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Abstract
We introduce subsequence-queries with wildcards and gap-size constraints (swg-queries, for short) as
a tool for querying event traces. An swg-query q is given by a string s over an alphabet of variables
and types, a global window size w, and a tuple c = ((c−

1 , c+
1 ), (c−

2 , c+
2 ), . . . , (c−

|s|−1, c+
|s|−1)) of local

gap-size constraints over N× (N∪ {∞}). The query q matches in a trace t (i. e., a sequence of types)
if the variables can uniformly be substituted by types such that the resulting string occurs in t as a
subsequence that spans an area of length at most w, and the ith gap of the subsequence (i. e., the
distance between the ith and (i+1)th position of the subsequence) has length at least c−

i and at
most c+

i . We formalise and investigate the task of discovering an swg-query that describes best the
traces from a given sample S of traces, and we present an algorithm solving this task. As a central
component, our algorithm repeatedly solves the matching problem (i. e., deciding whether a given
query q matches in a given trace t), which is an NP-complete problem (in combined complexity).
Hence, the matching problem is of special interest in the context of query discovery, and we therefore
subject it to a detailed (parameterised) complexity analysis to identify tractable subclasses, which
lead to tractable subclasses of the discovery problem as well. We complement this by a reduction
proving that any query discovery algorithm also yields an algorithm for the matching problem.
Hence, lower bounds on the complexity of the matching problem directly translate into according
lower bounds of the query discovery problem. As a proof of concept, we also implemented a prototype
of our algorithm and tested it on real-world data.

2012 ACM Subject Classification Theory of computation → Database query languages (prin-
ciples); Theory of computation → Data structures and algorithms for data management; Theory of
computation → Problems, reductions and completeness; Information systems → Data mining

Keywords and phrases event queries on traces, pattern queries on strings, learning descriptive
queries, complexity of query evaluation and query learning

Digital Object Identifier 10.4230/LIPIcs.ICDT.2022.18

Funding Sarah Kleest-Meißner : Supported by the German Research Foundation (DFG), CRC 1404:
“FONDA: Foundation of Workflows for Large-Scale Scientific Data Analysis”.
Rebecca Sattler : Supported by the German Research Foundation (DFG), CRC 1404: “FONDA:
Foundation of Workflows for Large-Scale Scientific Data Analysis”.
Markus L. Schmid: Supported by the German Research Foundation (Deutsche Forschungsgemeinsch-
aft, DFG) – project number 416776735 (gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
– Projektnummer 416776735).

© Sarah Kleest-Meißner, Rebecca Sattler, Markus L. Schmid, Nicole Schweikardt, and Matthias
Weidlich;
licensed under Creative Commons License CC-BY 4.0

25th International Conference on Database Theory (ICDT 2022).
Editors: Dan Olteanu and Nils Vortmeier; Article No. 18; pp. 18:1–18:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kleemeis@informatik.hu-berlin.de
mailto:rebecca.sattler@informatik.hu-berlin.de
mailto:MLSchmid@MLSchmid.de
https://orcid.org/0000-0001-5137-1504
mailto:schweikn@informatik.hu-berlin.de
https://orcid.org/0000-0001-5705-1675
mailto:matthias.weidlich@hu-berlin.de
https://orcid.org/0000-0003-3325-7227
https://doi.org/10.4230/LIPIcs.ICDT.2022.18
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


18:2 Discovering Event Queries from Traces: Laying Foundations for SWG-Queries

1 Introduction

Event stream processing emerged as a computational paradigm that is based on the continuous
evaluation of queries over event streams [10, 22]. Respective systems enable the definition of
queries that detect patterns of events, i.e., a match of a query is a joint occurrence of events
that satisfy certain properties. Common languages for the definition of event queries, as
reviewed in [22, 5], include means to specify such properties related to the order of events,
their types, as well as a time window for their joint occurrence.

Event stream processing has traditionally been used for reactive applications in diverse
domains, reaching from infrastructure monitoring [7] through financial trading [29] to urban
transportation [6]. Here, event queries are specified by expert users to detect situations of
interest. For example, consider the case of monitoring a large compute cluster based on
events that indicate that a particular job was submitted, scheduled, suspended, resumed, and
updated while running, before it either completes successfully, is evicted due to preemption,
fails with an error, or is aborted manually. In addition, events may carry information on the
job’s priority and the machine on which the job runs. Given such event streams, abnormal
job execution materialises as an event pattern. For instance, a job may be evicted and
rescheduled twice on the same machine, with low and unchanged priority, before it eventually
fails. Adopting the SASE language [31], Listing 1 formalises this query.

Listing 1 Event query defined in the SASE language [31]. A match is a sequence of events of the
respective transition types (Evict, Schedule, Fail), all being related to the same job (with [job]
being a short-hand for a.job=b.job, a.job=c.job, etc.) and to the same machine ([machine]), while
the priority remains unchanged (b.prio=low, d.prio=low); all within one hour.
PATTERN SEQ(Evict a, Schedule b, Evict c, Schedule d, Fail e)
WHERE [job] AND [ machine ] AND b.prio=low AND d.prio=low
WITHIN 1h

In pro-active applications where an event query shall anticipate a situation of interest to
prepare for it accordingly [4], users often only know when a specific situation occurred, but
they have no or only partial knowledge on the patterns that indicate that the situation will
materialise soon. In the above example, a user may be aware that certain jobs fail execution,
and potentially possesses anecdotal evidence that only jobs with low priority are affected,
but it is not known that repeated eviction and re-scheduling on the same machine may serve
to forecast this failure. Against this background, it was suggested to automatically infer the
event patterns of interest from historic event data [21, 24], which can then be interpreted
and validated by a user, thereby mitigating the risk of overfitting and enabling traceability.

Specifically, historic event data is first split into traces that are considered independent
observations (e.g., events may be grouped by jobs and machines), before the traces related
to the situation of interest are identified (e.g., based on the presence of failure events). See
also Figure 1. Those then serve as a sample of positive examples for the discovery process of
event queries that are (i) correct (they match a share of the sample that is above a given
support threshold), and (ii) descriptive (any query that is more specific is no longer correct).

In this paper, we introduce subsequence-queries with wildcards and gap-size constraints
(swg-queries) as a formal model that covers the essence of the task of event query discovery.
Intuitively, an swg-query is a string over an alphabet of variables and types, a global window
size and a tuple of local gap-size constraints. It matches a trace, i.e., a sequence of types, if its
variables can be substituted by types, such that the resulting string represents a subsequence
of the trace, and the global window size and the local gap-size constraints are satisfied.
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Schedule(time=21, job=3, machine=m5v, prio=low)
Evict(time=42, job=3, machine=m5v)
Schedule(time=52, job=5, machine=m5v, prio=high)
Schedule(time=112, job=3, machine=m5v, prio=low)
Update(time=142, job=5, machine=m5v)
Complete(time=217, job=5, machine=m5v)
Suspend(time=276, job=3, machine=m5v)

t1 = SchLow E SchLow Sus
t2 = SchHigh U C
(a) Events and their representation as traces, i.e., sequences
of types, per job and machine.

t1 = SchLow E SchLow Sus
t2 = SchHigh U C
t3 = SchHigh E SchHigh U E F
t4 = SchHigh U U C
t5 = SchLow E SchLow Sus Res E A
t6 = SchLow U U E SchLow E A

(b) Database of six traces; t3, t5, and t6
denote failed (F) and aborted (A) executions.

Figure 1 Illustration of the setting of event query discovery.

Let us illustrate how the discovery of event queries defined in common languages for event
stream processing translates into the discovery of swg-queries.

▶ Example 1.1. The seven events of Figure 1a indicate lifecycle transitions of two jobs.
Encoding the events by types that model the lifecycle transitions, potentially combined
with additional payload data (e.g., Schedule events are modelled by types SchLow and SchHigh,
depending on the assigned priority), we derive two traces t1 and t2 (the order of types follows
from the events’ occurrence times). Note that we partitioned the events by the corresponding
job such that t1 and t2 consists only of events associated to job 3 and 5, respectively. Now
assume that in this way we have obtained six traces (Figure 1b), and that t3, t5 and t6 are
identified as traces that relate to the situation of interest: abnormal job execution that leads
to failure (F) or abortion (A). Thus, {t3, t5, t6} is our sample of historic event data for which
query discovery is to be performed. Each trace contains a subsequence of a scheduling event
of low or high priority (SchLow or SchHigh), an eviction event (E), a scheduling event of the
same priority as the initial one (SchLow or SchHigh), and another eviction event (E). These
commonalities can be captured by an swg-query by explicitly representing the eviction events
by the type E, while the occurrence of the scheduling events is captured by two occurrences
of the same variable x, i. e., a suitable swg-query would be xExE. Since the semantics of
swg-queries is based on subsequences, in between the types and variables of xExE also other
types like U, Sus and Res may occur. Furthermore, the query matches the traces with global
window size of 6. Note that the global window size w has to be at least 6 to describe t5 and t6,
because from the first scheduling event to the second eviction event both traces consist of 6
events. As gap-size constraint we could choose any tuple of the form c = ((0, i), (0, j), (0, k)),
where i, k ∈ N⩾2 ∪ {∞} and j ∈ N ∪ {∞} (observe that in t5 two events occur between the
last scheduling and eviction event, and in t6 two events occur between the first scheduling
and eviction event; thus, any c with i, k ⩾ 2 is suitable here). The most restrictive choice
that suitably describes our example is w = 6 and c = ((0, 2), (0, 0), (0, 2)).

Languages for complex event processing describe queries which correlate events to detect
event patterns, using operators such as sequencing, conjunction, Kleene closure, negation
and variables which may be bound to events in a stream [5, 10, 31]. However, the differences
in semantics and expressiveness of different languages are not yet well-studied and the
formalisation of event queries is an active area of research. Defining a query is usually
assumed to be a manual step requiring expert knowledge. The iCEP System [24] and the
IL-Miner [21] form an exception, but both are limited regarding their expressive power and
scalability, among others. Furthermore, the complexity of the event mining problem is still
open; it has not yet received an in-depth investigation from a theoretical perspective.

ICDT 2022
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As illustrated in Example 1.1, we want to find situations of interest that occur in many
traces of the given sample set of traces. At a first glance this seems to be a similar problem
as solved in the context of frequent sequence mining. Algorithms in this research area
as [2, 8, 9, 30] require the a-priori definition of event abstractions; in particular, fine-grained
conditions to generalise individual events or to correlate several events are not discovered by
these approaches.

In this paper, we try to overcome the issues raised above by proposing a basic language
that supports sequencing, variables that range over single events, and different kinds of
window size constraints, i.e. local gap-size constraints and a global window size. Hence
our swg-queries are located at the core of complex event processing languages while based
on classical concepts of theoretical computer science: subsequences and (string) patterns
with variables. Subsequences have extensively been studied both in a purely combinatorial
sense (in formal language theory, logic and combinatorics on words) and algorithmically (in
string algorithms and bioinformatics); see the introductions of the recent papers [20, 11]
for a comprehensive list of relevant pointers. Patterns with variables are introduced by
Angluin [3] and they play a central role for inductive inference, in formal language theory
and combinatorics on words (see [28, 23, 25]). These Angluin-style patterns are just strings
with terminal symbols a, b, c, . . . and variables x1, x2, x3, . . ., e. g., p = x1 a x1 b x2, and they
match exactly the strings that can be obtained by uniformly replacing the variables by some
terminal strings (i. e., exactly the strings u a u b v with u, v ∈ {a, b, c, . . .}∗ for the example
pattern). Syntactically, our swg-queries are Angluin-style patterns, but with the semantics
adapted to event streams: variables only range over single symbols; and the query matches if,
after replacing the variables by events, it occurs as a subsequence that satisfies the window
size and gap-size constraints.

Despite the fundamental semantic differences between swg-queries and Angluin-style
patterns, it is possible to adapt concepts and algorithms from inductive inference of the so-
called pattern languages that can be described by Angluin-style patterns. Most importantly,
the classical concept of descriptive patterns, already introduced in [3] for Angluin-style
patterns (see also [18, 19]), can be adapted to swg-queries. For a given sample of strings,
a descriptive Angluin-style pattern can be computed by Shinohara’s algorithm [27], which
employs a rather simple and robust algorithmic idea (see also [14]). The main result of
this paper is that Shinohara’s algorithm can also be adapted for computing descriptive
swg-queries, and thus to the case of swg-query discovery. Due to the semantic differences, this
adaption is non-trivial and requires the development of suitable technical tools. Moreover,
our variant of the algorithm has the following special features:

it allows a support threshold (i. e., a lower bound on the number of matched elements of
the sample),
it can be parameterised by any class of queries that satisfies some mild closure properties
(this is crucial for dealing with complexity issues, as explained further below),
it can also be used in order to check whether a given query is descriptive.

The algorithm computes a descriptive query by performing a number of iterations that is
bounded by a low-degree polynomial in the length of the query and the size of the sample.
However, in each iteration, the algorithm calls a sub-routine that solves the matching problem:
Decide whether a given query matches a given trace. Just like for Angluin-style patterns,
matching for swg-queries is intractable; thus, it constitutes a complexity bottle-neck in our
algorithm. However, as another similarity between Angluin-style patterns and our swg-
queries (see [14]), the matching problem for swg-queries reduces to the problem of computing
descriptive queries. This means that this complexity bottle-neck inevitably exists in any
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possible algorithm for computing descriptive swg-queries. Therefore, we perform a thorough
complexity analysis of the matching problem for swg-queries (note that for Angluin-style
patterns the complexity of the matching problem is well-understood (see [15, 16])). On the
positive side, since our algorithm can be parameterised by any arbitrary class of queries (with
some natural closure properties), restrictions of swg-queries that lead to a tractable matching
problem also lead to tractable computation of descriptive queries via our algorithm.

Typical brute-force approaches to data mining tasks (e. g., the well-known apriori-
algorithm [1]) produce the full set of all objects of interest, but operate in exponential
running time. Our algorithm produces only one descriptive query, but, for classes of queries
with tractable matching problem, is rather fast. Moreover, by considering all possible runs
of the algorithm, we can produce a large class of descriptive queries, although not all of
them. We further illustrate the feasibility of our approach by developing a prototypical
implementation of our algorithm and a performing a preliminary experimental study on a
real-world dataset of cluster monitoring traces at Google [26].

The remainder of this paper is structured as follows. In Section 2, we propose swg-queries
as an adaption of Angluin-style patterns to event streams, and we develop some technical
tools for this query class. In Section 3, we present the algorithm, based on Shinohara’s
work on discovering descriptive patterns, which can be used (a) for discovering a descriptive
swg-query from a given sample, and (b) for checking whether a given swg-query is descriptive
with respect to a sample. Motivated by the observation that computing descriptive queries
reduces to the matching problem, and vice versa (this connection is discussed at the end
of Section 3), we perform in Section 4 a thorough (classical and parameterised) complexity
analysis of the matching problem. Our results point out for which classes of queries efficient
computation of descriptive queries is possible, and for which classes this is an intractable
problem. Finally, in Section 5, we report some experimental results obtained by applying a
prototypical implementation to a real-world dataset, and we give some concluding remarks.
Due to space restrictions many technical details had to be deferred to the paper’s full version.

2 Traces and Queries

By Z, N, N⩾1 we denote the set of integers, non-negative integers, and positive integers,
respectively. For ℓ ∈ N we let [ℓ] = {i ∈ N⩾1 : 1 ⩽ i ⩽ ℓ}. For a non-empty set A we write
A∗ (and A+) for the set of all strings (the set of all non-empty strings) built from symbols
in A. By |s| we denote the length of a string s, and for a position i ∈ [|s|] we write s[i] to
denote the letter at position i in s. A factor of a string s ∈ A∗ is a string t ∈ A∗ such that s

is of the form s1ts2 for s1, s2 ∈ A∗.
An embedding is a mapping e : [ℓ] → [n] with ℓ ⩽ n such that i < j implies e(i) < e(j)

for all i, j ∈ [ℓ]. Let s and t be two strings with |s| ⩽ |t|. We say that s is a subsequence of t

with embedding e : [|s|] → [|t|], if e is an embedding and s[i] = t[e(i)] for every i ∈ [|s|]. We
write s ≼e t to indicate that s is a subsequence of t with embedding e; and we write s ≼ t to
indicate that there exists an embedding e such that s ≼e t.

We model traces as finite, non-empty strings over some (finite or infinite) alphabet Γ of
types. It will be reasonable to assume that |Γ| ⩾ 2. A trace (over Γ) is a string t ∈ Γ+. We
write types(t) for the set of types that occur in t.

This paper studies a basic class of event queries which we call subsequence-queries
with wildcards and gap-size constraints, for short: swg-queries. For defining these queries,
we fix a countably infinite set Vars of variables, and we will always assume that Vars is
disjoint with the set Γ of considered types. An swg-query q (over Vars and Γ) is specified

ICDT 2022
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by a query string s ∈ (Vars ∪ Γ)+, a global window size w ∈ N⩾1 ∪ {∞} with w ⩾ |s|,
and a tuple c = (c1, c2, . . . , c|s|−1) of local gap-size constraints (for |s| and w), where
ci = (c−

i , c+
i ) ∈ N× (N∪{∞}), such that c−

i ⩽ c+
i for every i ∈ [|s|−1] and |s|+

∑|s|
i=1 c−

i ⩽ w.
We denote such queries in the form q = (s, w, c). Note that setting all gap-size constraints of
a swg-query q to (0, ∞) corresponds to a query without gap-size constraints.

We write types(q) (or types(s)) and vars(q) (or vars(s)) for the set of types and the set of
variables, respectively, that occur in q’s query string s. A query q is called an (ℓ, w, c)-query
(over Vars and Γ) if q = (s, w, c) with |s| = ℓ; the parameter ℓ will be called string length.
We write Q to denote the class of all swg-queries.

The semantics of swg-queries is defined as follows: Each variable in s serves as a wildcard
representing an arbitrary type. A query q = (s, w, c) matches in a trace t if the wildcards in
s can be replaced by types in such a way that the resulting string s′ satisfies the following: t

contains a factor t′ of length at most w such that s′ occurs as a subsequence in t′ and for
each i < ℓ := |s| the gap between s′[i] and s′[i+1] in t′ has length at least c−

i and at most
c+

i . I.e., t′ is of the form s′[1] g1 s′[2] g2 · · · gℓ−1 s′[ℓ] and c−
i ⩽ |gi| ⩽ c+

i for all i ∈ [ℓ−1].
An alternative description of these semantics, which will be more convenient for our formal

proofs, involves a bit more notation: We say that an embedding e : [ℓ] → [n] satisfies a global
window size w, if e(ℓ) − e(1) + 1 ⩽ w; and we say that e satisfies a tuple c = (c1, c2, . . . , cℓ−1)
of local gap-size constraints (for ℓ and w), if c−

i ⩽ e(i+1)−1 − e(i) ⩽ c+
i for all i < ℓ.

A substitution is a mapping µ : (Vars ∪ Γ) → (Vars ∪ Γ) with µ(γ) = γ for all γ ∈ Γ.
We extend substitutions to mappings (Vars ∪ Γ)+ → (Vars ∪ Γ)+ in the obvious way, i. e.,
µ(s) = µ(s[1])µ(s[2]) · · · µ(s[ℓ]) for s ∈ (Vars ∪ Γ)+ and ℓ := |s|. We sometimes also consider
partial substitutions of the form (V ∪ ∆) → (V ′ ∪ ∆) for some V, V ′ ⊆ Vars and ∆ ⊆ Γ.

An swg-query q = (s, w, c) matches in a trace t ∈ Γ+ (or, t matches q, in symbols: t |= q),
if and only if there are a substitution µ : (Vars ∪ Γ) → Γ and an embedding e : [|s|] → [|t|]
that satisfies w and c, such that µ(s) ≼e t. We call (µ, e) a witness for t |= q.

▶ Example 2.1. Let x1, x2, x3 ∈ Vars and Γ = {a, b, c}. We consider a query q = (s, w, c),
where s = x1 a b x1 b x2 c x3 a x1, w = 25 and c = ((0, 1), (0, 0), (2, ∞), (4, ∞), (0, 5), (0, 5),
(0, 5), (1, 5), (2, 3)), and a trace t = t1 c a b b b c a b a c a b a c b c a b a c t2, where t1, t2 ∈ Γ∗. We
observe that t |= q, and a witness substitution and embedding can be illustrated as follows:

s = x1 a b x1 b x2 c x3 a x1 ,

t = t1 c a b b b c a b a c a b a c b c a b a c t2 .

Recall that in the introduction we have presented another, more practical scenario that can
also be described by an swg-query (see Example 1.1).

The model set of a query q w.r.t. a type set ∆ ⊆ Γ is Mod∆(q) := { t ∈ ∆+ : t |= q }. For
two queries q and q′ and a set ∆ ⊆ Γ we say that q is contained in q′ w.r.t. ∆ if Mod∆(q) ⊆
Mod∆(q′); and we say that q and q′ are equivalent w.r.t. ∆ if Mod∆(q) = Mod∆(q′). The
remainder of this section is devoted to a characterisation of containment and equivalence
of (ℓ, w, c)-queries via suitable notions of homomorphisms and isomorphisms. Let us fix an
ℓ ∈ N⩾1, a w ∈ N ∪ {∞} with w ⩾ ℓ, and a tuple c of local gap-size constraints for ℓ and w.

▶ Definition 2.2. A homomorphism from an (ℓ, w, c)-query q′ = (s′, w, c) to an (ℓ, w, c)-query
q = (s, w, c) is a substitution h : (Vars∪Γ) → (Vars∪Γ) such that h(s′) = s (i.e., h(s′[i]) = s[i]
for all i ∈ [ℓ]). We write q′ hom−→ q to express that there exists a homomorphism from q′ to q.

We next characterise containment via homomorphisms (see item (c) of the next theorem).
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▶ Theorem 2.3. Let q and q′ be (ℓ, w, c)-queries over Vars and Γ.
(a) If q′ hom−→ q then types(q′) ⊆ types(q) and ModΓ(q′) ⊇ ModΓ(q).
(b) Let ∆ ⊆ Γ be such that |∆| ⩾ 2 and ∆ ⊇ types(q). If Mod∆(q′) ⊇ Mod∆(q) then q′ hom−→ q.
(c) If |Γ| ⩾ 2, then ModΓ(q′) ⊇ ModΓ(q) ⇐⇒ q′ hom−→ q.

Let us consider an example application of this characterisation of containment.
▶ Example 2.4. Let us fix ℓ distinct variables x1, . . . , xℓ ∈ Vars, and let smg := x1x2 · · · xℓ.
The query qmg = (smg, w, c) is the most general (ℓ, w, c)-query in the sense that ModΓ(qmg) ⊇
ModΓ(q) for every (ℓ, w, c)-query q = (s, w, c). To see this, note that the mapping defined via
h(xi) := s[i] for all i ∈ [ℓ] provides a homomorphism from qmg to q and use Theorem 2.3(a).

One might ask why Theorem 2.3 restricts attention to queries q and q′ of the same
parameters (ℓ, w, c). One answer is that this is exactly what is needed for our purposes in
Section 3: to ensure that our algorithm for query discovery always produces meaningful
results, we precisely need this characterisation (see also Remark 3.2). Another answer is
that, when considering queries q and q′ with different parameters (ℓ, w, c) and (ℓ′, w′, c′), a
characterisation analogous to the one provided by Theorem 2.3(c) simply is not available:
▶ Example 2.5. For the sake of this example, assume that Definition 2.2 applies to arbitrary
queries q = (s, w, c) and q′ = (s′, w′, c′) of the same query string length ℓ := |s| = |s′| but
where the global window sizes and the local gap-size constrains may differ from each other.

First consider two swg-queries q = (s, w, c) and q′ = (s, w, c′) having the same query string
s = x a x and the same global window size w = 4, but different local gap-size constraints
c = ((0, 1), (0, 0)) and c′ = ((0, 0), (0, 0)). It holds that q′ hom−→ q, but ModΓ(q′) ̸⊇ ModΓ(q),
e. g., bcab ∈ ModΓ(q) \ ModΓ(q′).

Almost the same example queries show that the characterisation does also not hold for
queries with the same query string length and the same gap-size constraints but different
global window sizes: Let q = (s, w, c) and q′ = (s, w′, c) with s = x a x, c = ((0, ∞), (0, ∞)),
and w = 4 and w′ = 3. Again, we can observe that q′ hom−→ q, but ModΓ(q′) ̸⊇ ModΓ(q)
(witnessed by the same trace bcab). Note furthermore, that tuples of gap-size constraints of
the form ((0, ∞), . . . , (0, ∞)) can even be considered as not having any gap-size constraints.

There are natural candidates of extending the concept of homomorphisms to the case of
queries with different query string lengths. For example, we could adapt Definition 2.2 by
requiring the substitution h : (Vars ∪ Γ) → (Vars ∪ Γ) to satisfy that h(s′) is a subsequence of
s. However, it can be easily seen that for q := (s, w, c) and q′ := (s′, w′, c′) with s = x a b x,
s′ = x a x, w = 4, w′ = 3, c = ((0, ∞), (0, ∞), (0, ∞)), and c′ = ((0, ∞), (0, ∞)), we have
q′ hom−→ q (with respect to the adapted definition), but c a b c ∈ ModΓ(q) \ ModΓ(q′).
▶ Definition 2.6. Two (ℓ, w, c)-queries q = (s, w, c) and q′ = (s′, w, c) are called isomorphic
(denoted by q ∼= q′), if there is a bijection π : (vars(q)∪Γ) → (vars(q′)∪Γ) such that π(γ) = γ

for all γ ∈ Γ and π(s[i]) = s′[i] for all i ∈ [ℓ].
▶ Corollary 2.7. Let |Γ| ⩾ 2. For all (ℓ, w, c)-queries q and q′ over Γ and Vars we have:
q ∼= q′ ⇐⇒

(
q

hom−→ q′ and q′ hom−→ q
)

⇐⇒ ModΓ(q) = ModΓ(q′) .
Furthermore, upon input of q and q′ we can decide in time O(ℓ) whether or not q ∼= q′.

The following notion of “partially isomorphic” queries will be useful for Section 3.
▶ Definition 2.8. Let q = (s, w, c) and q′ = (s′, w, c) be (ℓ, w, c)-queries and let I ⊆ [ℓ]. We
say that q is partially isomorphic to q′ w.r.t. I (and shortly write q ∼I q′) if, and only if,
1. for all i, j ∈ I we have

(
s[i] = s[j] ⇐⇒ s′[i] = s′[j]

)
, and

2. for all i ∈ I we have
(

s[i] ∈ Γ ⇐⇒ s′[i] ∈ Γ
)

and
(

if s[i] ∈ Γ then s[i] = s′[i]
)
.

▶ Lemma 2.9. For all (ℓ, w, c)-queries q and q′ we have: q ∼[ℓ] q′ ⇐⇒ q ∼= q′.
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3 Discovery of Descriptive (ℓ, w, c)-Queries

A sample is a finite, non-empty set S of traces over Γ. The support supp(q, S) of a query q in S
is defined as the fraction of traces in the sample that match q, i.e., supp(q, S) := |{t∈S : t|=q}|

|S| .
A support threshold is a rational number sp with 0 < sp ⩽ 1. A query q is said to cover a
sample S with support sp if supp(q, S) ⩾ sp.

▶ Definition 3.1. Let Q be a class of queries, let S be a sample, and let sp be a support
threshold. Let ℓ ∈ N⩾1, let w ∈ N ∪ {∞} with w ⩾ ℓ, and let c be a tuple of local gap-
size constraints for ℓ and w. A query q is called descriptive for S w.r.t. (Q, sp, (ℓ, w, c))
if q is an (ℓ, w, c)-query in Q, supp(q, S) ⩾ sp, and there is no (ℓ, w, c)-query q′ ∈ Q with
supp(q′, S) ⩾ sp and ModΓ(q′) ⊊ ModΓ(q).

Let us explain this notion on an intuitive level by considering the case sp = 1. In this
case, a query q that is descriptive for S w.r.t. (Q, sp, (ℓ, w, c)) satisfies S ⊆ ModΓ(q), and
there is no other (ℓ, w, c)-query q′ ∈ Q that can be “wrapped around” S more tightly, i. e., in
the sense that S ⊆ ModΓ(q′) ⊊ ModΓ(q). Therefore, among all (ℓ, w, c)-queries from Q, the
query q can be considered as one of the best descriptors for S.
▶ Remark 3.2. Throughout this section we assume that |Γ| ⩾ 2. Hence, by Theorem 2.3 and
Corollary 2.7 we know that, for any query class Q ⊆ Q, an swg-query q is descriptive for S
w.r.t. (Q, sp, (ℓ, w, c)) if, and only if, q is an (ℓ, w, c)-query in Q, supp(q, S) ⩾ sp, and there is
no (ℓ, w, c)-query q′ ∈ Q with supp(q′, S) ⩾ sp and q

hom−→ q′ and q ̸∼= q′.
The following notions will be convenient throughout the rest of this section. For an

(ℓ, w, c)-query q = (s, w, c) and a symbol z ∈ Vars∪Γ we let pos(q, z) (and pos(s, z)) be the set
of all positions i of s that carry the symbol z. I.e., pos(q, z) = pos(s, z) = {i ∈ [ℓ] : s[i] = z}.
Given a query string s ∈ (Vars ∪ Γ)ℓ, a set of positions P ⊆ [ℓ], and a symbol z ∈ Vars ∪ Γ,
we write s⟨P 7→ z⟩ to denote the query string s′ obtained from s by placing z on all positions
i ∈ P . I.e., s′[i] = z for all i ∈ P and s′[j] = s[j] for all j ∈ [ℓ] \ P . Accordingly, for a query
q = (s, w, c) we let q⟨P 7→ z⟩ be the query (s⟨P 7→ z⟩, w, c). For a variable x ∈ vars(q) we
shortly write q⟨x 7→ z⟩ (and s⟨x 7→ z⟩) instead of q⟨pos(q, x) 7→ z⟩ (and s⟨pos(s, x) 7→ z⟩) –
i.e., all occurrences of variable x in s are replaced by the symbol z.

Next, we define the problem of computing a descriptive query, and the problem to check
for a given query whether it is descriptive; we will refer to these two problems as the query
discovery problems. As our definition of descriptiveness (see Definition 3.1) depends on a
class Q of swg-queries, the problems of computing a descriptive query or of checking whether
a given query is descriptive are also parameterised by an arbitrary class Q of swg-queries. It
will be discussed in more detail in Section 4 why this parameterisation by Q is vital.

Q-Compute Descriptive Query Problem (Q-CompDescQuery): The input is a sample S
over Γ, a support threshold sp, a string length ℓ ∈ N, a global window size w ⩾ ℓ, and a
tuple c of local gap-size constraints (for ℓ and w). The task is to compute an (ℓ, w, c)-query
q ∈ Q that is descriptive for S with respect to (Q, sp, (ℓ, w, c)).

Q-Check Descriptiveness Problem (Q-CheckDescQuery): The input is the same as for
Q-CompDescQuery, but in addition also an (ℓ, w, c)-query q ∈ Q, and the task is to decide
whether q is descriptive for S with respect to (Q, sp, (ℓ, w, c)).

▶ Remark 3.3. Since a Q-CompDescQuery- or Q-CheckDescQuery-instance contains at most
2(|s|−1)+1 integers (i. e., w and c−

i , c+
i for every i ∈ [|s|−1]), running times polynomial in w,

c+
i or c−

i can be exponential in the input size. We deal with this issue by assuming, without
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loss of generality, that w = ∞ or w ⩽ max{|t| : t ∈ S}, c+
i = ∞ or c+

i ⩽ max{|t| : t ∈ S} for
every i ∈ [|s|−1], and

∑ℓ
i=1 c−

i ⩽ min{w, max{|t| : t ∈ S}}. I.e., all integers of the input are
bounded by max{|t| : t ∈ S} and therefore their values are polynomial in the total input size.

3.1 An Algorithm for Solving the Query Discovery Problems
We now present an algorithm that, for suitable classes Q of queries, can be used to solve the
problems Q-CompDescQuery and Q-CheckDescQuery. As input, the algorithm receives S, sp,
(ℓ, w, c), and an “initial” query q0 = (s0, w, c) ∈ Q. The goal is to compute an (ℓ, w, c)-query
q ∈ Q that is descriptive for S w.r.t. (Q, sp, (ℓ, w, c)) and that satisfies ModΓ(q) ⊆ ModΓ(q0).

If supp(q0, S) < sp, then such a query q does not exist because of the following reasoning:
obviously, if q0 does not describe S with sufficient support, then no other query q′ with
ModΓ(q′) ⊆ ModΓ(q0) can describe S with sufficient support.

If supp(q0, S) ⩾ sp, then the algorithm proceeds as follows. It considers the variables
vars(q0) = {x1, x2, . . . , xk} in some arbitrary order. For each xi, it performs the following
replacement operation: choose a symbol y (which can be a type or a variable) and replace all
occurrences of xi in the current query string by y. However, such a replacement operation is
only admissible if the new query q′ is in Q and satisfies supp(q′, S) ⩾ sp. If no admissible
replacement operation is possible, then xi is not replaced, i. e., the current query string is not
changed. After each variable xi ∈ vars(q0) has been considered, the algorithm terminates
and produces the current query as output.

This means that the algorithm produces a sequence s0, s1, . . . , sk of query strings, where,
for every i ∈ [k], either si can be obtained from si−1 by a replacement operation, or
si = si−1. For every i ∈ [k], let qi = (si, w, c) be the (ℓ, w, c)-query that corresponds to
si. We note that q0

hom−→ q1
hom−→ . . .

hom−→ qk and therefore, as a consequence of Theorem 2.3,
ModΓ(q0) ⊇ ModΓ(q1) ⊇ . . . ⊇ ModΓ(qk). Hence, the algorithm starts with q0 and then
follows a path of length at most k in the search space of (ℓ, w, c)-queries from Q that cover S
with support sp, always going from one query to a more specific one. The crucial point is
now that if the replacement operations are done in a certain way, then it can be guaranteed
that the final query qk is necessarily descriptive for S w.r.t. (Q, sp, (ℓ, w, c)). In other words,
from any (ℓ, w, c)-query q ∈ Q that covers our sample with sufficient support, we will reach
with at most |vars(q0)| replacement operations a descriptive query.

Let us call a replacement operation a type operation or a variable operation if it replaces
xi by a type or by a variable, respectively. For simplicity, assume that the algorithm considers
(and possibly replaces) the variables in the order x1, x2, . . . , xk. Assume that we are at the
ith step of the algorithm, i. e., variable xi is considered and the goal is to obtain si from
si−1. The symbol y we choose to replace for xi can either be a type or a variable. For a type
operation we can choose from all types that occur in sufficiently many traces of the sample
S. For a variable operation we can choose one of the variables xj that have been considered
before (i. e., j < i) and that have not been replaced (i. e., at the jth step when we considered
xj , no replacement operation was admissible). Let us clarify this with an example.

Let s0 = x2x1 a x1 b x3x4, and let us assume that we first consider x1. With the restriction
mentioned above, we can initially only use type operations. For the sake of the example,
assume further that no type operation for x1 is admissible (since it would yield q1 /∈ Q or
supp(q1, S) < sp); thus, s1 = s0. Next we consider variable x2 and we note that since x1
has already been considered and has not been replaced in the first step, y := x1 is a valid
candidate for a variable operation. Let us assume that it turns out that it also is admissible.
Then, we can replace x2 by x1 and obtain s2 = x1x1 a x1 b x3x4. However, this also means
that x2 will never be available as a valid candidate for variable operations later on (which is
also the case if a type operation had been used for replacing x2 with an admissible type).
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To see that this restriction is indeed necessary, assume the following example: The sample
S consists of only one trace, namely the trace aaa, and we have ℓ=3, w=3, c = ((0, 0), (0, 0)),
and s0 = x1x2x3. Without the restriction from above, we could obtain s3 = x1x1x1 with
variable operations by replacing x1, x2 and x3 by the same variable x1. Note that replacing
these variables by x1 indeed violates our restriction, because when considering x1 in the first
step, replacing x1 by the type a is in fact an admissible replacement operation and therefore
we have to replace x1 in the algorithm’s first step (and hence in later steps the variable x1 is
not available). If we perform the replacement operations according to our restrictions, we in
fact perform the type operation with y := a for each of the variables x1, x2, x3, resulting in the
query q′ = (aaa, w, c). Note that the query q = (x1x1x1, w, c), which could be otained when
ignoring our restriction, is not descriptive (since ModΓ(q′) ⊊ ModΓ(q)). This illustrates that
we indeed need the restriction described above. Note that q′ is actually the only descriptive
query for the particular example considered here.

With the restricted kind of variable operations, we can show that the algorithm always
produces descriptive queries, provided that the query class Q has suitable closure properties.
Pseudocode of the algorithm is provided in Algorithm 1. Let us briefly explain how the
pseudocode actually implements the idea outlined above. Initially, we collect in ∆ the types
available for type operations (note that if |{t∈S : γ∈types(t)}|

|S| < sp, then the type γ cannot
occur in any query that covers S with support sp), we initialise the set U of unvisited variables
as the set of all variables of s0, and we define V := ∅ as the (empty) set of variables that
are initially available for variable operations. Now the main loop in line 5 considers each
variable x ∈ U exactly once, and for each such variable, checks whether there exists a type
or variable y from Ω := (∆ ∪ V ) such that replacing all occurrences of variable x by the
symbol y is an admissible replacement operation. If such an y ∈ Ω exists, we perform the
actual replacement in line 12. If no such element in Ω exists, then no replacement operation
is possible, and we do not change the current query string but insert x into the set V of
variables available for future variable operations (line 16).

Theorem 3.4 summarises the guarantees we can provide for Algorithm 1. For the precise
statement we need two notions of closure properties that the query class Q has to satisfy: Q
is called closed under isomorphisms if for all parameters (ℓ, w, c) and for every (ℓ, w, c)-query
q ∈ Q, the set Q also contains all (ℓ, w, c)-queries q′ with q ∼= q′. Q is called closed under
m-grained generalisations, for an m ∈ N⩾1 ∪ {∞}, if the following is true for every query
q = (s, w, c) ∈ Q and every set of positions P ⊆ [|s|] with |P | ⩽ m and s[i] = s[j] for all
i, j ∈ P : There is a variable x ∈ Vars \ vars(q) such that the query q⟨P 7→ x⟩ belongs to Q.

We explain this concept on an intuitive level by considering m = 1. A 1-grained
generalisation takes a q ∈ Q and makes it more general by replacing the symbol at some
position of the query string by a single occurrence of a new variable. E. g., x a yx b ⇝
xz1yx b⇝ xz1z2x b⇝ z3z1z2x b is a sequence of 1-grained generalisations, where z1, z2, z3
are new variables. If for every q ∈ Q every 1-grained generalisation necessarily produces a
query in Q, then Q is closed under 1-grained generalisations. For example, this is the case
for the class Q|rv(s)|⩽k of queries with at most k repeated variables, i.e. variables with at
least two occurrences in s, or the class Qw⩽k of queries with window size at most k, for
every constant k ∈ N. On the other hand, the class Q|vars(s)|⩽k of queries with at most k

variables is not closed under 1-grained generalisations. An m-grained generalisation replaces
in one step at most m occurrences of the same symbol by occurrences of the same new
variable. Since m-grained generalisations for m ⩾ 2 introduce new repeated variables, the
class Q|rv(s)|⩽k is not closed under m-grained generalisations. On the other hand, the class
Q|s|⩽k, which consists only of queries with a query string length of at most k, is closed under
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Algorithm 1 Q-DescrSWGQuery(S,sp, q0).

Input : sample S; support threshold sp with 0 < sp ⩽ 1; query q0 = (s0, w, c) in Q
Returns : descriptive query q for S w.r.t. (Q, sp, (|s0|, w, c)) or error message ⊥

1 if supp(q0, S) < sp then stop and return ⊥
2 ∆ := {γ ∈ Γ : |{t∈S : γ∈types(t)}|

|S| ⩾ sp} // types to be considered

3 s := s0; q := (s, w, c) // query string and query

4 U := vars(q0); V := ∅ // unvisited variables and available variables

5 while U ̸= ∅ do
6 select an arbitrary x ∈ U and let U := U \ {x}
7 Ω := (∆ ∪ V ); replace := False
8 while Ω ̸= ∅ do
9 select an arbitrary y ∈ Ω and let Ω := Ω \ {y}

10 q′ := (s⟨x 7→ y⟩, w, c)
11 if q′ ∈ Q and supp(q′, S) ⩾ sp then
12 s := s⟨x 7→ y⟩ // ReplaceOp

13 replace := True
14 break inner loop
15 if replace is False then
16 V := V ∪ {x} // NoChangeOp

17 stop and return q := (s, w, c)

∞-grained generalisations. Since q′ hom−→ q for every query q′ obtained from q by an m-grained
generalisation, Theorem 2.3(a) implies that q′ is actually a more general query in the sense
that ModΓ(q′) ⊇ ModΓ(q).

We are now ready for the formal statement of this subsection’s main theorem. Note that
the lines 6 and 9 of Algorithm 1 allow to make an arbitrary choice. Different choices lead to
different “runs” of the algorithm, and different runs might produce different output queries
(depending on the particular order in which the elements in vars(q0) and in Ω are considered).
The next theorem states that any choice is fine, and that any output query is guaranteed to
be a descriptive query.

▶ Theorem 3.4. Let |Γ| ⩾ 2 and let Q be a class of swg-queries over Γ and Vars that is closed
under isomorphisms. Let S be a sample, let sp be a support threshold, and let q0 = (s0, w, c)
be a query in Q. Let ℓ = |s0| and let m ∈ N be such that |pos(q0, x)| ⩽ m for all x ∈ vars(q0).
(a) If supp(q0, S) < sp, then there does not exist any descriptive query q′ for S w.r.t.

(Q, sp, (ℓ, w, c)) such that ModΓ(q′) ⊆ ModΓ(q0), and there is only one run of algorithm
Q-DescrSWGQuery(S,sp, q0), and this run stops in line 1 with output ⊥.

(b) If supp(q0, S) ⩾ sp and Q is closed under m-grained generalisations, then every run of
Q-DescrSWGQuery(S,sp, q0) terminates and outputs a query q′ that is descriptive for S
w.r.t. (Q, sp, (ℓ, w, c)) and satisfies ModΓ(q′) ⊆ ModΓ(q0); furthermore, q′ = q0 if, and
only if, q0 is descriptive for S w.r.t. (Q, sp, (ℓ, w, c)).

The proof of (a) is obvious while the proof of (b) is quite demanding and proceeds as follows.
For simplicity, let us focus here on the case that Q = Q. We have already observed above
that the output query q′ := qk is necessarily an (ℓ, w, c)-query from Q with supp(qk, S) ⩾ sp.
Now, for contradiction, let us assume that qk is not descriptive for S with respect to
(Q, sp, (ℓ, w, c)). Then, according to Definition 3.1, there exists an (ℓ, w, c)-query q̃ ∈ Q with
support supp(q̃, S) ⩾ sp and ModΓ(q̃) ⊊ ModΓ(qk). This means that qk

hom−→ q̃ and q̃ ̸∼= qk (see
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Remark 3.2). We can now inductively show that for every i ∈ {0, . . . , k} the queries qi and q̃

are partially isomorphic (see Definition 2.8) with respect to the positions of the variables
already considered by the algorithm. For i = k this yields q̃ ∼= qk; a contradiction. Proving
the induction step is non-trivial and constitutes the most crucial technical contribution of
the correctness proof. In particular, we heavily rely on the technical machinery developed in
Section 2. A detailed proof will be included in the full version of this paper.

We now discuss how the algorithm can be used to solve the problems Q-CompDescQuery
and Q-CheckDescQuery. For solving the problem Q-CompDescQuery, we only need that Q
is closed under isomorphisms and 1-grained generalisations, since then, we can run it with
s0 = x1x2 . . . xℓ (i. e., the most general (ℓ, w, c)-query, see Example 2.4) in order to compute
a query that is descriptive for S w.r.t. (Q, sp, (ℓ, w, c)). On the other hand, if we want to
solve Q-CheckDescQuery for some (ℓ, w, c)-query q ∈ Q, then we can run the algorithm with
q0 := q, and then check whether its output equals q0. The latter is the case if, and only if, q is
descriptive for S w.r.t. (Q, sp, (ℓ, w, c)). However, this only works for queries q = (s, w, c) such
that Q is closed under m-grained generalisations, where m ∈ N is such that |pos(q, x)| ⩽ m

for all x ∈ vars(q).
Let us close this subsection by an outlook on future work. Clearly, a single run of

Algorithm 1 only outputs a single query that is descriptive w.r.t. (Q, sp, (ℓ, w, c)). However,
by exploring all possible runs it is possible to enumerate a large number of queries that
are descriptive w.r.t. (Q, sp, (ℓ, w, c)). But care must be taken when exploring the search
space of all possible runs, since two different runs of Algorithm 1 may lead to the same
output query and we want to avoid outputting the same query twice. We plan to address
this enumeration task and suitable selection strategies in our future work. An obvious
question is if every descriptive query can be produced by a suitable run of Algorithm 1. The
answer is “no”, as the following example shows. Given the sample S = {aab, abb}, sp = 1
and q0 = (x1x2, w, c) with w = 2 and c = ((0, ∞)), every run of Algorithm 1 outputs the
descriptive query q := (ab, w, c). But note that also the query q′ := (xixi, w, c) (for an
arbitrary i ∈ {1, 2}) is descriptive for S w.r.t. (Q, sp, (2, w, c)). However, there does not
exist any run of Algorithm 1 that outputs q′. Obvious future tasks are (a) to find a precise
characterisation of the descriptive queries that can be produced by a run of Algorithm 1,
and (b) to design an efficient algorithm that is capable of producing all descriptive queries.

3.2 The Complexity of the Query Discovery Problems
In Algorithm 1, we treat the checks of q′ ∈ Q and supp(q′, S) ⩾ sp in line 11 as black-box
requests to an oracle. Clearly, we can check if supp(q′, S) ⩾ sp by solving the following
matching problem for |S| times. For any fixed query class Q ⊆ Q, the Q-Matching Problem
(Q-Match) receives as input a query q = (s, w, c) ∈ Q and a trace t. The task is to decide if
t |= q.

Since Q-Match-instances contain integers, we make, w.l.o.g., the same assumptions as
described in Remark 3.3: we assume w = ∞ or w ⩽ |t|, c+

i = ∞ or c+
i ⩽ |t| for every

i ∈ [|s|−1], and
∑ℓ

i=1 c−
i ⩽ min{w, |t|}. For the following complexity analysis, let us call the

oracles that check q′ ∈ Q and solve Q-Match the Q-membership oracle and Q-match oracle,
respectively. A straightforward analysis of Algorithm 1 yields the following.

▶ Theorem 3.5. Every run of Q-DescrSWGQuery(S,sp, q0) performs O(|vars(q0)|(|types(S)|+
|vars(q0)|)(ℓ + |S|)) computational steps, O(|vars(q0)|(|types(S)| + |vars(q0)|)) calls to the
Q-membership oracle and O(|vars(q0)|(|types(S)| + |vars(q0)|)|S|) calls to the Q-match oracle.
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Theorem 3.5 shows that apart from answering the oracle requests, the complexity of
algorithm Q-DescrSWGQuery is rather low. For most natural classes of queries Q, it is a
reasonable assumption that checking q ∈ Q for abitrary queries q ∈ Q is a computationally
simple task (i. e., solvable in time linear or quadratic in |s|). Hence, not much complexity
seems to be hidden in the Q-membership oracle. On the other hand, as shall be discussed
in Section 4, Q-Match is NP-complete for many classes Q; thus, substantial computational
complexity is hidden in the Q-match oracle.

Upper bounds for Q-Match directly yield upper bounds for the query discovery problems
via Theorem 3.5. On the other hand, the intractability of Q-Match is only an obstacle for
efficient query discovery w.r.t. algorithms that are based on solving the matching problem
(like Q-DescrSWGQuery). However, as we shall demonstrate next, the matching problem can
be reduced in polynomial time to our query discovery problems; thus, every algorithm for one
of the latter problems necessarily implicitly also solves the matching problem. This implies
that lower bounds on the complexity of the matching problem carry over to lower bounds on
the complexity of our query discovery problems. Consequently, the problem Q-Match (and
its complexity) is central for query discovery.

The reduction from Q-Match to our query discovery problems is based on the following
construction. Let Q ⊆ Q be an arbitrary set of queries that is closed under isomorphisms
and assume that |Γ| ⩾ 2. Let q = (s, w, c) ∈ Q be an (ℓ, w, c)-query with vars(q) =
{x1, x2, . . . , xk}, and let t be a trace. Let δ, δ′ ∈ Γ with δ ̸= δ′. For every i ∈ [k], let µxi be
the substitution that maps xi to δ and all other variables to δ′. Let µδ′ be the substitution
defined by µδ′(xj) = δ′ for every j ∈ [k]. For every z ∈ {x1, x2, . . . , xk, δ′}, let tz be a trace
over Γ defined by

tz := µz(s[1]) g1 µz(s[2]) g2 · · · µz(s[ℓ−1]) gℓ−1 µz(s[ℓ]) ,

where, for every i < ℓ, gi is the “gap string” consisting of c−
i copies of some type from Γ. We

now define the sample Sq,t := {t, tδ′ , tx1 , tx2 , . . . , txk
}. By construction, for every t′ ∈ S \ {t},

t′ |= q is witnessed by the same embedding. We can show the following.

▶ Theorem 3.6. The following statements are equivalent:
1. t |= q,
2. q ∼= q′ for every (ℓ, w, c)-query q′ that is descriptive for Sq,t with respect to (Q, 1, (ℓ, w, c)),
3. q is descriptive for Sq,t with respect to (Q, 1, (ℓ, w, c)).

Theorem 3.6 reduces Q-Match to Q-CompDescQuery and Q-CheckDescQuery as follows.
We can check t |= q for a given (ℓ, w, c)-query q and a trace t by computing an (ℓ, w, c)-query
q′ that is descriptive for Sq,t with respect to (Q, 1, (ℓ, w, c)) and then checking q ∼= q′, or by
checking whether q is descriptive for Sq,t with respect to (Q, 1, (ℓ, w, c)). The next section is
devoted to a detailed study of the complexity of Q-Match.

4 The Complexity of the Matching Problem

The algorithm presented in Section 3 computes a query that is descriptive for a sample S
with respect to (Q, sp, (ℓ, w, c)). This algorithm is based on the matching problem, i. e., it
needs a sub-routine that solves Q-Match: check whether t |= q for a given query q ∈ Q and a
given trace t. As discussed at the end of Section 3, the algorithm only performs a polynomial
number of such calls to a Q-match oracle, so the only source of exponential complexity might
be hidden in the sub-routine solving Q-Match. Moreover, as demonstrated by Theorem 3.6
and the explanations following this result, the potential intractability of Q-Match inevitably
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makes not only the algorithm presented in Section 3 inefficient, but every algorithm that
computes descriptive queries. In this section we show that the matching problem for general
swg-queries is NP-complete. In order to identify tractable subclasses, it therefore is absolutely
vital that our algorithm from Section 3 can be parameterised by an arbitrary class Q of
queries, since then it does not need to solve the matching problem for arbitrary queries, but
only for queries from Q, for which the matching problem might be tractable.

In other words: From Section 3.2 we know that computing descriptive queries with respect
to Q is tractable if, and only if, the matching problem for the class Q is tractable. Therefore,
the complexity of the problem Q-Match is crucial for the complexity of computing descriptive
queries. This section is devoted to a comprehensive classical and parameterised complexity
analysis of the matching problem.

Recall from Section 2 that Q denotes the class of all swg-queries. The input of the
matching problem consists of a swg-query q = (s, w, c) and a trace t. We consider the
parameters shown in Figure 2, where repvars(q) = repvars(s) is the set of repeated variables
(i. e., variables with at least two occurrences in s), maxgaps(c) = max{c+

i −c−
i +1: i ∈ [|s|−1]}

and maxc+(c) = max{c+
i : i ∈ [|s|−1]}. Whenever we consider w as a parameter, we will

assume that w ̸= ∞; and if we consider maxgaps(c) or maxc+(c) as a parameter, we will
assume that c+

i ̸= ∞ for every i ∈ [|s|−1].

|t| length of the trace t, maxc+(c) maximum upper local gap-size,
w global window size, |repvars(s)| number of repeated variables in s,
|s| length of query string, |types(t)| number of types in the trace t,

maxgaps(c) maximum gap size.

Figure 2 Parameters of the problem Q-Match.

For studying restricted or parameterised variants of Q-Match, we use the following termin-
ology. Let p1, p2, . . . be some of the parameters defined above. By Q-Match parameterised
by (p1, p2, . . .), we denote the parameterised variant of Q-Match that arises from considering
p1, p2, . . . as parameters. Moreover, if we write pi ⩽ k for some parameter pi and some constant
k ∈ N, then we consider the problem variant were parameter pi is bounded by the constant k.
If all mentioned parameters are bounded by a constant, then the resulting problem variant is
not a parameterised problem and therefore we write Q-Match with (p1 ⩽ k1, p2 ⩽ k2, . . .). For
example, by Q-Match parameterised by (|s|, |types(t)|, maxgaps(c) ⩽ 3) we denote the parame-
terised variant of Q-Match where |s| and |types(t)| are parameters, and inputs are restricted to
instances satisfying maxgaps(c) ⩽ 3; and by Q-Match with (|types(t)| ⩽ 10, maxgaps(c) ⩽ 3)
we denote the classical decision problem Q-Match where the input is restricted to instances
satisfying |types(t)| ⩽ 10 and maxgaps(c) ⩽ 3.

We start by studying the complexity of the classical (non-parameterised) problems: For all
subsets p1, p2, . . . , pr of the parameters defined above and for all constants k1, k2, . . . , kr ∈ N,
we aim at answering the following question:

▶ Question 4.1. Is Q-Match with (p1 ⩽ k1, p2 ⩽ k2, . . . , pr ⩽ kr) in P, or is it NP-hard?

With respect to parameters |t|, w, |s|, and |repvars(s)|, answers to Question 4.1 can be
obtained with moderate effort:

▶ Theorem 4.2. For every constant k ∈ N, each of the following problems is in P: Q-Match
with |t| ⩽ k, Q-Match with w ⩽ k, Q-Match with |s| ⩽ k, Q-Match with |repvars(s)| ⩽ k.
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Proof sketch. A natural brute-force approach is as follows: Upon input of an swg-query
q = (s, w, c) and a trace t, we enumerate all mappings π : repvars(q) → types(t), and for each
such mapping, we construct a regular expression Rπ that describes all traces t′ for which
there exists a substitution µ : vars(q) ∪ Γ → Γ such that µ is an extension of π and µ(s) ≼e t′

for some embedding e that satisfies w and c. Then, we only have to check for each of these
mappings π, if the regular expression Rπ matches in t. Another approach is to enumerate all
embeddings e : [|s|] → [|t|] that satisfy w and c, and check for each such embedding e whether
µ(s) ≼e t for some substitution µ (which can be done in time O(|s|), since µ must satisfy
µ(s) = t[e(1)]t[e(2)] . . . t[e(|s|)]). From these two algorithms and the obvious dependencies
between the parameters, we can directly conclude the statements of the theorem. ◀

Next, we prove the following theorem. Observe that Theorems 4.3 and 4.2 answer
Question 4.1 with respect to every subset p1, p2, . . . , pr of the parameters.

▶ Theorem 4.3. Let k1, k2, k3 ∈ N. Q-Match with |types(t)| ⩽ k1, maxgaps(c) ⩽ k2 and
maxc+(c) ⩽ k3 is NP-complete if k1 ⩾ 2 and k2 ⩾ 1 and k3 ⩾ 1, and it is in P if k1 ⩽ 1 or
k2 = 0 or k3 = 0.

Proof sketch. The theorem’s second statement is obtained by simple algorithms. We sketch
a hardness reduction that proves the first statement with an example. Let (x1, x2, x4),
(x4, x5, x7), and (x1, x3, x5) be the clauses of a Boolean formula in 3-CNF. We construct
s := y1x1x2x4y2 z y3x4x5x7y4 z y5x1x3x5y6 (where all xi, yi and z are variables) and t :=
0001000 1 0001000 1 0001000 (where Γ = {0, 1}). It can be verified that if µ(s) ≼e t with
µ(z) = 1 and e is such that all gaps are 0 or 1, except the gaps between xi variables, which
are 0, then µ(xi) = 1 for exactly one variable in each clause (i. e., the Boolean formula
is “1-in-3 satisfiable”). In order to force µ(z) = 1, we have to add a sufficient number of
occurrences of z and 1 as prefixes to s and t, respectively. ◀

Our results discussed so far show that for every parameter p ∈ {|t|, w, |s|, repvars(s)},
the problem Q-Match can be solved in polynomial time if p is bounded by a constant.
However, the degree of the polynomial may depend on p, which even for small p may lead
to prohibitively high running times. Therefore, we ask next for which parameters p (or
parameter combinations (p1, . . . , pr)), we can achieve more attractive running times of the
form f(p) · poly(|q|, |t|), for some computable function f . More precisely, we investigate the
parameterised complexity of Q-Match by asking the following questions:

▶ Question 4.4. Is Q-Match parameterised by (p1, p2, . . . , pr) in FPT (i. e., can it be solved
in time O(f(p1, p2, . . . , pr) · g(|s|, |t|)) for some polynomial g and a computable function f),
or is this not the case (subject to common complexity theoretical assumptions)?

An answer for parameters (|types(t)|, maxgaps(c), maxc+(c)) follows from Theorem 4.3:

▶ Corollary 4.5. Q-Match parameterised by (|types(t)|, maxgaps(c), maxc+(c)) is not in FPT
(unless P = NP).

From the brute-force approaches and the (more or less) obvious dependencies between
the parameters, we can conclude fixed-parameter tractability for several parameterisations:

▶ Theorem 4.6. Q-Match is in FPT with respect to any of the following parameterisations:
(|types(t)|, |repvars(s)|); (|s|, maxgaps(c)); (|t|); (w); (|s|, maxc+(c)); (|s|, types(t)).

Next, we show that all remaining parameterisations that are not covered by Theorem 4.6
or Corollary 4.5 yield W[1]-hard variants, which are therefore not in FPT (modulo the
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common complexity theoretical assumption that W[1] ̸= FPT). We assume that the reader is
familiar with basic concepts of parameterised complexity theory (cf., e.g., [12, 17, 13]).

▶ Theorem 4.7. Each of the following two problems is W[1]-hard:
Q-Match parameterised by (|repvars(s)|, maxgaps(c) ⩽ 1, maxc+(c) ⩽ 1),
Q-Match parameterised by (|s|, |repvars(s)|).

Proof sketch of Theorem 4.7. We devise suitable reductions from the following problem,
which is known to be W[1]-hard with respect to parameter k (cf., [12]):

Multi-Colored Clique (MCClique). The input is a graph G = (V, E) with a partition
V1, V2, . . . , Vk of V such that each Vi is an independent set. The question is whether G has a
clique of size k (note that such a clique has to contain exactly one vertex from each Vi).

Let G = (V, E) be a graph with a partition V1, V2, . . . , Vk of V such that every Vi is an
independent set. Let n := |V |, pi := |Vi| and Vi = {vi

1, vi
2, . . . , vi

pi
} for all i ∈ [k]. We have

to construct a trace t and an swg-query q = (s, w, c) such that t |= q iff G has a clique of
size k. For constructing the trace t, we use a distinct type for every v ∈ V , and we also
use two special types $ and ⋄. The query string s will be built using distinct variables
x1, x2, . . . , xk, z$, y1, . . . , yr where r is a suitably chosen number of size polynomial in n and
k (the precise choice of r will become clear below, from the construction of s and t). The
variables x1, x2, . . . , xk correspond to the k vertices of the clique, and the variable z$ will be
used as a separator. The variables x1, x2, . . . , xk, z$ may be repeated variables of s, while
each of the variables y1, . . . , yr will occur in s only once. To avoid notational clutter, we will
denote all occurrences of variables yi simply by y and keep in mind that each occurrence of y

is actually an occurrence of an individual variable from {yi : i ∈ [r]}. Our choice of s and t

relies on some gadgets, which we discuss next. The gadget sV lists all variables xi separated
by ynz$yn, and tV lists the vertices of the sets Vi separated by ⋄n$⋄n. More formally,

sV := yn x1 yn z$ yn x2 yn z$ yn . . . yn z$ yn xk yn

tV := ⋄n v1
1 . . . v1

p1 ⋄n $ ⋄n v2
1 . . . v2

p2 ⋄n $ ⋄n . . . ⋄n $ ⋄n vk
1 . . . vk

pk
⋄n

The purpose of this gadget is as follows: We can show that if µ(sV ) ≼ tV for some µ :
Vars → Γ with µ(z$) = $, then (µ(x1), µ(x2), . . . , µ(xk)) ∈ V1 ×V2 ×· · ·×Vk, and there exists
an embedding e with maximum gap size 1 (i.e., max{e(i+1)−1−e(i) : i ∈ [|sV |−1]} ⩽ 1) and
a substitution µ′ that differs from µ only on variables in {y1, . . . , yr}, such that µ′(sV ) ≼e tV .
Note that for ensuring the latter property, we need the occurrences of yn.

In order to enforce that the set {µ(x1), µ(x2), . . . , µ(xk)} is a clique, we use the following
gadgets. For every i, j with 1 ⩽ i < j ⩽ k, let (ui

1, uj
1), . . . , (ui

qi,j
, uj

qi,j
) be a list of exactly

the edges between Vi and Vj , and let this list be ordered lexicographically. We let

si,j := y3n2
(xixj)3 y3n2

and ti,j := ⋄3n2
(ui

1uj
1)3(ui

2uj
2)3 . . . (ui

qi,j
uj

qi,j
)3 ⋄3n2

.

The purpose of this gadget is as follows: We can show that if there is a substitution µ

with µ(xi) ∈ Vi, µ(xj) ∈ Vj and µ(si,j) ≼ ti,j , then (µ(xi), µ(xj)) ∈ E and there exists an
embedding e with maximum gap size 1 and a substitution µ′ that differs from µ only on
variables in {y1, . . . , yr} such that µ′(si,j) ≼e ti,j . In particular, this gadget enforces that,
for every 1 ⩽ i < j ⩽ k, µ maps xi and xj to adjacent vertices from Vi and Vj (for this, we
essentially use that the list of edges in ti,j is ordered lexicographically).

Finally, we combine all the gadgets into the query string s and trace t as follows:

s := (z$)3n2+1sV z$ s1,2 z$ s1,3 z$ · · · z$ s1,k z$ s2,3 z$ · · · z$ s2,k z$ · · · z$ sk−1,k

t := ($)3n2+1 tV $ t1,2 $ t1,3 $ · · · $ t1,k $ t2,3 $ · · · $ t2,k $ · · · $ tk−1,k
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Table 1 An integer entry means that the parameter is bounded by this constant, the entry “p”
means that the problem is parameterised by this parameter, and the entry “–” means that the
parameter is not bounded by a constant and the problem is not parameterised by this parameter.

|t| w |s| |types(t)| |repvars(s)| maxgaps(c) maxc+(c) Complexity

p – – – – – – FPT (Thm. 4.6)
– p – – – – – FPT (Thm. 4.6)
– – p – – – p FPT (Thm. 4.6)
– – p p – – – FPT (Thm. 4.6)
– – p – p – – W[1]-hard (Thm. 4.7)
– – p – – p – FPT (Thm. 4.6)
– – – p p – – FPT (Thm. 4.6)
– – – 2 – 1 1 NP-hard (Thm. 4.3)
– – – – p 1 1 W[1]-hard (Thm. 4.7)

The construction of the query q = (s, w, c) is completed by choosing w = ∞ (or w = |t|,
which does not make any difference here), and (c−

i , c+
i ) = (0, 0) for every 1 ⩽ i ⩽ 3n2, and

(c−
i , c+

i ) = (0, 1) for every 3n2+1 ⩽ i ⩽ |s|−1.
It can now be verified that t |= q if and only if G contains a clique of size k. This

completes the proof sketch of the theorem’s first statement.
For proving the second statement, we modify the reduction such that we use constant

length separators y and ⋄ instead of yn, ⋄n, y3n2 and ⋄3n2 . This modification allows us to use
prefixes (z$)2 and ($)2 instead of (z$)3n2+1 and ($)3n2+1, which means that the total length
of |s| only depends on k (but now neither maxgaps(c) nor maxc+(s) are bounded anymore).
This yields the theorem’s second statement. ◀

We note that the theorems from above answer Question 4.4 for every subset p1, p2, . . . , pr

of our parameters – this can be verified with the help of Table 1.
We conclude this section by discussing some related questions. Query strings can also be

considered as sequences of distinct variables x1x2 · · · xn enriched with constraints “xi = xj”
and “xi = γ” for γ ∈ Γ. If the first type of constraint is not used, then |repvars(s)| = 0, and
therefore the matching problem is in P (Theorem 4.2). If, instead, we disallow constraints
“xi = γ” (i. e., query strings must not contain types), then this does not make the matching
problem any easier: all our reductions produce query strings that consist of variables only.
Giving up the global window size is equivalent to setting it to ∞, which means that the
lower bounds of Theorems 4.3 and 4.6 still apply (note that the reduction sets the global
window size to ∞). On the other hand, for swg-queries without local gap-size constraints
(i. e., with local gap-size constraints of the form ((0, ∞), (0, ∞), . . . , (0, ∞))) the complexity
of the matching problem is open. We plan to address this in the full version of this paper.

In order to use the algorithm of Section 3, we need to fix the length ℓ of the query string,
the global window size w, and the tuple c of local gap-size constraints. Finding suitable
values for ℓ and c seems comparatively simple: firstly, we can afford to try out several
combinations (e. g., all combinations of values ℓ ∈ {5, 6, . . . , 10} and w ∈ {100, 1000, 5000},
which requires 18 runs of the algorithm), and, secondly, it seems likely that some a-priori
knowledge of the data will lead to reasonable choices for these parameters. The tuple of local
gap-size constraints, on the other hand, is a more complex parameter and, especially if we
want to try the algorithm on different query string sizes, it seems likely that the best we
can do is to give a reasonable gap-size constraint for all gaps, i. e., local gap-size constraints
((i, j), (i, j), . . . , (i, j)). Whether the matching problem for such swg-queries is also NP-hard
is not answered by the reduction of Theorem 4.3, since it uses different types of gap-size
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constraints. However, the reduction can be easily adapted: Instead of the factors y1x1x2x4y2
of the query string, we use factors y1y2y3(x1)2(x2)2(x4)2y4y5y6, and instead of the factors
0001000 of the trace, we use factors 071107. It can be verified that if µ(s) ≼e t with µ(z) = 1
and e is such that all gaps are 0 or 1, then µ(xi) = 1 for exactly one variable in each clause.

5 Practical Considerations and Concluding Remarks

Motivated by the task of discovering patterns of interest in event streams, we introduced
swg-queries (Section 2), we formalised query discovery as computing descriptive queries
(Section 3), we presented an algorithm for this task (Algorithm 1), and we provided an
in-depth complexity analysis of the problem of query discovery (Section 4).

What are possible practical implications of our theoretical study? To approach this
question, let us briefly discuss how the complexity bounds of Section 4 can help to manage
our expectations. Let ||(ℓ, w, c)|| and ||S|| be the size of reasonable encodings of (ℓ, w, c) and
S, respectively. In a practical scenario, we can expect ||S|| (and therefore possibly also
||w|| and ||c||, see Remark 3.3) to be large, but we can assume a moderate query string
length ℓ, since queries should still be understandable by users. Hence, running times
O(f(ℓ)g(||S||, ||(ℓ, w, c)||)) might be practically relevant even for exponential function f and
low-degree polynomial g. Unfortunately, Theorem 4.7 and the reduction of Theorem 3.6 rule
out such algorithms. On the other hand, Theorems 4.6 and 3.5 show that we can indeed
solve Q|rv(s)|⩽k-CompDescQuery in time O(f(k, |types(S)|)g(||S||, ||(ℓ, w, c)||)) for polynomial
g, where Q|rv(s)|⩽k is the class of queries with |repvars(q)| ⩽ k. This might be of practical
interest, since our examples discussed in Section 1 suggest that |repvars(q)| and |types(S)|
are small. In fact, even a restriction like, say |repvars(q)| ⩽ 7 and |types(S)| ⩽ 15, seems
still practically relevant, and in this case our algorithm has a low-degree polynomial running
time.

These theoretical considerations justify hope that, despite the inherent hardness of query
discovery, our algorithm is also practically worthwhile. As a proof of concept and in order to
investigate our algorithms’ performance on real world data, we implemented a prototype
in Python and conducted experiments on Google Cluster Traces [26]. We summarise our
experiments’ main results as follows:

We discovered queries from the Google Cluster Traces, including queries that contain
situations of interest. However, we also discovered queries that do not contain real
situations of interest (but still are descriptive according to Definition 3.1).
Considering different query string lengths or support thresholds, we observed expected
correlations concerning the overall runtime and the number of queries q′ for which the
support supp(q′, S) is computed.
Comparing datasets regarding runtime (or the number of queries q′ for which the support
supp(q′, S) is computed), for a fixed query string length, it turns out that they do not
only depend on the dataset size, but also on the order in which the positions of the query
string are considered, and on whether variable operations have to be tested or not.

As future work, we plan to further develop our prototype implementation and extend our
initial experiments to a comprehensive experimental analysis. In particular, we are interested
in evaluating heuristics and to explore possible ways for improving the algorithm’s practical
performance. For example, treating the check of supp(q′, S) ⩾ sp as |S| independent instances
of the matching problem makes sense for our theoretical considerations, but in practice it
might be possible to exploit the fact that q′ does not change for these |S| instances, or that
in each run of the algorithm S is the same for all checks of supp(q′, S) ⩾ sp, or that whenever
we check supp(q′, S) ⩾ sp, we already checked supp(q′′, S) ⩾ sp for a rather similar query q′′.
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