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Abstract
SHACL is a W3C-proposed schema language for expressing structural constraints on RDF graphs.
Recent work on formalizing this language has revealed a striking relationship to description logics.
SHACL expressions can use four fundamental features that are not so common in description
logics. These features are zero-or-one path expressions; equality tests; disjointness tests; and closure
constraints. Moreover, SHACL is peculiar in allowing only a restricted form of expressions (so-called
targets) on the left-hand side of inclusion constraints.

The goal of this paper is to obtain a clear picture of the impact and expressiveness of these
features and restrictions. We show that each of the four features is primitive: using the feature, one
can express boolean queries that are not expressible without using the feature. We also show that
the restriction that SHACL imposes on allowed targets is inessential, as long as closure constraints
are not used.
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1 Introduction

On the Web, the Resource Description Framework (RDF [16]) is a standard format for
representing knowledge and publishing data. RDF represents information in the form of
directed graphs, where labeled edges indicate properties of nodes. To facilitate more effective
access and exchange, it is important for a consumer of an RDF graph to know what properties
to expect, or, more generally, to be able to rely on certain structural constraints that the
graph is guaranteed to satisfy. We therefore need a declarative language in which such
constraints can be expressed formally. In database terms, we need a schema language.

Two prominent proposals in this vein have been ShEx [6] and SHACL [18]. Both
approaches use formulas that express the presence or absence of certain properties of a node
or its neighbors in the graph. Such formulas are called “shapes.” When we evaluate a shape
on a node, that node is called the “focus node.” Some examples of shapes, expressed for now
in English, could be the following:1

1 In real RDF, names of properties and nodes must conform to IRI syntax, but in this paper, to avoid
clutter, we take the liberty to use simple names.
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1. “The focus node has a phone property, but no email.”
2. “The focus node has at least five incoming managed-by edges.”
3. “Through a path of friend edges, the focus node can reach a node with a CEO-of edge to

the node Apple.”
4. “The focus node has at least one colleague who is also a friend.”
5. “The focus node has no other properties than name, address, or birthdate.”

In this paper, we look deeper into SHACL, the language recommended by the World
Wide Web Consortium. We do not use the actual SHACL syntax, but work with the elegant
formalization proposed by Corman, Reutter and Savkovic [9], and used in subsequent works
by several authors [2, 13, 15]. That formalization reveals a striking similarity between shapes
on the one hand, and concepts, familiar from description logics [4], on the other hand. The
similarity between SHACL and description logics runs even deeper when we account for
targeting, which is the actual mechanism to express constraints on an RDF graph using
shapes.

Specifically, a non-recursive shape schema2 is essentially a finite list of shapes, where each
shape ϕ is additionally associated with a target query q. An RDF graph G is said to conform
to such a schema if for every target–shape combination (q, ϕ), and every node v returned by
q on G, we have that v satisfies ϕ in G. Let us see some examples of target–shape pairs, still
expressed in English:
6. “Every node of type Person has an email or phone property.” Here, the target query

returns all nodes with an edge labeled type to node Person; the shape checks that the
focus node has an email or phone property.

7. “Different nodes never have the same email.” Here the target query returns all nodes with
an incoming email edge, and the shape checks that the focus node does not have two or
more incoming email edges.

8. “Every mathematician has a finite Erdős number.” Here the target query returns all
nodes of type Mathematician, and the shape checks that the focus node can reach the
node Erdős by a path that matches the regular expression (author−/author)∗. Here, the
minus superscript denotes an inverse edge.

Now interestingly, and apparent in the examples 6–8, the target queries considered for
this purpose in SHACL, as well as in ShEx, actually correspond to simple cases of shapes.
It is then only a small step to consider generalized shape schemas as finite sets of inclusion
statements of the form ϕ1 ⊆ ϕ2, where ϕ1 and ϕ2 are shapes. Since, as noted above, shapes
correspond to concepts, we thus see that shape schemas correspond to TBoxes in description
logics.

We stress that the task we are focusing on in this paper is checking conformance of RDF
graphs against shape schemas. Every shape schema S defines a decision problem: given
an RDF graph G, check whether G conforms to S. In database terms, we are processing
a boolean query on a graph database. In description logic terms, this amounts to model
checking of a TBox: given an interpretation, check whether it satisfies the TBox. Thus our
focus is a bit different from that of typical applications of description logics. There, facts are
declared in ABoxes, which should not be confused with interpretations. The focus is then on
higher reasoning tasks, such as checking satisfiability of an ABox and a TBox, or deciding
logical entailment.

2 Real SHACL uses the term shapes graph instead of shape schema.
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Given the above context, let us now look in more detail at the logical constructs that
can be used to build shapes. Some of these constructs are well known concept constructors
from expressive description logics [7]: the boolean connectives; constants; qualified number
restriction (a combination of existential quantification and counting); and regular path
expressions with inverse. To illustrate, example shapes 1–3 are expressible as follows:
1. ≥1 phone.⊤ ∧ ¬≥1 email.⊤. This uses qualified number restriction with count 1 (so

essentially existential quantification), conjunction, and negation; ⊤ stands for true.
2. ≥5 managed-by−.⊤. This uses counting to 5, and inverse.
3. ≥1 friend∗/CEO-of.{Apple}. This uses a regular path expression and the constant Apple.

However, SHACL also has four specific logical features that are less common:
Equality, disjointness: The shape eq(E, r), for a path expression E and a property r, tests

equality of the sets of nodes reachable from the focus node by an r-edge on the one hand,
and by an E-path on the other hand. A similar shape disj(E, r) tests disjointness of the
two sets. To illustrate, example shape 4 is expressed as ¬disj(colleague, friend).

Closure constraints: RDF graphs to be checked for conformance against some shape schema
need not obey some fixed vocabulary. Thus SHACL provides shapes of the form closed(R),
with R a finite set of properties, expressing that the focus node has no properties
other than those in R. This was already illustrated as example shape 5, with R =
{name, address, birthdate}.

Zero-or-one paths: If E is a path expression, then the path expression E?, evaluated in a
focus node v, yields the set of nodes reachable from v by an E-path, plus v itself. This
constructor, which is also present in the RDF query language SPARQL, is a very special
case of tests in the logic PDL [7], where E? would be written as E ∪⊤?. For example, in
a function call graph as used in software engineering, the shape ≥5 calls?.⊤ expresses that
the focus node calls at least four functions other than itself. Interestingly, zero-or-one
paths allow the expression of self-restriction, a feature introduced in the logic SROIQ [11]
and adopted in the Web ontology language [14]. For example, staying with the function
calls, to express in SROIQ that the focus node calls itself, one can write ∃calls.Self. As a
SHACL shape, we can write eq(calls?, calls).

Our goal in this paper is to clarify the impact of the above four features on the express-
iveness of SHACL as a language for boolean queries on graph databases. Thereto, we offer
the following contributions.

We show that each of the four features is primitive in a strong sense. Specifically, for each
feature, we exhibit a boolean query Q such that Q is expressible by a single target–shape
pair, using only the feature and the basic constructs; however, Q is not expressible by
any generalized shape schema when the feature is disallowed.
We also clarify the significance of the restriction that SHACL puts on allowed targets.
We observe that as long as closure constraints are not used, the restriction is actually
insignificant. Any generalized shape schema, allowing arbitrary but closure-free shapes
on the left-hand sides of the inclusion statements, can be equivalently written as a shape
schema with only targets on the left-hand sides. However, allowing closure constraints on
the left-hand side strictly adds expressive power.
Our results continue to hold when the definition of recursive shapes is allowed, provided
that recursion through negation is stratified.

This paper is organized as follows. Section 2 presents clean formal definitions of non-
recursive shape schemas, building on and inspired by the work of Andreşel, Corman, et al.
cited above. Section 3 presents our results. Section 4 presents the extension to stratified
recursion. Section 5 offers concluding remarks.

ICDT 2022
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2 Shape schemas

In this section we define shapes, RDF graphs, shape schemas, and the conformance of RDF
graphs to shape schemas. Perhaps curiously to those familiar with SHACL, our treatment for
now omits shape names. Shape names are redundant as far as expressive power is concerned,
as long as we are in a non-recursive setting, because shape name definitions can then always
be unfolded. Indeed, for clarity of exposition, we have chosen to work first with non-recursive
shape schemas. Section 4 then presents the extension to recursion (and introduces shape
names in the process). We point out that the W3C SHACL recommendation only considers
non-recursive shape schemas.

Node and property names

From the outset we assume two disjoint, infinite universes N and P of node names and
property names, respectively.3

2.1 Shapes
We define path expressions E and shapes ϕ by the following grammar:

E ::= p | p− | E ∪ E | E/E | E? | E∗

ϕ ::= ⊤ | {c} | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | ≥n E.ϕ | eq(E, p) | disj(E, p) | closed(R)

Here, p and c stand for property names and node names, respectively; n stands for nonzero
natural numbers; and R stands for finite sets of property names. A node name c is also
referred to as a constant.

Abbreviation: We will use ∃E.ϕ as an abbreviation for ≥1 E.ϕ.

▶ Remark 1. Real SHACL supports some further shapes which have to do with tests on IRI
constants and literals, as well as comparisons on numerical values and language tags. Like
other work on the formal aspects of SHACL, we abstract these away, as many questions are
already interesting without these features.
▶ Remark 2. Universal quantification ∀E.ϕ could be introduced as an abbreviation for
¬∃E.¬ϕ. Likewise, ≤n E.ϕ may be used as an abbreviation for ¬≥n+1 E.ϕ.

A vocabulary Σ is a subset of N ∪ P . A path expression is said to be over Σ if it only
uses property names from Σ. Likewise, a shape is over Σ if it only uses constants from Σ
and path expressions over Σ.

Following common practice in logic, shapes are evaluated in interpretations. We recall
the familiar definition of an interpretation. Let Σ be a vocabulary. An interpretation I over
Σ consists of

a set ∆I , called the domain of I;
for each constant c ∈ Σ, an element JcKI ∈ ∆I ; and
for each property name p ∈ Σ, a binary relation JpKI on ∆I .

The semantics of shapes is now defined as follows.

3 In practice, node names and property names are IRIs [16], so the disjointness assumption would not
hold. However, this assumption is only made for simplicity of notation; it can be avoided if we make
our notation for vocabularies and interpretations (see below) more complicated.
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Table 1 Semantics of path expressions.

E JEKI

p− {(a, b) | (b, a) ∈ JpKI}
E1 ∪ E2 JE1KI ∪ JE2KI

E1/E2 {(a, b) | ∃x : (a, x) ∈ JE1KI ∧ (x, b) ∈ JE2KI}
E? JEKI ∪ {(x, x) | x ∈ ∆I}
E∗ the reflexive-transitive closure of JEKI

Table 2 Conditions for conformance of a node to a shape.

ϕ I, a ⊨ ϕ if:

{c} a = JcKI

≥n E.ψ ♯{b ∈ JEKI(a) | I, b ⊨ ψ} ≥ n

eq(E, p) the sets JEKI(a) and JpKI(a) are equal
disj(E, p) the sets JEKI(a) and JpKI(a) are disjoint
closed(R) JpKI(a) is empty for each p ∈ Σ −R

On any interpretation I as above, every path expression E over Σ evaluates to a binary
relation JEKI on ∆I , defined in Table 1.
Now for any shape ϕ over Σ and any element a ∈ ∆I , we define when a conforms to ϕ in I,
denoted by I, a ⊨ ϕ. For the boolean operators ⊤ (true), ∧ (conjunction), ∨ (disjunction),
¬ (negation), the definition is obvious. For the other constructs, the definition is given in
Table 2, taking note of the following:

We use the notation R(x), for a binary relation R, to denote the set {y | (x, y) ∈ R}.
We apply this notation to the case where R is of the form JEKI .
We also use the notation ♯X for the cardinality of a set X.

For a shape ϕ and interpretation I, the notation

JϕKI := {a ∈ ∆I | I, a ⊨ ϕ}

will be convenient.

2.2 Graphs and their interpretation
It may appear that a shape closed(R) is simply expressible as the conjunction of ¬∃p.⊤ for
p ∈ Σ−R. However, since shapes must be finite formulas, this only works if Σ is finite. In
practice, shapes can be evaluated over arbitrary RDF graphs, which can involve arbitrary
property names (and node names), not limited to a finite vocabulary that is fixed in advance.

Formally, we define a graph as a finite set of triples of the form (a, p, b), where p is a
property name and a and b are (not necessarily distinct) node names. We refer to the node
names appearing in a graph G simply as the nodes of G; the set of nodes of G is denoted by
NG. A pair (a, b) with (a, p, b) ∈ G is referred to as an edge, or a p-edge, in G.

We now canonically view any graph G as an interpretation over the full vocabulary N ∪P
as follows:

∆G equals N (the universe of all node names).
JcKG equals c itself, for every node name c.
JpKG equals the set of p-edges in G, for every property name p.

Note since graphs are finite, JpKG will be empty for all but a finite number of p’s.

ICDT 2022
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Given this canonical interpretation, path expressions and shapes obtain a semantics on
all graphs G. Thus for any path expression E, the binary relation JEKG on N is well-defined;
for any shape ϕ and a ∈ N , it is well-defined whether or not G, a ⊨ ϕ; and we can also use
the notation JϕKG.

▶ Remark 3. Since a graph is considered to be an interpretation with the infinite domain N , it
may not be immediately clear that shapes can be effectively evaluated over graphs. Adapting
well-known methods, however, we can reduce to a finite domain over a finite vocabulary [1,
Theorem 5.6.1], [3, 12]. Formally, let ϕ be a shape and let G be a graph. Recall that NG

denotes the set of nodes of G; similarly, let PG be the set of property names appearing in
G. Let C be the set of constants mentioned in ϕ. We can then form the finite vocabulary
Σ = NG ∪ C ∪ PG. Now define the interpretation I over Σ as follows:

∆I = NG ∪ C ∪ {⋆}, where ⋆ is an element not in N ;
JcKI = c for each node name c ∈ Σ;
JpKI = JpKG for each property name p ∈ Σ.

Note that no constant symbol names ⋆ in I. Then for every x ∈ NG ∪ C, one can show that
x ∈ JϕKG if and only if x ∈ JϕKI . For all other node names x, one can show that x ∈ JϕKG if
and only if ⋆ ∈ JϕKI .

In our companion paper [5] we argue why using the infinite domain N is the most natural
approach.

2.3 Targets and shape schemas
SHACL identifies four special forms of shapes and calls them targets:
Node targets: {c} for any constant c.
Class-based targets: ∃type/subclass∗.{c} for any constant c. Here, type and subclass repres-

ent distinguished IRIs from the RDF Schema vocabulary [16].
Subjects-of targets: ∃p.⊤ for any property name p.
Objects-of targets: ∃p−.⊤ for any property name p.

We now define a generalized shape schema (or shape schema for short) as a finite set of
inclusion statements, where an inclusion statement is of the form ϕ1 ⊆ ϕ2, with ϕ1 and ϕ2
shapes. A target-based shape schema is a shape schema that only uses targets, as defined
above, on the left-hand sides of its inclusion statements. This restriction corresponds to the
shape schemas considered in real SHACL.

As already explained in the Introduction, a graph G conforms to a shape schema S,
denoted by G ⊨ S, if Jϕ1KG is a subset of Jϕ2KG, for every statement ϕ1 ⊆ ϕ2 in S.

Thus, any shape schema S defines the class of graphs that conform to it. We denote this
class of graphs by

JSK := {graph G | G ⊨ S}.

Accordingly, two shape schemas S1 and S2 are said to be equivalent if JS1K = JS2K.

3 Expressiveness of SHACL features

When a complicated but influential new tool is proposed in the community, in our case SHACL,
we feel it is important to have a solid understanding of its design. Concretely, as motivated
in the Introduction, our goal is to obtain a clear picture of the relative expressiveness of the
features eq, disj, closed, and ?. Our methodology is as follows.
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A feature set F is a subset of {eq, disj, closed, ?}. The set of all shape schemas using only
features from F , besides the standard constructs, is denoted by L(F ). In particular, shape
schemas in L(∅) use only the standard constructs and none of the four features. Specifically,
they only involve shapes built from boolean connectives, constants, and qualified number
restrictions, with path expressions built from the standard operators union, composition,
and Kleene star.

We say that feature set F1 is subsumed by feature set F2, denoted by F1 ⪯ F2, if every
shape schema in L(F1) is equivalent to some shape schema in L(F2). As it will turn out,

F1 ⪯ F2 ⇔ F1 ⊆ F2, (∗)

or intuitively, “every feature counts.” Note that the implication from right to left is trivial,
but the other direction is by no means clear from the outset.

More specifically, for every feature, we introduce a class of graphs, as follows. In what
follows we fix some property name r.
Equality: Qeq is the class of graphs where all r-edges are symmetric. Note that Qeq is

definable in L(eq) by the single, target-based, inclusion statement ∃r.⊤ ⊆ eq(r−, r).
Disjointness: Qdisj is the class of graphs where all nodes with an outgoing r-edge have

at least one symmetric r-edge. This time, Qdisj is definable in L(disj), by the single,
target-based, inclusion statement ∃r.⊤ ⊆ ¬disj(r−, r).

Closure: Qclosed is the class of graphs where for all nodes with an outgoing r-edge, all outgoing
edges have label r. Again Qclosed is definable in L(closed) by the single, target-based,
inclusion statement ∃r.⊤ ⊆ closed(r).

Zero-or-one path: Finally, Q? is the class of graphs where all nodes with an outgoing r-
edge have at least three outgoing r-edges not to themselves (i.e., not counting possible
self-loops). As expected Q? is definable in L(?) by the single, target-based, inclusion
statement ∃r.⊤ ⊆ ≥4 r?.⊤.

We establish the following theorem, from which the above equivalence (∗) immediately
follows:

▶ Theorem 4. Let X ∈ {eq, disj, closed, ?} and let F be a feature set with X /∈ F . Then QX

is not definable in L(F ).

3.1 Equality, disjointness, and zero-or-one path
For X = closed, Theorem 4 is proven differently than for the other three features. We deal
with closed in the next subsection. Here, we deal with the remaining features through the
following concrete result, illustrated in Figure 1:

▶ Proposition 5. Let X = eq, disj, or ?. Let Σ be a finite vocabulary including r, and let m
be a nonzero natural number. There exist two graphs G and G′ with the following properties:
1. G′ belongs to QX , but G does not.
2. For every shape ϕ over Σ such that ϕ does not use X, and ϕ counts to at most m, we

have

JϕKG = JϕKG′
.

Here, “counting to at most m” means that all quantifiers ≥n used in ϕ satisfy n ≤ m.
To see that Proposition 5 indeed establishes Theorem 4 for the three features under

consideration, we use the notion of validation shape of a shape schema. This shape evaluates
to the set of all nodes that violate the schema. Thus, the validation shape is an abstraction

ICDT 2022
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X G G′

?

eq ✖	

disj

Figure 1 Graphs used to prove Proposition 5. The nodes are taken outside Σ. For X = eq, the
cloud shown for G′ represents a complete directed graph on m+ 1 nodes, with self-loops, and G is
the same graph with one directed edge removed. For X = disj, in the picture for G, each cloud again
stands for a complete graph, but this time on M = max(m, 3) nodes, and without the self-loops.
Each oval stands for a set of M separate nodes. An arrow from one blob to the next means that
every node of the first blob has a directed edge to every node of the next blob. So, G is a directed
4-cycle of alternating clouds and ovals, and G′ is a directed 4-cycle of clouds.

of the “validation report” in SHACL [18]: a graph conforms to a schema if and only if the
validation shape evaluates to the empty set. The validation shape can be formally constructed
as the disjunction of ϕ1 ∧ ¬ϕ2 for all statements ϕ1 ⊆ ϕ2 in the schema.

Now consider a shape schema S not using feature X. Let m be the maximum count used
in shapes in S, and let Σ′ be the set of constants and property names mentioned in S. Now
given Σ = Σ′ ∪ {r} and m, let G and G′ be the two graphs exhibited by the Proposition,
and let ϕ be the validation shape for S. Then ϕ will evaluate to the same result on G and
G′. However, for S to define QX , validation would have to return the empty set on G′ but a
nonempty set on G. We conclude that S does not define QX .

Proof of Proposition 5

We present here the proof for X = disj. The general strategy is to first characterize the
behavior of path expressions on G and G′. Then the Proposition is proven with a stronger
induction hypothesis, to allow the induction to carry through. A similar strategy is followed
in the proofs for X = eq and X = ?.

We begin by defining the graphs G and G′ more formally.

▶ Definition 6 (Gdisj(Σ,m)). Let Σ be a finite vocabulary including r, and let m be a natural
number. We define the graph Gdisj(Σ,m) over the set of property names in Σ as follows.
Let M = max(m, 3). There are 4M nodes in the graph, which are chosen outside of Σ. We
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denote these nodes by xj
i for i = 1, 2, 3, 4 and j = 1, . . . ,M . (In the description that follows,

subscripts range from 1 to 4 and superscripts range from 1 to M .) For each property name p
in Σ, the graph has the same set of p-edges. There is an edge from xj

i to xj′

i mod 4+1 for every
i, j and j′. Moreover, if i is 2 or 4, there is an edge from xj

i to xj′

i for all j ̸= j′.

Thus, in Figure 1, bottom left, one can think of the left oval as the set of nodes xj
1; the

top cloud as the set of nodes xj
2; and so on. We call the nodes xj

i with i = 2, 4 the even
nodes, and the nodes xj

i with i = 1, 3 the odd nodes.

▶ Definition 7 (G′
disj(Σ,m)). We define the graph G′

disj(Σ,m) in the same way as Gdisj(Σ,m)
except that there is an edge from xj

i to xj′

i for all i and j ̸= j′ (not only for i even).

We characterize the behavior of path expressions on the graph Gdisj(Σ,m) as follows.

▶ Lemma 8. Let G be Gdisj(Σ,m). Call a path expression simple if it is a union of property
names. Let E be a non-simple path expression over Σ. The following three statements hold:
1. A. for all even nodes v of G, we have JEKG(v) ⊇ JrKG(v); or

B. for all even nodes v of G, we have JEKG(v) ⊇ Jr−KG(v).
2. C. for all odd nodes v of G, we have JEKG(v) ⊇ JrKG(v); or

D. for all odd nodes v of G, we have JEKG(v) ⊇ Jr−KG(v).
3. For all nodes v of G, we have JEKG(v)− JrKG(v) ̸= ∅.

Proof. We use the notation Xi = {x1
i , . . . , x

M
i } for the ith blob of nodes. We also use the

notations next(1) = 2; next(2) = 3; next(3) = 4; next(4) = 1; prev(4) = 3; prev(3) = 2;
prev(2) = 1; prev(1) = 4. Thus next(i) indicates the next blob in the cycle, and prev(i) the
previous.

The proof is by induction on the structure of E. If E is a property name, E is simple
so the claim is trivial. If E is of the form p−, cases B and D are clear and we only need to
verify the third statement. That holds because for any i, if v ∈ Xi, then Jp−KG(v) ⊇ Xprev(i)
and clearly Xprev(i) − JrKG(v) ̸= ∅. We next consider the inductive cases.

First, assume E is of the form E1∪E2. When at least one of E1 and E2 is not simple, the
three statements immediately follow by induction, since JEKG ⊇ JE1KG and JEKG ⊇ JE2KG.
If E1 and E2 are simple, then E is simple and the claim is trivial.

Next, assume E is of the form E1? or E∗
1 . If E1 is not simple, the three statements follow

immediately by induction, since JEKG ⊇ JE1KG. If E1 is simple, cases A and C clearly hold
for E, so we only need to verify the third statement. That holds because, by the form of E,
every node v is in JEKG(v), but not in JrKG(v), as G does not have any self-loops.

Finally, assume E is of the form E1/E2. Note that if E1 or E2 is simple, clearly cases A
and C apply to them. The argument that follows will therefore also apply when E1 or E2 is
simple. We will be careful not to apply the induction hypothesis for the third statement to
E1 and E2.

We first focus on the even nodes, and show the first and the third statement. We
distinguish two cases.

If case A applies to E2, then we show that case A also applies to E. Let v ∈ Xi be an
even node. We verify the following two inclusions:

JEKG(v) ⊇ Xi. Let u ∈ Xi. If u ̸= v, choose a third node w ∈ Xi. Since Xi is a clique,
(v, w) ∈ JE1KG regardless of whether case A or B applies to E1. By case A for E2, we
also have (w, u) ∈ JE2KG, whence u ∈ JEKG(v) as desired. If u = v, we similarly have
(v, w) ∈ JE1KG and (w, u) ∈ JE2KG as desired.

ICDT 2022
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JEKG(v) ⊇ Xnext(i). Let u ∈ Xnext(i) and choose w ̸= v ∈ Xi. Regardless of whether
case A or B applies to E1, we have (v, w) ∈ JE1KG. By case A for E2, we also have
(w, u) ∈ JE2KG, whence u ∈ JEKG(v) as desired.

We conclude that JEKG(v) ⊇ Xi ∪Xnext(i) ⊇ JrKG as desired.
If case B applies to E2, then we show that case B also applies to E. This is analogous to
the previous case, now verifying that JEKG(v) ⊇ Xi ∪Xprev(i).

In both cases, the third statement now follows for even nodes v. Indeed, v ∈ Xi ⊆ JEKG(v)
but v /∈ JrKG(v).

We next focus on the odd nodes, and show the second and the third statement. We again
consider two cases.

If case C applies to E1, then we show that case C also applies to E. Let v ∈ Xi be
an odd node. Note that JrKG(v) = Xnext(i). To verify that JEKG(v) ⊇ Xnext(i), let
u ∈ Xnext(i). Then u is even. Choose w ≠ u ∈ Xnext(i). Since case C applies to E1, we
have (v, w) ∈ JE1KG. Moreover, since Xnext(i) is a clique, (w, u) ∈ JE2KG regardless of
whether case A or B applies to E2. We obtain (v, u) ∈ JEKG as desired.

We also verify the third statement for odd nodes in this case. We distinguish two further
cases.

If case A applies to E2, any node u ∈ Xnext(next(i)) belongs to JEKG(v), and clearly
these u are not in Xnext(i) = JrKG(v).
If case B applies to E2, then, since Xi is a clique, any node u ∈ Xi belongs to JEKG(v),
and again these u are not in Xnext(i).

If case D applies to E1, then we show that case D also applies to E. This is analogous to
the previous case, now verifying that JEKG(v) ⊇ Xprev(i). In this case the third statement
for odd nodes is clear, as clearly Xprev(i) −Xnext(i) ̸= ∅. ◀

We similarly characterize the behavior of path expressions on the other graph. The
characterization is simpler to state and simpler to verify, due to the homogeneous nature of
the graph G′

disj(Σ,m). We omit the proof.

▶ Lemma 9. Let G′ be G′
disj(Σ,m) and let E be a non-simple path expression over Σ. The

following statements hold:
1. JEKG′ ⊇ JrKG′ or JEKG′ ⊇ Jr−KG′ .
2. For all nodes v of G′, we have JEKG′(v)− JrKG′(v) ̸= ∅.

We also need the following Definition and Lemma, detailing how path expressions can
behave on the nodes outside a graph.

▶ Definition 10 (Safety). We define the safety of a path expression E inductively as follows:
If E is p or p−, then E is safe.
If E is E1 ∪ E2, then E is safe only if E1 and E2 are safe.
If E is E1/E2, then E is safe if E1 or E2 is safe.
If E is E∗

1 or E?, then E is not safe.

▶ Lemma 11. Let E be a path expression and let G be a graph.
If E is safe, then JEKG ⊆ NG ×NG.
If E is not safe, then JEKG = (JEKG ∩NG ×NG) ∪ {(a, a) | a ∈ N −NG}.

We are now ready to prove the non-obvious part of Proposition 5, in the following version.
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▶ Proposition 5 for X = disj, stronger version. Let V be the common set of nodes of the
graphs G = Gdisj(Σ,m) and G′ = G′

disj(Σ,m). Let ϕ be a shape over Σ that does not use
disj, and that maximally counts to m. Then either JϕKG ∩ V = ∅ or JϕKG ⊇ V . Moreover,
JϕKG = JϕKG′ .

This is proven by induction on the structure of ϕ. Let H be G or G′. If ϕ is ⊤, then
J⊤KH = N ⊇ V . If ϕ is {c}, then J{c}KH = {c} ⊆ Σ and we know that Σ ∩ V = ∅. We
next consider the inductive cases. The cases for the boolean connectives follow readily by
induction.

Now assume ϕ is of the form ≥n E.ϕ1. By induction, there are two possibilities for ϕ1:
If Jϕ1KH ∩ V = ∅, then also JϕKH ∩ V = ∅ since path expressions can only reach nodes in
some graph from nodes in that graph.
If Jϕ1KH ⊇ V , to show that JϕKH ⊇ V , it suffices to show that ♯JEKH(v) ≥ n for all v ∈ V .
By Lemmas 8 and 9 we know that JEKH(v) contains JrKH(v) or Jr−KH(v). Inspecting H,
we see that each of these sets has at least max(3,m) ≥ n elements, as desired.

In both cases we still need to show that JϕKG = JϕKG′ . We already showed that JϕKG ⊇ V
and JϕKG′ ⊇ V , or JϕKG ∩ V = ∅ and JϕKG′ ∩ V = ∅. Therefore, towards a proof of the
equality, we only need to consider the node names not in V .

For the inclusion from left to right, take x ∈ JϕKG − V . Since G, x ⊨ ϕ, there exists y1,
. . . , yn such that (x, yi) ∈ JEKG and G, yi ⊨ ϕ1 for i = 1, . . . , n. However, since x /∈ V , by
Lemma 11, all yi must equal x. Hence, n = 1 and (x, x) ∈ JEKG and G, x ⊨ ϕ1. Then again
by the same Lemma, (x, x) ∈ JEKG′ , since G and G′ have the same set of nodes V . Moreover,
by induction, G′, x ⊨ ϕ1. We conclude that G′, x ⊨ ϕ as desired. The inclusion from right to
left is argued symmetrically.

Next assume ϕ is of the form eq(E, p). If E is simple then JEKH = JpKH , so clearly
JϕKH = N ⊇ V .

If E is not simple, then Lemmas 8 and 9 tell us that JEKH(v)− JrKH(v) ̸= ∅ for every
v ∈ V . Since JrKH = JpKH , this means H, v ⊭ ϕ for v ∈ V , or, equivalently, JϕKG ∩ V = ∅. To
see that, moreover, JϕKG = JϕKG′ , it remains to show that G, v ⊨ ϕ iff G′, v ⊨ ϕ for all node
names v /∈ V . Clearly, JpKG(v) = JpKG′(v) = ∅. Now by Lemma 11, if E is safe, then also
JEKG(v) = JEKG′(v) = ∅, so G, v ⊨ ϕ and G′, v ⊨ ϕ. On the other hand, if E is unsafe, then
by the same Lemma JEKG(v) = JEKG′(v) = {v} ≠ ∅, so G, v ⊭ ϕ and G′, v ⊭ ϕ, as desired.

Finally, assume ϕ is of the form closed(R). If Σ contains a property name p not in R,
then JϕKH ∩ V = ∅, since every node in H has an outgoing p-edge. Otherwise, i.e., if Σ ⊆ R,
we have JϕKH ⊇ V , since every node in H has only outgoing edges labeled by property names
in Σ. To see that, moreover, JϕKG = JϕKG′ , it suffices to observe that trivially H, v ⊨ ϕ for
all node names v /∈ V .

3.2 Closure
Without using closed, shapes cannot say anything about properties that they do not explicitly
mention. We formalize this intuitive observation as follows. The proof is straightforward.

▶ Lemma 12. Let Σ be a vocabulary, let E be a path expression over Σ, and let ϕ be a shape
over Σ that does not use closed. Let G1 and G2 be graphs such that JpKG1 = JpKG2 for every
property name p in Σ. Then JEKG1 = JEKG2 and JϕKG1 = JϕKG2 .

Theorem 4 now follows readily for X = closed. Let F be a feature set without closed, let
S be a shape schema in L(F ), and let ϕ be the validation shape of S. Let p be a property
name not mentioned in S, and different from r. Consider the graphs G = {(a, r, a), (a, p, a)}
and G′ = {(a, r, a)}, so that G′ belongs to Qclosed but G does not. By Lemma 12 we have
JϕKG = JϕKG′ , showing that S does not define Qclosed .
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▶ Remark 13. Lemma 12 fails completely in the presence of closure constraints. The simplest
counterexample is to consider Σ = ∅ and the shape closed(∅). Trivially, any two graphs agree
on the property names from Σ. However, Jclosed(∅)KG, which equals the set of node names
that do not have an outgoing edge in G (they may still have an incoming edge), obviously
depends on the graph G.

3.3 Are target-based shape schemas enough?
Lemma 12 also allows us to clarify that, as far as expressive power is concerned, and in the
absence of closure constraints, the restriction to target-based shape schemas is inconsequential.

▶ Theorem 14. Every generalized shape schema that does not use closure constraints is
equivalent to a target-based shape schema (that still does not use closure constraints).

Proof. Let ϕ be the validation shape for shape schema S, so that G ⊨ S if and only if JϕKG

is empty. Let C be the set of constants mentioned in ϕ.
Let us say that ϕ is internal if for every graph G and every node name v such that

G, v ⊨ ϕ, we have v ∈ NG ∪ C. If ϕ is not internal, it can be shown that for every graph G

and every node v /∈ NG ∪ C, we have G, v ⊨ ϕ. Thus, if ϕ is not internal, S is unsatisfiable
and is equivalent to the single target-based inclusion {c} ⊆ ¬⊤, for an arbitrary constant c.

So now assume ϕ is internal. Define the target-based shape schema T consisting of the
following inclusions:

For each constant c ∈ C, the inclusion {c} ⊆ ¬ϕ.
For each property name mentioned in ϕ, the two inclusions ∃p.⊤ ⊆ ¬ϕ and ∃p−.⊤ ⊆ ¬ϕ.

We will show that S and T are equivalent. Let ψ be the validation shape for T .
Let G be any graph, and let G′ be the graph obtained from G by removing all triples

involving property names not mentioned in ϕ. We reason as follows:

G ⊨ S ⇔ JϕKG = ∅

⇔ JϕKG′
= ∅ by Lemma 12

⇔ G′ ⊨ T since ϕ is internal

⇔ JψKG′
= ∅

⇔ JψKG = ∅ by Lemma 12
⇔ G ⊨ T ◀

▶ Remark 15. Note that we do not need class-based targets in the proof, so such targets are
redundant on the left-hand sides of inclusions. This can also be seen directly: any inclusion

∃type/subclass∗.{c} ⊆ ϕ

with a class-based target is equivalent to the following inclusion with a subjects-of target:

∃type.⊤ ⊆ ¬∃type/subclass∗.{c} ∨ ϕ

▶ Remark 16. Theorem 14 fails in the presence of closure constraints. For example, the
inclusion ¬closed(∅) ⊆ ∃r.⊤ defines the class of graphs where every node with an outgoing
edge has an outgoing r-edge. Suppose this inclusion would be equivalent to a target-based
shape schema S, and let R be the set of all property names mentioned in the targets of S.
Let p be a property name not in R and distinct from r; let a be a node name not used as a
constant in S; and consider the graph G = {(a, p, a)}. This graph trivially satisfies S, but
violates the inclusion.
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4 Extension to stratified recursion

Until now, we could do without shape names. We do need them, however, for recursive shape
schemas. Such schemas allow shapes to be defined using recursive rules, much as in Datalog
and logic programming. The rules have a shape name in the head; in the body they have a
shape that can refer to the same or other shape names.

▶ Example 17. The following rule defines a shape, named s, recursively:

s← {c} ∨ (eq(p, q) ∧ ∃r.s).

A node x will satisfy s if there is a path of r-edges from x to the constant c, so that all nodes
along the path satisfy eq(p, q) (for two property names p and q).

Rules and programs

We need to make a few extensions to our formalism and the semantics.
We assume an infinite supply S of shape names. Again for simplicity of notation only, we
assume that S is disjoint from N and P .
The syntax of shapes is extended so that every shape name is a shape.
A vocabulary Σ is now a subset of N ∪P ∪S; an interpretation I now additionally assigns
a subset JsKI of ∆I to every shape name s in Σ.

Noting the obvious parallels with the field of logic programming, we propose to use the
following terminology from that field. A rule is of the form s← ϕ, where s is a shape name
and ϕ is a shape. A program is a finite set of rules. The shape names appearing as heads of
rules in a program are called the intensional shape names of that program.

The following definitions of the semantics of programs are similar to definitions well-known
for Datalog. A program is semipositive if for every intensional shape name s, and every
shape ϕ in the body of some rule, s occurs only positively in ϕ. Let P be a semipositive
program over vocabulary Σ, with set of intensional shape names D. An interpretation J over
Σ ∪D is called a model of P if for every rule s ← ϕ of P, the set JϕKJ is a subset of JsKJ .
Given any interpretation I over Σ−D, there exists a unique minimal interpretation J that
expands I to Σ ∪D such that J is a model of P. We call J the result of applying P to I,
and denote J by P(I).

Stratified programs are essentially sequences of semipositive programs. Formally, a
program P is called stratified if it can be partitioned into parts P1, . . . , Pn called strata, such
that (i) the strata have pairwise disjoint sets of intensional shape names; (ii) each stratum
is semipositive; and (iii) the strata are ordered in such a way that when a shape name s
occurs in the body of a rule in some stratum, s is not intensional in any later stratum.

Let P be a stratified program with n strata P1, . . . , Pn and let again I be an interpretation
over a vocabulary without the intensional shape names. We define P(I), the result of applying
P to I, to be the interpretation Jn, where J0 := I and Jk+1 := Pk+1(Jk) for 0 ≤ k < n.

Stratified shape schemas

We are now ready to define a stratified shape schema again as a set of inclusions, but now
paired with a stratified program. Formally, it is a pair (P, T ), where:
P is a program that is stratified, and where every shape name mentioned in the body of
some rule is an intensional shape name in P.
T is a finite set of inclusion statements ϕ1 ⊆ ϕ2, where ϕ1 and ϕ2 mention only shape
names that are intensional in P.

ICDT 2022



15:14 Expressiveness of SHACL Features

Now we define a graph G to conform to (P, T ) if Jϕ1KP(G) is a subset of Jϕ2KP(G), for
every inclusion ϕ1 ⊆ ϕ2 in T .

▶ Remark 18. The nonrecursive notion of shape schema, defined in Section 2, corresponds to
the special case where P is the empty program.

Extending Theorem 4

Theorem 4 extends to stratified shape schemas. Indeed, consider a stratified shape schema
(P, T ). Shapes not mentioning any shape names are referred to as elementary shapes.
We observe that for every intensional shape name s and every graph H, there exists an
elementary shape ϕ such that JsKP(H) = JϕKH . Furthermore, ϕ uses the same constants,
quantifiers, and path expressions as P. For semipositive programs, this is shown using a
fixpoint characterization of the minimal model; for stratified programs, this argument can
then be applied repeatedly. The crux, however, is that graphs G and G′ of Proposition 5
will have the same ϕ. Indeed, by that Proposition, the fixpoints of the different strata
will be reached on G and on G′ in the same stage. We effectively obtain an extension of
Proposition 5, which establishes the theorem for features X other than closed.

Also for X = closed, the reasoning, given after Lemma 12, extends in the same way to
stratified shape schemas, since the graphs G and G′ used there again yield exactly the same
evaluation for all shapes that do not use closed.

Extending Theorem 14

Also Theorem 14 extends to stratified shape schemas. Thereto, Lemma 12 needs to be
reproven in the presence of a stratified program P defining the intensional shape names. The
extended Lemma 12 then states that JϕKP(G) = JϕKP(G′). The proof of Theorem 14 then
goes through unchanged.

5 Concluding remarks

An obvious open question is whether our results extend further to nonstratified programs,
depending on various semantics that have been proposed for Datalog with negation, notably
well-founded or stable models [1, 20]. One must then deal with 3-valued models and, for
stable models, choose whether the TBox should hold in every stable model (skeptical), or in
at least one (credulous). For example, Andreşel et al. [2] adopt a credulous approach. In
the same vein, even for stratified programs, one may consider maximal models instead of
minimal ones, as suggested for ShEx [6].

Notably, Corman et al. [9] have already suggested that disjointness is redundant in a
setting of recursive shape schemas with nonstratified negation. Their expression is not correct,
however [17].4

A quirk in the design of SHACL is that it only allows equality and disjointness tests
eq(E1, E2) and disj(E1, E2) where E1 can be a general path expression, but E2 needs to be a
property name. It is open whether allowing “full” equality or disjointness tests, i.e., allowing
a general path expression for E2, would strictly increase expressive power. Furthermore,

4 Their approach is to postulate two shape names s1 and s2 that can be assigned arbitrary sets of nodes,
as long as the two sets form a partition of the domain. Then for one node x to satisfy the shape
disj(E, p), it is sufficient that E(x) is a subset of s1 and p(x) of s2. This condition is not necessary,
however, as other nodes may require different partitions.
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for X = disj, our proof of Proposition 5, and thus Theorem 4, no longer works under full
equality tests. For X one of the other three features, however, the proof continues to work
under full disjointness or equality tests.

Not included in our formal syntax, but allowed in SHACL, are shapes of the form eq(id, p)
and disj(id, p), where id stands for the focus node. These are allowed in SHACL under “node
shapes”. In our formalism, eq(id, p) is already expressible as eq(p?, p) ∧ ≥1 p.⊤∧ ≤1 p.⊤.
Furthermore, disj(id, p) is expressible as ¬eq(p?, p). Note, however, the use of ? in these
expressions. Hence, when investigating the primitivity of ?, as we have done in this paper, it
would be more proper to include eq(id, p) and disj(id, p) directly in the syntax. Whether ?
remains primitive in this setting is left as an open problem.

Another open problem, also concerning the primitivity of ?, is to consider the more
restrictive setting where, in each shape of the form ≥n E.ϕ, n equals 1 or 2. Indeed, the
higher counts seem rarely used in practice. Since our query showing primitivity of ? involves
counting to 4, it remains open whether ? still adds expressive power when counts are limited
to 1 or 2. (We thank an anonymous reviewer for suggesting this problem.)

Finally, a general question surrounding SHACL, even standard nonrecursive SHACL, is
to understand better in which sense (if at all) this language is actually better suited for
expressing constraints on RDF graphs than, say, SPARQL ASK queries [8, 19, 10]. Certainly,
the affinity with description logics makes it easy to carve out cases where higher reasoning
tasks become decidable [13, 15]. It is also possible to show that nonrecursive SHACL is
strictly weaker in expressive power than SPARQL. But does SHACL conformance checking
really have a lower computational complexity? Can we think of novel query processing
strategies that apply to SHACL but not easily to SPARQL? Are SHACL expressions typically
shorter, or perhaps longer, than the equivalent SPARQL ASK expression? How do the
expression complexities [21] compare?
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