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Adaptive multigrid solutions of gravity-driven

thin liquid films over topography

Y.C. Lee, H.M. Thompson and P.H. Gaskell *

School of Mechanical Engineering, The University of Leeds, Leeds LS2 9JT, UK.

Abstract

Gravity-driven continuous thin film flow over a plane, containing well-defined sin-
gle and grouped topographic features, is modelled as a Stokes flow using lubrication
theory. The associated time dependent, nonlinear, coupled set of governing equa-
tions are solved using a Full Approximation Storage (FAS) Multigrid algorithm by
employing automatic mesh adaptivity, the power, efficiency and accuracy of which
is demonstrated by comparing the results with corresponding global fine-mesh solu-
tions. These show that automatic grid refinement effectively restricts the use of fine
grids to regions of rapid flow development which, for flow over the topographies con-
sidered, includes the topography itself, the upstream Capillary ridge, downstream
surge region, and the characteristic bow wave. It is shown that for the accurate
solution of such flow problems, adapative Multigridding offers increased flexibility
together with a significant reduction in memory requirement. This is further demon-
strated by solving the problem of transient flow over a trench topography, generated

by a sinusoidally varying inlet condition.
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1 Introduction

The behaviour of continuous thin liquid films which flow over non-porous
substrates is of enormous significance in a wide variety of biological, engi-
neering and industrial applications. Although much is now known about such
flow over homogeneous surfaces [1], the inherently more challenging problem
of flow over surfaces containing topography has received far less attention.
The latter is encountered in many biological processes including, for example,
when the liquid lining in the lung redistributes following the impact of an
inhaled particle [2], when tear films coat the curved cornea in the eye [3], or
in membrane blood oxygenators in extra-corporeal systems [4]. They are also
encountered widely in manufacturing industry, particularly in the electronics
sector (displays, printed circuits, micro-devices, sensors etc) whose processes
usually involve the successive deposition of several thin liquid layers over un-

even substrates combined with photolithography at each stage [5].

Increasing demands viz. function, quality and finish are driving the require-
ment for a better understanding of the mechanisms leading to free surface
non-uniformities, and significantly how to control defects caused when a film
encounters a topographical heterogeneity. A major goal is, not surprisingly,
the minimisation of free surface deviations from planarity, for either func-
tional or aesthetic reasons, or both. This represents an extremely challenging
practical problem since free surface disturbances caused by even small-scale
topography can persist over length scales several orders of magnitude greater

than the actual size of the topography.
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Until quite recently, attention has focussed on thin film formation over simple,
step topographies, modelled in terms of the long-wave, lubrication approxima-
tion [6]. Kalliadasis & Homsy [7], for example, considered the flow over a one-
dimensional trench under the action of an external body force, before moving
on to investigate the stability of Capillary ridges in flow over a step-down to-
pography [8]. Thin film flow over one-dimensional sinusoidal topography has
also been considered in a recent series of experimental [9,10], analytical [11]
and numerical investigations [12]; these have highlighted the rich variety of
flow structure, eddy generation and mass transfer phenomena that can be

produced by even simple topography shapes.

Due to the formidable experimental, theoretical and computational challenges
involved, fully three-dimensional flow over topography has received far less at-
tention. Indeed, the important early contribution of Pozrikidis & Thoroddsen
[13], which showed that even a small particle topography can result in signif-
icant upstream and downstream disturbances to the free surface of the film,
remained the main contribution in the area until Hayes, O’Brien & Lam-
mers [14] formulated a Green’s function approximation to solve for flow over
small topographies of arbitrary shape. Bielarz & Kalliadasis [15] subsequently
considered flow over larger, three-dimensional mounds. They employed a lu-
brication model for the flow and used a semi-implicit time-spliting technique,
see for example [16], together with the popular alternating-direction implicit
(ADI) scheme, to solve the resulting governing 4th-order partial differential
equation. Their numerical approach follows that of Schwartz & Eley [17], who
used a lubrication framework to investigate droplet spreading phenomena.
Their motivation for using this method of solution is that it combines some of

the stability properties of implicit schemes with the cost efficienty of explicit



ones. This has been explored by Daniels et al [18] who, considering the flow of
a droplet down an inclined plane, showed that a fully implicit multigrid lubri-
cation flow solver is more robust, returns an order of magnitude improvement
in the rate of convergence for the levels of grid refinement required for accu-
racy and requires far less memory. Gaskell et al [19] demonstrated the point
still further by solving a series of problems involving the motion of droplets on
chemically and topographically heterogeneous surfaces by combining a multi-

grid solver with adaptive time-stepping [20].

As to the appropriateness of the lubrication approximation for solving the
problem of the flow of continous thin films over localised well-defined topog-
raphy, the full numerical solution of the corresponding Stokes problem using
boundary elements [21] and Navier-Stokes equations, using finite elements [22],
have demonstrated that it is suprisingly accurate even in regions of parame-
ter space where it is not strictly valid. This is reinforced by the fact that the
numerical predictions are found to agree very well indeed with the correspond-
ing experimental data of Decre & Baret [5], in that they predict and capture
accurately the characteristic horseshoe bow wave generated downstream of a
localised topography. Similarly, a lubrication model has been used recently
to solve the three-dimensional flow of evaporating thin films over topography
[23]; the use of fine meshes revealing that evaporation can lead to persistent
heterogeneities in the composition of the resin/solvent mixture which have the

potential to cause unacceptable variations in dry, functional coatings.

Despite a Multigrid approach being an effective means of solving thin film
flows, the use of uniformly-spaced fine grids is unnecessarily inefficient for prac-
tical problems of the type considered here since topographic heterogeneities

are often either very localised and sparsely spread across the substrate or, as is



shown, can be grouped together in a specific pattern to minimise free-surface
deformations. The key thrust of the present work, therefore, is to formulate
and utilise an efficient and accurate automatic, adaptive local grid refinement
strategy, which constrains the use of fine grids to regions of the solution domain
where they are required, i.e. in the vicinity of the topographies themselves,
thus allowing much coarser grids to be employed over the rest of the solution

domain.

The idea of local mesh refinement is not new. Indeed, numerical investigations
using mesh adaptivity to balance local discretisation errors based on the na-
ture of the problem being investigated have been performed for a wide range
of applications. Specifying the adaptive regions a-priori, Bai and Brandt [24]
applied patial refinements to Poisson’s equation in two-dimensions and showed
that accurate solutions are preserved by retaining conservation forms where
local refinements are introduced [25]. Thompson and Ferziger [26] used this
idea to develop an efficient and accurate adaptive Multigrid approach for cav-
ity driven flows. Patch-based adaptive mesh refinement (AMR) techniques
[27] have since become very popular for spatial discretisation by using a dy-
namic sequence of overlapping grids of increasing fineness from the underlying
coarse grid. These have been used in a host of scientific simulations rang-
ing, for example, from turbulent flows [28], porous media investigations [29]
and elastohydrodynamic lubrication problems [30] to a range of bio-medical
problems [31]. The alternative approach of applying adaptive h-refinement has
also proven popular and particularly beneficial when solving Partial Differen-
tial Equations (PDEs) with singular characteristics [24], non-linearities [27],

or rapidly changing properties [32].

Section 2 describes the flows under consideration together with the governing



lubrication model. The Multigrid approach and automatic grid refinement
strategy are presented in Section 3, followed by numerical results in section
4. The conclusions of section 5 highlight the benefits of using a fully implicit,
Multigrid algorithm with automatic adaptive mesh refinement for the efficient

solution of this important class of fluid flow problems.

2 Problem Specification and Mathematical Formulation

Figure 1 shows a sketch of the motion of a thin liquid film of thickness H(X,Y)
over a flat substrate, containing three topographic trenches of various cross-
sectional shapes, inclined at an angle 6 to the horizontal, with a constant
volumetric flow )y per unit width. The liquid is assumed Newtonian and
incompressible, with constant density p, viscosity p and surface tension o,

and its motion governed by the Navier-Stokes and continuity equations, viz:

i
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+Q.VQ>= —VP +uV°U +py, (1)
V.U = 0, (2)

where U = (U, V, W) and P are the fluid velocity and pressure respectively, T

is time and g = g(sin#, 0, — cos §) is the acceleration due to gravity.

Following Aksel [33], an appropriate length scale for non-dimensionalisation

purposes is the undisturbed fully developed film thickness:

H, = < 3pQo )1/3 ’ (3)

pgsin 6



while the characteristic velocity Uy is taken to be the corresponding surface

velocity of the fully developed film, namely:

_ 3G
2H,

Us
Implicit in the choice of scales is the assumption that 6 # 0, i.e. the substrate

is never horizontal.

The flow over localised topography is analysed using the long wave, lubrication
approximation. The equations to be solved for the film thickness H(X,Y,T)
and pressure field P(X,Y,T) are derived from expansions of equation (1) and
(2) under the assumption that e = Hy/Lg is small, where Ly is the character-
istic in-plane length scale, written in terms of the following non-dimensional

(lower case) variables:

h(xay:t) - HO ’ s(x,y) - HO ’ (x,y) LO ’

Z 0.0 2P(X,Y,T) (0,0, 0) = ( Uuv w U,T

= — = " = (— —, — P —
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where the surface profile of the substrate is given by the topography function

s(z,y), so that the fluid film lies between z = s and z = h + s.

Neglecting terms O(€?), and imposing the no-slip condition on the substrate,
z = s, and zero tangential stress at the film surface, z = h + s, yields the
following lubrication equation for A in terms of the pressure field, p, derived

by imposing mass conservation:
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The pressure field throughout the film is given by:

3
p:_€_V2(h+3)+26(h+s—z)cot9, (6)

Ca
where the pressure datum is set to zero. The z-dependence in equation (6)
does not have any influence on the film thickness A since its partial derivatives
with respect to x and y are both zero. Choosing the length scale Ly to be

proportional to the capillary length, L., that is:

“M>>U3: Hy (7)

Ly=p3L., where L. =
’ ( (6Ca)3

3pgsin 6

enables equation (6) to be rewritten as:

6 2
p= —@VZ(h-I—S) - 361/3N(h+s), (8)

173 cot §, which measures the importance of

in terms of the parameter N = Ca
the normal component of gravity on the flow. If N < 1 the latter is negligible
and (8) becomes parameter free in the sense that the behaviour of the thin

film will depend only on the topographic features.

Following previous authors [6], the topographies are defined via arctangent
functions which enable the steepness of their sides to be controlled easily. For
a topographic peak of rectangular cross-section of length [;, width w; and
height sy centred at (x4, y;), for example, the topography function s(z,y) is
defined by:

B Y (LS. N EUEEE TN B

ltanl (ﬂ(y—yt)—wtﬂ) + tan-1 (ﬁ(yt—y)—wt/Q)] )

Ywt YWy




where v is an adjustable parameter which controls the steepness:

1 A
bp = 4tan" (ﬂ) tan™! <5> : (10)

and A = w;/l; is the aspect ratio. Similar functions can be derived for other

sharp-sided topographies.

The boundary conditions result from the assumptions that the flow is fully

developed upstream and downstream, namely:

oh oh ap
h = = 1 —|z=0 = y =1 = = |z=1 = . 11
(x=0,y) ; Bx‘ 0=20 695‘ 1 8x| 1=0 (11)

while zero flow at the boundaries in the spanwise directions requires:

_ dp oh oh

0
L = _‘y=0 = _‘y=1
Oy oy

3y|y:0 = 8_y‘y:1 - =0. (12)

3 Numerical Method
3.1 Spatial Discretisation

The lubrication equations (5) and (8) are solved on a square computational
domain, (z,y) € Q = (0,1) x (0,1), with uniform grid spacings in the z
and y directions, A, and A,, respectively. Although the techniques used here
are readily applicable to cases where A; # A,, for simplicity attention is

restricted to cases where the spatial mesh size is the same in each direction,

ie. Ay = Ay = A, say.

Following Gaskell et al [19], a Finite Difference discretisation is used where con-

trol volumes are centred at grid vertices, h and p are assumed to be piecewise



constant and the flux variables are defined at the control volume boundaries,
as indicated by the dashed lines in Figure 2. Equations (5) and (8) can then
be approximated spatially using a central-difference scheme [34], leading to

the following second-order accurate spatial discretisation:

8hi,j 1 h3 h3
T = A2 [§|i+§,j (Pz'+1,j - pz',j) - §|i—%7‘j (pi,j — pi_l,j) +
h? B3
? ij+3 (pz',j+1 - pi,j) — ? inj—1 (pi,j _pi,j—l) _
2 (h3 K3
Z(g‘ﬁé,j o §|i—%,j)) (13)

6
Pij+ x5 [(hm,j +sit15) + (hicry + 8ic19) + (higar + 8i51) +

(hi,j_1 =+ Si,j—l) — 4(hi,j + Si,j)] — Q%N(hi,j + Si,j) =0, (14)

.. . . . h3 h3
for each, (i,7), in the computational domain. The terms, |ii1;, % lijz1

are the pre-factors obtained from linear interpolation between neighbouring

vertices, and given by:

b3 1/1,, 1,
Flirti =3 (‘hz‘+1,j + ghz‘,j)a (15)
with similar expressions for the %3\1-_%,]-, %3 ijr1s and, ’13—3|Z-,j_% terms.

3.2  Temporal Discretisation

The standard implicit, second order accurate Crank-Nicolson method is used
to approximate the time-derivatives in equation (13), requiring it to be ex-
pressed in differential-algebraic form as:

Oh; ;
ot

= F(hij, pij, hix1j, Dix1,js Pij1, Dijx1), (16)
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for each node (7,7) in the computational domain. The implicit nature of the
Crank-Nicolson scheme ensures the stability of the time integration. Accord-
ingly, equation (16) is written as an equation for the unknown variables at the
end of the (n+ 1)th time step (with superscript n+ 1) at ¢ = t"*! in terms of
the known values at the end of the nth time interval, ¢ = ", via:

+1 Atn+1 +1 +1 +1 +1 +1 +1
n n 7, n 7 n n
i T o F(hi,j Dy j ’hi:tl,j’pi:tl,j’ i,j:l:l’pi,j:l:l)

" Atn+1

F(h?,j?pz]‘? hz'n:tl,jap?:tl,jv th:I:lvaj:tl)a (17)

for which At"*! = ¢"*1 — ¢ and the right hand sides are given in terms of

known values at t".

3.8  Multigrid Solution Strategy

A key feature of Multigrid methods is that they offer the prospect of being
able to solve a discrete problem with N unknowns in only O(N) operations.
Moreover, the intrinsically scalable Multigrid algorithm is readily applicable
to both linear and non-linear problems and displays efficiencies that are inde-

pendent of grid sizes, domain shape and boundary type.

The adaptive Multigrid strategy adopted embodies the Full Approximation
Storage (FAS) and Full Multigrid (FMG) concepts introduced by Brandt
[35]. The Multigrid uses a sequence of progressingly fine grids, (Gx : k =
0,1,2,..., K), which corresponds to decreasing mesh sizes, (A : £ =0,1,2,..., K),
defined on the domain 2. On G, Ay is defined by the number of mesh nodes
in each co-ordinate direction, n, = 28t¢*! 4+ 1, where c is a constant defining
the resolution of the coarsest grid level. The spatial co-ordinates of its grid

points are given by:

11



zi=(i—1)A y;=0—1)Ar  where A = 27 kFetD), (18)

By employing a vertex-centered discretisation on uniform quadrilateral grids,
the discretised non-linear governing lubrication equations (13) and (14), de-

fined on Gy, may be re-written respectively as:

NPT i) = fr(hg, ph), (19)
NE (R i) =0, (20)

where hj; = and p} are the film thickness and pressures on the kth grid at the
nth time step, ¢ = t", and iZ corresponds to the right-hand sides of equation
(17) on Gg. The Multigrid method can be explained more clearly by expressing

equations (19) and (20) via the single equation
Ny ™ = £ (uf), (21)

with Ny = (M2, NP), ux = (hy,p,)" and £ = (ff, ff) where ff =

3.3.1 The Full Approxzimation Storage (FAS) Cycle

For reasons of clarity the FAS multigrid algorithm is described first for a
sequence of two grid levels with fine grid G; and coarse grid G,. Note that
only one Multigrid cycle is used to solve equations (21) but within this cycle
a variable number of Multgrid iterations are used, depending on a prescribed
error tolerance. Hence, it is necessary to introduce a number, m say, which
indicates the present Multigrid iteration. At the beginning of each Multigrid

cycle m = 0, and increases with the number of Multigrid iterations used.

Starting from a given initial fine grid approximation, uyf* = (E;T,ET)T, the

Multigrid process begins by performing a number, v, of pre-relaxation sweeps

12



on G to yield relaxed fine grid values uy}". This is followed by the coarse grid
correction stage where a coarse grid solution on G, is computed from the
;™ and its residuals, d™ = (d7"", d7"?)”, with the use of appropriate inter-
grid transfer operators. Once the solution to the coarse grid equations, w{* =
(wg™, wi")T say, are obtained, the corrections terms, vi* = (vf"", vg?)T, for
the fine grid approximation are interpolated back onto G;. The updated fine
grid solution then undergoes v post-relaxation sweeps to obtain better ap-
m+1

proximations for the new iterate, uy7"" ", to be used with subsequent Multigrid

iterations. This process is repeated until satisfactory convergence is achieved.

The general Multigrid algorithm extends the relaxation and coarse grid correc-
tion procedures from a two-grid perspective to include a larger number of grid
levels. This allows longer wavelength error modes that are not representable on
finer grids to be reduced by relaxation on coarser grid levels. The coarse grid
correction scheme is then employed recursively until the discretised equations
can either be solved directly or with only a few relaxations. Note that the
value of k, which represents the number of iterations of the Multigrid process
at each intermediate grid level, determines the type of coarse grid correction
cycle. Here, V-cycles with k = 1 are employed. The inter-grid transfer opera-
tors used in the Multigrid algorithm consist of restriction operator Rﬁ_l (from
Gk to Gx_1) and prolongation operator, I¥ | (grid Gx_1 to Gi), whose orders
depend on the order of derivatives in the PDE being solved [36]. For the sec-
ond order lubrication equations considered presently, standard half-weighting

restriction and bi-linear interpolation are appropriate.

The Full Approximation Storage (FAS) Multigrid algorithm employed can be

described using Trottenberg et al’s [37] pseudo-code formalism, via:

13



Multilevel FAS Cycle u,}*"! = MGFASCYC(k, o, £y, v1, v2, k)
(1) Pre-relaxation:
- Perform 1, relaxation sweeps:
up,' = RELAX (uo}*, i)
(2) Coarse grid correction:
- Compute residual on G
p =ty — Nypugy'
- Restrict residual to next coarser grid level on Gy
k1 = Ri_ld;cn
- Restrict fine grid solution from Gy
oy, = Ry o
- Compute right hand side on Gi_;
fr1 =dit; + Ny_jupy’
- If k£ =1, solve the problem using the coarse grid solver.
Nyp_wit, =f
If £ > 1, perform & iterations using Uy}, as initial approximation,
wp', = MGFASCYC(k — 1, up;" 1, fx—1, 11, o, K)
- Compute corrections on Gy_; with,
Vil = Wity — oy
- Interpolate corrections onto Gy
vit =T ik,
- Update approximated solution on G, with,
Uy = oy + Vi’
(3) Post-relaxation:

- Perform 1, relaxation sweeps:

w, " = RELAX (ugf, £

14



3.3.2  The Full Multigrid (FMG) Cycle

If computations are initiated on the finest grid simply by using an arbitrary
initial guess, the Multigrid solution may diverge. This problem can be avoided
if the solutions from coarser grids are used to generate an appropriate initial
estimate for the next finer grid level in the hierarchy. This is referred to as the
Full Multigrid (FMG) technique [38]. The FMG procedure coupled with the
FAS algorithm, shown schematically in Figure 3, for a total of 4 grid levels,

proceeds as follows. More generally if K is the number of grid levels,

For k=0,1,2,..., K
- If k=0, solve Nouerl = f; to obtain initial guess u;{’
-If k>0,
Interpolate onto fine grid on Gy
wop = 1w

Compute u; ;"' = MGFASCYC(k, uo®, £y, v1, 1o, K)

Note that ITI¥ , is a prolongation operator for transferring information from
Gr—1 to Gi and its order may or may not be equal to that of the prolongation

operator IF ..

3.3.8 Relazation

Error reduction is performed using a fixed number of pre- and post- Red-
Black Gauss-Seidel Newton relaxations on equation (21). This requires the

local Jacobian to be calculated and yields linearised equations in the form:

ON} ON}
ahnf—l Ah+ 8 n—lil

LIk a]k

Ap=fl— N (Bt pr*t) (22)

15



a/\/’/f aN/f P 14 n+l _n+l
Tt A G A (23)

for the increments Ah; j;, and Ap; ;, which are used to obtain the next approx-

i:jk

imation to the solution of the discretised equations on G, via:

—— n+1
hoijy = hoi, + Ahajy (24)
Poigy = Poitj, + Apijy - (25)

On the domain boundaries, Dirichlet conditions are resolved by assigning exact
values at boundary nodes, while Neumann conditions are imposed by intro-

ducing additional ghost nodes outside the computational domain.

3.8.4 Coarse Grid Solution

On the coarsest grid level, Gy, the discretised equations (19) and (20) are

solved using Newton iteration. Defining the Jacobian matrices as:

_ONg o ONG NG
oy = omy

[ES

(26)

the linearised solution to the coarse grid equations (19) and (20) are obtained

by solving:
AAwh+ BAwk = f8 — NE (wh, wf) | (27)
C Awh+ D Aug = fif — Ny (wf, wh) (28)

where (w{}, wh) and Mg, Aw} denote the first approximation to the coarse grid

solution and its increments, respectively. The former are obtained as follows.

First set MQ = 0 to yield an initial approximation to Aw}, via:
Auwf = A7 (f7 = NG (wh,uf)) - (29)

16



Eliminating Aw} from equations (27) and (28) gives the equation for Awl,

with:
(D~ CA'B)Awf = f — L5 (wf, uf) — CAwf (30)

the solution of which is then used to obtain the next approximate solution,

(w§, wp), from:

wh = wl + Awl, (31)
wh— wh + Auf — A~ BAw: (32)

This iterative process continues until the norm:

18 = N () 2 £ = N () 2

Te

) (33)

where n, = 2! + 1 is the number of nodes in each direction on Gy, is suf-
ficiently small. An adequate convergence criterion is that the residual should
be reduced below 0.1% of the value obtained using the initial estimate from

the previous time step.

3.4 Adaptive Local Mesh Refinement

The incorporation of mesh adaptivity into a Multigrid framework has been re-
ported in a variety of different contexts and includes the Multi-Level Adaptive
Technique (MLAT) first proposed by Brandt [35], the Fast Adaptive Compos-
ite (FAC) of McCormick [39] and the Full Adaptive Multigrid (FAMe) of Riide
[40]. In each of these approaches adaptivity is implemented through a dynamic
selection phase of local grid refinement which exploits the robustness of the

underlying Multigrid solver. The first of these, MLAT, facilitates grid adapta-

17



tion procedures on different refinement levels by making full use of both local

truncation error estimations and FAS and underpins the approach adopted.

3.4.1 Local Truncation Error Analysis

The motivation for implementing automatic mesh adaptivity is to enable the
effects of small, isolated topographic features and specific groupings of the
same to be captured accurately and efficiently so that fine grids are only de-
ployed in areas where the flow is changing rapidly. An important issue with
any mesh adaptivity scheme is the quantification of errors since these are used
to identify those areas requring further refinement [41]. As noted in [38], the
T-indicator adopted in the present work is a natural choice for quantifying
errors since information is readily available from the different grid levels. The
difference in truncation error on successive grids G, and G;_; is approximated

1

via a relative truncation error quantity, T,f_ , with large values of T,i“_l in-

dicating regions of significant error between successive grid levels and where

correspondingly further grid refinement is necessary.

Since the local truncation error term 7, measures the difference between the

discrete and the continuous problem:
7w = Ni(ug) — i, (34)

which can be re-arranged so that 7, is regarded as the correction in equation

(21) of the Multigrid process, via:
o= Ny (R ') — R H(Ngiy) (35)

where 1, is the solution on Gy, at the coarse grid correction stage. The criterion

for grid refinement can then be defined against a given user specified tolerance

18



¢, where the grids are refined locally whenever T,’j’l > ¢. Note that T,i“’l is
also used here as a natural stopping criterion to prevent unnecessary Multigrid

iterations when residuals are already dominated by the local truncation error.

3.4.2 Conservative Interpolation

A general approach to the discretisation at local refinement interfaces is to
conserve numerical flux at both the coarse and fine locally refined regions (see
for e.g. [25]). As explained in [37], the numerical flux across a control volume

is defined in terms of a surface integral across its boundaries in the form:

=—-——V(h+s), (38)
for equation (14).

By introducting additional, ghost nodes around the interfaces of these locally
refined boundaries, the adaptive Multigrid process is straightforward, where
standard multigrid techniques can be used on all points in the refined region
as well as those at the interfaces [38]. The relationship between the coarse
Gr_1 and fine G grid levels is illustrated in Figure 4. If the composite grid,
g,’g—l = Gr_1 N Gk, denotes a set of overlapping nodes, coarse grid nodes that

do not coincide with the overlapping regions, i.e. in gk_l\g,’fl, correspond to

19



fine grid nodes on subsequent coarser grid levels.

Figure 5 shows a composite mesh with nodes located at the boundary between
coarse and fine grids of mesh sizes Ax_; and Ay, respectively. The values of
the ghost nodes are predicted by imposing the flux across control volume
V1, illustrated in figure 5(a), as equal to that in V5, depicted in figure 5(b).
Numerical flux conservation across the interface of the darker shaded regions

Vi and Vj; requires that:

FV) _ F(V3)
3A2/2  AZ)2

(39)

The flux G., shown in figure 5(b), is the flux across the articifial eastern

boundary introduced by the presence of the ghost nodes. Its value is given by:

2F, + F,
G = el (40)
3
where F,, denotes the flux across the western cell boundary and
1
Fezi(Fu_{_Fd)a (41)

is the average flux across the eastern cell boundary, with F, and F; the fluxes

across the coarse volumes on V3 for the case shown in figure 5(a).

Using the lubrication equations, the values at the ghost nodes derived from
equations (40) and (41) across the eastern interface boundary for equations

(13) and (14) are given by:

A(G? +2(h%/3)]i—1/2,
g, 2 ACE A D)
(h3/3)i-1/2,4
AGrS?
i’l,j = T =+ (hi—l,j — Si—l,j) — Si,j . (43)

20



Similar expressions may be derived for ghost nodes along the western, northern

and southern interface boundaries [42].

3.5 Implementing Adaptivity within the Multigrid Algorithm

Due to the use of a MLAT framework and employing vertex-centred discretisa-
tion on uniform quadrilateral grids, implementing automatic mesh adaptivity
selectively is reasonably straight forward. In overlapping local grid regions, the
discrete form of the governing lubrication equations (19) and (20) are mod-
ified to account for the effects of non-uniform grid resolution, in so much as
the modified form of the coarse grid correction scheme from equation (21), is

rewritten as:

Npawi, = i (44)
where
f on non-overlapping grid regions, gk_l\g,’g—l ,
fk,1 = (45)

~ . . . k—1
w1+ Nji_iupy' ; on overlapping grid regions G; .

Likewise, coarse grid solutions on Gy_; are defined by:

Ty on non-overlapping grid regions, gk_l\g,’g—l ,
T m
Uop 1 = (46)

R~y on overlapping grid regions G~ .
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3.6 The Adaptive Multigrid Cycle

In order to conserve flux across fine and coarse interface boundaries, informa-

tion from ghost nodes is incorporated using equations (42) and (43). Using

ghost nodes around the interface boundaries enables the standard Multigrid

restriction and prolongation operators to be used. In most cases, the ghost

nodes can simply be treated as Dirichlet boundary points and their values

only updated from the coarse grid correction at the end of the Multigrid iter-

ation. However, when the ghost nodes intersect the domain boundaries they

use the global boundary conditions instead. A pseudo-code description of the

Adaptive Multigrid Cycle is:

Adaptive FAS Cycle u,7*™ = ADPFASCYC(k, uo}?, i, 78", 11, v, K)

e Pre-relaxation:

Perform v; relaxation sweeps:

li()zn = RELAX(U()?, fk)

e Coarse grid correction:

Compute residual on G

v =f, — Nyuoy'
Restrict residual to next coarser grid level from G
dit, = Rz'i_ldkm
Compute coarse grid solution on G ; according to equation (46)
Compute right hand side on G;_; according to equation (45)
Calculate local truncation error 74! according to equation (35)
If £ =1, solve solution on coarsest grid,
Ny wit, =fr

If £ > 1, perform & iterations using uyp), as initial approximation,
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Wzn,1 = ADPFASCYC(k — 1, lioznil, fk*li 7’:]?:12, Vi, Vg, I{)
- Compute corrections on Gf~* with,
Vily = Wity — Uopog
or set the solution on Gy_; with,
Uoply = Wil
- Interpolate corrections onto Gy
v = Ik: v
k k-1Vk—1
- Update approximated solution on G, with,
uokm = li();cn —+ VZL
e Post-relaxation:

- Perform v, relaxation sweeps: u; "' = RELAX (uo, f;)

4 Results

Unless stated otherwise stated the accuracy and efficiency of the adaptive
Multigrid solver is demonstrated by solving the flow of thin water films of
asymptotic film thickness Hy; = 100um, viscosity 0.001Pas, density p =
1000kgm ® and surface tension ¢ = 0.07Nm™" down a substrate inclined
at 30° to the horizontal and with a constant inlet flow rate @y = 1.635 X
10 %m?s! [5]. These parameters yield a Capillary length L. = 0.78mm and
N = 0.122, the latter value indicating that gravity has little influence on the
free surface shape. All results are obtained using an FMG V(4,2) cycle with a
coarse grid constant ¢ = 2 (9x9 nodes in each direction) with finest grid levels

k <6.

The first problem considered is that of steady flow over a square trench

with s = —0.1(10um), Iy = w; = 0.1(3.9mm) and v = 0.05, centred at
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(x4, y:) = (0.35,0.5). Figure 6 explores the evolution of the free surface, (h+s),
at different time levels. To aid visualisation of the computational grids, the
underlying uniform global grid level is set at k¥ = 2 (33x33 nodes) and the grid
is permitted to adaptively refine itself over the next two finer grid levels, cor-
responding to 3 < k < 4, with spatial increments, A = 1/64 and A = 1/128,
respectively. The mesh adaptivity tolerance is set to ¢ = 0.174 " and the to-
pography sides are indicated by the white square outline residing within the

region of greatest grid adaptation.

Starting with an initially flat free surface profile, (h + s) = 1, the problem is
solved at successive time steps until a steady state is reached. For £ = 0.1,
Figure 6(a) shows how the Capillary ridge is initially formed upstream of the
trench while fluid surges out of the trench in the downstream direction. At
the later times ¢ = 0.2 and ¢ = 0.3, shown in Figures 6(c)-(f), although mesh
adaptivity remains concentrated around the Capillary ridge and downstream
surge it also follows the developing bow wave that is shed from the sides of the
trench. The features are shown clearly at ¢ = 1.0 by which time the flow has
reached its steady state. Figure 7 illustrates how the region of grid adaption
is affected by the mesh adaptivity tolerance: plan views of the steady state
grid are shown for ¢ = 0.057f7' and ¢ = 0.027f" with topographic sides
again indicated in white outline. As expected, smaller values of € increase the
sensitivity of the adaptivity process, thereby expanding the areas of local mesh

refinement in regions of largest flow gradients.

The benefits of automatic local adaptivity become even clearer when solving
flow over smaller topographies where a regular uniform mesh requires overall
fine grid resolution to achieve grid independent solutions. Figure 8 considers

flow over a square trench topography of depth 10 um where its sides have
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been reduced from 3.9 mm to 0.78 mm, showing the streamwise free surface
profiles at y = 0.5 and spanwise free surface profiles at £ = 0.5 obtained non-
adaptively with uniform global grid levels 4 < k < 6. Figure 8(a) shows that
the uniform 129x129 grid (k = 4) is clearly too coarse to capture the flow over
the topography while a 513x513 one is needed to achieve grid-independent
solutions in the downstream surge region. This is shown more clearly by the
spanwise profiles at x = 0.5 given in Figure 8(b) where large discrepancies are

seen even when a uniform 257x257 grid is employed.

The above, uniform mesh profiles, are now compared with those obtained
adaptively. Once again, a coarse 33x33 underlying global grid is used while
local grid refinement is permitted over a maximum of either three or four grid
levels, i.e. local grid densities up to k = 5 or k = 6 respectively. The mesh
adaptivity tolerance between adjacent grid levels is set to ¢ = 0.17',?‘1. The
streamwise profiles along y = 0.5 shown in Figure 9(a) demonstrate that, even
with a coarse underlying global grid, the adaptive solutions are in excellent
agreement with the fine-mesh non-adaptive results. The corresponding com-
parison is made in Figure 9(b) for spanwise profiles at z = 0.5. Again, in
both cases the non-adaptive profiles agree accurately with the ones obtained
adaptively, for which the mesh is allowed to refine locally to the same fine
grid density. Indeed in all cases the maximum deviation between free-surface

profiles found adaptively and non-adaptively is less than 0.05%.

Increasing computational efficiency, while retaining solution accuracy, is a
prime motivation for adopting an effective adaptive meshing strategy. Fig-
ure 10(a) compares the number of fine-grid nodes needed non-adaptively with
the number of nodes required with adaptivity, as a function of the mesh adap-

tivity tolerance, for a specified finest grid level £, in solving the problem of
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flow over a square trench. Prescribing a smaller tolerance inevitably leads to
an increased number of nodes as the locally refined regions expand. For the
case with ¢ = 0.17f !, whose accuracy has already been demonstrated in Fig-
ure 9, the adaptive Multigrid solutions require less than 4% of the grid nodes
needed to obtain an equally accurate solution on a uniform mesh with £ = 6.
Figure 10(b) shows how the smaller number of grid nodes translates into in-
creased computational efficiency. It demonstrates, first of all, that the adaptive
solver is effectively achieving the desired O(N) efficiency (N is the number
of unknowns) and, secondly, that the approach yields significant computa-
tional savings. For a finest grid level of £ = 6, for example, mesh adaptivity
with ¢ = 0.17F7" require less than 10% of the CPU time needed to obtain
an equivalent non-adaptive fine-mesh solution. Note also that decreasing the
mesh adaptivity tolerance parameter has less effect on CPU time than it does
on the number of grid nodes, since the majority of the additional nodes intro-
duced by reducing ¢ are confined to the coarser grid levels where relaxation is

less computationally expensive.

Another important benefit of automatic grid adaption is that it offers the flex-
ibility and efficiency needed to solve flow past topography of various shape.
Figure 11 shows the free-surface profiles obtained for steady flows over dia-
mond and circular trenches, each of depth 10 ym and with edges that do not
coincide with the (z,y) coordinate directions. The diamond trench is formed
by rotating the square trench prescribed by equation (9), through 45° where
once again s is the depth and (zy, y;) is the centre of the diamond. The circular

trench topography is similarly given by:
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where r = \/(3: —x4)? + (y — y)?, ry is its radius and by and v are as defined
previously. As in Figure 6, for reasons of clarity, the sides of the trench have
been increased so that [, = w; = 2r; = 0.1. Grid adaptivity takes place over a
maximum of two grid levels from the underlying uniform 33x33 global coarse
mesh, in the vicinity of the topographies themselves, with only a single level of
local refinement taking place in the bow wave region. This can be seen clearly

in the plan views of the adaptive grid structures shown in Figures 11(b) and

11(d).

The steady state solution shown in Figure 12 further illustrates the flexibility
of automatic adaptivity by solving for the flow over five discrete topographies
where a central, diamond-shaped trench with sq = —0.1 and w; = [; = 0.05
is surrounded by two equally-sized circular peaks upstream, with sqg = 0.15
and 2r; = 0.05 and two circular trenches downstream, with s; = —0.15 and
2r; = 0.05. Here the underlying uniform global coarse grid level is set to £ = 2
(33x33) while local grid refinements are performed using adaptivity tolerance,
e = 0.057F7'. Figure 12(b), depicts the resultant steady-state free-surface
profile, while Figure 12(c) shows the automatic local grid adaption that is
required to produce accurate solutions. Once again, the greatest refinement
is concentrated near the topographies themselves and in a ring around the
central diamond-shaped trench, which is seen much more clearly now that the
size of the Capillary ridge and bow wave disturbances have been significantly

reduced by the presence of the surrounding circular peaks and trenches.

If the industrial goal, for example, is to planarise the free surface it would be
necessary to use a more sophisticated combination of isolated topographies.

Figure 13 considers the simpler problem of mitigating free surface disturbances
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in the streamwise profile at y = 0.5, the challenge being to reduce the size of
the free surface depression over the diamond trench with minimal disturbances
elsewhere. The adaptive solver enables several different candidate topography
configurations to be tested efficiently and accurately. Figure 13 shows one
such example where the streamwise profile is much reduced by positioning the
circular topographies closer to the central, diamond-shaped one. The geomet-
rical arrangement shown in Figure 13(a) leads to significant reductions in the
streamwise free surface profile, Figure 13(b). Figure 13(c) shows the corre-
sponding adaptive and non-adaptive free surface profiles for the geometrical
arrangements shown in Figures 12(a) (case 1) and 13(a) (case 2); once again
the agreement between them is excellent, with maximum differences in film
thickness less than 0.2%. Apart from minor differences in the Capillary ridge
and surge regions, the free surface profile for case 1 is similar to that found for
flow past an isolated diamond trench. The second configuration is much more
successful in reducing the free surface disturbances, where an 80% reduction
in the large depression can be achieved without persistent disturbances to the

downstream free surface profile.

The final set of solutions highlight the performance of the adaptive Multigrid
solver for time-dependent flow over topography, see [15]; here, following [20],
time-dependent flow over a square trench topography is considered (so = —0.5,
wy = Iy = 0.1). Adaptive Multigrid solutions are given which use an underlying
uniform 65x65 coarse grid (k = 3) with a further three levels of local refinement
permitted according to the criterion ¢ = 0.057¢ . Following [15], starting from
a steady state condition with a uniform flow rate, the film thickness at the

inlet boundary z = 0 is varied sinusoidally according to:
h =1+ 0.2sin(27 ft) , (48)
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where f is the frequency of oscillation.

Figure 14 shows the free surface profiles for two different frequencies, f =
4Hz and f = 10Hz, at t = 0.1 and ¢ = 0.35, the oscillation beginning at
t = 0. Further numerical solutions at later times confirm that the flow displays
a periodic behaviour according to the frequency of excitation. As noted by
Sellier [20], the higher frequency fluctuations generate high curvature regions
that are quickly smoothed out by surface tension with the result that free
surface disturbances are much larger for the lower frequency. Note, however
that for the latter case the sinusoidal free surface fluctuation is distorted by

the presence of the topography.

Figure 15 shows corresponding free surface profiles along y = 0.5 obtained
adaptively and non-adaptively, compared to the steady state profile with a
uniform flow rate. Once again agreement between the two is excellent at all
times. Both frequencies show the formation of a surge hump downstream of the
topography, which may be thought of as a solitary wave. The speed of these
waves is found to be approximately equal to 2Uy, a value that is consistent

with earlier findings [15].

5 Conclusion

Thin film and spreading flows over topographically heterogeneous substrates
are of enormous significance in a variety of biological, scientific and industrial
processes. However despite their practical significance their numerical mod-
elling is only at an early stage of development, previous studies having been

limited to flows over relatively simple topographic shapes. In this paper a
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new Multigrid strategy embodying a lubrication flow solver with automatic
mesh adaption for investigating the important problem of thin film flow over
arbitary topography (peaks, trenches and their combination) is described. It
is shown to be well-suited to simulating thin film flow over distributions of
topographies of arbitrary cross-section, offering significant memory and com-
putational savings compared to existing, non-adaptive methods. The efficiency
and accuracy of the solver is demonstrated and compared with correspond-
ing solutions obtained on a uniform fine mesh for the case of thin film flow
past a small square trench topography. Also, results for such flow over differ-
ent trench shapes have highlighted the adaptive solvers’ ability to create fine
meshes only in regions exhibiting large gradients in the free surface, namely
over the topography itself, in the Capillary ridge and in the downstream surge

and characteristic bow wave.

The solver is an important development towards the production of practically
useful simulation tools that can solve real problems, for example identifying
the opotimum secondary topography distribution needed as part of a manu-
facturing process to planarise free surface flows over desirable topography [5].
The alternative of using localised heating as a means of inducing Marangoni
stresses to promote levelling [43] has been suggested for this purpose. However,
the drawbacks in terms of cost, and feasibility in the case of small topogra-
phy, are considerable. The present work also has natural extensions to a range
of other important thin film flow problems where the effects of, for example,
solvent evaporation [23], are influential, or even to the wide range of thin film

spreading flows where contact line migration and wetting phenomena are key

[1].
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Free surface

Inclined plane
/ p

Fig. 1. A schematic diagram of gravity-driven thin film flow over three typical and

well defined topographies: square, circular and diamond shaped trenches.
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squares (0), and diamonds (<), respectively.
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Fig. 5. Control volume: (a) Vi original, and, (b) V5 modified; along an eastern
boundary interface, indicated by shaded regions between fine (O) and coarse (O) grid
nodes, showing key fluxes across control volume boundaries and newly introduced

ghost nodes, (o).
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Fig. 6. Time-dependent evolution of free surface, h + s (left), and mesh (right),
obtained using the global coarse grid, k = 2, with two levels of grid refinement and
€= 0.17',’:_1, for thin film flow over a square trench (w; = 0.1, sp = —0.1). Four time

intervals are shown, where ¢ = 1.0 is steady-state.
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Fig. 6. (continued.)
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(a) (b)
Fig. 7. Steady-state mesh refinement distribution for the case of flow over a square
trench topography (w; = 0.1,s9 = —0.1), built from a uniform global coarse
grid k = 2, with two grid refinement levels, for different prescribed tolerence: (a)

e =0.057""; (b) e = 0.027) %,
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Fig. 8. (a) Streamwise, y = 0.5, and (b) spanwise, x = 0.5, free surfaces profiles for

flow over a square trench (w; = 0.02,s9 = —0.1), obtained non-adaptively on the

uniform fine meshes indicated.
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Fig. 9. Differences in (a) streamwise, y = 0.5, and (b) spanwise, z = 0.5, free
surfaces profiles for flow over a square trench (w; = 0.02, sp = —0.1), obtained both

non-adaptively and adaptively.
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Fig. 10. Relative efficiency of the solver in terms of (a) number of nodes, and (b) CPU
time, for the case of flow over a square trench (w; = 0.02, 59 = —0.1). Comparison
is made between the efficiency of solutions obtained non-adaptively and adaptively,

the latter with different tolerences, €.
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() (d)
Fig. 11. Steady-state free-surface, h+ s, profiles (left) and associated adaptive mesh
distributions (right) for thin film flow over a diamond (top, w; = 0.1,s9 = —0.1)
and cicular (bottom, r; = 0.05,s9 = —0.1) trench, using two levels of adaptive

refinement with tolerence, ¢ = 0.017/5_1.
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(b) (c)
Fig. 12. Case 1: (a) Geometrical definition, (b) resulting steady-state free surface
profile, and (c) corresponding adaptive mesh distribution, showing the combined
effects of surrounding a diamond shaped trench topography (w; = 0.05,s9 = —0.1),
with a distribution of circular peaks, sg = 0.25,7, = 0.025 (upstream), and circular
trenches, so = —0.15,7; = 0.025 (downstream), for € = 0.057’,2“71 on uniform coarse

grid k = 2 with 2 local refinement levels.
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Fig. 13. Case 2: (a) Re-distribution of topography defined in Figure 12(a), and
(b) its resulting free surface profile, illustrating (c) the reduction in planarisation
disturbances along the streamwise, y = 0.5, direction; solutions obtained adaptively
(e = 0.057/5_1 on a uniform coarse grid £ = 2 with 2 local refinement levels) and

non-adaptively (fine grid, k = 4).
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(c) t = 0.35. (d) ¢ = 0.35.

Fig. 14. Free surface profiles for film flow over a square trench topography
(wy = 0.1, = —0.5) at different times, for the case of a sinusoidally varying
inlet film thickness of frequency f = 4Hz (left) and f = 10Hz (right). Solutions
obtained adaptively are presented on global coarse grid, kK = 2, with three levels of

local refinement and tolerence, ¢ = 0.057’,’:71.
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Fig. 15. Evolving streamwise, y = 0.5, free surface profiles for the variable inlet flow
problem, with sinusoidal frequency, f =4 Hz (left) and f = 10 Hz (right), for flow
over a square trench topography (w; = 0.1,sp = —0.5). Solutions obtained adap-
tively (global coarse grid, k = 2, with three levels of local refinement, ¢ = 0.057'1571)
and non-adaptively (fine grid, ¥ = 5) are super-imposed against the steady-state

solution, depicting formation of surge humps downstream of the topography.
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