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Abstract

We study the impact of marginal cost pricing in resource allocation games on the
worst case efficiency of Nash equilibria. Resource allocation games are closely related
to congestion games and model the strategic interaction of players competing over a
finite set of congestible resources. Examples of resource allocation games are routing
and congestion control games in networks.

For convex and differentiable marginal cost functions, we prove that marginal cost
pricing leads to a worst-case efficiency loss of Nash equilibria of at most 2/(2n+ 1),
where n is the number of players. This is the first bound that holds for resource
allocation games with arbitrary convex and differentiable marginal cost functions.
For polynomial marginal cost functions with non-negative coefficients, we precisely
characterize the price of anarchy. We also prove that the efficiency of Nash equilibria
significantly improves if all players have the same strategy space and the same utility
function.

We propose a class of distributed dynamics and prove that whenever a game ad-
mits a potential function, these dynamics globally converge to a Nash equilibrium.
Finally, we show that in general the only class of marginal cost functions that guar-
antees the existence of a potential function are affine linear functions.

1 Introduction

Congestion games as introduced by Rosenthal [43] are non-cooperative games in which
player’s strategies consist of a set of subsets of resources, and the utility of a player
depends only on the number of players choosing the same or some overlapping strategy.

We consider in this paper a variant of congestion games that are known as resource
allocation games in which each player assigns to each of its available subsets a non-negative
demand. The payoff for a player is then defined by the difference of the utility associated
with the sum of the demands and the associated costs on the used resources. A prominent
example of such a game is the traffic routing game of Haurie and Marcotte [21], which
builds on the classical model of Wardrop [54]: The arcs in a given network represent
the resources, the different origin-destination pairs correspond to the players, and the
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subsets of resources are the available paths in the network between the respective origin-
destination pair. The strategy of a player is a distribution of traffic flow over its avaliable
paths. The cost of an arc describes the delay experienced by traffic traversing that arc as
a function of the flow on that arc.

Resource allocation games also play a key role in telecommunication networks, where
users want to route packets from their source node to some sink node in the network.
Here, it is assumed that each user receives non-negative utility from transmitting at a
certain packet rate and that each link maintains a flow dependent cost function modeling
packet delay, see Kelly et al. [32].

It is well known that Nash equilibria can be inefficient in the sense that they need not
achieve socially desirable objectives [6, 15]. In the context of resource allocation games, a
Nash equilibrium in general does not maximize the social welfare; or said differently, selfish
behavior may cause a performance degradation. Koutsoupias and Papadimitriou [34]
initiated the systematic investigation of the efficiency loss caused by selfish behavior.
They introduced a measure to quantify the inefficiency of Nash equilibria, which they
termed the price of anarchy. The price of anarchy is defined as the worst-case ratio of
the social welfare of a system optimum and that of a Nash equilibrium.

In recent years, considerable progress has been made in quantifying the degradation in
performance caused by the selfish behavior of non-cooperative players. In a seminal work,
Roughgarden and Tardos [46] showed that the price of anarchy for network routing games
with nonatomic players and affine latency functions is 4/3; in particular, this bound holds
independently of the underlying network topology.

In resource allocation games, a simple example reveals that the price of anarchy is
already unbounded for games with only one resource having an affine cost function. Due
to this large efficiency loss, researchers have proposed different approaches to reduce the
price of anarchy. In the context of congestion and resource allocation games, one of the
most prominent approaches is the use of non-negative tolls on resources. In the area
of transportation networks, this concept has been called congestion toll pricing, see for
example Knight [33] and Beckmann et al. [4]. This mechanism assigns tolls to certain
arcs of the network which are charged to those users that decide to take routes through
them.

The concept of congestion prices has also been applied to telecommunication networks.
Here, the congestion prices are related to physical quantities such as communication delays
or packet loss rates at links. As common transport protocols such as TCP determine the
communication rate according to packet loss rates or perceived delay, the equilibria of
congestion pricing games can be interpreted as equilibria of such transport protocols, see
for instance Low and Lapsley [36], Kelly et al. [32], Kelly and Voice [31], Kunniyur and
Srikant [35], or the book by Srikant [51].

A central topic in the economics literature is to derive and study pricing mechanisms
for allocating the joint costs so as to align the player’s incentives with social objectives.
Perhaps the best studied congestion pricing mechanism is marginal cost pricing, while
other popular price mechanisms include the Aumann-Shapley pricing, the average cost
pricing, and the Ramsey pricing, see Tauman [53]. Chen and Zhang [10] recently presented
a class of pricing mechanisms for network resource allocation games satisfying four axioms
that are considered desirable. In particular, their mechanisms are characterized by the
axioms rescaling, additivity, positivity, and weak consistency, which have been proposed
by Samet and Tauman [47]. This family of price mechanisms include the marginal cost
pricing, the Aumann-Shapley pricing, and the average cost pricing. The main objective
of Chen and Zhang is to find among all mechanisms that satisfy the four axioms an
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optimal mechanism, i.e., one that minimizes the induced price of anarchy. Their main
result states that for affine cost functions, the optimal mechanism is obtained by an affine
transformation of marginal cost prices, and that marginal cost pricing itself is nearly
optimal.

In light of these positive results for the marginal cost price mechanism, our goal is to
further analyze this mechanism with respect to the induced price of anarchy in the context
of resource allocation games. While most of the previous works focused on affine linear
marginal cost functions, the present work studies non-linear marginal cost functions.
Non-linear marginal cost functions are particularly relevant in practice, since for example
link delays grow super-linearly with link flows in close-to-capacity regions, e.g., M/M/1
functions. In road networks, for instance, the most frequently used functions modeling
delay are polynomials whose degrees and coefficients are determined from real-world data
through statistical evaluation methods, see Patrikkson [41], Branston [7], or the Bureau
of Public Roads [8].

We also generalize in this paper the considered strategy spaces of players. Most of the
previous works, e.g., Johari and Tsitsiklis [28, 27], consider games in which the strategy
space of players is defined via feasible flows in a multi-commodity flow network. Our
model contains general combinatorial strategy spaces similar to congestion games. In
particular, our formulation contains game variants, such as multi-commodity routing,
multicast routing, routing on trees and network design.

The second goal of this paper is to design distributed dynamics that provably con-
verge to a Nash equilibrium. This is a central problem in evolutionary game theory,
where the goal is to design simple and distributed improvement dynamics for players that
provably converge to an equilibrium. Classical examples of improvement dynamics are
best-response dynamics, replicator dynamics, gradient descent dynamics etc., see also the
book by Sandholm [49].

1.1 Our Results

We study resource allocation games with marginal cost pricing. Our contributions to the
above objectives are the following:

1. For resource allocation games (players have arbitrary differentiable, non-decreasing
and concave utility functions) with n ∈ N players and differentiable, non-decreasing
and convex marginal cost functions, we prove a lower bound of 2/(2n + 1) on
the worst case efficiency of Nash equilibria. In particular, this bound carries over to
practically relevant M/M/1 functions that model queuing delays with arc-capacities.

We completely characterize the price of anarchy for polynomial marginal cost func-
tions with non-negative coefficients (previous results only covered affine marginal
costs). For resource allocation games with a single resource (known as Cournot
games) with differentiable, non-decreasing, semi-convex and concave marginal cost
functions, we prove that the efficiency of Nash equilibria is at least 1/2. This result
holds for an arbitrary number of players.

2. For symmetric games (players have equal utility functions and equal strategy space),
we present a series of results showing that the efficiency of Nash equilibria sig-
nificantly improves. In particular, we prove that the worst case efficiency for
differentiable, non-decreasing and convex marginal cost functions is bounded by
2n/(2n + 1). For polynomial marginal costs we prove a tight bound of 3/4.
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For Cournot games with differentiable, non-decreasing, semi-convex and concave
marginal cost functions, we prove a lower bound of n/(n+ 1) in this case.

3. We define a class of distributed dynamics that can be implemented by players. We
show that this class contains, among others, the gradient method and a combination
of the gradient method with replicator dynamics. We prove that dynamics from this
class converge to a Nash equilibrium from any initial strategy profile if the game
admits an exact potential function. We show that an exact potential function always
exists if (i) marginal cost functions are linear, or (ii) all players have the same utility
function and symmetric strategy spaces. We also show that without restrictions on
utility functions and the underlying strategy spaces, the only marginal cost functions
that guarantee the existence of a potential are affine linear functions.

1.2 Significance and Techniques

Our first results generalize the result of Johari and Tsitsiklis [28] for linear marginal
cost functions. We prove a tight characterization of the price of anarchy for polynomial
marginal cost functions. It is worth noting that our proof technique is quite simple and
different from [28]. In [28], the authors explicitely identify the worst possible game by
analytically solving a sequence of quadratic optimization problems. Hence, this approach
becomes increasingly complicated if such optimization problems involve polynomial cost
functions of higher degree. Our approach hinges on variational inequalities, which are
used to relate the total surplus of a Nash profile with that of an optimal profile. As
a consequence, this technique can be applied to derive bounds on the price of anar-
chy for arbitrary subclasses of semi-convex marginal cost functions, see for instance our
results for concave marginal cost functions. Moreover, all our results hold for general
resource allocation games, which contain games with network structure as a special case.
Our formulation is based on the general notion of congestion games, which include net-
work variants such as multi-cast routing, routing on trees, e.g., minimum spanning-trees,
Steiner trees, etc. We see this as a non-trivial generalization of previous works, as, for in-
stance, Johari and Tsitsiklis [28] explicitely used the network structure (essentially using
max-flow computations) to prove their bounds on the price of anarchy.

Finally, we study distributed dynamics that can be implemented by players. Using
potential theory, we derive conditions under which these dynamics globally converge to a
Nash equilibrium. As a byproduct of our analysis, we establish (under mild differentia-
bility assumptions) a characterization of the existence of potentials. Since the initiating
paper of Rosenthal [43] about congestion games and potential functions, a central topic
of game theory is to determine classes of games that admit a potential. Thus, we believe
that our result is of independent interest as it precisely describes, which classes of resource
allocation games (depending on the class of marginal cost functions) admit a potential
function.

1.3 Related Work

Related to the model considered in this paper are network routing games with a finite
number of players who can split the flow along available paths, see Altman et al. [2],
Haurie and Marcotte [21], Hayrapetyan et al. [22] and Cominetti et al. [12]. Haurie and
Marcotte presented a general framework for studying atomic splittable network games
with elastic demands. This class of games contains network resource allocation games
if the elastic demand functions model the equilibrium demand functions. Haurie and
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Marcotte, however, do not study the efficiency of Nash equilibria with respect to an
optimal solution.

Hayrapetyan et al. [22] study congestion games with colluding players. Their goal is
to investigate the price of collusion: the factor by which the quality of Nash equilibria can
deteriorate when coalitions form. Altman et al. [2] and Cominetti et al. [12] studied the
atomic splittable selfish routing model. Altman et al. bounded the price of anarchy for
monomial latency functions (plus a constant). They also derived conditions under which
a Nash equilibrium is unique. Uniqueness of Nash equilibria has been further studied by
Fleischer et al. [5] and Orda et al. [39]. Cominetti et al. observed that the price of anarchy
of the atomic splittable game may exceed that of the standard nonatomic selfish routing
game. Based on the work of Catoni and Pallotino [9], they presented an instance with
affine latency functions, where the price of anarchy is 1.34. The main difference between
our model and that of Hayrapetyan et al. [22] and Cominetti et al. [12] is that our model
involves elastic demands that are varied by players. As a result, in our model the payoff
of players is a linear combination of utility (derived from sending flow) and associated
costs.

Kelly, Maulloo and Tan [32] and Kelly [30] studied network resource allocation games
and proposed a pricing mechanism that they termed proportionally fair pricing in which
every link charges a price per unit resource equal to marginal cost. Despite the simplicity
and scalability of this mechanism, Kelly et al. showed that an optimal solution can be
achieved as an equilibrium if players are price takers, that is, if they do not anticipate the
consequence of price change in response to a change of their flow.

Johari et al. [26, 25] studied network resource allocation games, where players submit
a bid to each link in the network and each link allocates resources to players according
to Kelly’s proportionally fair allocation mechanism. For this mechanism they established
a bounded efficiency loss of the marginal pricing scheme with fixed and elastic resource
capacities. However, the proposed mechanism is not scalable since each player has to
submit an individual bid to each link in the network. If, instead, players can only submit
a single bid per path, Yang and Hajek [56] proved that the efficiency can be arbitrary low
for the case of hard capacities and Johari [24] for the case of elastic capacities.

Perhaps closest to this paper is the work by Johari and Tsitsiklis [28, 27], who studied
network resource allocation games with marginal cost pricing. On the negative side,
they showed that for non-differentiable marginal cost functions, the price of anarchy is
unbounded even for games with two players. For the special case of linear marginal cost
functions, Johari and Tsitsiklis [28] showed that the efficiency loss is bounded by 2/3.
Remarkably, this result holds for an arbitrary collection of concave utility functions and
arbitrary networks. For a game with one resource and n players having equal utility
functions, Johari and Tsitsiklis [27] proved a bound of 2n/(2n+ 1) for convex marginal
cost functions.

Moulin [38] studied the price of anarchy for resource allocation games on a single
link (Cournot games) with three different pricing mechanisms that are based on cost
sharing principles. The used social welfare function, however, differs from our setting
and, thus, the derived bounds are not transferable to our setting. Chen and Zhang [10]
defined certain axioms for a desirable pricing mechanism for network resource allocation
games and derived for quadratic cost functions (which corresponds to linear marginal
cost functions) a slightly better efficiency guarantee (0.686) than the bound (2/3) proved
for the marginal cost pricing. Guo and Yang [18] study the price of anarchy in Cournot
oligopoly models and derived bounds on the price of anarchy depending on the market
structure (market share of each player). Their model exhibits structural differences to
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our model since they assume explicit demand functions (instead of utility functions) and
their social welfare function is different to ours.

In nonatomic network routing games, Roughgarden and Tardos [46] showed that the
price of anarchy for network routing games with nonatomic players and linear latency
functions is 4/3. The case of more general families of latency functions has been studied
by Roughgarden [44] and Correa, Schulz, and Stier-Moses [13]. (For an overview of related
results, we refer to the book by Roughgarden [45] and the survey by Altman et al. [3].)
Despite these bounds for specific classes of latency functions, it is known that the price
of anarchy in routing games with general latency functions is unbounded even on simple
parallel-arc networks [46].

A large body of work in the area of transportation networks is concerned with conges-
tion toll pricing, see for example Knight [33], Beckmann et al. [4], Smith [50], and Hearn
and Ramana [23]. This mechanism assigns tolls to certain arcs of the network which are
charged to those users that decide to take routes through them. Beckmann et al. [4]
showed that for the Wardrop model with homogeneous users charging users the difference
between the marginal cost and the real cost in the socially optimal solution (marginal cost
pricing) leads to an equilibrium flow which is optimal. Cole et al. [11] considered the case
of heterogeneous users, that is, users value latency relative to monetary cost differently.
For single-commodity networks, the authors showed the existence of tolls that induce an
optimal flow as Nash flow. Fleischer et al. [17], Karakostas and Kolliopoulos [29], and
Yang and Huang [55] proved that there are tolls inducing an optimal flow for heteroge-
nous users even in general networks. Swamy [52] proved the existence of optimal tolls
for the atomic splittable model with fixed demands. Finally, Acemoglu and Ozdaglar [1]
and Ozdaglar [40] study a model of parallel arc networks in which the arcs are owned by
service providers that compete for the available traffic by setting prices. For this model
they prove a tight worst-case bound for the efficiency loss of equilibria.

2 The Model

We now introduce resource allocation games as natural generalizations of variants of
congestion games. For the sake of a clean mathematical definition, we first introduce the
notion of a congestion model.

Definition 2.1 (Congestion Model). A tuple M = (N,R,X, (cr)r∈R) is called a conges-
tion model if N = {1, . . . , n} is a non-empty, finite set of players, R = {1, . . . ,m} is a
non-empty, finite set of resources, and X = ×i∈NXi is a product space of accessible sets.
For each player i ∈ N , her collection of accessible sets Xi = {Ri1, . . . , Rimi}, mi ∈ N,
is a non-empty, finite set of subsets of R. Every resource r ∈ R has a cost function
cr : R+ → R+.

Assumption 2.2. Cost functions cr : R+ → R+, r ∈ R, are differentiable, semi-convex,
non-decreasing functions, with cr(0) ≥ 0 and limx→∞ cr(x) = ∞. Note that a function
is semi-convex if x · cr(x) is a convex function of x. Such functions are also called stan-
dard [44].

Given a congestion model M = (N,R,X, (cf )f∈F ) we derive a corresponding resource
allocation model RM = (N,R,X,Φ, (cr)r∈R), where Φ = ×i∈NΦi, and Φi = Rmi

+ defines
the strategy space for player i. The strategy profile φi = (φi1, . . . , φimi) of player i can be
interpreted as a distribution of non-negative demands over the elements in Xi. The total
demand of player i is defined by ‖φi‖1=

∑mi
j=1 φij . We will use the short-hand notation
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Mi = {1, . . . ,mi}. For i ∈ N , −i denotes the complementary set of i. Instead of Φ−{i}
we will write Φ−i, and with a slight abuse of notation we will write sometimes a strategy
profile as φ = (φi, φ−i) meaning that φi ∈ Φi and φ−i ∈ Φ−i.

By choosing a strategy φi, player i receives a certain benefit measured by a utility
function Ui(‖φi‖1). We assume that utility functions satisfy the following conditions.

Assumption 2.3. Each utility function Ui : R+ → R+, is differentiable, strictly increas-
ing, and concave.

For a given profile φ, the load generated by player i on resource r ∈ R is defined
by φri =

∑
Rij∈Xi : r∈Rij

φij , i ∈ N, r ∈ R. The total load on resource r is defined by
φr =

∑n
i=1 φ

r
i .

We are now ready to formally define a resource allocation game.

Definition 2.4 (Resource Allocation Game). Let RM = (N,R,X,Φ, (cr)r∈R) be a re-
source allocation model derived from M. The corresponding resource allocation game is
the strategic game G(RM) = (N,Φ, π), where the payoff π = (π1, . . . , πn) is defined as

πi(φ) := Ui
(
‖φi‖1

)
−
∑
r∈R

φri · cr(φr). (1)

In the sequel of this paper, we will write G instead of G(RM).

Remark 2.5. Assumptions 2.3 and 2.2 imply lim
‖φi‖→∞

πi (φi; φ−i) = −∞, hence, we can

effectively restrict the strategy space for every player to a compact set. As the payoff
functions are concave, a pure Nash equilibrium exists, see the result of Rosen [42].

The total cost function for a profile φ is defined as

C(φ) =
∑
r∈R

∫ φr

0
cr(z) dz .

Defining the total cost function as the integral over the cost functions cr, r ∈ R, implies
that the price mechanism implicitly defined in (1) corresponds to marginal cost pricing.

The total surplus of a profile φ is defined as

U(φ) :=
n∑
i=1

Ui
(
‖φi‖1

)
− C(φ) . (2)

A profile of maximum total surplus is called optimal.

3 Price of Anarchy for Marginal Cost Pricing

In the following, we will study the price of anarchy with respect to a class of marginal
cost functions C satisfying Assumption 2.2. Throughout the paper we assume that utility
functions for every game satisfy Assumption 2.3.

Definition 3.1. Let C be a class of marginal cost functions. Let Gn
(
C
)

be the set of all
resource allocation games with n players and marginal cost functions in C. For G ∈ Gn

(
C
)
,

let ψG be an optimal profile and let ΘG be the set of pure Nash equilibria, respectively.
Then, the worst case efficiency of Nash equilibria is defined by

ρn
(
C
)

= inf
G∈Gn(C)

inf
θ∈ΘG

UG(θ)
UG(ψG)

,
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where UG is the total surplus function for game G. Conversely, ρn
(
C
)−1 defines the price

of anarchy.

In order to simplify the notation, we denote the derivative of the cost of player i with
respect to his demand satisfied by set Rij by ĉij(φ). We obtain

ĉij(φ) :=
∂

∂φij

(∑
r∈R

φri · cr(φr)
)

=
∑
r∈Rij

(
cr
(
φr
)

+ c′r
(
φr
)
φri

)
. (3)

We call ĉij(φ) player-specific marginal costs of the set Rij .

Lemma 3.2. Consider a resource allocation game G. The profiles θ and ψ are a Nash
equilibrium and an optimal profile, respectively, if and only if the following conditions hold
for all players i:

∇πi
(
θi; θ−i

)
·
(
ξi − θi

)
≤ 0, for all ξi ≥ Rmi

+ , (4)

U ′i
(
‖θi‖1

)
= ĉij(θ), for all θij > 0, j ∈Mi ,

U ′i
(
‖θi‖1

)
≤ ĉij(θ), for all θij = 0, j ∈Mi ,

(5)

U ′i
(
‖ψi‖1

)
= cij(ψ), for all ψij > 0, j ∈Mi ,

U ′i
(
‖ψi‖1

)
≤ cij(ψ), for all ψij = 0, j ∈Mi .

(6)

Proof. The function πi is differentiable and concave with respect to φi. Furthermore, the
set of profiles Φ is convex. Since θ is a Nash equilibrium, the strategy θi is a maximizer of
πi(φi; φ−i). Thus, we can invoke the variational inequality as a necessary and sufficient
optimality condition giving (4). Note that the derivative of πi with respect to φij is given
by

∂πi
∂φij

(φi; φ−i) = U ′i
(
‖φi‖1

)
− ĉij(φ) .

Thus, the second and third conditions follow directly from the Karush-Kuhn-Tucker con-
ditions for maximizing πi(φi; φ−i) and U(φ), respectively.

The next lemma, which can be found in Johari and Tsitsiklis [28], Moulin [38], and
Chen and Zhang [10], shows that for bounding the price of anarchy it is sufficient to bound
the price of anarchy for games with only linear utility functions. The idea for proving the
lemma is to observe that every Nash equilibrium θ for a game G can be transformed to
a Nash equilibrium θ̃ for a modified game G̃ in which linear utility functions of the form
Ũi(x) = x ·U ′i

(
‖θi‖1

)
are used. Then, using concavity of Ui one can easily verify that the

price of anarchy of the transformed game only increases.

Lemma 3.3. [[10],[28],[38]] For bounding the price of anarchy, it is enough to consider
resource allocation games in which utility functions are linear.

In the following, we represent the total surplus of a Nash equilibrium and that of an
optimal profile in terms of the involved marginal cost functions.

Lemma 3.4. Consider a game G in which utility functions are linear, that is, Ui(x) =
ui · x, ui ≥ 0, i ∈ N . Let ψ be an optimal profile and θ be a Nash equilibrium. Then, ψ
and θ generate total surplus of

U(ψ) =
∑
r∈R

(
ψr · cr

(
ψr
)
−
∫ ψr

0
cr(z) dz

)
,

U(θ) =
∑
r∈R

(
θr · cr

(
θr
)

+
n∑
i=1

(θri )
2 · c′r

(
θr
)
−
∫ θr

0
cr(z) dz

)
.
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Proof. Using the optimality condition (6) in Lemma 3.2 we get ui = cij(ψ) for all i ∈ N ,
j ∈Mi, with ψij > 0. By reordering the summation, we obtain

U(ψ) =
n∑
i=1

ui · ‖ψi‖1 −
∑
r∈R

∫ ψr

0
cr(z) dz =

∑
r∈R

(
ψr · cr

(
ψr
)
−
∫ ψr

0
cr(z) dz

)
,

proving the first part of the lemma. The second equation follows similarly by using the
optimality condition (5), which implies ui = ĉij(θ), for all i ∈ N , j ∈Mi, with θij > 0.

The next lemma plays a key role in bounding the price of anarchy. It essentially
provides an inequality bounding the surplus of an arbitrary Nash equilibrium in terms
of the optimal surplus and an additional term that depends on both, the Nash and the
optimal profile, respectively.

Lemma 3.5. Consider a game G with n players in which utility functions are linear, .i.e.,
Ui(x) = ui · x, ui ≥ 0, i ∈ N . Let θ be a Nash profile and ψ be an optimal profile. For
every r ∈ R, we define µr := maxi∈N

{
θr
i
θr

}
∈
[

1
n , 1

]
, if θr > 0, and µr := 0, otherwise.

Then, for all λ > 0, the following inequality is valid:

U(ψ) ≤ λU(θ) +
∑
r∈R

(
cr
(
ψr
)
θr + µr θ

r ψr c′r
(
θr
)
− λ τr(cr, θr, µr)−

∫ ψr

0
cr(z) dz

)
(7)

where τr(cr, θr, µr) :=
(
cr
(
θr
)
θr + µ2

r c
′
r

(
θr
) (
θr
)2 − ∫ θr

0 cr(z) dz
)
.

Proof. We first sum the variational inequality (4) in Lemma 3.2 with ξi = ψi over all
i ∈ N , i.e.,

n∑
i=1

U ′i
(
‖θi‖1

) (
‖ψi‖1 − ‖θi‖1

)
−
∑
r∈R

(
cr
(
θr
) (
ψr − θr

)
+

n∑
i=1

c′r
(
θr
)
θri
(
ψri − θri

))
≤ 0.

Using that utility functions are linear and rewriting yields

n∑
i=1

ui ‖ψi‖1 ≤
n∑
i=1

ui ‖θi‖1 +
∑
r∈R

(
cr
(
θr
) (
ψr − θr

)
+

n∑
i=1

c′r
(
θr
)
θri
(
ψri − θri

))
.

By Lemma 3.4 and the definition of µr we get∑
r∈R

cr
(
ψr
)
ψr

≤
n∑
i=1

ui ‖θi‖1 +
∑
r∈R

(
cr
(
θr
) (
ψr − θr

)
+ c′r

(
θr
)
µr θ

r ψr −
n∑
i=1

c′r
(
θr
) (
θri
)2)

=
∑
r∈R

(
cr
(
θr
)
ψr + c′r

(
θr
)
µr θ

r ψr
)
.

(8)

Subtracting
∑

r∈R
∫ ψr

0 cr(z) dz on both sides gives

U(ψ) ≤
∑
r∈R

(
cr
(
θr
)
ψr + c′r

(
θr
)
µr θ

r ψr −
∫ ψr

0
cr(z) dz

)
.
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Now we add and subtract λU(θ) for some λ > 0 on the right-hand side

U(ψ) ≤ λU(θ) +
∑
r∈R

(
cr
(
θr
)
ψr + c′r

(
θr
)
µr θ

r ψr −
∫ ψr

0
cr(z) dz

)
− λU(θ) .

Finally, it holds that λU(θ) ≥ λ
∑

r∈R

(
cr
(
θr
)
θr + µ2

r c
′
r

(
θr
) (
θr
)2 − ∫ θr

0 cr(z) dz
)
. Thus,

the claim is proved.

Lemma 3.5 provides an inequality of the form U(ψ) ≤ λU(θ) + γ(ψ, θ, λ, µ), where
γ(ψ, θ, λ, µ) :=

∑
r∈R

(
cr
(
θr
)
ψr + c′r

(
θr
)
µr θ

r ψr − λ τr(cr, θr, µr)−
∫ ψr

0 cr(z) dz
)
.

The main idea for proving bounds on the price of anarchy is to bound γ from above in
terms of ω U(ψ) for some ω < 1. This would imply the inequality U(ψ) ≤ λU(θ)+ω U(ψ),
which yields a bound on the worst case efficiency of 1−ω

λ . As a consequence, we will then
optimize over λ so as to derive the best possible bound. This technique (λ-technique)
has been previously applied to bounding the price of anarchy in congestion games, see
Harks [19].

To this end, we define for a cost function c and parameters λ > 0 and µ ∈ {0} ∪ [ 1
n , 1]

the following value:

ωn(c;λ) := sup
µ∈{0}∪[ 1

n
,1]

sup
(x,y)∈R2

+

c(x) y + c′(x)µx y − λ τ(c, x, µ)−
∫ y
0 c(z) dz

c(y) y −
∫ y
0 c(z) dz

. (9)

For a given class of functions C, we further define ωn(C;λ) := sup
c∈C

ωn(c;λ). Given a class

of marginal cost functions C that satisfies Assumption 2.2, we define the feasible λ-region
as Λn(C) := {λ > 0 |ωn(C;λ) < 1}.

Theorem 3.6. Let C be a class of marginal cost functions. Consider the set Gn(C) of
games with at most n ∈ N players. Then, the worst case efficiency is at least

ρn(C) ≥ sup
λ∈Λn(C)

[
1− ωn(C;λ)

λ

]
.

Proof. The proof follows directly from Lemma 3.3, Lemma 3.5 and the definition of
ωn(C;λ).

Notice that Theorem 3.6 can now be used to derive bounds on the price of anarchy
for arbitrary classes of cost functions (satisfying Assumption 2.2). The challenge is to
calculate the function ωn(C;λ) for a given class C.

3.1 Convex Marginal Cost Functions

We start with applying Theorem 3.6 for convex marginal cost functions.

Theorem 3.7. Let Cconv be a class of convex marginal cost function. Consider the set
Gn(Cconv) of games with at most n ∈ N players. Then, ρn(Cconv) ≥ 2

2n+1 .

Proof. We define λ = 1
2 + n and prove the claim by showing ωn(c;λ) ≤ 0 for c ∈ Cconv.

We proceed by a case distinction. First, we assume x ≥ y. Then, the nominator of (9)
can be bounded from above as follows.

c(x) y + c′(x)µx y − λ τ(c, x, µ)−
∫ y

0
c(z) dz ≤ c′(x)

(
µx y − λµ2 x2

)
≤ c′(x)x2

(
µ− λµ2

)
.

10



0
0

c(z)

∆1

∆2

Lβ y(z)

c(β y)

yβ y

Figure 1: Illustration of the inequality (10) in the proof of Theorem (3.7). The gray-shaded
area illustrates the term

∫ y
0 c(z) dz −

∫ β y
0 c(z) dz = ∆1 + ∆2. The linear approximation

Lβ y(·) of the convex function c(·) bounds c(z) from below, i.e., Lβ y(z) ≤ c(z). Then, we
have ∆1 = (y − β y) c(β y) and ∆2 ≥ (y−β y)2

2 c′(β y).

For the first inequality, we used that

c(x) y − λ c(x)x+ λ

∫ x

0
c(z) dz −

∫ y

0
c(z) dz ≤ 0 ,

since y ≤ x and λ ≥ 1. The second inequality follows from y ≤ x and c′(x) ≥ 0.
Then, λ = 1

2 + n yields ωn(c;λ) ≤ 0 as maxµ∈{0}∪[ 1
n
,1] µ− (1

2 + n)µ2 ≤ 0.
Now, we consider the case x < y. We define β := x

y ∈ [0, 1).
We now observe that∫ y

0
c(z) dz − λ

∫ β y

0
c(z) dz =

∫ y

0
c(z) dz −

∫ β y

0
c(z) dz − (λ− 1)

∫ β y

0
c(z) dz .

Then, we use the following inequality, which is illustrated in Fig. 1.∫ y

0
c(z) dz −

∫ β y

0
c(z) dz ≥ (y − β y) c(β y) +

(y − β y)2

2
c′(β y) . (10)

Together with

(λ− 1)
∫ β y

0
c(z) dz ≤ (λ− 1) c(β y)β y ,

we obtain

ωn(c;λ) ≤ sup
β∈[0,1), y∈R+

µ∈
{
{0}∪[ 1

n
,1]
}
c′(β y) y2

(
β µ− λµ2 β2 − (1−β)2

2

)
c(y) y −

∫ y
0 c(z) dz

.

We use

max
β∈[0,1)

(
β µ− λµ2 β2 − (1− β)2

2

)
≤ µ (2 + µ− 2λµ)

2 (2λµ2 + 1)
,

where β∗ = µ+1
2λµ2+1

is the unique maximizer. Thus, since λ = 1
2 +n and using that µ ≥ 1

n

we obtain ωn(c;λ) ≤ 0. Notice that also µ = 0 implies ωn(c;λ) ≤ 0.
Applying Theorem 3.6 for both cases proves the claim.
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The above result gives a bound on the efficiency loss for convex marginal cost functions
that scales with the number of players. Compared to the negative result of Johari and
Tsitsiklis [27] for two-player games with non-differentiable marginal cost functions, our
result shows that differentiability of marginal cost functions is enough to obtain a bounded
efficiency loss.

Remark 3.8. We conjecture that the lower bound for the efficiency loss is tight, that is,
ρn(Cconv) = 2

2n+1 . In the next section (Proposition 3.13), we present an upper bound for

the efficiency loss of ρn(Cconv) ≤ 2(n−
√
n)√

n(n−1)
.

3.2 Polynomial Marginal Cost Functions

In practice, the most frequently used functions modeling delay are polynomials whose
degrees and coefficients are determined from real-world data through statistical evaluation
methods, see Patrikkson [41] and Branston [7]. Thus, we will explicitly calculate the price
of anarchy for the class

Cd :=
{
c(z) =

d∑
j=1

aj z
j , aj ≥ 0, j = 0, . . . , d

}
.

To simplify the analysis, we focus on the general case n ∈ N ∪ {∞}. Let us define
ω∞(c;λ) := limn→∞ ωn(c;λ). Then, it is easy to see that ω∞(c;λ) ≥ ωn(c;λ) for any
n ∈ N, implying ρ∞(c) ≤ ρn(c).

Remark 3.9. We observe that for polynomial marginal cost functions the total cost func-
tion C(φ) is linear in each of the marginal cost functions cr(·). We can therefore reduce
the analysis to monomial price functions. For this, we subdivide each resource r into d
resources r0, . . . , rd with monomial price functions crs(φr) = crs ·

(
φr
)s for s ∈ {0, . . . , d}.

By extending the accessible sets of every player accordingly, we obtain a transformed game
in which the set of Nash equilibria, optimal profiles and corresponding surplus values co-
incide.

Lemma 3.10. Consider the class Mj :=
{
c(z) = aj z

j , aj ≥ 0, j ∈ N
}
. Then, it holds

that
ω∞(Mj ;λ) ≤

(( 1 + µ(j) j
λ (1 + µ(j)2 j + µ(j)2)

)j (
µ(j) j + 1

)
− 1
)
/ j ,

where µ(j) = 1√
j+1

.

Proof. Using the definition of ω∞(c;λ) for c ∈Mj we get

ω∞(c;λ) = sup
µ∈[0,1]

sup
(x,y)∈R2

+

xj y + j xj µ y − λ
(
1 + µ2 j − 1

j+1

)
xj+1 − 1

j+1 y
j+1(

1− 1
j+1

)
yj+1

= sup
µ∈[0,1]

sup
β≥0

βj
(
1 + j µ

)
− λ

(
1 + µ2 j − 1

j+1

)
βj+1 − 1

j+1(
1− 1

j+1

) ,

where β := x
y (the case y = 0 can be excluded since then ω∞ becomes non-positive).

The supremum with respect to β is a strictly convex program with the unique global
maximizer

β∗ =
1 + µ j

λ
(
1 + µ2 j + µ2

) .
12



Thus, since c ∈Mj was arbitrary, we get

ω∞(Mj ;λ) ≤ sup
µ∈[0,1]

(( 1 + µ j

λ (1 + µ2 j + µ2)

)j (
µ j + 1

)
− 1
)
/ j.

The unique maximizer for this supremum is given by µ(j) = 1√
j+1

.

Theorem 3.11. Let Cd be the class of polynomial cost functions with non-negative coef-
ficients and maximum degree d ∈ N. Then,

ρ(Cd) =
1 + µ(d)2 d+ µ(d)2(

1 + µ(d) d
)1+ 1

d

, where µ(d) =
1√
d+ 1

.

Proof. We define

λ =

(
1 + µ(d) d

)1+ 1
d

1 + µ(d)2 d+ µ(d)2
.

Then, Lemma 3.10 implies ω∞(Mj ;λ) ≤ 0 for all j < d and ω∞(Mj ;λ) = 0 for j = d.
Thus, using Theorem 3.6, we have

λU(θ) ≥ U(ψ)

for an arbitrary Nash equilibrium θ and an optimal profile ψ.
Now we prove the upper bound. Consider a game with one resource having marginal

cost function c(x) = xd for some d ∈ N. Assume we have n players, where player 1 has
the utility function U1(φ1) = φ1, while the remaining n− 1 players have utility functions
Uk(φk) = b φk for some b ∈ [0, 1] specified later. The total load of the resource is given by
‖φ‖1.

Consider a Nash equilibrium θ(n) in this game. The necessary and sufficient Nash
condition for player 1 yields

1 = ‖θ(n)‖d1 + d ‖θ(n)‖d−1
1 θ1(n) .

Thus, we have

θ1(n) =
1− ‖θ(n)‖d1
d ‖θ(n)‖d−1

1

.

The conditions for players k = 2, . . . , n yield

θk(n) =
b− ‖θ(n)‖d1
d ‖θ(n)‖d−1

1

.

Summing all demands we get

‖θ(n)‖1 =
1− ‖θ(n)‖d1
d ‖θ(n)‖d−1

1

+ (n− 1)
b− ‖θ(n)‖d1
d ‖θ(n)‖d−1

1

⇔ ‖θ(n)‖1 =
(

1 + (n− 1) b
d+ n

) 1
d

.

For large n we get

lim
n→∞

‖θ(n)‖1 = b
1
d

lim
n→∞

θ1(n) =
b

1
d (1− b)
d b

lim
n→∞

b (n− 1) θk(n) =
b

1
d (b d− 1 + b)

d
.

13



Thus, we get in the limit for the total surplus of the Nash equilibrium θ(n)

lim
n→∞

U
(
θ(n)

)
=
b

1
d (1− b)
d b

+
b

1
d (b d− 1 + b)

d
− b

1
d b

d+ 1
.

An optimal solution is given by ψ = (1, 0, . . . , 0) with total surplus of

U(ψ) = 1− 1
d+ 1

.

Now choosing b = 1+d
3
2

d2+d+1
one can check that the ratio U(θ)

U(ψ) coincides with the lower
bound of the theorem.

Remark 3.12. The worst case efficiency for marginal cost functions in Cd is asymptoti-
cally bounded from below by Ω

(
1/
√
d
)
.

Note that the example we used during the proof to construct the upper bound can
also be used to construct an upper bound for ρn(Cconv) complementing Theorem 3.7. This
is subject of the following Proposition.

Proposition 3.13. Let Cconv be a class of convex marginal cost functions. Consider the
set Gn(Cconv) of games with at most n ∈ N players. Then, ρn(Cconv) ≤ 2(n−

√
n)√

n(n−1)
.

Proof. Consider the example in the proof of Theorem 3.7. Let θ(n) again be the Nash
equilibrium in the game with n players. Further, let ψ be the optimum profile. Straight-
forward calculation shows that ψ yields a total surplus of d

d+1 , which does not depend on
n. We obtain

ρn(Cconv) ≤ lim
d→∞

U(θ(n))
U(ψ)

=
1 + n b2 − b2

1 + n b− b
, ∀b ∈ [0, 1] .

Since 1+n b2−b2
1+n b−b has a global minimum with respect to b with value 2(n−

√
n)√

n(n−1)
, the lemma is

proved.

3.3 Concave Cournot Games

In the following, we analyze the efficiency loss of Nash equilibria resource allocation
games with only one resource. This special case is known as a Cournot game [14] in
which multiple producers strategically determine quantities they will produce. The cost
of a producer is given by her offered quantity multiplied with the market price, which
is usually a decreasing function of the total quantity offered by all producers. We will
establish bounds on the price of anarchy for Cournot games involving concave marginal
cost functions. These functions are of particular interest for Cournot competition as they
model the effect of economy of scale.

Theorem 3.14. Let Cconc be a class of concave marginal cost functions. Consider the
set G(Cconc) of resource allocation games with one resource. Then, ρ(Cconc) ≥ 1

2 .

Proof. Let θ and ψ be a Nash and an optimal strategy, respectively. Let β := ‖θ‖1
‖ψ‖1 . Note

that Lemma 3.4 implies that β ≤ 1. Then, on the one hand side, the variational inequality
and the subsequent analysis (essentially using (8)) gives

c
(
‖ψ‖1

)
≤ c
(
β ‖ψ‖1

)
+ c′

(
β ‖ψ‖

)
β µ ‖ψ‖1 .
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On the other hand, since c is concave,

c
(
‖ψ‖1

)
≤ c
(
β ‖ψ‖1

)
+ c′

(
β ‖ψ‖1

)
(1− β) ‖ψ‖1 .

Thus, by subtracting both inequalities and using c′(·) ≥ 0 it follows that β ≥ 1
1+µ must

hold. Then, since µ ≤ 1 we have β ∈ [1/2, 1] and since U(z) is concave: U(β ψ) ≥
β U(ψ).

4 Symmetric Games

In this section, we consider symmetric games in which all players have the same utility
function U(·) and the same strategy space, that is, Ri = Rj for all i, j ∈ N . In this case,
we get improved bounds on the price of anarchy.

Consider a symmetric game with n players. Then, there exists a symmetric optimal
profile ψ such that ψri = 1

nψ
r for all i ∈ N . Using an adapted version of Lemma 3.5, we

get the following variational inequality relating any Nash equilibrium θ to a symmetric
optimal profile ψ, i.e.,∑

r∈R
cr
(
ψr
)
ψr ≤

∑
r∈R

(
cr
(
θr
)
ψr + c′

(
θr
)
θr
ψr

n

)
. (11)

Furthermore, Lemma 3.4 implies

U(θ) ≥
∑
r∈R

(
cr
(
θr
)
θr +

n∑
i=1

c′r
(
θr
) (θr)2

n
−
∫ θr

0
cr(z) dz

)
.

In the following, we evaluate the efficiency of Nash equilibria for symmetric games and
several classes of marginal cost functions using a similar technique as in the general case.
For a cost function c and parameters λ > 0 and n ∈ N we define the following value:

δn(c;λ) := sup
(x,y)∈R2

+

c(x) y + c′(x) x yn − λ
(
c(x)x+ c′(x) x

2

n −
∫ x
0 c(z) dz

)
−
∫ y
0 c(z) dz

c(y) y −
∫ y
0 c(z) dz

.

(12)

For a given class of functions C, we further define δn(C;λ) := sup
c∈C

δn(c;λ). Given a class

of marginal cost functions C that satisfies Assumption 2.2, we define the feasible λ-region
as ∆n(C) := {λ > 0 | δn(C;λ) < 1}.

Theorem 4.1. Let C be a class of marginal cost functions. Consider the set Gn(C) of
symmetric games with at most n ∈ N players. Then, the worst case efficiency is at least

ρn(C) ≥ sup
λ∈∆n(C)

[
1− δn(C;λ)

λ

]
.

Proof. The proof follows directly from Lemma 3.5, the representation of U(θ) and the
definition of δn(C;λ).
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4.1 Convex Marginal Cost Functions

The following result for convex marginal cost functions has been previously obtained by
Johari and Tsitsiklis [27] for the special case of a game with a single resource. We present
here a more general result (arbitrary symmetric strategy space) with a simpler proof.

Proposition 4.2. Let Cconv be the class of convex marginal cost function. Consider the
set Gn(Cconv) of symmetric games with at most n ∈ N players. Then, ρn(Cconv) ≥ 2n

2n+1 .

Proof. The proof proceeds along the lines of the proof of Theorem 3.7, except that λ =
1+2n
2n and the values µ and µ2 are replaced by 1

n . Then, the only interesting difference
occurs for the case x < y in evaluating the following maximum:

max
β∈[0,1)

(
β

n
− λβ2

n
− (1− β)2

2

)
≤ 1 + 2n− 2nλ

2n (2λ+ n)
.

Thus, since λ = 1+2n
2n , the claim is proven.

4.2 Polynomial Marginal Cost Functions

For polynomials with non-negative coefficients and arbitrary degree d ∈ N ∪ {∞}, we
prove the following.

Theorem 4.3. Let C∞ be the class of polynomial marginal cost function with non-negative
coefficients and arbitrary degree d ∈ N ∪ {∞}. Consider the set G∞(C∞) of symmetric
games with an arbitrary number of players and marginal cost functions in C∞. Then,
ρ∞(C∞) = 3

4 .

Proof. Let θ be a Nash equilibrium profile and ψ the system optimum. Using Remark 3.9
it is sufficient to consider monomial marginal cost function c(z) = aj z

j , aj ≥ 0, for some
j ∈ N ∪ {∞}. Then, the value δn(cj ;λ) is given by

δn(cj ;λ) = sup
(x,y)∈R2

+

xj y + j xj−1 x y
n − λ

(
xj x+ j xj−1 x2

n −
1
j+1 x

j+1
)

yj y − 1
j+1 y

j+1
.

Defining β := x
y (we can exclude the case y = 0 since then the expression becomes

negative) and rewriting yields

δn(cj ;λ) ≤ sup
β≥0

(
1 + j

n

)
βj − λ (1− j

n + 1
j+1

)
βj+1 − 1

j+1
j
j+1

.

The above problem is a strictly convex program with unique solution β∗ = n+j
λ (n+j+1) .

Thus, we get

δn(cj ;λ) ≤
( n+ j

λ (n+ j + 1)

)j (n+ j

n j

)
− 1
j
.

We define λ = λ(j, n) =
( n+j
n+j+1

) (
n

n+j)

)−1/j implying δn(cj ;λ(j, n)) = 0. Thus, applying
Theorem 4.1 yields

U(ψ) ≤ λ(j, n)U(θ)
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for a Nash equilibrium θ and optimal profile ψ. We now observe that λ(j, n) is a decreasing
function in j and n. Hence, the worst case occurs for j = 1 and n = 1 leading to the
desired bound of 3/4.

To prove that the bound is tight, we consider a single resource game with cost function
c(z) = z. We consider n players with utility functions U(φi) = φi. Then, the following
conditions hold for a Nash equilibrium θ:

1− (‖θ‖1 + θi) = 0 ⇒ θi = 1− ‖θ‖1 .

Hence, we have
‖θ‖1 = n θi = n

(
1− ‖θ‖1

)
⇒ ‖θ‖1 =

n

n+ 1
.

The total surplus evaluates to U(θ) = n
n+1 −

1
2

n2

(n+1)2
. The optimal profile ψ has value

1 and its total surplus evaluates to U(ψ) = 1
2 . Evaluating the ratio U(θ)

U(ψ) proves the
claim.

4.3 Symmetric Concave Cournot Games

Similar to the previous section, we will also provide a bound that holds for symmetric
Cournot games with concave marginal cost functions.

Theorem 4.4. Let Cconc be the class of concave marginal cost functions. Consider the
set Gn(C) of symmetric games with at most n ∈ N players. Then, ρ(Cconc) ≥ n

n+1 .

Proof. Let θ and ψ be Nash and optimal strategies, respectively. Let β := ‖θ‖1
‖ψ‖1 . Then,

on the one hand side, the variational inequality gives

c
(
‖ψ‖1

)
≤ c
(
β ‖ψ‖1

)
+ c′

(
β ‖ψ‖1

) β ‖ψ‖1

n
.

Following a similar argumentation as in Theorem 3.14 it holds that β ≥ n
n+1 proving the

claim.

5 Distributed Dynamics and Potential Functions

In this section, we study distributed dynamics for a resource allocation game G. Similar
to population dynamics introduced by Sandholm [49], we define a class DG of algorithms
and show that all dynamics from this class converge to a Nash equilibrium from any initial
profile, provided that G admits an exact potential function. We then point out two well-
known representatives of this class. The first natural dynamic is the well-known gradient
descent method. The second dynamic is a combination of the gradient method with
replicator dynamics known from evolutionary game theory, see Fischer et al. [16]. Our
work differs from [49] in the following aspect. In [49], the total size (also termed mass)
of a population is fixed, whereas we allow players to strategically vary their demands.
This demand elasticity has also an effect on the structure of the payoff functions, which
involves a utility function that reflects the benefit for a certain demand.

As we link the stability of a class of dynamics with a potential function argument, we
consequently study necessary and sufficient conditions for a resource allocation game to
possess a potential function. We show that a game G with affine linear marginal costs
always admits an exact potential function. We also show that affine linear cost functions
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are the only functions that always guarantee the existence of an exact potential. For
non-linear marginal costs, we show that if we restrict the set of profiles Φ to symmetric
profiles, then an exact potential function exists. As an example, where such a restriction
is reasonable, we consider a game, where all players have the same accessible sets and the
same utility function. In this case, a symmetric Nash equilibrium always exists.

We remark that all following arguments still hold if we replace exact potentials by or-
dinal ones. We do, however, not know a useful description of a class of resource allocation
games that admits an ordinal but no exact potential.

5.1 Stability of Distributed Dynamics

We will now define a class DG of dynamics that are stable if game G admits an (exact)
potential function. A similar class of dynamics has been previously defined for population
games by Sandholm [48].

Definition 5.1. Given a game G, we say that a dynamic described by a differential
equation φ̇ij = fGij (φ), i ∈ N , j ∈Mi, belongs to the class DG if

1. φ being a Nash equilibrium of G implies fGij (φ) = 0, ∀i ∈ N , j ∈Mi,

2.
∑mi

j=1
∂πi(φ)
∂φij

· fGij (φ) ≥ 0, for all profiles φ ∈ Φ, i ∈ N ,

3.
∑mi

j=1
∂πi(φ)
∂φij

· fGij (φ) = 0 if and only if φ ∈ Φ is a Nash equilibrium.

Before we study stability of dynamics in DG, we define the notion of an exact potential
function for the game G and present necessary and sufficient conditions for a game to
admit an exact potential.

Definition 5.2 (Monderer and Shapley [37]). A function Ψ : Φ → R is an exact potential
function for the game G if and only if

Ψ(φi, φ−i)−Ψ(φ̃i, φ−i) = πi(φi, φ−i)− πi(φ̃i, φ−i) ,

for all φ ∈ Φ, φ̃i ∈ Φi, i ∈ N .

In other words, an exact potential function for game G is a real-valued function on the
profile space, which exactly tracks the difference in the payoff that occurs if one player
unilaterally deviates.

Lemma 5.3. Let G be a game with continuously differentiable payoff functions. Then,
G possesses an exact potential Ψ : Φ → R, if and only if

∂Ψ(φ)
∂φij

=
∂πi(φ)
∂φij

, ∀i ∈ N, ∀j ∈Mi, ∀φ ∈ Φ . (13)

Again, similar to [37], given that the payoffs are twice continuously differentiable, we
obtain the following characterization of games admitting an exact potential function.

Lemma 5.4. Let G be a game with twice continuously differentiable payoff functions.
Then, G possesses an exact potential Ψ : Φ → R, if and only if

∂2πi
∂φik ∂φjl

=
∂2πj

∂φik ∂φjl
, ∀i, j ∈ N, ∀k ∈Mi, l ∈Mj .
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Now, the following theorem establishes a stability result for dynamics in DG.

Theorem 5.5. Let G admit an exact potential function ΨG. Then, all dynamics in DG
converge to a Nash equilibrium from any initial profile φ ∈ Φ.

Proof. We will show that ΨG is a Lyapunov function for an arbitrary dynamic in DG
defined by φ̇ij = fGij (φ), i ∈ N , j ∈ Mi. According to the definition of a Lyapunov
function, we need to show that

n∑
i=1

mi∑
j=1

∂ΨG(φ)
∂φij

· fGij (φ) ≥ 0, ∀φ ∈ Φ ,

and that

n∑
i=1

mi∑
j=1

∂ΨG(φ)
∂φij

· fGij (φ) = 0 ⇔ x ∈ R is a Nash equilibrium.

Both these conditions, however, follow from the definition of DG and Lemma 5.3.

Note that the first condition in Definition 5.1 is not required for the proof. Indeed,
what we show in Theorem 5.5 is that any trajectory converges to the set of Nash equilib-
ria. However, Theorem 5.5 does not exclude the case, where the trajectory continues to
oscillate within this set. Condition 1 is a sufficient condition to preclude such oscillations.

5.2 Distributed Dynamics for Resource Allocation Games

From Theorem 5.5 it immediately follows that the gradient method is asymptotically
stable for all games G that admit an exact potential function.

Corollary 5.6. Let G admit an exact potential function. Then, the gradient method

φ̇ij = κi
(
‖φi‖1

)[
U ′i
(
‖φi‖1

)
− ĉij(φ)

]+
φij

, ∀i ∈ N, ∀j ∈Mi , (14)

where κi
(
‖φi‖1

)
is a parameter determining the step size along the gradient, and

[a]+b =

{
0 if b = 0 and a < 0 ,
a otherwise ,

converges to a Nash equilibrium of game G from any initial value φ ∈ Φ.

Proof. All we need to show is that the gradient method is in DG. First, note that condition
1 in Definition 5.1 follows from equation (5) and the definition of the gradient method.
Next, observe that

n∑
i=1

mi∑
j=1

∂πi(φ)
∂φij

· fGij (φ) = κi (‖φi‖1) ·
n∑
i=1

mi∑
j=1

([
U ′i (‖φi‖1)− ĉij(φ)

]+
φij

)2
≥ 0 ,

and that due to equation (5) in Lemma 3.2 the equality holds if and only if x is a Nash
equilibrium.
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In the following, we present a distributed dynamic, which is a combination of the
gradient method with replicator dynamics known from evolutionary game theory, see
Fischer et al. [16]. We show that this dynamic is in DG so that it is asymptotically stable
whenever G admits a potential function.

We interprete the strategy profile of each player as a population of agents each control-
ling a very small fraction of the demand of the respective player. An agent continuously
samples alternative accessible sets and switches with a probability depending on the dif-
ference of costs of the own and the sampled set. We apply this model in the fluid limit so
that these two logical steps result in a single dynamic expressed by a differential equation.
Our setting generalizes the model of [16] as we allow players to strategically vary their
demands. Furthermore, our population model describes a replicator dynamic for finitely
many players that can fractionally distribute their demands over their accessible sets.
This in contrast to the nonatomic flow setting of Fischer et al. [16], where each agent
has an negligible impact on the others. This structural difference becomes explicit by
observing that in our model agents minimize player-specific costs (defined in (3)) instead
of minimizing the standard cost of the chosen accessible set as in a Wardrop equilibrium.

The update of the distribution of the total demand over the accessible sets Ri of
player i consists of two logical steps: sampling and migration. During the sampling
step, each agent using accessible set j ∈ Mi samples a set k ∈ Mi with probability σijk.
During the migration step, each agent switches to the sampled set k with probability
µijk

(
ĉij − ĉik

)
depending on the difference of set costs. An example for a sampling

policy is uniform sampling with σijk = 1
mi

for j, k ∈ Mi, where each set is sampled
with an equal probability. An example for a migration policy is linear migration policy
µijk

(
ĉij− ĉik

)
= max{ ĉij−ĉikĉmax

, 0}. We restrict the class of considered sampling policies and
migration probabilities by the following Assumption.

Assumption 5.7.

1. Sampling policies are assumed to be strictly positive: σijk > 0, ∀ j, k ∈Mi, ∀i ∈ N .

2. Migration probability functions µijk(·), ∀ j, k ∈ Mi, ∀i ∈ N , are assumed to be
continuous and strictly increasing with µijk(0) = 0. For brevity, we will write µijk
instead of µijk

(
ĉij − ĉik

)
.

Let us denote by γij the fraction of total demand of player i that is served by set
Rij so that

∑mi
j=1 γij = 1, ∀i ∈ N . Then, the sample and migration probabilities induce

a migration rate rijk = γij · σijk · µijk. The growth rate of the fraction of load on set
j is then γ̇ij =

∑mi
k=1

(
rikj − rijk

)
. Note that this dynamic is a pure redistribution of

the total demand, it does not change the total demand of player i since
∑mi

j=1 γ̇ij = 0.
Combining this with a gradient method to update the total demand of a player, we obtain
the following dynamics (here and in the following, we denote the total demand of player
i by di := ‖φi‖1):

ḋi = κi
(
di
)[
U ′i
(
di
)
− ĉi(φ)

]+
di
, ∀i ∈ N, (15)

γ̇ij =
mi∑
k=1

(
rikj − rijk

)
, ∀j ∈Mi, i ∈ N . (16)

Here, ĉi(φ) =
∑mi

j=1 γij · ĉij(φ) are the average player-specific costs of player i. Note that
this dynamic can also be expressed in terms of the demand as follows.

φ̇ij = γ̇ij di + γij ḋi , ∀j ∈Mi, i ∈ N ,
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where γ̇ and ḋ are as in (15), (16).
Similar to a feasible profile φ ≥ 0, we define a feasible tuple (d, γ).

Definition 5.8. A tuple (d, γ) is feasible if and only if d, γ ≥ 0 and
∑mi

j=1 γij = 1, ∀i ∈ N .

Obviously, each feasible profile φ ≥ 0 corresponds to a unique feasible tuple (d, γ) and
vice versa. Now we are ready to prove the following Theorem.

Theorem 5.9. For a game G, the dynamic defined by (15), (16) is contained in DG and
thus converges to a Nash equilibrium whenever G admits an exact potential.

Proof. The proof consists of three steps. First, we show that a profile φ ≥ 0 is a steady
state of equation (16) if and only if for each player i

ĉij(φ) ≤ ĉik(φ), ∀j, k ∈Mi with φij > 0 . (17)

The above condition can be interpreted as a Wardrop equilibrium with respect to player-
specific set costs ĉij . Using this fact, we then show in Step 2 that the set of feasible steady
states of the system (15), (16) equals the set of Nash equilibria, which implies Condition
1 of Definition 5.1 and allows us in Step 3 to prove Conditions 2 and 3

Step 1: To see the “if” condition, assume that for a profile φ condition (17) holds.
Assumption 5.7 then implies that rijk = rikj = 0, ∀j, k ∈Mi, ∀i ∈ N . Thus, φ is a steady
state of (16).

Now we show the “only if” condition. First, we show that for a set k ∈ Mi with
γik = 0 it holds ĉij ≤ ĉik for all j ∈Mi with γij > 0. (Note that if a player has a positive
demand di, then γij > 0 ⇔ φij > 0.) Consider a set k ∈Mi with γik = 0. Then, φ being
a steady state of equation (16) implies

∑mi
j=1 (rijk − rrkj) = 0. From the definition of rikj

we know that γik = 0 implies rikj = 0, ∀j ∈Mi. We thus obtain
∑mi

i=1 rijk = 0. Since the
migration rates are always non-negative, we conclude rijk = 0, ∀j ∈ Mi. Now observe
that for a set j ∈ Mi with γij > 0, it holds µijk = 0 since we assumed the sampling
probabilities σijk to be strictly positive. Assumption 5.7 then implies ĉij ≤ ĉik.

Finally, we show that ĉij = ĉik, ∀j, k ∈ Mi with γij , γik > 0, ∀i ∈ N . Assume, this
does not hold for a player i. Let j ∈Mi be the set with highest cost ĉij among all sets in
Mi. Assumption 5.7 then implies

∑mi
k=1 rijk > 0 and

∑mi
k=1 rikj = 0. Thus, γ̇ij < 0, which

contradicts the steady state assumption.
Step 2: First, observe that condition (17) implies ĉi = ĉij , ∀j ∈ Mi, i ∈ N , with

φij > 0. With this observation, necessary and sufficient conditions for φ to be a Nash
equilibrium, as established in Lemma 3.2, are equivalent to the fact that φ fulfills condi-
tion (17) and that it is a steady state of equation (15). Given this and using the result of
Step 1, the claim is proven.

Step 3: Note that the forward trajectory of the dynamics (15), (16) is feasible pro-
vided that the initial values are feasible. To see this, note that (i) equation (15) guaran-
tees that di, i ∈ N , remains non-negative, and (ii) it holds that

∑mi
i=1 γ̇ij = 0 implying∑mi

i=1 γij = const. Finally, from the definition of rijk it follows that γij = 0 implies γ̇ij ≥ 0,
which guarantees non-negativity of γij .

Now observe that
n∑
i=1

mi∑
j=1

∂πi(φ)
∂φij

· fGij (φ) =
n∑
i=1

κi
([
U ′i
(
di
)
− ĉi(φ)

]+
di

)2 +
n∑
i=1

di

mi∑
j=1

mi∑
k=1

rijk
(
ĉij − ĉik

)
.

To complete the proof, we have to show that the above expression is always non-
negative and equality holds if and only if x is a Nash equilibrium. The first summand
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is non-negative and it equals zero if and only if the dynamic (15) is in steady state.
Since Assumption 5.7 implies that rijk ≥ 0 and rijk = 0 if ĉij − ĉik ≤ 0, we conclude
that the second summand is always non-negative. Further, observe that rijk > 0 implies
ĉij − ĉik > 0, thus, the second summand equals zero if and only if rijk = 0 for all
j, k ∈Mi, i ∈ N . The definition of rijk implies that rijk = 0 either if the demand satisfied
by set Rij is zero or if the player-specific costs of set Rik is not strictly lower than that
of Rij . We conclude that rijk = 0 for all j, k ∈Mi, i ∈ N , if and only if condition (17) is
fulfilled. Given the result of Step 2, the claim is proved.

5.3 Potential Functions

So far, we defined a class of dynamics that are stable whenever a game G admits an
exact potential function. In the following, we study necessary and sufficient conditions
for the existence of an exact potential function. The next theorem shows that without
any restriction on the accessible sets Rij and the class of utility functions, the only class
of twice continuously differentiable marginal cost functions that always admits an exact
potential is the class of affine linear functions.

Theorem 5.10. Let G(C̄) be the set of games with marginal cost functions in C̄ such that
payoff functions are twice continuously differentiable. Then, the following statements are
equivalent:

1. Every G ∈ G(C̄) admits an exact potential

2. C̄ contains only affine linear functions on R+.

Proof. Calculating the corresponding second derivatives, Lemma 5.4 implies that the
game G possesses an exact potential if and only if for all profiles φ ∈ Φ∑

r∈Rij∩Rkl

c′′r
(
φr
) (
φri − φrj) = 0 for all i, j ∈ N, k ∈Mi, l ∈Mj . (18)

The direction 2.⇒ 1. is proved by simply verifying that affine linear marginal cost func-
tions satisfy the above condition. For proving 1.⇒ 2., we will assume that marginal cost
functions are non-linear and then construct a game that violates condition (18). First,
observe that c is affine linear on R+ if and only if c′′(z) = 0 for all z ∈ R+. Assume by con-
tradiction that C̄ contains a function c that is not affine linear on R+. Then, there exists a
z0 ∈ R+ such that c′′(z0) 6= 0. W.l.o.g., we assume c′′(z0) > 0. We further assume w.l.o.g.
that z0 > 0, since if z0 = 0, by continuity of c′′(z), there exists z̃0 > 0 with c′′(z̃0) > 0.
Now consider a game G with two players that share a single resource. Let the demand of
player 1 be φ1 = 1/3 z0 and the demand of player 2 be φ2 = 2/3 z0. It is easy to see that
for these values condition (18) fails as c′′(φ1 + φ2)

(
φ2 − φ1) = c′′(z0) 1/3 z0 > 0.

Remark 5.11. Note that an exact potential function for the case of affine linear marginal
cost functions cr

(
φr
)

= ξr · φr + ζr, ξr ≥ 0, ζr ≥ 0 is given by

Ψ(φ) :=
n∑
i=1

Ui
(
di
)
−
∑
r∈R

(
1
2
ξr (φr)2 +

1
2
ξr

n∑
i=1

(φri )
2 + ζr φ

r

)
.

In a recent follow-up paper, Harks et al. [20] proved that the above characterization
is even valid if one restricts the class C to locally bounded functions that may even be
discontinuous.
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Theorem 5.10 implies that if all marginal cost functions are affine linear then all
dynamics in DG converge to a Nash equilibrium from any initial profile φ ∈ Φ. Further,
it implies that in order to find an exact potential function for games with non-linear
marginal costs, we have to restrict the accessible sets, the utility functions, or the set of
profiles Φ. Condition (18) implies another sufficient condition for a game G to possess a
potential, which is based on the notion of a symmetric profile.

Definition 5.12. A profile φ ≥ 0 is called symmetric, if it holds φri = φrj , ∀r ∈ R, and
∀i, j ∈ N , such that ∃ k ∈Mi and ∃ l ∈Mj with r ∈ Rik ∩Rjl.

Theorem 5.13. Let G be a game with twice continuously payoff functions. Let the set of
profiles Φ be restricted to symmetric profiles. Then, G admits an exact potential function.

Proof. The proof follows from condition (18) in Lemma 5.4 and the definition of a sym-
metric profile.

In general, it is not reasonable to restrict all profiles to be symmetric, since a game
G might not have a symmetric Nash equilibrium. Moreover, we would have to assure
that there exists a trajectory from each symmetric initial value to a symmetric Nash
equilibrium, and that there is a dynamic that produces a symmetric forward trajectory
for a symmetric initial value. The following corollary shows that these conditions are
satisfied for the special case when all players have the same accessible sets, the same
utility function, and the considered dynamics are either the gradient method (14) or the
combination of gradient method with replicator dynamics, i.e., (15) and (16).

Corollary 5.14. Let G be a game with n players sharing the same accessible sets, have
the same utility functions. Moreover, let all marginal cost functions be twice continuously
differentiable. Then, the dynamics (14) and (15), (16) converge to a Nash equilibrium
from any symmetric initial profile.

Proof. From Theorem 5.13 we know that G admits an exact potential function. Given
Theorem 5.5, it remains to note that starting with a symmetric initial value, both dy-
namics generates a symmetric forward trajectory due to the symmetry of set costs and
utility functions.

Remark 5.15. An exact potential function for this setting is given by

Ψ(φ) =
n∑
i=1

U
(
di
)
−
∑
r∈R

(
cr(φr)

φr

n
+
n− 1
n

∫ φr

0
cr(z) dz

)
. (19)

Note that due to symmetry, it holds φr

n = φri . We remark that a similar potential function
without the first term involving the utility functions has been found by Cominetti et al. [12]
for the case of atomic splittable routing games with fixed demands.

Finally note that although the existence of a potential function is sufficient for dy-
namics in DG to be stable, it is not a necessary condition. Thus, they might be stable
even if a game possess no exact potential. Possible candidate Lyapunov functions are
ordinal potentials, see Monderer and Shapley [37]. We do, however, not know a useful
description of a resource allocation game that does not possesses an exact but an ordinal
potential.
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6 Conclusions and Future Work

In this work, we studied the efficiency and stability of Nash equilibria in resource allocation
games for the marginal cost pricing mechanism. We derived various results about the price
of anarchy depending on the structure of allowable marginal cost functions. In particular,
we were able to provide the first bound for arbitrary non-decreasing, differentiable and
convex cost functions. Moreover, we were able to prove tight bounds for the price of
anarchy for polynomial marginal link costs. As this class of functions is quite rich and
widely used for modeling for instance queuing delays at resources, we see our results as
an important contribution towards the applicability of the marginal pricing mechanism
in practice.

The second contribution of this paper concerns the design of a class of distributed
dynamics that converge towards a Nash equilibrium. We identified conditions under
which global stability of the proposed dynamics can be proved. An open issue is the
stability of the proposed class of algorithms if delays are considered. The stability of
distributed delayed differential equations for the resource allocation games considered in
this paper is largely open.
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