
On the Hardness of Category Tree Construction
Shay Gershtein #

Tel Aviv University, Israel

Uri Avron #

Tel Aviv University, Israel

Ido Guy #

Ben-Gurion University of the Negev, Beer Sheva, Israel

Tova Milo #

Tel Aviv University, Israel

Slava Novgorodov #

eBay Research, Netanya, Israel

Abstract

Category trees, or taxonomies, are rooted trees where each node, called a category, corresponds to a
set of related items. The construction of taxonomies has been studied in various domains, including
e-commerce, document management, and question answering. Multiple algorithms for automating
construction have been proposed, employing a variety of clustering approaches and crowdsourcing.
However, no formal model to capture such categorization problems has been devised, and their
complexity has not been studied. To address this, we propose in this work a combinatorial model
that captures many practical settings and show that the aforementioned empirical approach has
been warranted, as we prove strong inapproximability bounds for various problem variants and
special cases when the goal is to produce a categorization of the maximum utility.

In our model, the input is a set of n weighted item sets that the tree would ideally contain as
categories. Each category, rather than perfectly match the corresponding input set, is allowed to
exceed a given threshold for a given similarity function. The goal is to produce a tree that maximizes
the total weight of the sets for which it contains a matching category. A key parameter is an upper
bound on the number of categories an item may belong to, which produces the hardness of the
problem, as initially each item may be contained in an arbitrary number of input sets.

For this model, we prove inapproximability bounds, of order Θ̃(
√

n) or Θ̃(n), for various problem
variants and special cases, loosely justifying the aforementioned heuristic approach. Our work
includes reductions based on parameterized randomized constructions that highlight how various
problem parameters and properties of the input may affect the hardness. Moreover, for the special
case where the category must be identical to the corresponding input set, we devise an algorithm
whose approximation guarantee depends solely on a more granular parameter, allowing improved
worst-case guarantees. Finally, we also generalize our results to DAG-based and non-hierarchical
categorization.
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4:2 On the Hardness of Category Tree Construction

1 Introduction

Category trees, or taxonomies, are rooted trees where each node corresponds to a labeled
category defined as a set of related items. Each non-leaf category is more general than its
descendants and contains the union of their item sets. Moreover, each item may typically
appear in a bounded number of tree branches. Such trees enable browsing-style information
access and play a central role in Web platforms. While taxonomists can identify many desirable
categories, producing a single categorization in a compact structure to maximize a given
utility measure is challenging. Therefore, multiple algorithms for automating construction in
various domains, e.g., e-commerce [2, 12], document management [9], and question answering
[24], have been proposed, employing a variety of clustering approaches, and crowdsourcing
[9, 21]. However, to our knowledge, the complexity of this problem has not been studied w.r.t.
a formal model, and solution evaluations were based on user-studies or a similarity score of
the tree categories to a collection of desired categories [17, 9, 18], to measure how well these
are captured by the much more succinct solution. Based on the latter evaluation method, we
propose a model that captures practical settings and show that the aforementioned heuristic
approach has been warranted, as we prove strong inapproximability bounds.

Before describing our results, we first define the formal setting.

Model. The input is a set of n sets of items. The solution space consists of rooted trees (we
also examine other structures, as described in the sequel). Each node (category) corresponds
to a set of items (not necessarily identical to any set in the input), and every non-leaf
category contains the union of all the items of its descendants. Ideally, the tree would have,
for every input set, a category that is very similar to it. Each input set is weighted to reflect
how valuable it is for a solution to contain a matching category. In practice, an input set
represents items that match some criteria a user may have in mind when performing a search,
and its weight implies the predicted likelihood of seeking these criteria. The sets are derived
from a dataset of result sets to search queries, or, more generally, are formed by grouping
items w.r.t. shared properties.

This model has multiple variants, defined by two parameters. The first parameter is
a similarity function, which measures the similarity of an input set and a category. We
examine several variations of commonly used set-similarity functions, which extend the
original function with a threshold parameter. A similarity score below this parameter is
rounded down to 0, to capture the fact that, when the similarity score is too low, no category
is identifiable by the user as a matching category, and has no utility. Given such a function,
the tree score for a given input set is the maximum similarity score of any category for this
set. The overall tree score is the weighted (w.r.t. input weights) sum of the scores for all the
input sets. The goal is to produce a tree of the highest score.

The second parameter is a copy-bound, which limits the number of independent categories
any item can belong to, where categories are called independent if no two are on the same
path from the root to a leaf. Most real-life platforms set a low copy-bound, to ensure that
the categorization is coherent, compact, and easy to navigate. For example, eBay allows
listing an item in a single (lowermost) category for free, or two categories for an extra fee [1].

Our bounds also apply to the related problems, where the aim is to produce a flat
categorization or more general DAG structures. Flat categorization may be of independent
interest, as it also captures the setting where one seeks, given a collection of overlapping sets,
a partition that is maximally similar to the original collection. This may be particularly
relevant for clustering and partitioning problems in hypergraphs (see Section 7).
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Results. For the optimization problem of maximizing the tree score (as defined above),
we prove for all examined variants an inapproximability bound of Θ̃(

√
n) or Θ̃(n), where

n is the number of input sets, highlighting how different problem parameters may affect
the hardness. These bounds also apply to unweighted inputs and various special cases. On
the other hand, we show that finer properties, such as bounds on the cardinality of input
sets or the number of intersections among sets, aid in deriving more relaxed parameterized
hardness bounds. To that end, we also provide a positive result in the form of an algorithm
for the Exact variant, where a category must match an input set exactly to contribute to the
objective function. The tight performance guarantee of this algorithm depends only on a
parameter that measures the number of intersections between the input sets. Importantly,
we reduce this variant to the Maximum Independent Set problem, for which, despite its
inapproximability, practical solvers have been devised. We demonstrate the practical utility
of this result, in [3] and [4], complementary works focusing on constructing an e-commerce
category tree that is maximally similar to result sets of user queries. In these works, we show
that leveraging these solvers enables finding optimal solutions to real-world instances and
extend this approach to algorithms that solve well instances of more general variants.

An essential component in our methods is defining a generalized similarity function with
two threshold parameters that address two more granular similarity measures: precision and
recall. Our key results consist of reductions from the Maximum Independent Set problem
in hypergraphs, where we integrate into the reduced instance randomized constructions
that closely capture the precision and recall parameters. This not only enables us to derive
improved results for more subtle special cases but also to capture more refined properties of
hard inputs, which we then leverage to prove hardness w.r.t. other similarity functions (we
outline how to schematically apply our arguments to derive hardness bounds for similarity
functions not examined here).

While we are not aware of any theoretical results directly comparable to ours, Section 7
discusses motivating empirical research and possible applications to hypergraph partitioning.

Lastly, we note that the complementary problem of labeling the resulting categories has
been studied in various settings (e.g., [5]), and is outside the scope of our model.

Outline. Section 2 provides the necessary formalism for our model, while Section 3 presents
useful theoretical tools. In Section 4 we provide a positive result for a common problem
variant. In Section 5 we prove various approximation hardness results derived w.r.t. the
generalized similarity function (with recall and precision thresholds). In Section 6 we leverage
these results to derive hardness bounds w.r.t. all other similarity functions defined in
Section 2. The related work appears in Section 7 and we conclude in Section 8.

Due to space constraints, we defer all formal proofs to the full version of the paper [10].

2 Model

We now define the model underlying our work, followed by a discussion of problem parameters.
We conclude this section with illustrative examples of problem instances in our model.

2.1 Problem definition
The two problems we study are the Optimal Category Tree problem (OCT ) and the Optimal
Category Partition problem (OCP ). The input to both problems is ⟨Q, U, W ⟩, where Q ⊆ 2U

is a set of n sets over a finite universe U , and W : Q → [0, 1] is a weighting function that
assigns a non-negative weight to each set in Q. We use the term query, to denote each set

ICDT 2022



4:4 On the Hardness of Category Tree Construction

in Q. Note, in advance, that in the definition of the model we discuss two types of element
sets: the queries and the sets corresponding to the tree nodes. In general, these sets are
not identical (however, these are typically similar, as the objective is, roughly speaking, to
maximize the similarity of the two types of sets, as defined formally below).

Both problems have multiple variants defined by two parameters (explained below,
in the context of the solution space): a copy bound r ∈ N, and a similarity function
S : [2U ] × [2U ] → [0, 1]. We denote by OCT r(S) the r-copy OCT problem with similarity
function S, and the analogous OCP variant is denoted by OCP r(S).

We next formally define the solution space for each of the two problems. We start with
OCP r(S), as it is a simpler form of the model for OCT r(S).

OCP. We call a set of sets over U an r-weak partition, if every element appears in at most
r sets. A 1-weak partition is a standard partition. The solution space of OCP r(S) consists
of all r-weak partitions of U . Any such solution is termed as a category partition, denoted by
P , with the sets contained in it termed as categories.

Given a query, q ∈ Q, and a category partition, P , we define the similarity score of a
category C ∈ P for q as S(q, C). The score of P for this query is defined by the category that
most closely matches the query as S(q, P ) = maxC∈P S(q, C). Note that the root of the tree,
as it is a valid category, may also be the most closely matching category for some queries.
The overall score of the category partition is defined as S(Q, P ) =

∑
q∈Q W (q) · S(q, P ).

This score is the weighted sum of the scores for all queries, where the weight of each score
is the corresponding query weight. The objective of the OCP r(S) problem is to produce a
category partition of the maximum score: arg maxP S(Q, P ).

OCT. The solution space of OCT r(S) consists of rooted trees, termed category trees, where
every tree node, termed category, contains a subset of U . We abuse notation, and, when
clear from context, we use T to denote both the category tree and the set of its categories.
Similarly, we use C to denote a category as well as the set of elements it contains.

A category tree must satisfy the following two requirements. First, every non-leaf category
contains the union of the sets of elements contained by its child categories (and possibly
other elements). The root of the tree, thus, contains all the elements that appear in any
category. Second, for each element e ∈ U there are at most r semi-leaves w.r.t. e, where
the semi-leaves w.r.t. e are the most specific categories to which e belongs (i.e. none of
the descendants of any such semi-leaf contain e). Note that for a category tree, unlike a
category partition, it is no longer true (nor desirable) that an element is contained in at most
r categories. Even for r = 1, if an element is contained in some category in the tree, it must
also be contained in all its ancestor categories. Therefore, the copy-bound is applied to the
number of semi-leaves w.r.t. any given element, with the only other nodes containing the
element being all the ancestors of these semi-leaves. For r = 1 this requirement implies that
any given element in the tree is contained only in categories that are all on the same branch.

All definitions of relevant scoring functions are analogous to OCP r(S). Concretely, the
score of a tree, T , for a query, q, is defined as S(q, T ) = maxC∈T S(q, C). The overall score
of T is S(Q, T ) =

∑
q∈Q W (q) · S(q, T ). When Q is clear from context, we use the shorthand

S(T ). The objective of the OCT r(S) problem is to produce arg maxT S(Q, T ).

Unweighted variants. We refer to the special case of OCT (OCP ) where all weights are
uniform as unweighted OCT (OCP ) and set all weights to 1. Our hardness proofs leverage
unweighted inputs, and therefore our hardness bounds also apply to the unweighted case.
Accordingly, in our hardness discussions, the reader may assume this context. We directly
use weights only in the upper bound we provide in Section 4.
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2.2 Similarity functions
We study several similarity functions, that are dependent (in some cases, implicitly) on
the following two underlying similarity measures, precision p(q, C) = |C∩q|

|C| and recall
r(q, C) = |C∩q|

|q| . We distinguish between cutoff functions and threshold functions. Both have
a threshold parameter δ ∈ (0, 1] and use an underlying similarity function f . In both cases,
the function outputs 0 when f(q, C) < δ. However, when f(q, C) ≥ δ a cutoff function equals
f(q, C), whereas a threshold function equals 1. We first focus, however, on the following,
more general, threshold function, which sets a separate threshold for each measure.

▶ Definition 1 (Granular threshold function). Given parameters α, β ∈ [0, 1], the granular
threshold similarity Tα,β of a query q and category C is defined as follows: Tα,β(q, C) = 1
when p(q, C) ≥ α and r(q, C) ≥ β, and Tα,β(q, C) = 0 otherwise.

We will also study the common similarity functions defined below.

▶ Definition 2 (Jaccard similarity). The Jaccard similarity of a category C and a query q

is defined as J(q, C) = |q∩C|
|q∪C| . The threshold Jaccard similarity, with threshold parameter

δ ∈ (0, 1], is defined as Ĵδ(q, C) = 1 when J(q, C) ≥ δ and Ĵδ(q, C) = 0 otherwise. The
cutoff Jaccard similarity, with threshold parameter δ ∈ (0, 1], is defined as J̄δ(q, C) = J(q, C)
when J(q, C) ≥ δ and J̄δ(q, C) = 0 otherwise.

▶ Definition 3 (F1 score). The F1 score of a category C for a query q is defined as the
harmonic mean of the precision and the recall: F1(q, C) = 2 p(q,C)·r(q,C)

p(q,C)+r(q,C) . The threshold
F1 score, with parameter δ ∈ (0, 1], is defined as F̂1(δ)(q, C) = 1 when F1(q, C) ≥ δ and
F̂1(δ)(q, C) = 0 otherwise. The cutoff F1 score, with threshold δ ∈ (0, 1], is defined as
F̄1(δ)(q, C) = F1(q, C) when F1(q, C) ≥ δ and F̄1(δ)(q, C) = 0 otherwise.

Cover terminology. If a category C has the highest score for a query q (if necessary, ties are
broken arbitrarily), and that score is not 0, we say that C covers q. We call a category that
covers at least one query a covering category, and a branch containing a covering category is a
covering branch. A set of categories is independent if no two categories are on the same branch
(OCP categories are independent). Similarly, a set of queries are independently-covered, if
each is covered by a different category, and the covering categories are independent. Observe
that in unweighted instances (where, as noted earlier, all weights are assumed to be 1) with
threshold functions the score equals the number of covered queries.

Note that, all functions defined above share the special case of T1,1 (Definition 1) (equi-
valent to setting δ = 1 in Definitions 2 and 3), where a query q is covered by a category C

only if q = C. We refer to this variant as the Exact variant.

Canonical form. Any category tree can be reduced to a canonical form, without decreasing
the score, by (1) removing non-covering categories, (2) connecting the parent and children of
any removed category, and (3) removing from category C and its descendants any element
not contained in any query covered by C or categories below C (this may even improve
the precision and the score). If a query is covered by multiple categories, one can assign
arbitrarily a single category that is said to cover it, and then reduce it to a canonical form,
as described above, w.r.t. this assignment. Similarly, adding new categories that do not
affect the contents of the existing categories cannot decrease the tree score. This discussion
applies analogously to category partitions.

ICDT 2022



4:6 On the Hardness of Category Tree Construction

Choices of parameters. For practical applicability, we focus on variants where r = Θ(1)
and the similarity functions have threshold parameters. A low copy-bound ensures a concise
categorization, and in many platforms, r is a small constant, typically, 1 (e.g., [1]). This
parameter controls the trade-off between the score and the conciseness, and our parameterized
bounds hint at a quantification of this trade-off. Threshold parameters capture the fact that,
below a certain similarity score, a category has no utility. Without thresholds, trees that
cover unacceptably poorly all queries may be mathematically preferable to trees that cover
well a smaller number of queries. Nevertheless, to capture more tolerant settings, we also
provide approximation bounds for polynomially small threshold parameters.

We also note that, in practice, errors in precision and recall have an asymmetric effect.
For example, perfect recall with precision of 1

2 , enables the user to examine all relevant
items to identify the best matches, while ignoring every other item. This may be acceptable,
especially for smaller categories. However, in the analogous case of perfect precision and recall
of 1

2 , other categories may or may not contain better matching items, and the user might
waste time looking for non-existing or hard-to-find categories or be unaware of better options.
It may, therefore, be tempting, in some applications, to require perfect recall. To that end,
we examine this case separately and show that it admits the strictest inapproximability.

More generally, there exists a key tension between the recall and precision thresholds.
Consider, as an extreme example, a recall threshold of 1, and a precision threshold of 0 (i.e.,
perfect recall with no precision requirement). For this variant, a tree consisting only of a
root that contains all the elements is an optimal solution. At the other extreme, if we require
perfect precision with no constraint on the recall, then an optimal solution is a tree where
there is a leaf for each element, containing only that element, and a root connected directly
to all the leaves. These edge cases illustrate the following intuitive phenomenon: increasing
precision thresholds leads to more granular trees with smaller covering categories, whereas
increasing recall thresholds generally produces a more coarse categorization with larger
covering categories. These properties of the precision and recall thresholds are formalized
and leveraged in our hardness proofs.

2.3 Examples of Problem Instances
We illustrate the OCT setting with r = 1 via the following toy examples, depicted in Figure
1. The figure presents two optimal solutions, computed by brute-force, corresponding to
two different OCT variants, over the same input, provided on the left side. For convenience,
as it is easier to perform arithmetic with integers, we provide integer weights, instead of
normalizing into [0, 1], since the normalization of the weights and scores does not affect the
complexity of the problem or the performance ratio of the various solutions.

Observe that the overall weight of all four queries is 5, hence this is also an upper bound
on the score of any tree for any variant over this input. In addition, observe that, since r = 1,
we cannot add any branches to either of the depicted trees, without violating the copy-bound
constraint.

▶ Example 4. The tree T1, depicted in the middle of the figure, is the optimal solution for
the OCT 1(T0.8,1) variant (i.e. precision 0.8 and perfect recall). The categories C3 and C4
cover the queries q2 and q3, respectively, as they are identical to these queries (and would
cover them even for α = 1). The category C1 covers q1 as its recall score is 1, and 5 out of
the 6 items in C1 are in q1, hence the precision is 5

6 > α. Note that, we must include f in C1
since it appears in C4, and removing f from both categories, would result in C4 no longer
covering q3. Moreover, there is no incentive to place f elsewhere, since the score, when using
a binary function, is not penalized for precision errors if the threshold is exceeded.
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Input:
U = { a, b, c, d, e, f, g, h, i }

Q = { q1, q2, q3, q4 }
q1 = { a, b, c, d, e}
q2 = { a, b }
q3 = { c, d, e, f }
q4 = { a, b, f, g, h, i } 

W(q1) = 2
W(q2) = 1
W(q3) = 1
W(q4) = 1

a b c d e f

a b c d e fC3

C1

C4

a b c d e f g h i

g h i

Root

C2

a b c d e f g h i

a b c d e f g h i

a b c d e

Root

C1 C2

C3 C4

T1 - optimal solution for 
S(Q, T1) = 4

T2 - optimal solution for 
S(Q, T2) = 4 ⁵⁄₁₂

Figure 1 Optimal solutions for two OCT variants over the same input (where, for simplicity, the
input weights are not normalized), depicted on the left side. The category tree, T1, is an optimal
solution for the OCT 1(T0.8,1) variant, where C1 covers q1, C3 covers q2, and C4 covers q3, with the
overall score of W (q1) + W (q2) + W (q3) = 4. The rightmost tree, T2, is the optimal solution for the
cutoff Jaccard variant with δ = 0.6, where C1 covers q1 with the score of 1, C2 covers q4 with the
score of 2

3 , C3 covers q2 with the score of 1, and C4 covers q3 with the score of 3
4 , resulting in the

overall score of W (q1) · 1 + W (q2) · 1 + W (q3) · 3
4 + W (q4) · 2

3 = 4 5
12 .

As for the category C2, its addition to the tree is optional, since it does not cover any
query, despite all its items belonging to the uncovered query, q4, as we can no longer achieve
perfect recall without the items {a, b, f}. It is easy to verify that there is no way to cover q4
by adding a matching category above or below C1, such that the items {a, b, f} would be
shared by all categories, without decreasing the precision of other queries to values below
the threshold.

▶ Example 5. We next discuss, T2, the optimal solution for OCT 1(J̄0.65), the cutoff Jaccard
variant with δ = 0.65, depicted on the right side of Figure 1. It overlaps with T1, except
for the item f , which is placed in C2 instead of C4 and C1. In this case, compared to the
previously examined variant, since Jaccard variants allow for errors in both precision and
recall, and also since we use a lower threshold, it is now possible to cover all queries, albeit
with imperfect scores. Indeed, every non-root category in T2 covers a query, as explained
in the figure. Moreover, q1 is the query of the maximal weight, hence it is not surprising
that the optimal tree covers it with a perfect score, at the expense of errors in the covers of
less significant queries. We note that, in practice, the same category often covers multiple
queries. For instance, if we decrease the threshold from 0.65 to 0.4, then C1 would also cover
q2, as its precision w.r.t. q2 is exactly 0.4.

3 Preliminaries

We provide here known results and definitions, that we will use in our hardness proofs.
We conclude the section by explaining how proofs are tailored to fit both OCT and OCP

simultaneously, and discuss generalizing a tree to a DAG.

Notation. To simplify the presentation, we use a “soft-omega” notation, Θ̃(·), to hide
sub-polynomial factors. Whenever we state that a variant has inapproximability of Θ̃(nc),
for some constant c ∈ (0, 1], this compact notation implies the more formal argument that,
for any ϵ > 0, this variant cannot be approximated within a factor of O(nc−ϵ). We note that
a solution of score 1 can always be achieved by producing a single category that equals one of
the queries (for differently weighted queries we will specifically select the query of the highest
weight). Thus, Θ̃(n) is the strictest possible inapproximability factor, using this notation.

ICDT 2022



4:8 On the Hardness of Category Tree Construction

Complexity Assumptions. We next define the complexity class ZPP , as some of our results
use the assumption ZPP ̸= NP . It is known that P ⊆ ZPP ⊆ NP and that ZPP ⊆ BPP ,
where BPP is the class of problems solvable by a randomized PTIME algorithm with a
two-sided error.

▶ Definition 6. The complexity class ZPP contains the problems for which there is a PTIME
algorithm that outputs DO NOT KNOW with a probability of less than 1/2, and outputs the
correct answer with the remaining probability.

MIS. We leverage reductions from the Maximum Independent Set problem (MIS) in
uniform hypergraphs. In an r-uniform hypergraph, all (hyper)edges are vertex subsets of
cardinality r. The special case of r = 2 is a graph.

▶ Definition 7. In the Maximum Independent Set problem (MIS) in uniform hypergraphs,
the input is a uniform hypergraph G = (V, E), and the objective is to find a vertex set S ⊆ V

of maximum cardinality, subject to the constraint that no edge from E is contained in S.

We have made use of the following known results for MIS, where n = |V |.

▶ Theorem 8 ([11]). The MIS problem in r-uniform hypergraphs, for constant r ≥ 2, cannot
be approximated below a Θ̃(n) factor, unless ZPP = NP .

▶ Theorem 9 ([27], [6]). The MIS problem in graphs has inapproximability of Θ̃(n), unless
P = NP . Moreover, for graphs of sufficiently large constant degree bound d, MIS is hard to
approximate below a Θ( d

log2 d
) factor, unless BPP = NP . Furthermore, MIS is NP -hard

even for regular graphs of degree 3.

▶ Theorem 10 ([7]). For r-uniform hypergraphs with (not necessarily constant) maximum
degree d, there exists a PTIME algorithm producing an independent set of size Ω( n

d
1

r−1
).

From Theorem 10, we derive the following lemma.

▶ Lemma 11. Given an r-uniform hypergraph G = (V, E), there exists a PTIME algorithm
that produces an independent set in G of size Ω(( |V |r

|E| )
1

r−1 ).

Proof of Lemma 11. The average degree of G is d̄ = r|E|
|V | . Let V1 ⊆ V denote the set of

vertices in G whose degree is at most d = 2d̄. A simple counting argument implies that
|V1| ≥ |V |

2 . Consider the sub-hypergraph G1 of G induced by V1. Computing G1 is the first
step of the algorithm.

In the second and last step, we apply over G1 the algorithm from Theorem 10, which
produces an independent set S. By Theorem 10, the size of this independent set is

|S| ≥ Ω(
|V |
2

d
1

r−1
) = Ω( |V |

( r|E|
|V | )

1
r−1

) = Ω(( |V |r

|E|
)

1
r−1 ). ◀

Hard instances of MIS. When reducing from MIS, we will restrict ourselves to instances
where the optimal solution is of size Θ̃(n). The Θ̃(n) inapproximability of MIS implies
that this subset of inputs captures the maximal hardness. Accordingly, in our reductions,
assuming this hard set of inputs, we will leverage the fact that one cannot find (in the worst
case) an independent set of size Ω(nϵ) for any ϵ > 0.
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Probabilistic Tools. We next define the Hypergeometric and Binomial distributions and
present known tail bounds for both. These are useful in the analysis of our randomized
reduction.

▶ Definition 12. Consider sampling without replacement n uniformly random and independent
samples from a set of N elements containing K special elements, and let X denote the number
of special elements in the sample. Then, X is a hypergeometric random variable, denoted as
X ∼ H(N, K, n), and its probability mass function is Pr (X = i) = (K

i )(N−K
n−i )

(N
n) .

▶ Definition 13. Consider performing n independent experiments with success probability p.
Let X denote the number of successful experiments. Then, X is a binomial random variable,
denoted as X ∼ B(n, p), with probability mass function is Pr(X = i) =

(
n
i

)
pi(1 − p)n−i.

We use the following tail-bound for the hypergeometric distribution.

▶ Lemma 14 ([20]). If X ∼ H(N, K, n), as defined in Definition 12, and letting u = K
N ,

then, for t > 0:

Pr(X ≥ (u + t)n) ≤ (( u

u + t
)
u+t

( 1 − u

1 − u − t
)
1−u−t

)
n

.

We also use the following Chernoff bound for the binomial distribution.

▶ Lemma 15 (Chernoff Bound [23]). If X ∼ B(n, p), as defined in Definition 13, then,
denoting the expectation µ = np, for δ ≥ 1:

Pr(X > (1 + δ)µ) < ( eδ

(1 + δ)1+δ
)
µ

.

OCP and DAGs. Finally, we explain how our hardness reductions for OCT were devised to
also apply for OCP , as well as for the more general problem where one is allowed to produce
a rooted DAG with analogous combinatorial constraints. Thus, while the hardness analysis
focuses on OCT , the bounds apply for the above two problems as well.

Loosely speaking, an algorithm that produces a tree has all the capabilities it would need
for producing a similar-score partition, along with several additional possibilities to increase
the score. Hence, in our analysis, by bounding what is possible for constructing a tree, we
also bound what is possible for constructing a partition.

Concretely, observe that, over any given input, any category partition can be transformed
into a category tree of the same score, by connecting all the categories to a root. In particular,
over any given input, the optimal score, that can be achieved by a category partition, cannot
exceed the optimal score by a category tree. Importantly, in all examined variants, we
ensure that our hardness bounds are derived over a subset of inputs for which there exists a
category tree whose leaf categories induce a category partition of score Θ̃(n), implying that
the optimal score of both problems is of at least this order, which is roughly maximal (the
score for any input cannot exceed n = |Q|). It follows that all our approximation hardness
bounds for OCT hold for OCP as well.

We note that our hardness proofs also apply to the more general problem where instead
of a tree, one is allowed to produce any rooted DAG, maintaining the requirements that a
category must contain all its descendants and for each element e there are at most r different
paths from the root to a semi-leaf w.r.t. e (recall that a semi-leaf w.r.t. e is a most specific
node to which e belongs). This follows from the fact the any such DAG can be converted to
a valid tree solution, by removing edges, which does not affect the score.
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4:10 On the Hardness of Category Tree Construction

4 Approximation Algorithm for the Exact Variant

Before diving into the hardness analyses, we provide a positive result based on PTIME
approximation algorithms for the Exact variant of (weighted) OCT 1(T1,1) and OCP r(T1,1).
Note that for OCT the algorithm applies when r = 1, while for OCP it applies to any
constant r. The Exact variant is of special interest because it is a special case of all variants
pertaining to all examined similarity functions, where the error threshold is δ = 1 (or
α = β = 1 for Tα,β). We note that in [3] we show empirically that this algorithm can solve
real-world instances optimally, using as a subroutine modern weighted MIS solvers, and
extend it to algorithms suited for the more general OCT variants. Moreover, as mentioned,
the requirement r = 1 is the most prevalent in practice.

In Theorem 17 we prove that it is NP -hard to approximate this variant below a Θ̃(n)
factor. Hence, one cannot provide any non-trivial approximation guarantees for the general
case. Nevertheless, we devise an algorithm with an optimal approximation guarantee of Õ(D̄),
where D̄ ∈ [0, n], referred to as the average (weighted) degree of the input, is a parameter
relating to the number of intersections among the queries. Formally, we define a conflict as
any pair of queries that intersect and neither is a subset of the other (for OCP only the
former condition is relevant). The degree d(q) of a query q ∈ Q is defined as the number of
conflicts in the input that contain q. The average degree is the weighted average of all query

degrees in the input. That is, D̄ =
∑

q∈Q
W (q)·d(q)∑

q∈Q
W (q)

.

The proof of the following theorem and the description of the algorithms, which are based
on the connection to the weighted MIS problem, appear in the full version of the paper [10].

▶ Theorem 16. There exist Θ̃(D̄)-approximation algorithms for OCT 1(T1,1) and OCP r(T1,1).
This factor is optimal (up to negligible factors), unless P = NP .

The result above shows that the approximation hardness is strongly dependent on the aver-
age number of intersections between queries, and indeed, in the subsequent hardness analysis,
the only practical bound corresponds to a special case where Õ(D̄) is low (Theorem 17).

We remark that in all examined eBay datasets the average degree did not exceed log n,
even for high values of the maximum degree. However, we leave an in-depth empirical
evaluation along with devising algorithms for other problem variants to future work.

5 Hardness of OCT r(Tα,β)

In this section, we prove approximation hardness bounds on OCT r(Tα,β) for various ranges
of the threshold parameters. We first provide a reduction from MIS to OCT r(Tα,β) where
α = Θ(1) and β > 1

2 , proving Θ̃(n
1

r+1 ) inapproximability (n is the number of queries, and
r is the copy-bound), unless ZPP = NP . For the special case of OCT r(Tα,1) we improve
this bound to Θ̃(n). For r = 1, we strengthen these bounds by using a weaker theoretical
assumption and also provide a bound for the case of queries of bounded size.

To prove that the Θ̃(n
1

r+1 ) inapproximability extends to the case where β ≤ 1
2 , we use a

more involved randomized reduction, and also provide an analysis that captures sub-constant
ranges of the threshold parameters to derive a Θ̃((α(r+2)βn)

1
r+1 ) inapproximability bound.

The remainder of this section consists of two subsections, pertaining to the two reductions.
Each subsection is further divided into the reduction from MIS, the hardness results it
implies, and the intuition underlying the proof. We also explain why different reductions
were necessary. All formal proofs are appear in the full version of the paper [10].
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5.1 Special cases with β > 1
2

We now describe and analyze the first reduction.

Reduction from MIS. Given an algorithm for OCT r(Tα,β), denoted by A, with a (worst-
case) approximation guarantee of γ, we devise an algorithm R = RA for MIS in (r + 1)-
uniform hypergraphs. We compute a lower bound on the size of the independent set (IS)
that R produces as a function of the approximation guarantee γ. This implies a lower bound
on γ, below which R would produce an IS of size Θ(poly(n)) (n is the number of vertices in
the hypergraph), contradicting the hardness of MIS.

The algorithm R consists of a sequence of three procedures, R1, R2, and R3:
1. Given an (r + 1)-uniform hypergraph, G = (V, E), R1 transforms it into an instance Q of

OCT r(Tα,β). The universe of elements for Q consists of three types of elements: an edge
element for every edge in E, padding elements, and 1−β

2β−1 nr joint elements. Specifically,
for each vertex v ∈ V , we construct a query, qv, such that Q = {qv | v ∈ V }. Every
query contains all the joint elements. Moreover, each query, qv, also contains all the edge
elements that correspond to edges incident to v in G. Finally, we add to every query
as many unique padding elements as necessary, such that the size of the query is nr

2β−1 .
Every padding element appears in only one query. It follows that every query contains
1−β

2β−1 nr joint elements and β
2β−1 nr non-joint elements.

2. R2 consists simply of running A over Q. Let T denote the category tree A outputs.
3. R3 produces an IS S ⊆ V , as follows. Let Ĉ denote the set of categories that consists of

the lowest (closest to the leaves) covering category of every covering branch in T . Let
Q̂ denote a set of queries constructed by selecting arbitrarily from every category in
Ĉ a single query that it covers. Observe that Q̂ is an r-weak partition. We denote by
V̂ = {v ∈ V | qv ∈ Q̂} the set of vertices that corresponds to the queries in Q̂, and denote
by Ĝ the sub-hypergraph of G induced by V̂ . R3 computes Ĝ and applies over it the
algorithm from Lemma 11, producing an IS S, which is the final output.

For simplicity, we ignore rounding issues, as rounding the parameters to the nearest
rational fraction has a negligible effect, and the number of vertices, n, can be manipulated
by adding vertices that are connected to all other vertices.

Hardness bounds. The construction above implies the following hardness bounds.

▶ Theorem 17. The OCT r(Tα,β) problem, with constant α ∈ (0, 1] and β > 1
2 , cannot be

approximated below a Θ̃(n
1

r+1 ) factor, unless ZPP = NP . For OCT r(Tα,1) this is improved
to Θ̃(n). For r = 1 these bounds hold for the assumption P ̸= NP . Moreover, OCT 1(Tα,1)
with maximum query size d = Θ(1) is hard to approximate below a Θ̃(αd) factor, unless
BPP = NP . Lastly, OCT 1(T1,1) is NP -hard even when all queries are of size exactly 3.
The bounds for OCT 1(Tα,1) hold even when query intersections are of cardinality at most 1.

We explain below the intuition underlying the reduction and the proof outline.

Intuition. When β = 1, there are no joint elements, and each query consists of all the
relevant edge elements along with padding elements that ensure its size is exactly nr. In the
Exact variant, every covering branch in T covers exactly one query, and this independently-
covered set of queries corresponds to a set of vertices that is independent in G. Therefore, if
T covers poly(n) queries, we can find an IS of the same size in G.
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When relaxing the precision threshold, α, it becomes possible for the same branch to cover
multiple queries. As we want to select one query from each branch to ensure independence,
it may no longer be the case that the number of covering branches is of the same order as
the solution. Nevertheless, on every covering branch, the covering category C closest to the
root must contain all elements of all covered queries on the same branch. If there are many
such queries, then C would not satisfy the precision requirement. Intuitively, a branch can
cover no more than O( 1

α ) = O(1) queries. It follows that the set of independently-covered
queries, Q̂, is of the same order as the score of the tree in this case as well.

Matters are more complicated when the recall threshold β is also relaxed. It is no longer
the case that an independently-covered set of queries corresponds to an IS. It is now possible
for (r + 1) such queries to correspond to an edge in G, as the cover of at least one of these
queries can avoid containing that edge-element. Without including joint elements in the
reduction, the cover of every query could omit a constant fraction of the edge elements, which
amounts to O(nr+1) edge elements, such that a large independently-covered set of queries
could correspond to even a very dense subgraph in G.

To that end, we show that a cover of a query must include a joint element per every
omitted edge element. Since all queries share the joint elements, this hinders the ability of
covers in other branches to omit edge elements. It follows that the total number of edges in
a subgraph corresponding to an independently-covered set of queries contains at most O(nr)
edges which is the total number of joint elements. Therefore, a tree of high score would
correspond to a large vertex set which is also sparse. From this “almost IS” we can derive a
somewhat smaller, but still polynomial-sized, IS, using Lemma 11.

Adding joint elements may allow covering more queries on a single branch, as including
joint elements in a category contributes to its potential cover of all queries. However, we
show that the number of covered queries by a single branch is bounded by a constant.

We ensure that the optimal OCT solution is of score Θ̃(n). Thus, if the approximation
factor of A is low, the eventually derived IS is large. In particular, we ensure that the tree
contains a category partition of the same score so that all bounds also hold for OCP . Observe
that the maximum IS in G induces the category partition where every category covers a
single query pertaining to a vertex in the set, with all covers including all of the non-joint
elements and no joint elements. The categories in this partition satisfy the recall condition
as narrowly as possible. Intuitively, this construction means that, while joint elements help
an algorithm to an extent, beyond that it must make progress on the MIS problem.

5.2 General threshold parameters
We have examined so far the hardness of various special cases of OCT r(Tα,β) where the recall
threshold is β > 1

2 . In particular, we proved for 1
2 < β < 1 inapproximability of Θ̃(n

1
r+1 ).

We next devise a more involved construction to show that this result extends to β ≤ 1
2 and

also provide more general bounds for polynomially small threshold parameters. We note that
since the modified construction is randomized, the bound derived for r = 1 does not hold
under the weaker assumption of P ̸= NP , unlike in the first construction.

Modifications. To facilitate a precise discussion, we first define, given a subset of queries Q′,
the multiplicity MQ′(e) = |{q ∈ Q′ | e ∈ q}| of an element e in Q′ as the number of queries
in Q′ that e appears in. The reduction used for Theorem 17 becomes ineffective because in
the OCT instance constructed by R, the set of joint elements makes up a (1 − β)-fraction of
every query, and for β ≤ 1/2 the set of joint elements becomes large enough, such that a
category, that consists exactly of this set, covers all queries, yielding the optimal tree score.
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To fix this, we need to alter the construction such that joint elements are not shared by
all queries. We want to limit the number of joint elements with high multiplicity in any large
query set (we will formalize this high-level statement with concrete thresholds in Lemma 21),
to make it hard for a single branch to cover it while retaining properties essential for the
hardness proof.

Concretely, we want any single joint element to be shared by many queries, and for a
(1 − β)-fraction of every query to consist of joint elements, so that the tree that corresponds
to the optimal MIS solution narrowly exceeds the recall requirements. This requires using
more joint elements. However, having more joint elements can make Ĝ less sparse, reducing
the size of the produced IS. To achieve these desired properties while minimally increasing
the number of joint elements, we devise a randomized reduction. Moreover, we parameterize
it to efficiently capture sub-constant ranges of α and β, to aim for a slower decay in the
hardness bound, as these thresholds are decreased.

Generalized reduction from MIS. Our revised MIS algorithm denoted by R′ consists of
a sequence of three procedures, R′

1, R′
2 and R′

3. To avoid a convoluted presentation, we
reuse some of the notation, initially defined in the context of the first algorithm R.

1. Given an (r + 1)-uniform hypergraph, G = (V, E), R′
1 transforms it into an instance

Q = {qv | v ∈ V } of OCT r(Tα,β). Each query, qv, contains all the edge elements that
correspond to edges incident to v in G, and as many unique padding elements as necessary,
such that the number of non-joint elements in every query is exactly nr. Finally, we
distribute ( 1

β − 1) log3 n
α nr distinct joint elements to queries via the following randomized

scheme. We draw uniformly randomly ( 1
β − 1)nr partitions of Q into log3 n

α subsets, each
of size αn

log3 n
. Let P̂ denote this set of partitions. In every partition, p̂ ∈ P̂, every set,

ŝ ∈ p̂, in that partition is assigned a distinct joint element to be included in all queries in
the set. Note that the size of each query is now exactly n

β .
2. The procedure R′

2, same as R2, runs over Q the given OCT r(Tα,β) algorithm A with an
approximation guarantee factor of γ. Let T denote the category tree A outputs.

3. Finally, R′
3 is the same as R3, except for the following modification: if there is a branch in

T that covers more than Θ̃( 1
α ) queries, then it outputs DO NOT KNOW, and otherwise

proceeds as R3 to produce an IS S.

Generalized hardness bounds. We now state the approximation bounds implied by the
revised reduction, followed by the intuition underlying the proof.

▶ Theorem 18. The OCT r(Tα,β) problem cannot be approximated below a Θ̃((α(r+2)βn)
1

r+1 )
factor, unless ZPP = NP .

Intuition. The most significant component in the proof is the following technical Lemma.

▶ Lemma 19. W.p. 1 − o(1) (over the choices of partitions in P̂) the maximum number of
queries in Q a single branch (in any tree) can cover is Õ( 1

α ).

We wish to show that precision cannot be maintained past a certain number of covered
queries on a branch. We use the term relevant cover of a query q, to refer to the intersection
of q with its covering category C, with the relevant cover size being |q ∩ C|. One must be
careful in selecting the query for which the precision condition is invoked, to derive a tight
bound. On the one hand, we aim to select a query covered close to the root, so that its
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covering category contains the covers of many other queries. On the other hand, we want to
select a query whose relevant cover is small. Thus, we first prove that for any branch, there
exists a query q covered by C, such that at least a constant fraction of the covered queries
on the branch are covered by C or a lower category, and that the average relevant cover size
of these queries is smaller than the relevant cover size of q by at most a logarithmic factor.

▶ Lemma 20. Given a branch B that covers k′ queries, there exists a query q covered by a
category C in B, with the following two properties:
1. the set of queries, Qk, covered by C or categories below C is of cardinality k = Θ(k′).
2. let d ∈ [1, 1

β ] denote the value for which the average relevant cover size of queries in Qk

is nrd, then the relevant cover size of q is at most (2 log n)nrd.

Given q and C as in Lemma 20, we derive from the precision condition an upper bound
on |C|. On the other hand, C contains the union of the k covers of the queries in Qk, and
we show that for k = ω̃( 1

α ), the union of the k covers, and thereby C must contain many
elements, beyond the upper bound, resulting in a contradiction. The key to proving that
C contains many elements is bounding the multiplicity of the joint elements in Qk. If all
elements had constant multiplicity, then an α precision threshold implies that, when the
relevant covers are on average of roughly the same size as the relevant cover of q (which is
the case following Lemma 20), the number of covered queries is O( 1

α ). To that end, we show
that the multiplicity of almost every joint element in Qk does not exceed Õ( k

α ).

▶ Lemma 21. For any set Qk of k = ω( log3 n
α ) queries, w.p. 1 − o(1), there are at most nr

2
partitions in P̂ where a joint element is assigned to more than θ = αk

8 log n queries in Qk.

The proof of Lemma 21 consists of a combination of probabilistic arguments. We first
prove that this θ bound on the number of partitions holds for a uniformly randomly selected
set of k queries w.p. 1 − o(n−k). Then, by using a union bound argument, it will follow that
this bound holds for any selection of k queries w.p. 1 − o(1).

To prove the bounds of Lemma 21 for a randomly selected set Qk of k queries, observe
that a joint element is shared by polylogarithmically less than a 1

α -fraction of the queries
in Q. Therefore, its expected multiplicity in Qk would constitute the same fraction. To
bound the probability of significantly deviating from this expectation, we show that the
multiplicity of any joint element in Qk is a hypergeometric random variable, and use a
tail bound. Following a different union bound argument, this bound on the probability
is extended over every joint element assigned in a given partition in P̂. Finally, since the
partitions in P̂ are chosen independently, we use a Chernoff bound to derive an upper bound,
that holds with high probability, on the number of partitions in P̂ in which a joint element
with high multiplicity was assigned. We show that if these deviations occur sufficiently rarely,
as stated in Lemma 21, then the cardinality of C increases as a function of k, deriving the
bound k = Õ( 1

α ).

6 Other Variants

So far we have proven hardness of OCT r(Tα,β). In this section, we provide approximation
hardness bounds for the remaining OCT variants, via reductions from OCT r(Tα,β) and
Theorems 17 and 18.

We first show that the Θ̃(n
1

r+1 ) bound of OCT r(Tα,β) with constant thresholds extends
to the threshold versions of Jaccard and F1 scores, with similar inapproximability for sub-
constant thresholds as well. We then use these results to derive bounds for the cutoff versions
of these functions, which only differ for δ = o(1).
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We formulate our proofs schematically, such that they may be applied to threshold and
cutoff variants of other functions.

For threshold functions, we derive the following bounds.

▶ Theorem 22. The variants OCT r(Ĵδ) and OCT r(F̂1(δ)) cannot be approximated below
a Θ̃((δr+3n)

1
r+1 ) factor, unless ZPP = NP . For r = 1, we have Θ̃(

√
n) inapproximability,

assuming P ̸= NP , for OCT r(Ĵδ) with δ > 1
2 and OCT r(F̂1(δ)) with δ > 2

3 .

Finally, we provide bounds for cutoff functions, that follow from Theorem 22.

▶ Theorem 23. The variants OCT r(J̄δ) and OCT r(F̄1(δ)), with δ ∈ [0, 1), have
Θ̃((δ2r+4n)

1
r+1 ) inapproximability, unless ZPP = NP . For r = 1, we have Θ̃(

√
n) in-

approximability, assuming P ̸= NP , for OCT r(J̄δ) with δ > 1
2 and OCT r(F̄1(δ)) with

δ > 2
3 .

7 Related Work

The construction of category trees/taxonomies has been studied in multiple domains, including
e-commerce, document management, and question answering [9, 24, 12]. Many algorithms
have been devised for automating taxonomy construction [17, 9, 18] and maintenance,
[22, 24, 26] employing different clustering approaches [9, 17], as well as crowdsourcing [21].

In the lines of work specified above, the quality of the resulting taxonomy is assessed
along the following two dimensions.

The first dimension of quality assessment is user-study [9, 17], an evaluation which we
incorporate w.r.t. our model in the complementary empirical work [3]. This evaluation is
naturally entirely subjective.

The second dimension, which is the focus of the present paper, is the similarity of
the resulting category tree to a given (combinatorially unrestricted) ground-truth set of
items/documents. For example, the F1 score used in [17, 9, 18] is a variant (without a
threshold) of our corresponding F1 measure for r = 1. Similarly, [22] computes recall and F1
scores for the resulting trees, also with r = 1.

To our knowledge, however, no previous work investigates the theoretical complexity
of the optimization problem of computing the tree of the highest score. The score is only
used as an evaluation measure, to which the algorithm is oblivious. This approach, to an
extent, is loosely justified by our worst-case bounds. Nevertheless, we show in [3] and [4],
that leveraging the relation we outlined in Section 4 to the weighted MIS problem, allows
solving well (and, in some cases, optimally) real-world problem instances, via extensively
studied MIS solvers.

Our model differs from clustering models [19, 13] that typically focus on item-similarity,
optimizing the similarity within each cluster or the dissimilarity across clusters. Moreover,
these models are commonly defined by pairwise similarities, while our model also considers
relations of a higher order. Thus, closest to our work in this domain is the field of hypergraph
partitioning (clustering) [14, 16]. Specifically, the OCP problem with copy-bound r = 1
corresponds to seeking a partition of the vertices that maximizes the weight of (hyper)edges
for which there is a similar set in the partition. Relaxing the copy-bound corresponds to
overlapping clusters. Importantly, this relation between hypergraph clustering and our model
is different from the more artificial relation leveraged in our reductions, where we cluster
the hypergraph edges, instead of the vertices. Nevertheless, our proposed framework differs
from existing models in several aspects. Notably, hypergraph clustering typically studies a
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multi-way cut problem, intending to minimize the weight of the cut edges. Recently [16]
suggested that there is a benefit in quantifying how an edge is cut, in terms of which subsets
of its vertices are clustered together. Our work is relevant in that respect, as we quantify
how similar these subsets are to the original edge.

A work resembling ours in a different aspect is [25], where the objective is to maximize
the edge weights inside the cluster (we also maximize the covered “demand”, instead of the
less natural minimization of uncovered demand). However, the models of [16] and [25] (and
many others [15, 8]) are easier to approximate, due to principal technical differences (e.g.,
bounds on the size and number of clusters), and we are not aware of clustering research that
resembles our model or bounds.

8 Conclusion

In this paper, we studied the hardness of computing categorizations with a bounded number
of possible repetitions, that best capture a given collection of item sets. We defined a model
that captures various practical settings and proved inapproximability results for multiple
variants and special cases. We also provided an algorithm for the Exact variant with an
approximation guarantee that depends on finer input parameters.

An interesting direction for future work would be to identify more special cases that
admit improved performance. Another intriguing avenue of exploration is determining for
cases where we showed Θ̃(

√
n) hardness, whether one can devise algorithms with matching

approximation guarantees or prove stronger bounds.
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