accessing a
non-assigned index in these hash tables returns the empty set. All variables (e.g., S, and T)
are defined globally in Algorithm 1 and they can be accessed by any of the subprocedures.
given that we use the RAM model (see Section 2), each operation over hash tables or stacks
takes constant time.

Algorithm 1 builds the ε-ECS D incrementally, reading S one letter at a time by calling
yield[S] and keeping a counter k for the position of the current letter. For every k ∈ [1, n+1],
UpdatePhase builds the k-th iteration of table S and stack T , which we note as Sk and
T k respectively. Before UpdatePhase is called for the first time, it runs Intialize (lines
1-4) to set the initial values of k, D, S, and T . We consider the initial S and T as the 1-st
iteration, defined as S1 = {(q, q) : vε | q ∈ I} and T 1 = ∅ (i.e. the empty stack) where
vε is a node in D such that LD(vε) = {ε} (lines 3-4). In the k-th iteration, depending
on whether the current letter is an open symbol or a close symbol, the OpenStep or
CloseStep procedures are called, updating Sk−1 and T k−1 to Sk and T k, respectively.
More specifically, UpdatePhase adds nodes to D such that the nodes in Sk represent
the runs over w[j, k⟩ where currlevel(k) = [j, k⟩, and the nodes in the topmost table in T k

represent the runs over w[i, j − 1⟩ where lowerlevel(k) = [i, j − 1⟩. Moreover, for a given pair
(p, q), the node Sk

p,q represents all runs over w[j, k⟩ with currlevel(k) = [j, k⟩ that start on p

and end on q. For a given triple (p, γ, q) the node T k
p,γ,q represents all runs over w[i, j − 1⟩

with lowerlevel(k) = [i, j − 1⟩ that start on p, and end on q right after pushing γ onto the
stack. Here, the intuition gained in the determinization of VPA is crucial. Indeed, table Sk

and stack T k are the mirror of the configuration (Sk, τk) of Adet (recall invariants (a) and
(b)).

Before formalizing these notions, we will describe in more detail what the procedures
OpenStep and CloseStep exactly do. Recall that the operation add(D, a) simply creates
a node in D labeled as a; the operation prod(D, v1, v2) returns a pair (D′, v′) such that
LD′(v′) = LD(v1) · LD(v2); and the operation union(D, v3, v4) returns a pair (D′, v′) such
that LD′(v′) = LD(v3) ∪ LD(v4). To improve the presentation of the algorithm, we include a
simple procedure called IfProd (lines 19-25). Basically, this procedure receives a node v, an
output symbol o⌣, and a position k, and computes (D′, v′) such that LD′(v′) = LD(v) · {(o⌣, k)}
if o⌣ ̸= ε, and LD′(v′) = LD(v) otherwise.

In OpenStep, Sk is created (i.e. S′), and an empty table is pushed onto T k−1 to
form T k (line 27). Then, all nodes in Sk−1 (i.e. S) are checked to see if the runs they
represent can be extended with a transition in ∆ (lines 28-29). If this is the case (lines 30
onwards), a node vε with the ε-output is added in Sk to start a new level (lines 30-32). Then,
if the transition had a non-empty output, the node Sk

p,p′ is connected with a new label node
to form the node v (lines 33-34). This node is stored in T k

p,γ,q, or united with the node that
was already present there (lines 35-36).

In CloseStep, Sk is initialized as empty (line 41). Then, the procedure looks for all of
the valid ways to join a node in T k−1, a node in Sk−1, and a transition in ∆ to form a new
node in Sk. More precisely, it looks for quadruples (p, γ, p′, q′) for which T k−1

p,γ,p′ and Sk−1
p′,q′

are defined, and there is a close transition that starts on q′ that reads γ (lines 42-43). These
nodes are joined and connected with a new label node if it corresponds (lines 44-45), and
stored in Sk

p,q or united with the node that was already present there (lines 46-47). Finally,
the top of the stack T is popped after all tuples (p, γ, p′, q′) are checked (line 48).

As it was already mentioned, in each step the construction of D follows the ideas of the
determinization of a visibly pushdown automata. As such, Figure 2 also aids to illustrate
how the table Sk and the top of the stack T k are constructed.

M. Muñoz and C. Riveros 19:15

Algorithm 1 The update phase of the streaming evaluation algorithm for EnumVPT given an
I/O-unambiguous VPT T = (Q, Σ, Γ, Ω, ∆, I, F) and a stream S .
1: procedure Initialize(T ,S)
2: k ← 1, D ← ∅
3: (D, vε)← add(D, ε)
4: S ← {(q, q) : vε | q ∈ I}, T ← ∅
5:
6: procedure UpdatePhase(T ,S)
7: a← yield[S]
8: if a ∈ Σ< then
9: D ← OpenStep(D, a, k)

10: else if a ∈ Σ> then
11: D ← CloseStep(D, a, k)
12: k ← k + 1
13: vout ← ∅
14: if T = ∅ then
15: for each p ∈ I, q ∈ F s.t. Sp,q ̸= ∅ do
16: (D, vout)← union(D, vout, Sp,q)
17: EnumerationPhase(D, vout)
18:
19: procedure IfProd(D, v, o⌣, k)
20: if o⌣ ̸= ε then
21: (D′, v′)← add(D, (o⌣, k))
22: (D′, v′)← prod(D′, v, v′)
23: else
24: (D′, v′)← (D, v)
25: return (D′, v′)

26: procedure OpenStep(D, <a, k)
27: S′ ← ∅, T ← push(T, ∅)
28: for p ∈ Q and (p′, <a, o⌣, q, γ) ∈ ∆ do
29: if Sp,p′ ̸= ∅ then
30: if S′

q,q = ∅ then
31: (D, vε)← add(D, ε)
32: S′

q,q ← vε

33: v ← Sp,p′

34: (D, v)← IfProd(D, v, o⌣, k)
35: (D, v)← union(D, v, Tp,γ,q)
36: Tp,γ,q ← v

37: S ← S′

38: return D
39:
40: procedure CloseStep(D, a>, k)
41: S′ ← ∅
42: for p, p′ ∈ Q and (q′, a>, o⌣, γ, q) ∈ ∆ do
43: if Sp′,q′ ̸= ∅ and Tp,γ,p′ ̸= ∅ then
44: (D, v)← prod(D, Tp,γ,p′ , Sp′,q′)
45: (D, v)←IfProd(D, v, o⌣, k)
46: (D, v)← union(D, v, S′

p,q)
47: S′

p,q ← v

48: T ← pop(T)
49: S ← S′

50: return D

The way how the table Sk and the stack T k are constructed is formalized in the following
result. Recall that a run of T over a well-nested word w = a1 · · · an is a sequence of the
form ρ = (q1, σ1) a1/o⌣1−−−→ . . .

an/o⌣n−−−−→ (qn+1, σn+1). Given a span [i, j⟩, define a subrun of ρ as
a subsequence ρ[i, j⟩ = (qi, σi)

ai/o⌣i−−−→ . . .
aj−1/o⌣j−1−−−−−−−→ (qj , σj). We also extend the function out

to receive a subrun ρ[i, j⟩ in the following way: out(ρ[i, j⟩) = out(o⌣i, i) · . . . · out(o⌣j−1, j − 1).
Finally, define Runs(T , w) as the set of all runs of T over w.

▶ Lemma 10. Let T be a VPT and w = a1 · · · an be a well-nested word. While running the
procedure UpdatePhase of Algorithm 1, for every k ∈ [1, n + 1], every pair of states p, q

and stack symbol γ the following hold:
1. LD(Sk

p,q) has exactly all sequences out(ρ[j, k⟩) such that ρ ∈ Runs(T , w[1, k⟩),
currlevel(k) = [j, k⟩, and ρ[j, k⟩ starts on p and ends on q.

2. If lowerlevel(k) is defined, then LD(T k
p,γ,q) has exactly all sequences out(ρ[i, j⟩) such that

ρ ∈ Runs(T , w[1, j⟩), lowerlevel(k) = [i, j − 1⟩, and ρ[i, j⟩ starts on p, ends on q, and the
last symbol pushed onto the stack was γ.

Since w is well nested, then currlevel(|w| + 1) = [1, |w| + 1⟩, and so, the lemma implies
that the nodes in S|w|+1 represent all runs of T over w. Then, whenever S [1, k] is well-nested,
the stack T is empty (i.e., T = ∅) and there may be something to enumerate (line 14). By
taking the union of all pairs in Sk+1 that represent accepting runs (as is done in lines 15-16),
we can conclude the following result:

ICDT 2022

19:16 Streaming Enumeration on Nested Documents

▶ Theorem 11. Given a VPT T and a stream S, UpdatePhase(T ,S) fulfils the conditions
of a streaming evaluation algorithm and, after reading the k-th symbol, produces a pair
(D, vout) such that LD(vout) = JT K(S [1, k]).

At this point we address the fact that D needs to be unambiguous in order to enumerate
all the outputs from (D, vout) without repetitions. This is guaranteed, essentially, by the
fact that T is I/O-unambiguous as well. Indeed, the previous result holds even if T is not
I/O-unambiguous. The next result guarantees that the output can be enumerated efficiently.

▶ Lemma 12. Let T be an I/O-unambiguous VPT. While running UpdatePhase procedure
of Algorithm 1, the ε-ECS D is unambiguous at every step.

The complexity of this algorithm can be easily deduced from the fact that the ε-ECS
operations we use take constant time (Theorem 9). For a VPT T = (Q, Σ, Γ, Ω, ∆, I, F), in
each of the calls to OpenStep, lines 29-36 perform a constant number of instructions, and
they are visited at most |Q||∆| times. In each of the calls to CloseStep, lines 43-47 perform
a constant number of instructions, and they are visited at most |Q|2|∆| times. Combined
with Theorem 11, Lemma 12, and Theorem 9, this proves our main result (i.e. Theorem 3).

7 Future work

This paper offers several directions for future work. One direction is to find a streaming
evaluation algorithm with polynomial update-time for non-deterministic VPT (i.e., in the
size of the VPT). In [6], the authors provided a polynomial-time offline algorithm for non-
deterministic word transducers (called vset automata). They extended this result to trees
in [7]. One could use these techniques in Algorithm 1; however, it is unclear how to extend
ECS to deal with ambiguity in a natural way. Regarding space resources, another direction is
to find an “instance optimal” streaming evaluation algorithm for VPT. As we mentioned, this
problem generalizes the weak evaluation problem stated in [45], given that it also considers
the space to represent the output compactly. Finally, it would be interesting to explore
practical implementations. Our view is that the data structure and algorithm presentation
aid in reaching this goal, and it leaves space for suitable optimizations.

References
1 Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis of Computer

Algorithms. Addison-Wesley, 1974.
2 Mehmet Altınel and Michael J Franklin. Efficient filtering of XML documents for selective

dissemination of information. In VLDB, pages 53–64, 2000.
3 Rajeev Alur, Dana Fisman, Konstantinos Mamouras, Mukund Raghothaman, and Caleb

Stanford. Streamable regular transductions. Theor. Comput. Sci., 807:15–41, 2020.
4 Rajeev Alur and P. Madhusudan. Visibly pushdown languages. In STOC, pages 202–211,

2004.
5 Antoine Amarilli, Pierre Bourhis, Louis Jachiet, and Stefan Mengel. A circuit-based approach

to efficient enumeration. In ICALP, pages 111:1–111:15, 2017.
6 Antoine Amarilli, Pierre Bourhis, Stefan Mengel, and Matthias Niewerth. Constant-delay

enumeration for nondeterministic document spanners. In ICDT, pages 22:1–22:19, 2019.
7 Antoine Amarilli, Pierre Bourhis, Stefan Mengel, and Matthias Niewerth. Enumeration on

trees with tractable combined complexity and efficient updates. In PODS, pages 89–103, 2019.
8 Marcelo Arenas, Luis Alberto Croquevielle, Rajesh Jayaram, and Cristian Riveros. Efficient

logspace classes for enumeration, counting, and uniform generation. In PODS, pages 59–73,
2019.

M. Muñoz and C. Riveros 19:17

9 Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer Widom. Models
and issues in data stream systems. In SIGMOD, pages 1–16, 2002.

10 Guillaume Bagan. MSO queries on tree decomposable structures are computable with linear
delay. In CSL, pages 167–181, 2006.

11 Guillaume Bagan, Arnaud Durand, and Etienne Grandjean. On acyclic conjunctive queries
and constant delay enumeration. In CSL, pages 208–222, 2007.

12 Ziv Bar-Yossef, Marcus Fontoura, and Vanja Josifovski. Buffering in query evaluation over
XML streams. In PODS, pages 216–227, 2005.

13 Ziv Bar-Yossef, Marcus Fontoura, and Vanja Josifovski. On the memory requirements of
XPath evaluation over XML streams. J. Comput. Syst. Sci., 73(3):391–441, 2007.

14 Corentin Barloy, Filip Murlak, and Charles Paperman. Stackless processing of streamed trees.
In PODS, 2021.

15 Christoph Berkholz, Fabian Gerhardt, and Nicole Schweikardt. Constant delay enumeration
for conjunctive queries: a tutorial. ACM SIGLOG News, 7(1):4–33, 2020.

16 Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. Answering conjunctive queries
under updates. In PODS, pages 303–318, 2017.

17 Pierre Bourhis, Juan L. Reutter, and Domagoj Vrgoc. JSON: Data model and query languages.
Inf. Syst., 89:101478, 2020.

18 Mathieu Caralp, Pierre-Alain Reynier, and Jean-Marc Talbot. Trimming visibly pushdown
automata. Theor. Comput. Sci., 578:13–29, 2015.

19 Yi Chen, Susan B. Davidson, and Yifeng Zheng. An efficient XPath query processor for XML
streams. In ICDE, page 79, 2006.

20 Rada Chirkova and Jun Yang. Materialized views. Found. Trends Databases, 4(4):295–405,
2012.

21 Bruno Courcelle. Linear delay enumeration and monadic second-order logic. Discret. Appl.
Math., 157(12):2675–2700, 2009.

22 James R Driscoll, Neil Sarnak, Daniel Dominic Sleator, and Robert Endre Tarjan. Making
data structures persistent. In STOC, pages 109–121, 1986.

23 Arnaud Durand and Etienne Grandjean. First-order queries on structures of bounded degree
are computable with constant delay. ACM Trans. Comput. Log., 8(4):21, 2007.

24 Emmanuel Filiot, Olivier Gauwin, Pierre-Alain Reynier, and Frédéric Servais. Streamability
of nested word transductions. LMCS, 15(2), 2019.

25 Emmanuel Filiot, Jean-François Raskin, Pierre-Alain Reynier, Frédéric Servais, and Jean-Marc
Talbot. Visibly pushdown transducers. JCSS, 97:147–181, 2018.

26 Fernando Florenzano, Cristian Riveros, Martín Ugarte, Stijn Vansummeren, and Domagoj
Vrgoc. Efficient enumeration algorithms for regular document spanners. TODS, 45(1):3:1–3:42,
2020.

27 Olivier Gauwin, Joachim Niehren, and Yves Roos. Streaming tree automata. Inf. Process.
Lett., 109(1):13–17, 2008.

28 Olivier Gauwin, Joachim Niehren, and Sophie Tison. Bounded delay and concurrency for
earliest query answering. In LATA, volume 5457, pages 350–361, 2009.

29 Olivier Gauwin, Joachim Niehren, and Sophie Tison. Earliest query answering for deterministic
nested word automata. In FCT, volume 5699, pages 121–132, 2009.

30 Gang Gou and Rada Chirkova. Efficient algorithms for evaluating XPath over streams. In
SIGMOD, pages 269–280. ACM, 2007.

31 Todd J. Green, Ashish Gupta, Gerome Miklau, Makoto Onizuka, and Dan Suciu. Processing
XML streams with deterministic automata and stream indexes. ACM Trans. Database Syst.,
29(4):752–788, 2004.

32 Alejandro Grez and Cristian Riveros. Towards streaming evaluation of queries with correlation
in complex event processing. In ICDT, pages 14:1–14:17, 2020.

33 Alejandro Grez, Cristian Riveros, and Martín Ugarte. A formal framework for complex event
processing. In ICDT, pages 5:1–5:18, 2019.

ICDT 2022

19:18 Streaming Enumeration on Nested Documents

34 Muhammad Idris, Martín Ugarte, and Stijn Vansummeren. The dynamic Yannakakis algorithm:
Compact and efficient query processing under updates. In SIGMOD, pages 1259–1274, 2017.

35 Mark Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. Random generation of combinatorial
structures from a uniform distribution. Theor. Comput. Sci., 43:169–188, 1986.

36 Vanja Josifovski, Marcus Fontoura, and Attila Barta. Querying XML streams. VLDB J.,
14(2):197–210, 2005.

37 Ahmet Kara, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. Trade-offs in static and dynamic
evaluation of hierarchical queries. In PODS, pages 375–392, 2020.

38 Viraj Kumar, P. Madhusudan, and Mahesh Viswanathan. Visibly pushdown automata for
streaming XML. In WWW, pages 1053–1062, 2007.

39 Leonid Libkin. Elements of finite model theory, volume 41. Springer, 2004.
40 Milos Nikolic and Dan Olteanu. Incremental view maintenance with triple lock factorization

benefits. In SIGMOD, pages 365–380, 2018.
41 Dan Olteanu. SPEX: Streamed and progressive evaluation of XPath. IEEE Trans. Knowl.

Data Eng., 19(7):934–949, 2007.
42 Dan Olteanu, Tim Furche, and François Bry. An efficient single-pass query evaluator for XML

data streams. In SAC, pages 627–631, 2004.
43 Dan Olteanu and Jakub Závodný. Size bounds for factorised representations of query results.

ACM TODS, 40(1):2:1–2:44, 2015.
44 Luc Segoufin. Enumerating with constant delay the answers to a query. In ICDT, pages 10–20,

2013.
45 Luc Segoufin and Victor Vianu. Validating streaming XML documents. In PODS, pages

53–64, 2002.
46 Mirit Shalem and Ziv Bar-Yossef. The space complexity of processing XML twig queries over

indexed documents. In ICDE, pages 824–832, 2008.
47 Balder ten Cate and Maarten Marx. Navigational XPath: calculus and algebra. SIGMOD

Record, 36(2):19–26, 2007.
48 Szymon Torunczyk. Aggregate queries on sparse databases. In PODS, pages 427–443, 2020.

	1 Introduction
	2 Preliminaries
	3 Streaming evaluation with output-linear delay
	4 Visibly pushdown transducers and main result
	5 Enumerable compact sets: a data structure for output-linear delay
	6 Evaluating visibly pushdown transducers with output-linear delay
	7 Future work

