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Abstract: We introduce a systematic approach to the problem of maximizing the ro-

bust utility of the terminal wealth of an admissible strategy in a general complete market

model, where the robust utility functional is defined by a set Q of probability measures.

Our main result shows that this problem can be reduced to determining a “least favor-

able” measure Q0 ∈ Q, which is universal in the sense that it does not depend on the

particular utility function. The robust problem is thus equivalent to a standard utility

maximization problem with respect to the “subjective” probability measure Q0. By using

the Huber-Strassen theorem from robust statistics, it is shown that Q0 always exists if Q

is the core of a 2-alternating upper probability. We also discuss the problem of robust

utility maximization with uncertain drift in a Black-Scholes market and the case of “weak

information” as studied by Baudoin (2002).

1 Introduction

The problem of constructing utility-maximizing investment strategies in complete and

incomplete market models has been a major theme of mathematical finance throughout

the past decade. Today, the problem is very well understood, in particular through the

efforts of Kramkov and Schachermayer [18], [19]; see also [23] and Karatzas and Shreve

[17] for the history of the problem and an overview of further developments.

Economists, however, have long been arguing that the paradigm of von Neumann-

Morgenstern expected utility, in both its objective and subjective forms, has various

deficiencies. In its objective form, it requires precise knowledge of the probability dis-

tribution governing the market evolution, but this distribution is typically subject to
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uncertainty. In its subjective form, uncertainty is taken into account by means of a “sub-

jective probability measure”, but this approach is open to criticism from the celebrated

Ellberg paradox. In the late 1980’s, Gilboa and Schmeidler [11], [25], [12] and Yaari [26]

formulated natural axioms which should be satisfied by a preference order on payoff pro-

files in order to account for both risk and uncertainty aversion. They also showed that

such a preference order can be numerically represented by a robust utility functional of

the form

X 7−→ inf
Q∈Q

EQ[ U(X) ] , (1)

where Q is a set of probability measures and U is a utility function.

For a special set Q, Baudoin [4] solved the problem of maximizing the robust utility

of the terminal wealth in a complete financial market model. In this note, we propose a

systematic approach to the construction of optimal investment strategies for robust utility

functionals. More precisely, we give a complete solution of the problem of maximizing

the robust utility of the terminal wealth in a complete market model, under the condi-

tion that the set Q admits a “least favorable measure” Q0, which is independent of the

utility function. The result is that the robust problem is then equivalent to the standard

utility maximization problem with respect to Q0. Thus, although the preference order

associated with (1) does not satisfy the axioms of (subjective) expected utility, optimal

investment decisions are still made in accordance with the Savage/Anscombe-Aumann

theory, provided that one takes Q0 as “subjective” probability measure. By means of the

measure Q0, we will be able to translate the results by Kramkov and Schachermayer [18]

and others to our robust setting.

We also discuss the existence and construction of the least favorable measure Q0,

which typically arises from Q in a non-linear way. For instance, if the set Q is the core of

a 2-alternating Choquet capacity, then Q0 is obtained by an application of the Neyman-

Pearson lemma for capacities. This result was developed thirty years ago by Huber and

Strassen [15] with the purpose of constructing optimal statistical tests for composite

hypotheses and alternatives. The assumption that Q arises from a 2-alternating capacity

is quite natural and includes examples such as convex distortions of probability measures

or neighborhoods with respect to many standard probability metrics. We will also show

that Baudoin’s “weak information” [4] fits into this situation.

We also consider the problem of robust utility maximization in a standard Black-

Scholes market with uncertain drift. Here, the set Q is not related to a 2-alternating

capacity. Nevertheless, a least favorable measure Q0 can be constructed by comparing

option prices under uncertain volatility as in El Karoui et al. [9]. Huber [14] Augustin [1]

give further examples of least favorable measures for sets that do not necessarily fall into

the range of the Huber-Strassen theorem.

This note is organized as follows. In the next section, we describe our model and the

main results. Explicit examples are provided in Section 3: First we discuss robust utility

maximization in a Black-Scholes market with uncertain drift. Then we recall the notion

of a Radon-Nikodym derivative for capacities, and discuss several examples within the
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framework of the Huber-Strassen theory. In particular, we prove that the case of “weak

information” corresponds to a 2-alternating capacity. Then we briefly review further

examples from robust statistics. The proofs of our main results are given in Section 4.

2 Main results

We make the standard assumptions on our market model. That is, we consider a complete

market model consisting of one bond and d risky assets, whose price processes are denoted

S = (Si
t)0≤t≤T,i=1,...,d. We may assume without loss of generality that the price of the bond

is constant. The process S is assumed to be a semimartingale on the filtered probability

space (Ω,F , (Ft)0≤t≤T , P ), and we emphasize that this includes the case of a discrete-time

market model, in which prices are adjusted only at times t = 0, 1, . . . , T : just set St := S[t]

and Ft := F[t] for arbitrary t ∈ [0, T ]. We assume that F0 is P -trivial and that the market

is complete in the sense that there exists a unique probability measure P̂ that is equivalent

to P and under which S is a d-dimensional local martingale. In a discrete-time setting,

market completeness implies that Ω can be chosen as a finite set, and this will simplify

certain assumptions on our set Q.

A self-financing trading strategy can be regarded as a pair (x, ξ), where x ∈ R is the

initial investment and ξ = (ξi
t)0≤t≤T,i=1,...,d is a predictable and S-integrable process. The

value process X associated with (x, ξ) is given by X0 = x and

Xt = X0 +

∫ t

0

ξr dSr , 0 ≤ t ≤ T .

For x ∈ R given, we denote by X (x) the set of all such processes X with X0 ≤ x which

are admissible in the sense that Xt ≥ 0 for 0 ≤ t ≤ T and whose terminal wealth XT has

a well-defined robust utility

inf
Q∈Q

EQ[ U(XT ) ] (2)

in the sense that

inf
Q∈Q

EQ[ U(XT ) ∧ 0 ] > −∞ . (3)

Here, U : (0,∞) → R is an increasing and strictly concave utility function. Now we can

state our main problem:

maximize inf
Q∈Q

EQ[ U(XT ) ] among all X ∈ X (x). (4)

Definition 2.1 Q0 ∈ Q is called a least favorable measure with respect to P̂ if the density

π = dP̂ /dQ0 (taken in the sense of the Lebesgue decomposition) satisfies

Q0[ π ≤ t ] = inf
Q∈Q

Q[ π ≤ t ] for all t > 0. (5)
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The preceding definition makes sense without assuming any relations of absolute con-

tinuity between P̂ and the members of Q. However, we will assume throughout this note

that Q is equivalent to P in the following sense:

P [ A ] = 0 ⇐⇒ Q[ A ] = 0 for all Q ∈ Q. (6)

Note that our problem (4) would not be well-posed without the implication “⇒” in this

assumption. The converse implication is economically natural, since a position with a

positive price should lead to a non-vanishing utility.

Now we can state our first main result. It reduces the robust utility maximization

problem to a standard utility maximization problem plus the computation of a least

favorable measure, which is independent of the utility function.

Theorem 2.2 Suppose that Q admits a least favorable measure Q0 ≈ P̂ . Then the robust

utility maximization problem (4) is equivalent to the standard utility maximization problem

with respect to Q0, i.e., to (4) with Q replaced by Q0 := {Q0}.

This result has the following striking economic consequence. Let Â denote the prefer-

ence order induced by our robust utility functional, i.e.,

X Â Y ⇐⇒ inf
Q∈Q

EQ[ U(X) ] > inf
Q∈Q

EQ[ U(Y ) ] .

Then, although Â does not satisfy the axioms of (subjective) expected utility theory,

optimal investment decisions with respect to Â are still made in accordance with the

Savage/Anscombe-Aumann version of expected utility, provided that we take Q0 as the

subjective probability measure.

By combining Theorem 2.2 with Proposition 3.1 below, we are now able to translate

Theorem 2.0 of [18] to our situation. To this end, we have to assume that U is continuously

differentiable and satisfies the Inada conditions

U ′(0) := lim
x↓0

U ′(x) = +∞ and U ′(∞) := lim
x↑∞

U ′(x) = 0 .

We denote by

u(x) = sup
X∈X (x)

inf
Q∈Q

EQ[ U(XT ) ] , x > 0 ,

the value function of the problem (4). Since u(x) ≥ U(x) for all x, our condition (3) on

X (x) poses no restriction. Let

V (y) = sup
x>0

[
U(x) − xy

]
, y > 0 ,

denote the convex conjugate of U and define the function

I := −V ′ = (U ′)−1 .

We also define the convex function

v(y) = inf
Q∈Q

EQ[ V (y · π) ] , y > 0 .
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Corollary 2.3 Suppose that Q admits a least favorable measure Q0 which is equivalent

to P and that u(x) is finite for some x > 0. Then:

(a) u(x) is finite for all x > 0, and v(y) < ∞ for y > 0 sufficiently large. The

function v is continuously differentiable in the interior (y0,∞) of its effective domain.

The function u is continuously differentiable on (0,∞) and strictly concave on (0, x0),

where x0 := − limy↓y−0 v′(y). For x, y > 0,

v(y) = sup
x>0

[
u(x) − xy

]
and u(x) = inf

y>0

[
v(y) + xy

]
.

Moreover, u′(0) := limx↓0 u′(x) = ∞ and v′(∞) = limy↑∞ v′(y) = 0.

(b) For x < x0 there exists a unique solution X∗(x) ∈ X (x) of (4), and its terminal

wealth is of the form

X∗
T (x) = I(y · π) , for y = u′(x).

(c) For 0 < x < x0 and y < y0,

u′ = x−1 sup
Q∈Q

EQ

[
X∗

T (x)U ′(X∗
T (x))

]
and v′(y) = Ê[ V ′(y · π) ] .

Kramkov and Schachermayer [18], [19] give further results on optimal investment

strategies, in particular those involving the asymptotic elasticity of U and necessary con-

ditions for the validity of the duality theorem. We leave it to the reader to translate the

complete-market versions of these theorems to our robust setting.

Let us conclude this section with a comment of the condition that the least favorable

measure Q0 is equivalent to P̂ . Under condition (6), the set Q is closed in total variation

if and only if the set { dQ/dP̂ |Q ∈ Q} is closed in L1(P̂ ).

Lemma 2.4 Suppose that Q is convex and and closed in total variation. Then every least

favorable measure Q0 is equivalent to P̂ .

Proof: Suppose that P̂ 6¿ Q0 so that P̂ [ π < ∞ ] < 1. Due to our assumptions and the

Halmos-Savage theorem, Q contains a measure Q1 ≈ P̂ . We get

1 = Q0[ π < ∞ ] = lim
t↑∞

Q0[ π ≤ t ] = lim
t↑∞

inf
Q∈Q

Q[ π ≤ t ] ≤ Q1[ π < ∞ ] < 1 ,

which clearly is a contradiction.

3 Examples

In this section, we will discuss three classes of examples in which least favorable measures

can be determined. The first is a Black-Scholes market with uncertain drift. The second

is provided by the classical Huber-Strassen theory. Here, Q is is the core of a 2-alternating

capacity. The third class is given by extensions of the Huber-Strassen theory due to Huber

[14] and Augustin [1].

First, let us state the following elementary characterization of least favorable measures,

which is a variant of Theorem 6.1 in [15].
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Proposition 3.1 For Q0 ∈ Q with Q0 ≈ P̂ , the following conditions are equivalent.

(a) Q0 is a least favorable measure for P̂ .

(b) For π = dP̂ /dQ0 and for all decreasing functions f : (0,∞] → R such that

infQ∈Q EQ[ f(π) ∧ 0 ] > −∞,

inf
Q∈Q

EQ[ f(π) ] = EQ0
[ f(π) ] .

(c) For π = dP̂ /dQ0 and for all increasing functions g : (0,∞] → R such that

supQ∈Q EQ[ g(π) ∨ 0 ] < ∞,

sup
Q∈Q

EQ[ g(π) ] = EQ0
[ g(π) ] .

(d) Q0 minimizes

IΦ(P̂ |Q) :=

∫
Φ

(dQ

dP̂

)
dP̂

among all Q ∈ Q, for all convex functions Φ : [0,∞) → R such that IΦ(P̂ |Q) is

finite for some Q ∈ Q.

Proof: (a)⇔(b): According to the definition, Q0 is a least favorable measure if and only

if Q0◦π−1 stochastically dominates Q◦π−1 for all Q ∈ Q. Hence, if f is bounded, then the

equivalence of (a) and (b) is just the standard characterization of stochastic dominance

(see, e.g., Theorem 2.71 in [10]). If f is unbounded but satisfies infQ∈Q EQ[ f(π) ∧ 0 ] >

−∞, then assertion (b) holds for fN := (−N) ∨ f ∧ 0. Thus, for all Q ∈ Q and N ∈ N,

EQ[ fN(π) ] ≥ EQ0
[ fN(π) ] ≥ EQ0

[ f(π) ∧ 0 ] > −∞ .

By sending N to infinity, it follows that EQ[ f(π) ∧ 0 ] ≥ EQ0
[ f(π) ∧ 0 ] for every Q ∈ Q.

By using a similar argument on 0 ∨ f(π), we get

EQ[ f(π) ] = EQ[ f(π) ∨ 0 ] + EQ[ f(π) ∧ 0 ] ≥ EQ0
[ f(π) ] for all Q ∈ Q.

(b)⇔(c) follows by changing signs.

(b)⇒(d): Clearly, IΦ(P̂ |Q) is well-defined and larger than Φ(1) for each Q ¿ P . Now

take a Q1 ∈ Q with IΦ(P̂ |Q1) < ∞, and denote by Φ′
+(x) the right-hand derivative of Φ

at x ≥ 0. Since Φ(y) − Φ(x) ≥ Φ′
+(x)(y − x), we have

IΦ(P̂ |Q1) − IΦ(P̂ |Q0) ≥

∫
Φ′

+

(
π−1

)(dQ1

dP̂
−

dQ0

dP̂

)
dP̂ =

∫
f(π) dQ1 −

∫
f(π) dQ0 ,

where f(x) := Φ′
+(1/x) is a decreasing function, which is bounded from below. Therefore∫

f(π) dQ1 ≥
∫

f(π) dQ0, and Q0 minimizes IΦ(P̂ | · ) on Q.

(d)⇒(b): It is enough to prove (b) for bounded decreasing functions f . For such

a function f let Φ(x) :=
∫ x

1
f(1/t) dt. Then Φ is convex. For Q1 ∈ Q we let Qt :=

tQ1 + (1 − t)Q0 and h(t) := IΦ(P̂ |Qt). The right-hand derivative of h satisfies 0 ≤

h′
+(0) =

∫
f(π) dQ1 −

∫
f(π) dQ0, and the proof is complete.
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Remark 3.2 By taking a strictly convex function Φ in (d) it follows that there exists

at most one equivalent least favorable measure Q0. If the condition of equivalence is

dropped, then there may be several least favorable measures; see the proof of Proposition

3.14 for examples.

3.1 Utility maximization with uncertain drift

Consider a Black-Scholes market model with a riskless bond, Bt, of which we assume

Bt ≡ 1 and with d risky assets St = (S1
t , . . . , S

d
t ) that satisfy an SDE of the form

dSi
t = Si

t

d∑

j=1

σij
t dW j

t + αi
tS

i
t dt (7)

with a d-dimensional Brownian motion W and a volatility matrix σt that has full rank.

Now suppose the investor is uncertain about the “true” future drift αt in the market:

any drift α̃ is possible that is adapted and such that α̃t ∈ Ct, where Ct is a nonrandom

bounded closed convex subset of R
d for 0 ≤ t ≤ T . Let us denote by A the set of all such

processes α̃. This uncertainty in the choice of the drift can be expressed by the set

Q :=
{

Q
∣∣∣ S has drift αQ ∈ A under Q

}
,

while under P̂ the drift α in (7) vanishes. It turns out that the optimal investment

problem with uncertain drift can be solved by transforming it into a problem for uncertain

volatility. To this end, we denote by α0
t the element in Ct that minimizes the norm |σ−1

t x|

among all x ∈ Ct

Proposition 3.3 Suppose that σt is deterministic and that both α0
t and σt are continuous

in t. Then Q admits a least favorable measure Q0 with respect to P̂ which is characterized

by having the drift α0.

Proof: We will use arguments from [9] to check condition (d) of Proposition 3.1. The

density process of Q ∈ Q with respect to P̂ has the form

ZQ
t :=

dQ

dP̂

∣∣∣
Ft

= exp
( ∫ t

0

λs dŴs −
1

2

∫ t

0

λ2
s ds

)
,

where λs = σ−1
s αQ

s and Ŵ is a d-dimensional P̂ -Brownian motion. Similarly, the density

process Z := ZQ0 will involve the deterministic integrand γs := σ−1
s α0

s. Let Φ be a convex

function. We may assume without loss of generality that Φ is bounded by a polynomial.

Then v(t, x) := E∗[ Φ(xZt) ] is a solution to the Black-Scholes equation vt = 1
2
|γt|

2x2vxx.

This fact and Itô’s formula show that

dv(T − t, ZQ
t ) = vx(T − t, ZQ

t ) dZQ
t +

1

2
(ZQ

t )2vxx(T − t, ZQ
t )(|λt|

2 − |γt|
2) dt .

One easily checks that the first term on the right is a martingale. Moreover, v is convex

and |λt|
2 ≥ |γt|

2 by definition of α0. Hence, v(T − t, ZQ
t ) is a submartingale and

E∗[ Φ(ZQ
T ) ] = E∗[ v(0, ZQ

T ) ] ≥ v(T, ZQ
0 ) = E∗[ Φ(ZT ) ] .
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An obvious question is whether the strong condition that the volatility σt is determin-

istic can be relaxed. The most interesting case would be a local volatility model in which

the equation (7) for d = 1 is replaced by the SDE

dSt = σ(t, St)St dWt + αtSt dt . (8)

In this case, however, the density process Z appearing in the preceding proof involves the

integrand γt = σ(t, St)
−1α0

t , which depends in a nontrivial way on the whole path of W .

The discussion in Section 4 of [9] shows that the convexity of the function v may be lost

for path-dependend integrands. Moreover, σ(t, St) is not Hölder continuous of order 1/2,

and so the method of Hobson [13] and Janson and Tysk [16] does not apply. Therefore, it

is apparently not clear whether the preceding proposition remains true for the SDE (8).

Remark 3.4 When d = 1 and A is of the form

A =
{

α̃
∣∣ |λt − α̃t/σt| ≤ βt a.e. },

the upper and lower expectations induced by the corresponding set Q can be interpreted

as g-expectations in the sense of Peng [22]; see, e.g., Example 1 of Chen and Sulem [5].

3.2 Examples within the Huber-Strassen theory

In order to formulate our conditions on Q, let us define a set function γ by

γ(A) := sup
Q∈Q

Q[ A ] , A ∈ FT .

Assumption 3.5 Consider the following set of conditions.

(a) Q is maximal in the sense that it contains every measure Q with Q[ A ] ≤ γ(A) for

all A ∈ FT .

(b) γ is 2-alternating:

γ(A ∪ B) + γ(A ∩ B) ≤ γ(A) + γ(B) for A, B ∈ FT . (9)

(c) There exists a Polish topology on Ω such that FT is the corresponding Borel field

and Q is compact.

Remark 3.6 Let us comment on the conditions in Assumption 3.5.

(a) This condition implies that Q is convex and closed in total variation. Hence, Lemma

2.4 yields that the least favorable measure must be equivalent to P̂ . Moreover, under

assumption (b), (a) is equivalent to the weaker condition:

if EQ[ X ] ≤

∫ ∞

0

γ(X > t) dt for all X ∈ L∞
+ then Q ∈ Q;

see Section 5 of [8].
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(b) This condition can be justified economically by assuming that the preference order

that induces the robust utility functional (2) satisfies the axiom of “comonotonic

independence”; see Schmeidler [25].

(c) This condition guarantees that γ is a capacity in the sense of Choquet [6]. Thus,

the results of Huber and Strassen [15] apply to our situation.

¦

Consider the 2-alternating set function

νt(A) := tγ(A) − P̂ [ A ] , A ∈ FT . (10)

It is shown in Lemmas 3.1 and 3.2 of [15] that, under parts (a) and (b) of Assumption

3.5, there exists a decreasing family (At)t>0 ⊂ FT such that At minimizes νt and such

that At =
⋃

s>t As.

Definition 3.7 (Huber and Strassen) The function

dP̂

dγ
(ω) = inf{ t |ω /∈ At } , ω ∈ Ω ,

is called the Radon-Nikodym derivative of P̂ with respect to γ.

The terminology “Radon-Nikodym derivative” comes from the fact that dP̂ /dγ coin-

cides with the usual Radon-Nikodym derivative dP̂ /dQ in case where Q = {Q}; see [15].

We will need the following simple lemma:

Lemma 3.8 Condition (6) implies that P
[
0 < dP̂

dγ
< ∞

]
= 1.

Proof: Let νt be as in (10). Clearly, dP̂
dγ

(ω) = ∞ if and only if ω ∈ A∞ :=
⋂

0<t<∞ At.

Since νt(At) ≤ νt(∅) = 0, we have γ(At) ≤ 1/t. It follows that γ(A∞) = 0, which by (6)

implies that P [ A∞ ] = 0.

Letting A0 :=
⋃

0<t<∞ At, we see that dP̂
dγ

(ω) = 0 if and only if ω ∈ Ac
0. From

νt(At) ≤ νt(Ω) = t − 1, we find that P̂ [ Ac
t ] ≤ t(1 − γ(At)). As t ↓ 0 we thus get

P̂ [ Ac
0 ] = 0.

Let us now state the Huber-Strassen theorem from [15] in a form in which it will be

needed here.

Theorem 3.9 (Huber-Strassen) Under Assumption 3.5, Q admits a least favorable

measure Q0 with respect to any probability measure R on (Ω,FT ). Moreover, if R = P̂

and Q satisfies (6) , then Q0 is equivalent to P̂ and given by

dQ0 =
(dP̂

dγ

)−1

dP̂ .
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Together with Theorem 2.2, we get a complete solution of the robust utility maxi-

mization problem within the large class of utility functionals that arise from sets Q as in

Assumption 3.5. Before discussing particular examples, let us state the following converse

of the Huber-Strassen theorem in order to clarify the role of condition (b) in Assumption

3.5.

Theorem 3.10 Suppose Ω is a Polish space with Borel field FT and Q is a compact set

of probability measures. If every probability measure on (Ω,FT ) admits a least favorable

measure Q0 ∈ Q, then γ(A) = supQ∈Q Q[ A ] is 2-alternating.

For finite probability spaces, Theorem 3.10 is due to Huber and Strassen [15]. In the

form stated above, it was proved by Lembcke [21]. An alternative formulation was given

earlier by Bednarski [3].

Let us now turn to the discussion of examples. The following Examples 3.11 and 3.12

were first studied by Bednarski [2] under slightly different conditions than here. They are

also closely connected to the concept of a comonotone law-invariant coherent measure of

risk as introduced by Kusuoka [20].

Example 3.11 For λ ∈ (0, 1), consider the set

Q :=
{

Q ¿ P
∣∣∣
dQ

dP
≤

1

λ

}
,

which satisfies Assumption 3.5. Let ϕ := dP̂ /dP , suppose that ϕ has a continuous and

strictly increasing distribution function Fϕ under P , and denote by qϕ the corresponding

quantile function (i.e., the inverse of Fϕ). Then the function

(0, 1] 3 y 7−→
y + λ − 1∫ y

0
qϕ(t) dt

has a unique maximizer yλ ∈ (1 − λ, 1], and the Radon-Nikodym derivative of P̂ with

respect to γ is given by

π =
dP̂

dγ
= λ · (ϕ ∨ qϕ(yλ)) ,

as proved in Remark 4.6 of [24]. If ‖ϕ‖L∞ > λ−1, then yλ is the unique solution of the

equation

qϕ(y)(y + λ − 1) =

∫ y

0

qϕ(t) dt .

¦

Example 3.12 The utility functionals constructed from the cores of the following class of

2-alternating set functions generalize Example 3.11 and arise as numerical representations

in Yaari’s [26] “dual theory of choice under risk”. Let ψ : [0, 1] → [0, 1] be an increasing

concave function with ψ(0) = 0 and ψ(1) = 1. In particular, ψ is continuous on (0, 1].

We define γ by

γ(A) := ψ
(
P [ A ]

)
, A ∈ F .
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Then γ is 2-alternating, and the set Q of all probability measures Q on (Ω,FT ) with

Q[ A ] ≤ γ(A) for all A ∈ FT satisfies part (b) of Assumption 3.5. If ψ is continuous at 0,

then Q can be described in terms of ψ; see Carlier and Dana [7].

Example 3.11 corresponds to the choice ψ(t) = (tλ−1)∧1. Apart from this special case,

an explicit formula for π = dP̂ /dγ is not known to the writer, but π can be computed (in

principal and numerically) by solving a certain non-linear variational problem in two real

parameters; see Section 4 of [24]. ¦

Example 3.13 (Weak information) Let Y be a measurable function on (Ω,FT ), and

denote by µ its law under P̂ . For ν ≈ µ given, let

Q :=
{

Q ¿ P̂
∣∣∣ Q ◦ Y −1 = ν

}
.

The robust utility maximization problem for this set Q was studied by Baudoin [4], who

coined the terminology “weak information”. The interpretation behind the set Q is that

an investor has full knowledge about the pricing measure P̂ but is uncertain about the

true distribution P of market prices and only knows that a certain functional Y of the

stock price has distribution ν. Write P̂ = µ ⊗ K̂, where K̂(y, ·) = P̂ [ · |Y = y ] is the

regular conditional expectation given Y . Then

Q0 := ν ⊗ K̂

is a least favorable measure. To see this, note first that Q0 is equivalent to P̂ and belongs

to Q. Moreover, we have

π =
dP̂

dQ0

=
dµ

dν
(Y ) .

Hence, Q[ π ≤ t ] = ν(dµ/dν ≤ t) is independent of Q ∈ Q, and it follows that Q0 satisfies

the definition of a least favorable measure. The same procedure can be applied to any

measure R ≈ P̂ . This fact implies that Q fits into the framework of the Huber-Strassen

theory, as is shown in the following proposition. ¦

Proposition 3.14 Suppose (Ω,FT ) is a standard Borel space. Then the set Q defined

in Example 3.13 satisfies Assumption 3.5. In particular, γ(A) := supQ∈Q Q[ A ] is 2-

alternating.

Proof: If Q is a probability measure with Q[ · ] ≤ γ( · ), then

Q[ Y ≤ t ] ≤ γ(Y ≤ t) = ν((−∞, t]) .

Using the same argument on {Y > t} shows that Y has law ν under Q. Hence, Q is

maximal in the sense of part (a) of Assumption 3.5.

To prove that part (b) holds we will use Theorem 3.10. To this end, we may choose a

compact metric topology on Ω such that Y is continuous and FT is the Borel σ-algebra.

If R ¿ P̂ , then η := R ◦ Y −1 ¿ ν and R can be written as η ⊗ KR, where KR is

a stochastic kernel such that KR(y, ·) ¿ K̂(y, ·) for η-a.e. y. Let ν = νa + νs be the
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Lebesgue decomposition of ν with respect to η into the absolutely continuous part νa ¿ η

and into the singular part νs. If we let Q0 := νa ⊗ KR + νs ⊗ K̂, then Q0 ∈ Q and

π =
dR

dQ0

=
dη

dν
(Y ) .

Again, the distribution of π is the same for all Q ∈ Q, and it follows that Q0 is a least

favorable measure. If R 6¿ P̂ , then it is clear that any measure Q0 will be least favorable

for R if it is least favorable for the absolutely continuous part of R.

In the 1970’s and 1980’s, explicit formulas for Radon-Nikodym derivatives with respect

to capacities were found in a number of examples such as sets Q defined in terms of ε-

contamination or via probability metrics like total variation or Prohorov distance; we

refer to Chapter 10 in the book [14] by Huber and the references therein. But, unless Ω is

finite, these examples fail to satisfy either implication in (6) (see, however, Example 3.15

below). Nevertheless, they are still interesting for discrete-time market models.

3.3 Further examples from robust statistics

In this section, we briefly discuss further example classes that may or may not lead to

2-alternating capacities but for which least favorable measures are available.

Example 3.15 (Huber [14]) Let Y be a real-valued random with distributions µ and

µ̂ under P and P̂ , respectively. Suppose that dµ̂/dµ is an increasing function on the real

line. For ε, δ ∈ [0, 1), we define

Q :=
{

Q ¿ P
∣∣ Q[ Y < t ] ≥ (1 − ε)P [ Y < t ] − δ for all t

}
.

This class of examples includes absolutely continuous restrictions of ε-contamination and

of neighborhoods with respect to the following probability metrics: total variation, Pro-

horov metric, Kolmogorov distance, and Lévy metric; see [14], p. 271. A possible financial

interpretation would be similar to the case of “weak information” in Example 3.13. Under

the above conditions, one can show that Q admits a least favorable measure Q0, and π

is proportional to c′ ∨ dµ̂/dµ(X) ∧ c′′ for certain constants c′ and c′′. We refer to Section

10.3 of [14] for details. ¦

Example 3.16 (Augustin [1]) Here, one starts with any set Q that admits an equiva-

lent least favorable measure Q0 and applies a distortion function ψ to the upper probability

arising from Q:

Q :=
{

Q
∣∣ Q[ A ] ≤ ψ

(
sup
Q∈Q

Q[ A ]
)

for all A ∈ FT

}
.

Here, ψ : [0, 1] → [0, 1] is increasing and concave with ψ(0) = 0 and ψ(1) = 1 as

in Example 3.12. Augustin [1] gives various conditions under which a least favorable

measure Q0 for the core of the 2-alternating set function ψ(Q0[ · ]) is also a least favorable

measure for Q. ¦
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4 Proof of Theorem 2.2

Let X∗ be a solution of the standard utility maximization problem for the least-favorable

measure Q0. Then it is well known that X∗
T = I(yπ) for some constant y > 0. Thus,

one easily checks via Proposition 3.1 that X∗ is also a solution of the robust utility

maximization problem. However, in order to show the full equivalence of the two problems,

we must also take care of the situation in which the standard problem has no solution.

Our key result is the following proposition.

Proposition 4.1 Let Q0 ≈ P̂ be a least favorable measure and π = dP̂ /dQ0.

(a) For any X ∈ X (x) there exists X̃ ∈ X (x) such that

inf
Q∈Q

EQ[ U(X̃T ) ] ≥ inf
Q∈Q

EQ[ U(XT ) ]

and such that X̃T = f(π) for some deterministic decreasing function f : (0,∞) →

[0,∞).

(b) The terminal wealth of any solution X∗ of (4) is of the form X∗
T = f ∗(π) for a

deterministic decreasing function f ∗(0,∞) → [0,∞).

The proof of this proposition is based on ideas from [24] and on the following version

of the classical Hardy-Littlewood inequalities, which we recall here for the convenience of

the reader. See, e.g., Theorem 2.76 of [10] for a proof.

Theorem 4.2 (Hardy-Littlewood) Let X and Y be two non-negative random variables

on (Ω,FT , Q), and let qX and qY denote quantile functions of X and Y with respect to

Q. Then, ∫ 1

0

qX(1 − t)qY (t) dt ≤ EQ[ XY ] ≤

∫ 1

0

qX(t)qY (t) dt .

If X = f(Y ), then the lower (upper) bound is attained if and only if f can be chosen as

a decreasing (increasing) function.

Proof of Proposition 4.1: (a) By market completeness, it suffices to construct a de-

creasing function f ≥ 0 such that Ê[ f(π) ] ≤ x and

inf
Q∈Q

EQ[ U(f(π)) ] ≥ inf
Q∈Q

EQ[ U(XT ) ] . (11)

To this end, we denote by FY (x) := Q0[ Y ≤ x ] the distribution function and by qY (t)

a quantile function of a random variable Y with respect to the probability measure Q0.

We will need the the following basic property of quantile functions: If f is a decreasing or

increasing function and Y ≥ 0, then the quantile qf(Y ) of f(Y ) satisfies for a.e. t ∈ (0, 1)

qf(Y )(t) =

{
f(qY (1 − t)) if f is decreasing,

f(qY (t)) if f is increasing;
(12)
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see, e.g., Lemma 2.77 in [10].

Let us define a function f by

f(t) :=





qXT
(1 − Fπ(t)) if Fπ is continuous at t,

1

Fπ(t) − Fπ(t−)

∫ Fπ(t)

Fπ(t−)

qXT
(1 − s) ds otherwise.

(13)

Then f is decreasing and satisfies f(qπ) = Eλ[ h | qπ ], where λ is the Lebesgue measure

and h(t) := qXT
(1 − t). Hence, Jensen’s inequality for conditional expectations and (12)

show that

inf
Q∈Q

EQ[ U(XT ) ] ≤ EQ0
[ U(XT ) ] =

∫ 1

0

U(h(t)) dt

≤

∫ 1

0

U
(
Eλ[ h | qπ ](t)

)
dt =

∫ 1

0

U(qf(π)(1 − t)) dt (14)

= EQ0
[ U(f(π)) ] = inf

Q∈Q
EQ[ U(f(π)) ] ,

where we have used Proposition 3.1 in the last step. Thus, f satisfies (11).

It remains to show that f(π) satisfies the capital constraint. To this end, we first use

the lower Hardy-Littlewood inequality:

x ≥ Ê[ XT ] = EQ0
[ πXT ] ≥

∫ 1

0

qπ(t) qXT
(1 − t) dt . (15)

Here we may replace qXT
(1 − t) = h(t) by Eλ[ h | qπ ](t) = f(qπ(t)). We then get

∫ 1

0

qπ(t) qXT
(1 − t) dt =

∫ 1

0

qπ(t) f(qπ(t)) dt = EQ0
[ πf(π) ] = Ê[ f(π) ] . (16)

Thus, f is as desired.

(b) Now suppose X∗ solves (4). If X∗
T is not Q0-a.s. σ(π)-measurable, then Y :=

EQ0
[ X∗

T |π ] must satisfy

EQ0
[ U(Y ) ] > EQ0

[ U(X∗
T ) ] , (17)

due to the strict concavity of U . If we define f̃ as in (13) with Y replacing XT , then the

proof of part (a) yields that

Ê[ f̃(π) ] = EQ0
[ πf̃(π) ] ≤ EQ0

[ πY ] = EQ0
[ πX∗

T ] ≤ x ,

and by (14) and (17),

inf
Q∈Q

EQ[ U(f̃(π)) ] ≥ EQ0
[ U(Y ) ] > EQ0

[ U(X∗
T ) ] ≥ inf

Q∈Q
EQ[ U(X∗

T ) ] ,

in contradiction to the optimality of X∗. Thus, X∗
T is necessarily σ(π)-measurable and

can hence be written as a (not yet necessarily decreasing) function of π.

If we define f ∗ as in (13) with X∗
T replacing XT , then f ∗(π) is the terminal wealth of

yet another solution in X (x). Clearly, we must have Ê[ X∗
T ] = x = Ê[ f ∗(π) ]. Thus, (15)

and (16) yield that EQ0
[ πX∗

T ] =
∫ 1

0
qπ(t) qX∗

T
(1 − t) dt. But then the “only if” part of

the lower Hardy-Littlewood inequality together with the σ(π)-measurability of X∗
T imply

that X∗
T is a decreasing function of π.
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Thus, in solving the robust utility maximization problem (4), we may restrict ourselves

to strategies whose terminal wealth is a decreasing function of π. By Propositions 3.1, the

robust utility of a such a terminal wealth is the same as the expected utility with respect

to Q0. On the other hand, taking Q0 := {Q0} in Proposition 4.1 implies that the standard

utility maximization problem for Q0 also requires only strategies whose terminal wealth

is a decreasing function of π. Therefore, the two problems are equivalent, and Theorem

2.2 is proved.
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