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inal PDE model as starting point and aim then at an accurate approxima-
tion of its input/output map. In this contribution, we discuss the direct dis-
cretization of the i/o map of the original infinite-dimensional system. First,
the input and output signals are discretized in space and time, second, the
system dynamics is approximated in form of the underlying evolution op-
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system reduction method and a numerical application in an optimization
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1. Introduction

The control of complex physical systems is a big challenge in many engineering applica-
tions as well as in mathematical research. Frequently, these control systems are mod-
eled by infinite-dimensional state space systems on the basis of (instationary and non-
linear) partial differential equations (PDEs). On the one hand, space-discretizations
resolving most of the state information typically lead to very large semi-discrete sys-
tems, on the other hand, classical design techniques for real-time controllers require
linear models of very moderate size.

Numerous approaches to bridge this gap are proposed in the literature. For instance,
low-dimensional modeling and model reduction techniques aim to extract the system
information that is essential for the specific control purpose, which in many appli-
cations proves to be the system’s input/output (i/o) map. Robust feedback control
is then a good choice to take the inevitable modeling and approximation errors into
account.
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In many engineering applications the empirical black-box modeling, i.e. a system
identification on the basis of measured or simulated i/o-sequences, has proven to be
successful, even for complex control tasks like the control of the recirculation bubble
behind a backward facing step, see e.g. [7]. Physical insight may be used to derive
low-dimensional state space models capturing essential state dynamics, information
which necessarily gets lost in black-box modeling, see e.g. [22, 37, 40] for the control
of flows. As a consequence, these methods usually lack analytical estimates for the
model accuracy.

For some mathematical model reduction techniques such estimates exist, for oth-
ers they are an open research topic. Most mathematical methods take the space-
discretized PDE as starting point, some of them even a time-invariant linearization.
One can roughly distinguish between methods based on singular-value decompositions
(SVDs), like balanced truncation (BT) or proper orthogonal decomposition (POD),
and methods based on Krylov subspace iterations, like moment matching (MM). Many
of these techniques like MM, BT and recent variants of POD focus on an accurate ap-
proximation of the i/o-map. For a survey on model reduction see e.g. [2], [3] and the
references therein. For error estimates in the case of BT and POD see e.g. [23], [36].
The preceding PDE space discretizations, however, rarely take an efficient approxi-
mation of the i/o map into account: On the one hand, the state space discretization
typically aims at a reduction of the global state space error and is thus still oriented
at a state simulation problem. On the other hand, the discretization of distributed
inputs and outputs in space (leading to a multiple-input-multiple-output system) is
rarely rigorously chosen with respect to the resulting i/o error.

In this paper we investigate a new approach. Motivated by the evident efficiency
of system-identification in many engineering applications, we focus directly on the i/o
map of the original infinite-dimensional system, in the following denoted by

G : u = u(t, θ) 7→ y = y(t, ξ),

where u are input signals and y are output signals, which may vary in time t and
space θ ∈ Θ respectively ξ ∈ Ξ. Here Θ and Ξ denote the domains of the spatially
distributed inputs and outputs.

We suggest a framework for its direct discretization and approximation with rigorous
error control for the case of instationary linear systems.

The framework and its prospects are briefly presented in Section 2 for general linear
bounded i/o maps. In Section 3 we consider linear state space systems fitting into
this setting and give the heat equation as concrete example which will be reconsidered
throughout the text. The framework mainly consists of two steps. First, the input and
output signal spaces are discretized in space and time, leading to a matrix representa-
tion G of G, see Section 4. Second, the matrix has to be numerically approximated.
Assuming that G arose from a PDE state space model, this can be done by calculat-
ing the approximated outputs corresponding to those states which are excited by the
approximated inputs, see Section 5.

In Section 6 the numerical solution of the underlying PDE and appropriate error
estimations are discussed, before a total error estimation is given in Section 7. In Sec-
tion 8 some numerical convergence results are presented, as well as a matrix reduction
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method which is based on the singular value decomposition and which is especially
suited for systems with signals which are distributed in space and time. Furthermore
we present how the matrix representation can be used in an optimization process. The
paper concludes with some final remarks and an outlook.

Notation. For Ω ⊂ R
d, d ∈ N, L2(Ω) denotes the usual Lebesgue space of square-

integrable functions, and Hα(Ω), α ∈ N0 denotes the corresponding Sobolev spaces of
α-times weakly differentiable functions. We interpret functions v, which vary in space
and time, optionally as classical functions v : [0, T ] × Ω → R with values v(t;x) ∈ R,
or as abstract functions v : [0, T ] → R with values in a function space X such as
X = Hα(Ω). Correspondingly, Hα(0, T ;Hβ(Ω)), with α, β ∈ N0, denotes the space of
equivalence classes of functions v : [0, T ] → Hβ(Ω) with t 7→ ||v||Hβ(Ω) being α-times
weakly differentiable, for details see e.g. [17]. By C ([0, T ];X) and C α([0, T ];X) we
denote the space of functions v : [0, T ] → X which are continuous respectively α-times
continuously differentiable. Frequently, such abstract function spaces will be denoted
by calligraphic capital letters like U and Y , whereas the underlying function space like
L2(Ω) will be written in standard capital letters like U and Y .

Operators acting between such abstract function spaces as U and Y are denoted
for instance as G, P or I, with a slight abuse of a typeset which is often reserved for
sets, like N for the set of natural numbers, N0 for the natural numbers including 0,
R for the real numbers and Rα,β for the set of real α × β matrices. For two normed
spaces X and Y , L (X,Y ) denotes the set of bounded linear operators X → Y ,
and we abbreviate L (X) := L (X,X). For α ∈ N, Lα(0, T ; L (X,Y )) denotes the
space of operator-valued functions K : [0, T ] → L (X,Y ) with t 7→ ||K(t)||L (X,Y ) =
supx6=0 ||K(t)x||Y /||x||X lying in Lα(0, T ).

Vectors, often representing a discretization of a function v, are written in corre-
sponding small bold letters v, whereas matrices, often representing a discrete version
of an operator like G or G, are written in bold capital letters G.

2. Framework

We consider bounded linear i/o maps

G : U → Y u 7→ y,

with input signals u and output signals y from respective Hilbert spaces U and Y .

1. step: Approximation of signals. We choose finite-dimensional subspaces Ū ⊂ U and

Ȳ ⊂ Y with bases {u1, . . . , up̄} ⊂ Ū and {y1, . . . , yq̄} ⊂ Ȳ , and denote the correspond-
ing orthogonal projections by PŪ and PȲ , respectively. Then, the approximation

GS = PȲGPŪ

has a matrix representation G ∈ Rq̄×p̄, for instance with elements

Gij = (yi,Guj)Y
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if orthonormal bases are chosen in Ū and Ȳ, see Section 4.
2. step: Approximation of observed and excited system dynamics. In order to calcu-

late G numerically, we have to numerically approximate the observations in Ȳ of
states excited by controls in Ū . If G corresponds to a known linear PDE state space
model, then G can be approximated by integrating this model numerically for inputs
uj , j = 1, . . . , p̄, thus leading to an approximation G̃ of G and an corresponding ap-
proximation GDS of GS . In some cases, the numerical burden can be significantly
reduced by choosing basis functions with a space-time tensor structure, like

ui(t; θ) = φj(i)(t)µl(i)(θ), yj(t; ξ) = ψi(j)(t)νk(j)(ξ),

see Section 5. In this case, the approximation of G reduces to the approximation of
observations (νk(j), zl(i)(t))Y , where zl(j)(t) are the system’s impulse responses corre-
sponding to initial values µl(i), i.e. basically the system’s evolution operator is ap-
proximated by numerically solving the corresponding underlying homogeneous PDEs.
For such a choice of basis functions, G becomes a fourth-order tensor, but we will
represent G as a block-structured matrix for ease of notation.
Some prospects of this framework.

(i) Error estimation. The total error εDS can be estimated by the signal approxi-
mation error εS and the dynamical approximation error εD, i.e.

||G − GDS ||
︸ ︷︷ ︸

=:εDS

≤ ||G − GS ||
︸ ︷︷ ︸

=:εS

+ ||GS − GDS ||
︸ ︷︷ ︸

=:εD

, (1)

where the norms still have to be specified. A natural goal is to choose Ū and
Ȳ in the first step and the accuracy tolerances for the numerical solutions of
the underlying PDEs in the second step such that εS and εD balance and that
εS + εD < tol for a given tolerance tol.

(ii) Successive signal approximation refinement. The error εS can be successively
reduced by adding further basis functions up̄+1, up̄+2, . . . and yq̄+1, yq̄+2, . . . and
thus enlarging Ū and Ȳ . This corresponds to adding respective columns and
rows to the matrix G. Such a procedure is numerically feasible, for instance
by choosing hierarchical bases in Ū and Ȳ , like wavelets or hierarchical finite
elements. However, one must ensure that εD is sufficiently small in order to
reduce εDS significantly.

(iii) Matrix reduction via SVD. The matrix representation of GDS allows for low rank
approximations with error estimates on the basis of singular value decompositions
(SVDs). The corresponding singular vectors represent the most relevant input
and output signals.

(iv) Actuators and sensors for distributed inputs and outputs. Thinking of practical
applications, input signals u(t; θ) and output signals y(t; ξ) are often generated
and measured by actuators and sensors with limited spatial and temporal reso-
lutions, such that ’realizable’ input and output signals naturally belong to finite
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dimensional subspaces Ū and Ȳ , respectively. Error estimates of the form (1)
and the extraction of relevant input and output signals on the basis of SVDs
may thus provide useful information for efficient sensor and actuator design, see
Section 8. Note that classical approaches (where the control system is first dis-
cretized in space and then model reduction is applied) rarely take the error due
to input and output space-discretizations into account.

(v) Control Design. The matrix representation G = [Gij ] may directly be used in
control design, or a state realization of the i/o model GDS can be used as basis
for many classical control design algorithms.

3. I/o maps of ∞-dimensional LTI state space systems

We consider infinite-dimensional linear time-invariant systems of first order

∂tz(t) = Az(t) + Bu(t), t ∈ (0, T ], (2a)

z(0) = z0, (2b)

y(t) = Cz(t), t ∈ [0, T ]. (2c)

Here for every time t ∈ [0, T ], the state z(t) is supposed to belong to a Hilbert space
Z like Z = L2(Ω) or Z = H1(Ω) × L2(Ω), where Ω ⊂ RdΩ is a Lipschitz-domain of
space dimension dΩ. A is a densely defined unbounded operator A : Z ⊃ D(A) → Z,
generating a C 0-semigroup (S(t))t≥0 on Z. The control operator B belongs to L (U,Z)
and the observation operator C to L (Z, Y ), with U = L2(Θ) and Y = L2(Ξ) and
Lipschitz domains Θ ⊂ Rd1 and Ξ ⊂ Rd2 , d1, d2 ∈ N.

We recall how a linear bounded i/o-map G ∈ L (U ,Y) with

U = L2(0, T ;U) and Y = L2(0, T ;Y )

can be associated to (2), for details see e.g. [41, Ch. 4]. It is well-known that for
initial values z0 ∈ D(A) and controls u ∈ C 1([0, T ];Z), a unique classical solution
z ∈ C ([0, T ];Z) ∩ C 1((0, T );Z) of (2) exists. For z0 ∈ Z and u ∈ U , the well-defined
function

z(t) = S(t)z0 +

∫ t

0

S(t− s)Bu(s) ds, t ∈ [0, T ], (3)

is called a mild solution of (2). A mild solution of (2) is unique, belongs to C ([0, T ];Z)
and is the uniform limit of classical solutions [41]. Hence, the output signal y(t) =
Cz(t) is well-defined and belongs to Y ∩ C ([0, T ];Y ). In particular, the ouput signals
y(u) ∈ Y arising from input signals u ∈ U and zero initial conditions z0 ≡ 0 allow to
define the linear i/o-map G : U → Y of the system (2) by u 7→ y(u). It is possible to
represent G as a convolution with the kernel function K ∈ L2(−T, T ; L (U, Y )),

K(t) =

{

CS(t)B, t ≥ 0

0, t < 0
. (4)
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Lemma 1. The i/o-map G of (2) has the representation

(Gu)(t) =

∫ T

0

K(t− s)u(s) ds, t ∈ [0, T ], (5)

belongs to L (U ,Y) ∩ L (U ,C ([0, T ],Y)) and satisfies

||G||L (U ,Y) ≤
√
T ||K||L2(0,T ;L (U,Y )). (6)

Proof. Since C is bounded, the representation of y = Cz based on (3) can be re-
formulated as in (5), see e.g. [17] for the theory of Bochner integrals. For gen-
eral K ∈ L2(−T, T ; L (U, Y )), a generalized Hölder’s inequality yields that for fixed
t ∈ [0, T ], the function s→ K(t− s)u(s) belongs to L1(0, T ; L (U, Y )) with

||(Gu)(t)||Y ≤ ||u||U ||K(t− ·)||L2(0,T ;L (U,Y ),

and by integrating over [0, T ] we obtain (6).

Example 1. As prototype for a parabolic system, we consider the heat equation with
homogeneous Dirichlet boundary conditions. In this case, Z = L2(Ω) and the operator
A in (2) coincides with the Laplace operator

A = 4 : D(A) = H2(Ω) ∩H1
0 (Ω) ⊂ Z → Z. (7)

Since A is the infinitesimal generator of an analytic C 0-semigroup of contractions
(S(t))t≥0, the mild solution z of (2) exhibits the following stability and regularity
properties, see e.g. [41, Ch. 7] and [21].

(i) If z0 = 0 and u ∈ U , then z ∈ H1(0, T ;L2(Ω)) ∩ L2(0, T ;H2(Ω)) with

||z||H1(0,T ;L2(Ω)) + ||z||L2(0,T ;H2(Ω)) ≤ c||u||U . (8)

(ii) If z0 ∈ D(A) and u ≡ 0, then z ∈ C 1([0, T ];D(A)).

(iii) If z0 ∈ Z and u ≡ 0, then z ∈ C 1((0, T ];D(A)) and

||z(t)||L2(Ω) ≤ ||z0||L2(Ω) for all t ∈ [0, T ]. (9a)

||z(t)||H2(Ω) ≤ c||4z(t)||L2(Ω) for all t ∈ [0, T ], (9b)

||∂tz(t)||L2(Ω) = ||4z(t)||L2(Ω) ≤
c′

t
||z0||L2(Ω) for all t ∈ (0, T ], (9c)

where c and c′ are positive constants independent of T and z0.

A heat equation example with concrete choices of Ω, B and C will be introduced in
Section 8.

We note that if the observation preserves the inherent state regularity in the sense
that

C|H2(Ω) ∈ L (H2(Ω), H2(Ξ)), (10)
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then G ∈ L (U ,Ys) and also G|Us
∈ L (Us,Ys) with input and output signal spaces of

higher regularity in space and time

Us = H1(0, T ;L2(Θ)) ∩ L2(0, T ;H2(Θ)), Ys = H1(0, T ;L2(Ξ)) ∩ L2(0, T ;H2(Ξ))

with norms || · ||Us
= || · ||H1(0,T ;L2(Θ)) + || · ||L2(0,T ;H2(Θ)) and || · ||Ys

= || · ||H1(0,T ;L2(Ξ)) +
|| · ||L2(0,T ;H2(Ξ)). In fact, for u ∈ U , we have ||u||U ≤ ||u||US

, and for u ∈ U , we have

||Gu||Ys
≤ c′(||z||H1(0,T ;L2(Ω)) + ||z||L2(0,T ;H2(Ω))) ≤ c c′||u||U ≤ c c′||u||Us

,

where c′ = max{||C||L (L2(Ω),L2(Ξ)), ||C||L (H2(Ω),H2(Ξ))} and c is the constant in (8).

Remark 1. We consider bounded control operators B and observation operators C,
which means, by definition, that B ∈ L (U,Z) and C ∈ L (Z, Y ). Bounded B and C
allow to describe distributed controls and observations, whereas boundary controls and
observations as well as point-wise controls and observations are modeled via unbounded
operators

B ∈ L (U,Z−1), C ∈ L (Z1, Y ),

with spaces Z1 = D(A) ⊂ Z and Z−1 = (D(A∗))′ ⊃ Z equipped with appropriate
norms. For so-called admissible (unbounded) control and observation operators, the
state is still a continuous L2(0, T ;Z)-function with representation (3) and an observa-
tion Cλz(t) can still be well-defined via an expanded observation operator Cλ, see e.g.
the survey articles [30] and [46] and the references therein. However, the kernel (4) is
no longer well-defined and thus G can no longer be represented as (5).

Time-varying linear systems, like linearizations of nonlinear systems along trajec-
tories, contain time-dependent operators B(t), A(t) and C(t). They lead in the case
of distributed controls and observations and under appropriate assumptions to rep-
resentations of the form (5) but with kernel functions K(t, s) = C(t)S(t, s)B(s) ∈
L2([0, T ]2;L2(U, Y )) with evolution operators S(t, s). For more details on time-varying
systems, also with unbounded control and observation, see e.g. [29].

4. Signal approximation

In this section we consider general linear i/o-maps G ∈ L (U ,Y) with U = L2(0, T ;U)
and Y = L2(0, T ;Y ), where U = L2(Θ) and Y = L2(Ξ), i.e. the results also hold for
time-varying systems with unbounded control and observation.

4.1. Space and time discretizations

In order to discretize input signals u ∈ U and output signals y ∈ Y in space, we choose
two families {Uh1

}h1>0 and {Yh2
}h2>0 of subspaces

Uh1
⊂ U, Yh2

⊂ Y

of finite dimensions p(h1) = dim(Uh1
) and q(h2) = dim(Yh2

), and denote the corre-
sponding orthogonal projections onto these subspaces by PU,h1

∈ L (U) and PY,h2
∈
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L (Y ). Correspondingly, we choose for the discretization in time two families {Rτ1
}τ1>0

and {Sτ2
}τ2>0 of subspaces

Rτ1
⊂ L2(0, T ), Sτ2

⊂ L2(0, T )

of finite dimensions r(τ1) = dim(Rτ1
) and s(τ2) = dim(Sτ2

), and denote the corre-
sponding orthogonal projections onto these subspaces by PR,τ1

∈ L (L2(0, T )) and
PS,τ2

∈ L (L2(0, T )). The projections PU,h1
and PR,τ1

induce in a natural way oper-
ators PU,h1

, PR,τ1
∈ L (U) via

(PU,h1
u)(t; θ) = (PU,h1

u(t; ·))(θ), (PR,τ1
u)(t; θ) = (PR,τ1

u(·; θ))(t) (11)

for almost every t ∈ [0, T ] and θ ∈ Θ. The operators PY,h2
,PR,τ1

∈ L (Y) arise
similarly. Most of the time, we will omit the discretization parameters in p = p(h1),
q = q(h2), r = r(τ1) and s = s(τ2).

Lemma 2. PU,h1
and PR,τ1

are commuting orthogonal projections and

PU ,h1,τ1
:= PU,h1

PR,τ1
= PR,τ1

PU,h1

is the orthogonal L (U)-projection onto the subspace

Uh1,τ1
= {u ∈ U : u(t; ·) ∈ Uh1

, u(·; θ) ∈ Rτ1
∀a.e. t ∈ [0, T ], θ ∈ Θ}.

In a similar way, PY,h2,τ2
= PY,h2

PS,τ2
= PS,τ2

PY,h2
is the orthogonal L (Y)-projection

onto the subspace

Yh2,τ2
= {y ∈ Y : y(t; ·) ∈ Yh2

, y(·; ξ) ∈ Sτ2
∀a.e. t ∈ [0, T ], ξ ∈ Ξ}.

Proof. We introduce an orthonormal basis {µi}i=1,...,p of Uh1
and an orthonormal basis

{φi}i=1,...,r of Rτ1
. Then, for u ∈ U ,

ũ(t; θ) = (PU ,h1
u)(t; θ) =

p
∑

i=1

ũi(t)µi(θ), ū(t; θ) = (PR,τ1
u)(t; θ) =

r∑

i=1

ūi(θ)φi(t),

with ũi(t) = (u(t; ·), µi(·))U and ūi(θ) = (u(·; θ), φi(·))L2(0,T ). Obviously, PU ,h1
and

PR,τ1
are orthogonal projections. PU ,h1

and PR,τ1
commute, since

PR,τ1
ũ =

r∑

i=1

p
∑

k=1

(ũk, φi)L2(0,T )
︸ ︷︷ ︸

=:(ũk)i

µkφi, PU ,h1
ū =

r∑

i=1

p
∑

k=1

(ūi, µk)U
︸ ︷︷ ︸

=:(ūi)k

µkφi,

and by Fubini’s theorem,

(ũk)i =

∫ T

0

(u(t; ·), µk(·))Uφi(t) dt =

∫

Θ

(u(·; θ), φi(·))L2(0,T )µk(θ) dθ = (ūi)k.

Hence, P
2
U ,h1,τ1

= PU ,h1,τ1
and P

∗
U ,h1,τ1

= PU ,h1,τ1
.

We introduce an approximation multi-parameter h = (h1, τ1, h2, τ2) ∈ R4
+ and define

the approximation GS = GS(h) of G via

GS(h) = PY,h2,τ2
GPU ,h1,τ1

. (12)
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4.2. Matrix representation of GS

We introduce for h1, h2, τ1, τ2 > 0 families of bases

{µ1, . . . , µp} of Uh1
, {ν1, . . . , νq} of Yh2

,

{φ1, . . . , φr} of Rτ1
, {ψ1, . . . , ψs} of Sτ2

.

Here µj = µ
(h1)
j , νj = ν

(h2)
j , φj = φ

(τ1)
j and ψj = ψ

(τ2)
j , but we omit the superscripts

for ease of notation. We define the mass matrix MU,h1
∈ Rp,p by

[MU,h1
]ij = (µj , µi)U , i, j = 1, . . . , p,

and define the mass matrices MY,h2
∈ Rq,q, MR,τ1

∈ Rr,r and MS,τ2
∈ Rs,s corre-

spondingly. The mass-matrices induce, for instance via

(v,w)p;w = vT MU,h1
w for all v,w ∈ R

p,

weighted scalar products and corresponding norms in the respective spaces, which we
indicate by a subscript w, like R

p
w with (·, ·)p;w and || · ||p;w, in contrast to the canonical

spaces like Rp with (·, ·)p and || · ||p. Denoting by λmin(MU,h1
) and λmax(MU,h1

) the
smallest and the largest eigenvalue of MU,h1

, respectively, we have
√

λmin(MU,h1
)||α||p ≤ ||α||p;w ≤

√

λmax(MU,h1
)||α||p.

We define the unitary coordinate isomorphisms κU,h1
: Uh1

→ Rp
w, κY,h2

: Yh2
→ Rq

w,
κR,τ1

: Rτ1
→ Rr

w and κS,τ2
: Sτ2

→ Rs
w, for instance via

κU,h1
: Uh1

→ R
p
w, u =

p
∑

j=1

αjµj 7→ [αj ]j = M−1
U,h1

[(u, µj)U ]j .

We observe that

{µ(h1)
i φ

(τ1)
j }i=1,...,p

j=1,...,r ⊂ U and {ν(h2)
i ψ

(τ2)
j }i=1,...,q

j=1,...,s ⊂ Y

are bases of Uh1,τ1
and Yh2,τ2

, respectively. We then define the block-structured mass
matrices

MU ,h1,τ1
= MU,h1

⊗ MR,τ1
∈ R

pr,pr,

MY,h2,τ2
= MY,h2

⊗ MS,τ2
∈ R

qs,qs,

which induce weighted scalar products (·, ·)pr;w in Rpr
w and (·, ·)qs;w in Rqs

w , and corre-
sponding norms || · ||pr;w and || · ||qs;w. We again define unitary coordinate isomorphisms
κU ,h1,τ1

: Uh1,τ1
→ Rpr

w and κY,h2,τ2
: Yh2,τ2

→ Rqs
w by

u(t; θ)=

p
∑

k=1

r∑

i=1

uk
i φi(t)µk(θ) 7→ [u]ki = M−1

U ,h1,τ1
[(u, φiµk)U ]ki ,

y(t; ξ) =

q
∑

l=1

s∑

j=1

yl
jψj(t)νk(ξ) 7→ [y]lj = M−1

Y,h2,τ2
[(y, ψjνl)Y ]lj .

10



Here [u]ki denotes a block structured vector with p blocks uk ∈ Rr, other block struc-
tured vectors are defined similarly.

Finally, we obtain a matrix representation G of GS by setting

G = G(h) = κYPYGPUκ
−1
U ∈ R

qs,pr, (13)

where the dependencies on h1, τ1, h2, τ2 have been partially omitted. Defining the
block-structured matrix

H(h) = MY,h2,τ2
G(h) = [Hkl

ij ]
kl
ij

with blocks Hkl = [Hkl
ij ]ij ∈ R

s,r for k = 1, . . . , q and l = 1, . . . , p, we obtain the
element-wise representation

Hkl
ij = [MYκYPYG(µlφj)]

k
i = (νkψi,G(µlφj))Y , (14)

and introduce the norm

||G(h)||h := sup
u∈Rpr

||Gu||qs;w

||u||pr;w
= ||M1/2

Y,h2,τ2
G(h)M

−1/2
U ,h1,τ1

||qs,pr. (15)

Lemma 3. For all h = (h1, τ1, h2, τ2) ∈ R4
+, we have

||G(h)||h = ||GS(h)||L (U ,Y) ≤ ||G||L (U ,Y). (16)

Assume, in addition, that the subspaces {Uh1,τ1
}h1,τ1>0 and {Yh2,τ2

}h2,τ2>0 are nested
in the sense that

Uh1,τ1
⊂ Uh′

1,τ ′
1

for h′1 < h1 and τ ′1 < τ1, (17a)

Yh2,τ2
⊂ Yh′

2,τ ′
2

for h′2 < h2 and τ ′2 < τ2. (17b)

In this case, ||G(h)||h monotonically increases if h ∈ R4
+ decreases with respect to the

partial ordering

(h′1, τ
′
1, h

′
2, τ

′
2) ≤ (h1, τ1, h2, τ2) :⇔ h′1 ≤ h1, τ ′1 ≤ τ1, h′2 ≤ h2, τ ′2 ≤ τ2,

and ||G(h)||h is convergent for h ↘ 0.

Proof. First, we calculate

||GS ||L (U ,Y) = sup
u∈U

||GSu||Y
||u||U

= sup
u∈Uh1,τ1

||GSu||Y
||u||U

= sup
u∈Uh1,τ1

||PY,h2,τ2
Gu||Y

||u||U
≤ sup

u∈Uh1,τ1

||Gu||Y
||u||U

≤ ||G||L (U ,Y).

Next, we see that for u ∈ Uh1,τ1
and u = κU ,h1,τ1

u ∈ Rpr,

||GSu||Y = ||κ−1
Y,h2,τ2

GκU ,h1,τ1
PU ,h1,τ1

u||Y = ||Gu||qs;w ≤ ||G||h||u||pr;w = ||G||h||u||U ,
||Gu||qs;w ≤ ||κY,h2,τ2

GSκ
−1
U ,h1,τ1

u||qs;w = ||GSu||Y ≤ ||GS ||L (U ,Y ||u||pr;w

11
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Figure 1: First nine basis functions of a hierarchical basis for L2(0, 1)-subspaces of
piecewise linear functions.

and, thus, ||GS ||L (U ,Y) = ||G||h. Finally, we assume that h′ < h and that (17) holds.
Since ||PY,h2,τ2

y||Y ≤ ||PY,h′
2,τ ′

2
y||Y for all y ∈ Y , we have

||GS(h)||h = sup
u∈Uh1,τ1

||PY,h2,τ2
Gu||Y

||u||U
≤ sup

u∈Uh′
1,τ′

1

||PY,h′
2,τ ′

2
Gu||Y

||u||U
= ||GS(h′)||h′

Since ||GS(h)||h is bounded above by ||G||L (U ,Y), the convergence is assured.

4.3. An example for signal discretizations

As an example, consider the case U = Y = L2(0, 1), and choose Uh1
and Yh2

as
spaces of continuous piecewise linear functions and Rτ1

and Sτ2
as spaces of piecewise

constant functions. One can easily assure nested spaced as in (17), for instance by
taking hierarchical finite element bases for Uh1

and Yh2
and Haar-wavelet bases for

Rτ1
and Sτ2

.
To get the (space) discretization of U , define for p ∈ N, p ≥ 2 and h1(p) = 1/(p− 1)

the family of equidistant partitions {Th1
}h1

of (0, 1],

Th1
= {In}, with In = ((n− 1)h1, nh1], n = 1, . . . , p− 1.

The space Uh1
of continuous piecewise linear functions with respect to Th1

is spanned
by the nodal basis

{µ(h1)
1 , . . . , µ

(h1)
p(h1)

} ⊂ Uh1
, with µ

(h1)
l (kh1) = δl−1,k, k = 0, . . . , p.

The subspaces {Uh1
} are nested if the choice is restricted to h1 ∈ {2−n}n∈N0

and
p ∈ {2n + 1}n∈N0

. Since the nodal bases of Uh1
and Uh′

1
do not have any common

element for h1 6= h′1, one may prefer to choose a hierarchical basis of finite element
functions µ̂l, as in Fig. 1, see e.g. [48], [49].

Then,
Uh1

= span{µ̂1, . . . , µ̂p(h1)}, for all h1 ∈ {2−n}n∈N0

with basis functions µ̂k independent of h1.

Remark 2. As we will see later, the eigenvalues of the mass matrices MU,h1
and

MY,h2
occur in some versions of the error estimates. Choosing, for instance, a nodal

basis in Uh1
, the eigenvalues of the corresponding mass matrix MU,h1

satisfy,

cλh1 ≤ λmin(MU,h1
) ≤ λmax(MU,h1

) ≤ Cλh1, (18)
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with two positive constants cλ, Cλ independent of h1, see e.g. [45]. Choosing a
hierarchical basis, the eigenvalues of the mass matrix satisfy

c′λh1 ≤ λmin(MU,h1
) ≤ λmax(MU,h1

) ≤ C ′
λ. (19)

We note that (19) is only based on numerical experiments, see Appendix A.1, where
also numerical estimates for cλ, Cλ, c′λ and C ′

λ are calculated.

For the (time) discretization of L2(0, T ), define for r ∈ N and τ1 = 1/r the family
of equidistant partitions {Γτ1

}τ1
of (0, T ].

Γh1
= {In}, with In = ((n− 1)τ1, nτ1], n = 1, . . . , r.

The space Rτ1
of piecewise constant functions with respect to Γτ1

can be spanned by
the nodal basis

{φ(τ1)
1 (t), . . . , φ(τ1)

r (t)} with φ
(τ1)
j (t) = χIn

(t), j = 1, . . . , r

and mass matrix MY,τ1
= τ1Idr. The spaces are nested by requiring τ1 ∈ {2−n}n∈N0

.

One obtains a hierarchical basis for Rτ1
by choosing φi as Haar-wavelets φ̂i, i.e.

φ̂i(t) =
1√
T

{

χ[0,T ](t) , i = 1,

2n/2φ̂(2nt/T −m) , i = 2n+1 +m+ 1,

with

φ̂(t) =







1 , 0 < t ≤ 1/2,

−1 , 1/ < t ≤ 1,

0 , otherwise.

In this case, MR,τ1
= Idr and

Rτ1
= span{φ̂1, . . . , φ̂r(τ1)}, for all τ1 ∈ {2−n}n∈N0

.

Denoting the orthogonal projections onto Uh1
and Rτ1

by PU,h1
and PR,τ1

, respectively,
the Poincaré-Friedrich’s inequality shows that there exist positive constants cU and cR,
independent of h1, τ1 and T , such that

||u− PUh1
u||L2(0,1) ≤ ||u− IUh1

u||L2(0,1) ≤ cUh
2
1||u′′||L2(0,1) for u ∈ H2(0, 1), (20a)

||v − PRτ1
v||L2(0,T ) ≤ ||v − IRτ1

v||L2(0,T ) ≤ cRτ1||v̇||L2(0,T ) for v ∈ H1(0, T ), (20b)

see e.g. [12], [50]. Here IUh1
u is the piecewise linear interpolant of u with respect

to Th1
and IRτ1

v is the piecewise constant interpolant of v with respect to Γτ1
. By

Fubini’s theorem, it follows that the induced projection PU ,h1,τ1
= PU,h1

PR,τ1
onto

Uh1,τ1
= {u ∈ U , u|In

≡ u(n), u(n) ∈ Uh1
, n = 1, . . . , N}

satisfies
||u− PU ,h1,τ1

u||U ≤ (cUh
2
1 + cRτ1)||u||Us

for all u ∈ Us, (21)
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with
Us = H1(0, T ;L2(0, 1)) ∩ L2(0, T ;H2(0, 1)),

and ||u||Us
= ||u||H1(0,T ;L2(0,1)) + ||u||L2(0,T ;H2(0,1)). We define Yh2

,Rτ2
and Yh2,τ2

ac-
cordingly and a corresponding estimate as (21) holds for the projection PY,h2,τ2

y of
elements y ∈ Ys = Us. Note that higher approximation orders can be achieved, if
ansatz functions of higher polynomial degree are used and if the input and output
signals exhibit corresponding higher regularity in space and time, see e.g. [12], [50].

Remark 3. In the simple 1D setting the proof of (20) directly provides the numerical
values cU = cY = 1/2 and cR = cS = 1/

√
2. For more complex domains Θ and Ξ the

interpolation constants have to be estimated numerically, see e.g. [18].

4.4. Signal approximation error estimates

We first consider the signal error εD with respect to the L (U ,Y)-norm.

Lemma 4. The signal approximation error in the norm || · ||L (U ,Y) is given by

εs := ||G − GS ||L (U ,Y) = max
u∈Uh1,τ1

||(I − PY,h2,τ2
)Gu)||Y

||u||U
+ sup

u∈U ′
h1,τ1

||Gu||Y
||u||U

, (22)

where U ′
h1,τ1

= kerPU ,h1,τ1
.

Proof. We decompose G − GS as

G − GS = G(I − PU ,h1,τ1
) + (I − PY,h2,τ2

)GPU ,h1,τ1
, (23)

and observe that

||(I − PY,h2,τ2
)GPU ,h1,τ1

||L (Ur,Y) = max
u∈Uh1,τ1

||(I − PY,h2,τ2
)Gu)||Y

||u||U
, (24)

||G(I − PU ,h1,τ1
)||L (Y) = sup

u∈U ′
r;h1,τ1

||Gu||Y
||u||U

. (25)

Applying the triangle inequality to (23), and considering a sequence uj = u∗ + u′j ,
where u∗ is the maximizer of (24) and (u′j)j ⊂ Uh1,τ1

is a supremal sequence in (25),
shows (22).

We note that the usual approximation conditions

∀u ∈ U : dist(u,Uh1,τ1
) → 0 if h1, τ1 → 0,

∀y ∈ Y : dist(y,Yh2,τ2
) → 0 if h2, τ2 → 0,

imply ||(G−GS)u||Y → 0 for every u ∈ U , but are not sufficient to guarantee a uniform
convergence ||G − GS ||L (U ,Y) → 0. Considering, for instance, the identity operator
G = Id ∈ L (U ,Y) in the case U = Y , the second term in (22) equals one for every
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finite-dimensional Uh1,τ1
. Similar effects can be expected for operators of the form

G = G1 + αPŪ , where G1 ∈ L (U ,Y = U) and αPŪ is a feedthrough operator for all
input signals from a infinite-dimensional subspace Ū .

Hence, we can only hope for a good approximation in || · ||L (U ,Y) if the subspaces
Uh1,τ1

and Yh2,τ2
can be chosen specifically for G such that output signals from input

signals u ∈ Uh1,τ1
are well approximated in Yh2,τ2

and that neglected input signal
components in U ′

h1,τ1
only lead to small output signals. For instance, if G ∈ L (U ,Y)

is a compact operator, then there exist orthonormal systems {û1, û2 . . . } of U and
{ŷ1, ŷ2, . . . } of Y and nonnegative numbers σ1 ≥ σ2 ≥ . . . with σk → 0 such that

Gu =

∞∑

k=1

σk(u, ûk)U ŷk, for all u ∈ U ,

see e.g. [47]. Choosing Uh1,τ1
and Yh2,τ2

as the span of û1, . . . , ûr and ŷ1, . . . , ŷs,
respectively, with s = r and r ∈ N, we obtain a very efficient approximation GS of G

with ||G − GS ||L (U ,Y) ≤ σr+1.
Next we consider the case where less specific information about G is available and

we only know that
G|Us

∈ L (Us,Ys), (26)

with spaces of higher regularity in space and time

Us = Hα1(0, T ;L2(Θ)) ∩ L2(0, T ;Hβ1(Θ)), (27a)

Ys = Hα2(0, T ;L2(Ξ)) ∩ L2(0, T ;Hβ2(Ξ)), (27b)

where α1, α2, β1, β2 ∈ N. Such a situation holds, for instance, for the heat equation,
cf. (10). Corresponding norms can be defined by

||u||Us
= ||u||Hα1 (0,T ;L2(Θ)) + ||u||L2(0,T ;Hβ1 (Θ)),

||y||Ys
= ||y||Hα2 (0,T ;L2(Ξ)) + ||y||L2(0,T ;Hβ2 (Ξ)).

Choosing Uh1
, Yh2

, Rτ1
and Sτ2

for instance as spaces of piecewise polynomial functions
of appropriate degrees one can achieve estimates

||u− PU ,h1,τ1
u||U ≤ (cRτ

α1
1 + cUh

β1

1 )||u||Us
, u ∈ Us, (28a)

||y − PY,h2,τ2
y||Y ≤ (cSτ

α2
2 + cY h

β2

2 )||y||Ys
, y ∈ Ys, (28b)

with positive interpolation constants cR, cS , cU and cY , cf. (20) and refer e.g. to [12]
for interpolation theory in Sobolev spaces in the case of more general settings.

Proposition 1. Assume that G satisfies (26) with some α1, α2, β1, β2 ∈ N. As-
sume further that Uh1

, Yh2
, Rτ1

and Sτ2
are chosen such that (28) holds with positive

interpolation constants cU , cY , cR and cS . In this case we have

||G − GS ||L (Us,Y) ≤ c′Rτ
α1
1 + c′Uh

β1

1 + c′Sτ
α2
2 + c′Y h

β2

2 , (29)

with c′U = ||G||L (U ,Y)cU , c′Y = ||G||L (Us,Ys)cY , c′R = ||G||L (U ,Y)cR and c′S = ||G||L (Us,Ys)cS ,
being independent of h1, h2, τ1, τ2 and T .
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Proof. For u ∈ Us, we have

||Gu− GSu||Y ≤ ||Gu− PY,h2,τ2
Gu||Y + ||PY,h2,τ2

Gu− PY,h2,τ2
GPU ,h1,τ1

u||Y
≤ (cSτ

α2
2 + cY h

β2

2 )||Gu||Ys
+ (cRτ

α1
1 + cUh

β1

1 )||PY ||L (Y)||G||L (U ,Y)||u||Us

≤
{

(cSτ
α2
2 + cY h

β2

2 )||G||L (Urs,Ys) + (cRτ
α1
1 + cUh

β1

1 )||G||L (U ,Y)

}

||u||Us

For the heat equation in Example 1 we obtain the following corollary.

Corollary 1. Consider the heat equation in Example 1 with U = Y = L2(0, 1) and
input signals restricted to

Us = Ys = L2(0, T ;H2(0, 1)) ∩H1(0, T ;L2(0, 1)) (30)

and assume that
C|H2(Ω) ∈ L (H2(Ω), H2(0, 1)).

If we choose the subspaces Uh1,τ1
and Yh2,τ2

as spaces of functions which are piecewise
constant in time and continuous piecewise linear in space with respect to regular grids
of grid sizes τ1, τ2, h1 and h2, respectively (cf. Section 4.3), then the corresponding
approximation GS satisfies

||G − GS ||L (Us,Y) ≤ c′Rτ1 + c′Uh
2
1 + c′Sτ2 + c′Y h

2
2 (31)

with c′U = ||G||L (U ,Y)/2, c
′
Y = ||G||L (Us,Ys)/2, c

′
R = ||G||L (U ,Y)/

√
2 and c′S = ||G||L (Us,Ys)/

√
2,

being independent of h1, h2, τ1, τ2 and T .

Proof. In view of (10) and the following remarks, condition (26) is satisfied with α1 =
α2 = 1 and β1 = β2 = 2. (28) holds in view of (21) and Remark 3 with cU = cY = 1/2
and cR = cS = 1/

√
2, and hence Proposition 1 applies.

Remark 4. Considering unconstrained optimization problems for parabolic equations
with Tychonov regularization, it is known that the optimal control u∗ is smooth in
the sense of (30), see e.g. [44], such that the consideration of restrictions of U to Us is
reasonable if the approximation GDS is later used to approximate u∗.

Remark 5. Property (26) can be expected for systems which either have smooth
states (like the heat equation) or which at least preserve the regularity of the input
signals (like the wave equation).

5. System dynamics approximation

This section deals with the efficient approximation of GS respectively of its matrix
representation G = M−1

Y H defined in (14). In general, G can be calculated by testing
the output corresponding to each input basis function of Uh1,τ1

against all output
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basis functions of Yh2,τ2
. If we consider time-invariant systems with bounded control

and observation, then the i/o-maps G can be represented as a convolution with a
kernel function K(t) as in (5). In this case, the approximation of G reduces to the
approximation of K(t) ∈ L (U ,Y) by K̃(t) ∈ L (Uh1

, Yh2
) such that only the input and

output basis functions with respect to the spatial distribution have to be considered
and the numerical burden is significantly reduced.

5.1. Kernel function approximation

Inserting (5) in (14), by a change of variables we obtain

Hkl
ij =

∫ T

0

∫ T

0

ψi(t)φj(s)(νk,K(t− s)µl)Y ds dt

=

∫ T

0

Wij(t)Kkl(t) dt

with matrix-valued functions W : [0, T ] → R
s,r and K : [0, T ] → R

q,p,

Wij(t) =

∫ T−t

0

ψi(t+ s)φj(s) ds, Kkl(t) = (νk,K(t)µl)Y ,

and thus

H = MYG =

∫ T

0

K(t) ⊗ W(t) dt. (33)

We note that W(t) can be exactly calculated if piecewise polynomial ansatz functions
ψi(t) and φj(t) are chosen.

For systems of the form (2), the matrix-valued function K is given by

Kkl(t) = (νk, CS(t)Bµl)Y = (c∗k, S(t)bl)Z ,

where
c∗k = C∗νk ∈ Z, k = 1, . . . , q, bl = Bµl, l = 1, . . . , p.

Hence, K can be calculated by solving p homogeneous systems

żl(t) = Azl(t), t ∈ (0, T ], (34a)

zl(0) = bl, (34b)

since (34) has the mild solution zl(t) = S(t)bl ∈ C ([0, T ];L2(Ω)). We obtain an
approximation H̃ of H by replacing zl(t) by numerical approximations zl,tol(t), i.e.

H̃ =

∫ T

0

K̃(t) ⊗ W(t) dt, (35)

with
K̃kl(t) = (νk, Czl,tol(t))Y = (c∗k, zl,tol(t))Z .
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Here the subscript tol indicates that the error zl − zl,tol is assumed to satisfy some
tolerance criterion which will be specified later.

Note that in this way the matrix function K is approximated column-wise. The
corresponding approximation GDS of GS is given by

GDS = κ−1
Y G̃κUPU , with G̃ = M−1

Y H̃ (36)

and depends on h1, h2, τ1, τ2 and tol.

Remark 6. As we will see later, it may be preferable to calculate K with respect to
different bases. Setting

Kw(t) = M
1/2
Y K(t)M

−1/2
U ,

we have Kw
kl(t) = (νw

k , CS(t)Bµw
l )Y with

µw
l =

p
∑

j=1

[M
−1/2
U ]ljµj , νw

k =

q
∑

i=1

[M
1/2
Y ]kiνi,

and thus (34) has to be solved with bwl = Bµw
l instead of bl.

Remark 7. The calculation of H̃ can be parallelized in an obvious way by calculating
the p solutions zl,tol in parallel and we note that no state trajectories have to be stored.

Remark 8. The kernel may also be calculated row-wise via

K̃kl(t) = (B∗zk,tol(t), µl)U = (zk,tol(t), bl)Z ,

where now the zk,tol are numerical solutions of the adjoint autonomous systems

żk(t) = A∗zk(t), t ∈ (0, T ], (37a)

zk(0) = c∗k. (37b)

This approach may be preferable if q < p or if one wants to improve the output
approximation by adding basis functions νq+1, νq+2, . . . see Section 8.

Remark 9. In general, the matrix H is not sparse. Using hierarchical linear finite
elements for the signal space discretization and Haar wavelets for the time discretiza-
tion, a matrix H ∈ Rqs,pr with p = q = 33 and r = s = 32 has about 64% non-zero
elements, whereas for p = q = 65 and r = s = 64 the proportion of non-zero elements
is 56%. Hence, the memory requirements become significant if a high resolution of the
signals in space and time is required, and the question if H can be represented in a
data-sparse way becomes essential. In the following make a first step in this direction.

We aim to approximate the entries Kkl(t) of the matrix-valued kernel function K(t)
by a function of the type

Ǩkl(t− s) =

M∑

m

N∑

n=1

αmnLm(t)Ln(s), s, t ∈ [0, T ], (38)
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with αmn ∈ R. For instance, one can realize such an approximation via interpolation,
cf. [24]. We introduce a grid on [0, t], i.e.

0 = t1 < t1 < · · · < tN = T (39)

and let Lj be the corresponding Lagrange interpolation functions, i.e.

Lj(t) =
N∏

1≤i≤N

i6=j

t− ti
tj − ti

, j = 1, . . . , N.

Then Ǩkl(τ), defined by

Ǩkl(t− s) =
N∑

m,n=1

Kkl(tm − tn)Lm(t)Ln(s),

interpolates Kkl(τ) in all τ = (tm − tn) with m,n = 0, . . . , N . Hence,

Hkl
ij ≈ Ȟkl

ij =

N∑

m,n=1

ΨimǨkl
mnΦjn

with matrices Ψ ∈ R
s,N , Φ ∈ R

r,N and Ǩkl ∈ R
N,N having elements

Ψim =

∫ T

0

ψi(t)Lm(t) dt, Ǩkl
mn = Kkl(tm − tn), Φjn =

∫ T

0

φj(t)Ln(t) dt.

Thus, Ȟkl = ΨǨklΦT and, combining the matrices Ǩkl to a blockstructured matrix
Ǩ ∈ RqN,pN we have

Ȟ = (Iq ⊗ Ψ)(Ǩ)(Ip ⊗ ΦT ).

If, for instance, a regular time grid (39) is chosen, then the blocks Ǩkl are lower
triangular Toeplitz matrices, and only q · p · N elements have to be stored. Note
that such a regular time grid may not be optimal to capture the initial dynamics, cf.
Fig. 2 and recall the problems of interpolation with polynomials of higher degree.
Investigations on the use of other decompositions of the type (38), using e.g. spline
functions or Taylor expansions, are hence an important future task.

5.2. Dynamics approximation error

The following proposition relates the system dynamics error εD to the errors made in
solving the PDE (34) for l = 1, . . . , p.

Proposition 2. The system dynamics error εD = ||GS − GDS ||L (U ,Y) satisfies

εD ≤
√
T ||K − K̃||L2(0,T ;Rq,p

w ) =
√
T ||Kw − K̃w||L2(0,T ;Rq,p)
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Figure 2: Left:One block Hkl ∈ Rs,r of a matrix H ∈ Rqs,pr with p = q = 65 and
r = s = 64. For the signal discretization hierarchical linear finite elements
in space and Haar-wavelets in time have been used. Right: A typical time
evolution of an entry Kkl(t) for the example heat equation.

and

(i) εD ≤ p
√
T max

1≤l≤p
||Kw

:,l − K̃w
:,l||L2(0,T ;Rq), (40a)

(ii) εD ≤ p
√
T

√

λmax(MY,h2
)

λmin(MU,h1
)

max
1≤l≤p

||K:,l − K̃:,l||L2(0,T ;Rq). (40b)

Here K:,l, K̃:,l, Kw
:,l and K̃w

:,l denote the l’th column of K(t), K̃(t), Kw(t) and K̃w(t),
respectively, λmax(MY,h2

) is the largest eigenvalue of MY,h2
and λmin(MU,h1

) the
smallest eigenvalue of MU,h1

. R
q,p denotes the space of real q × p-matrices equipped

with the canonical spectral norm, whereas Rq,p
w is the same space equipped with the

weighted matrix norm ||M||q,p;w = sup||u||p;w=1 ||Mu||q;w.

Proof. K is the matrix function representation of the space-projected kernel function

Km : [−T, T ] → L (U, Y ), Km(t) = PY,h2
K(t)PU,h1

,

with corresponding i/o-map Gm = Gm(h1, h2),

(Gmu)(t) =

∫ T

0

Km(t− s)u(s) ds, t ∈ [0, T ]. (41)

We note that
GS = PY,h2,τ2

GmPU ,h1,τ1
.

Similarly, we associate with K̃(t) the kernel function

K̃ : [−T, T ] → L (U, Y ), K̃(t) = κ−1
Y,h2

K̃(t)κU,h1
PU,h1

,
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with corresponding i/o-map

(GDu)(t) =

∫ T

0

K̃(t− s)u(s) ds, t ∈ [0, T ]. (42)

We observe that GDS as defined in (36) satisfies

GDS = PY,h2,τ2
GDPU ,h1,τ1

by showing according to (13)-(33), that the matrix representation of PY,h2,τ2
GDPU ,h1,τ1

coincides with (35). We note that ||Km(t)||L (U,Y ) = ||K(t)||q,p;w and ||K̃(t)||L (U,Y ) =

||K̃(t)||q,p;w for all t ∈ [0, T ]. Lemma 1 yields

||Gm − GD||L (U ,Y) ≤
√
T ||Km − K̃||L2(0,T ;L (U,Y )) =

√
T ||K − K̃||L2(0,T ;Rq,p

w ).

Defining E(t) = K(t) − K̃(t), for u ∈ Rp with ||u||Rp = 1 and t ∈ [0, T ], by using the
equivalence of the 1−norm and 2-vector norms in R

p we have that

||E(t)u||Rq ≤
p
∑

l=1

|ul|||E:,l(t)||Rq ≤ √
p

(
p
∑

l=1

||E:,l(t)||2Rq

)1/2

and hence

||E||2L2(0,T ;Rq,p) ≤ p

p
∑

l=1

∫ T

0

||E:,l(t)||2Rq dt ≤ p2 max
l=1,...,p

∫ T

0

||E:,l(t)||2Rq dt,

which concludes the proof.

Calculating the columns of K directly and estimating εD via (40a), the term depend-
ing on the eigenvalues of the mass matrices MU,h1

and MY,h2
has to be compensated

by the approximation accuracy of K:,l. In view of (19) this may be problematic if hier-
archical bases functions are chosen. In this case it may be reasonable to approximate
the columns of K by calculating the columns of Kw and to estimate εD via (40b). A
bad conditioning of the mass matrices must then be taken into account to ensure that
the corresponding basis transformations are carried out with sufficient accuracy.

6. Numerical solution of the homogeneous PDEs

In this section we discuss the numerical solution of (34) and how

||K:,l − K̃:,l||L2(0,T ;Rq) < tol resp. ||Kw
:,l − K̃w

:,l||L2(0,T ;Rq) < tol

can be ensured for a given tol > 0.
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6.1. Weak formulation and numerical schemes

We assume that the operator Â = −A is self-adjoint and positive definite, and for
ease of presentation, we assume that A has a compact inverse. We can define Â1/2 :
D(Â1/2) → Z as the self-adjoint operator

Âz =
∞∑

i=1

λ
1/2
i (z, ei)ei, z ∈ D(Â1/2) = {v ∈ Z :

∞∑

i=1

λi(ei, v)
2
Z <∞}

where the λi and the ei are the eigenvalues and eigenfunctions of Â, see e.g. [43, Ch.12].
Then we can extend the bilinear form â : D(Â) ×D(Â) → R, â(v, w) = (Âv, w)Z in a
natural way to

â : D(Â1/2) ×D(Â1/2) → R, â(v, w) = (Â1/2v, Â1/2w)Z .

Defining V = D(Â1/2), the weak formulation of (34) is now the following. Find
zl ∈W (0, T ) = {v ∈ L2(0, T ;V ), v̇ ∈ L2(0, T ;V ′)} such that

〈∂tzl, v〉V ′,V + â(zl, v) = 0 for all v ∈ V and a.e. t ∈ (0, T ] (43)

and zl(0) = bl ∈ Z. The initial condition makes sense, since W (0, T ) is continuously
embedded in C([0, T ]), see e.g. [21, Thm. 5.9.3]. If â is bounded and satisfies a
Garding inequality, then a unique weak solution zl ∈ W (0, T ) of (43) exists, see e.g.
[17]

Remark 10. For the heat equation in Example 1, i.e. A = 4 with D(A) = H2(Ω) ∩
H1

0 (Ω), we have V = H1
0 (Ω) and â(v, w) = (∇v,∇w)2L(Ω), and thus a unique weak

solution of (43) exists.

Remark 11. Choosing a finite dimensional subspace Vh3
⊂ V , the standard Galerkin

discretization of (43) consists in finding a solution zl,h3
∈ L2(0, T ;Vh3

) such that

〈∂tzl,h3
, v〉V ′,V + â(zl,h3

, v) = 0 for all v ∈ Vh3
and a.e. t ∈ (0, T ] (44)

and zh(0) = bl,h3
with some approximation bl,h3

∈ Vh3
of bl ∈ Z. We can write (44)

equivalently as an implicit ODE system

Mż(l)(t) + Az(l)(t) = 0, t ∈ (0, T ], z(l)(0) = b(l) (45)

with mass matrix M = [(ϕj , ϕi)L2(Ω)]ij ∈ Rn̂,n̂ and stiffness matrix A = [a(ϕj , ϕi)]ij ∈
Rn̂,n̂, where M and A are positive definite. Here {ϕ1, . . . , ϕn̂} are shape functions

forming a basis of Vh3
such that bl,h3

=
∑n̂

i=1 b
(l)
i ϕi and zl,h3

(t) =
∑n̂

i=1 z
(l)
i (t)ϕi. For

this, standard stiff ODE discretization schemes can be applied in order to obtain a
fully discrete approximation scheme, see e.g. [25].

We now consider discontinuous Galerkin time discretization schemes of (43), which
lead in combination with classical space disretizations to fully discrete schemes. They
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have a variational interpretation being especially suited for the error analysis and they
offer much flexibility with respect to adaptive mesh refinement and time stepping.

Consider partitions of (0, T ] into subintervals In = (tn−1, tn] of length kn = |In| and
maximal length τ3 = max kn, where 0 = t0 < t1 < · · · < tN = T . We define piecewise
polynomial spaces

Vh3,τ3
= {v : [0, T ] → V : v|In

=

qV∑

j=0

vjt
j , vj ∈ Vh3,n

, n = 1, . . . , N},

with qV ∈ N0 and h3 = maxh3,n. Here Vh3,n
are finite-dimensional subspaces of

V which may differ from time step to time step and h3,n denote the corresponding
discretization parameters. The fully discrete scheme for solving (43) may be formulated
as follows, see e.g. [19, 31]. Find zl,tol ∈ Vh3,τ3

such that

B(zl,tol, v) = (bl, v
+
0 ), for all v ∈ Vh3,τ3

, (46)

where B is a bilinear form on Vh3,τ3
given by

B(w, v) =
N∑

n=1

∫

In

{(∂tw, v)Z + â(w, v)} dt+
N∑

n=2

([w]n−1, v
+
n−1)Z + (w+

0 , v
+
0 )Z ,

with jump terms and one-sided limits

[v]n = v+
n − v−n , v+

n = lim
t→t+n

v(t), v−n = lim
t→t−n

v(t).

For results concerning the unique solvability of (46), see e.g. [43, p. 183].

Example 2. For instance, one may choose the spaces Vh3,n
from a family of spaces of

continuous piecewise linear functions as follows. Assume, for simplicity, that Ω ⊂ R2

is a bounded convex polygonal domain. For h > 0, let Th = {ω̄} be a triangulation
of Ω with h = maxω̄∈Th

hω̄, where hω̄ denotes the diameter of a triangle ω̄. We then
choose the spaces Vh3,n

from the family {Vh}h>0 of spaces

Vh = {v ∈ C
0(Ω̄) ∩H1

0 (Ω) : v|ω̄ linear ∀ω̄ ∈ Th}. (47)

We say that the family {Th}h satisfies the minimal angle condition, if there exists
β > 0 independent of the triangulations Th ∈ {Th}h such that

ρω̄

hω̄
≥ β, ∀ω̄ ∈ Th, (48)

where ρω̄ denotes the diameter of a circle inscribed in ω̄.
We say that the family {Th}h is quasi-uniform if there is a constant c independent

of Th ∈ {Th}h such that
hω̄ ≤ ch, ∀ω̄ ∈ Th.
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Remark 12. For qV = 0 and fixed space discretizations Vh3
= Vh3,1

= . . . , Vh3,N
,

(46) coincides with the backward Euler scheme applied to (45). If the solutions

z1,tol, . . . , zp,tol are calculated on the same time grid, (35) becomes H̃ =
∑N

n=1 K̃(tn)⊗
∫

In
W(t) dt. The integrals

∫

In
W(t) dt can be exactly calculated for many choices of

φi and ψj . Other choices of qV also allow for an exact time integration in (35) if only
polynomial ansatz functions are implied. Note that the Crank-Nicolson scheme can
also be formulated in terms of (46), see e.g. [43, p. 185].

6.2. Global state error estimates

The errors ||K:,l − K̃:,l||L2(0,T ;Rq) can be controlled via the global state error in solving
(34) by

||K:,l − K̃:,l||L2(0,T ;Rq) ≤ ||C||L (Z,Y )

(
q
∑

i=1

||νi||2Y

)1/2

||z − z
(l)
tol||L2(0,t;Z). (49)

Considering for example the numerical solution of the homogeneous heat equation by
means of a discontinuous Galerkin scheme (46) with qV = 0, we quote the following
result.

Lemma 5 ([31]). Assume, for simplicity, that Ω ⊂ R
2 is a bounded convex polygonal

domain and that the spaces Vh3,n
are chosen as subspaces of continuous piecewise

linear functions as in (47). Assume further, that the corresponding triangulations are
quasi-uniform and satisfy a minimal angle condition (48) , and let

Vh3,n
⊆ Vh3,n−1

, kn−1 ≤ γkn, n = 2, . . . , N,

with a constant γ independent of the time grid. Then, there exists a constant C,
depending only on γ and the minimum angle constant β, such that the solution zl of
(43) and the solution zl,tol of (46) satisfy

||zl − zl,tol||L2(0,T ;L2(Ω)) ≤
√
T ||zl − zl,tol||L∞(0,T ;L2(Ω))

≤C
√
T max

n=1,...,N

{

(1 + log(tn/kn))1/2

(

kn max
t∈In

||∂tzl(t)||L2(Ω) + h2
3,n max

t∈In

||zl(t)||H2(Ω)

)}

(50)

More general results, in particular for nonquasi-uniform triangulations, can be found
e.g. in [19, 20].

Remark 13. If bl ∈ D(A) = H2(Ω)∩H1
0 (Ω), then we have zl ∈ C1([0, T ], D(A)) and

the estimate (50) can be used to choose global discretization parameters h3 = maxh3,n

and τ3 = max τ3,n in order to ensure ||zl −zl,tol||L2(0,T ;L2(Ω)) < tol for a given tolerance
tol. However, in the generic situation we only have the regularity bl ∈ L2(Ω) and
zl ∈ C1((0, T ], D(A)), and the norms of the time and space derivatives of zl may
become very large for small t, cf. (9c). We call, in agreement with [31], an initial
phase where this happens an initial transient. Since D(A) is dense in L2(Ω), one
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can always find global discretization parameters h3 and τ3 small enough to ensure
||zl − zl,tol||L2(0,T ;L2(Ω)) < tol also for nonsmooth initial values. However, it is not
economic to use such fine mesh sizes (in space and time) for larger t > 0 where
the solution has much more regularity, such that adaptive meshing on the basis of
a posteriori error estimates may be very advantageous. For different possibilities of
corresponding a posteriori error controls, see e.g. [1] or [18] and the references therein.

Remark 14. Any semi-discretization can resolve non-smooth initial transients only up
to a certain accuracy. For illustration purposes, we quote the following error estimate
from [31, p. 151] for the system (44) in the case of the heat equation in Example 1.
Assuming that Vh3

consists of continuous piecewise linear functions with respect to
a quasi-uniform triangulation of Ω, there exists a positive constants c such that the
solution zl of (43) and the solution zl,h of (44) satisfy

||zl − zl,h||L∞(0,T ;L2(Ω)) ≤ C(1 + |log(T/h2
3)|) max

t∈(0,T )
h2

3||zl(t)||H2(Ω),

but in view of (9) this estimate is useless for general initial values bl ∈ L2(Ω). This
should be kept in mind when approximating PDE control systems by means of semi-
discretizations in space and considering later impulse responses of controls with jumps
in time. In our approach, the problem of resolving initial transients with sufficient
accuracy can be directly taken into account by using a posteriori error control in
solving (43). For nonsmooth data results for semi-discretizations of the heat equation,
cf. e.g. [43, Ch. 3] and the references therein.

Absorbing the ”almost bounded” logarithmic quantity and C in (50) into a new
constant C̃, one may for instance aim to choose the local time steps kn and the local
mesh sizes h3,n such that

kn max
t∈In

||∂tzl(t)||L2(Ω) ≤
tol

2C̃
√
T

and h2
3,n max

t∈In

||∂tzl(t)||L2(Ω) ≤
tol

2C̃ ′
√
T
,

where we used that ||zl(t)||H2(Ω) ≤ c||∂tzl(t)||L2(Ω), cf. (9). Approximating e.g.

kn max
t∈In

||∂tzl(t)||L2(Ω) ≈ ||zl,tol(tn) − zl,tol(tn−1)||L2(Ω),

we can choose kn and h3,n on the basis of numerically computable quantities, see e.g.
[31].

The preceding discussion justifies the following assumption.

Assumption 1. Given a tolerance tol > 0, we can ensure (by using appropriate error
estimators and mesh refinements) that the solution zl of (43) and the solution zl,tol of
(46) satisfy

||zl − zl,tol||L2(0,T ;Z) < tol, l = 1, . . . , p.

25



6.3. Goal-oriented error estimation

As we have observed in the last subsection, the accurate and economic calculation of
non-smooth initial transients requires a posteriori error control and an adaptive choice
of mesh sizes in space and time. Moreover, the estimate (49) may be very conservative:
the error in the observations K:,l can be small even if some norm of the state error
is large. Therefore, we briefly present the concept of goal-oriented error estimators,
which estimate the error with respect to linear functionals of the state z like

Jl(z) = (z, σl)L2(0,T ;L2(Ω)), (51)

with a weight function σl ∈ L2(0, T ;L2(Ω)). This technique is based on the so-called
dual-weighted residuals (DWR) approach. Duality arguments in a priori estimations
have been employed for the first time in [4] for the post-processing of ’quantities of
physical interest’ in elliptic problems. Substantial contributions and generalizations
have since then been made in [1], [6], [8], [9], [10], [28], [32], [33] and the references
therein.

We first show how our problem fits into the formulation (51). Assume for the
moment that the error E(t) = K(t) − K̃(t) is known. Define

σl(t) =

q
∑

k=1

Ekl(t)ν
∗
k , l = 1, . . . , p.

Then

Jl(zl − zl,tol) =

∫ T

0

(zl(t) − zl,tol(t), σl(t)) dt

=

∫ T

0

(zl(t) − zl,tol(t),

q
∑

k=1

(zl(t) − zl,tol(t), ν
∗
k)L2(Ω)ν

∗
k)L2(Ω) dt

=

∫ T

0

q
∑

k=1

||(zl(t) − zl,tol(t), ν
∗
k)||2L2(Ω) = ||K:,l − K̃:,l||2L2(0,T ;Rq).

In practice we have to work with estimates σ̂l(t) =
∑q

k=1 Ẽkl(t)ν
∗
k . and approximated

functionals Ĵl(z) = (z, σ̂l)L2(0,T ;L2(Ω)).
Next, we present an exact error representation formula for Jl(zk −zl,tol). We extend

the bilinear form B to a space V with V ⊃W (0, T ) and observe that the exact solution
zl ∈ W (0, T ) of (43) also satisfies (46), and hence we have the so-called Galerkin
orthogonality of the error and the ansatz space, i.e.

B(zl − zl,tol, v) = 0 ∀v ∈ Vh3,τ3
.

For each l = 1, . . . , p we introduce the dual problem

B∗(wl, v) = B(v, wl) = Jl(v) ∀v ∈ V (52)
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and assume that a unique solution wl ∈W (0, T ) exists. Note that wl can be interpreted
as the Riesz-representor of Jl. Then

Jl(zl − zl,tol) = B(zl − zl,tol, wl), (53a)

= B(zl − zl,tol, wl − w) ∀w ∈ Vh3,τ3
, (53b)

= (bl, (wl − w)+0 )Z −B(zl,tol, wl − w) ∀w ∈ Vh3,τ3
, (53c)

which can be interpreted as the residual of the approximated solution zl,tol tested
or weighted with the dual solution wl. The representation (53) can be localized by
carrying out time and space integrations separately for each time step and spatial mesh
element. For the example of the heat equation, (53) becomes

Jl(zl − zl,tol) = −
N∑

n=1

∫

In

{(∂tzl,tol, wl − w)L2(Ω) + (∇zl,tol,∇(wl − w))L2(Ω)} dt

−
N∑

n=2

([zl,tol]n−1, (wl − w)+n−1)L2(Ω) + (bl − (zl,tol)
+
0 , (wl − w)+0 )L2(Ω)

=

N∑

n=1

∑

ω̄∈Thn

ηn,ω̄. (54)

Here ηn,ω̄ = η
(1)
n,ω̄ + η

(2)
n,ω̄ are local error indicators with

η
(1)
n,ω̄ = −

∫

In

{(∂tzl,tol, wl − w)L2(ω̄) + (∇zl,tol,∇(wl − w))L2(ω̄)}dt, n = 1, . . . , N,

η
(2)
n,ω̄ = −([zl,tol]n−1, (wl − w)+n−1)L2(ω̄), n = 2, . . . , N

η
(2)
1,ω̄ = (bl − (zl,tol)

+
0 , (wl − w)+0 )L2(ω̄),

and with mesh elements ω̄ from the respective mesh Thn
. Frequently, the terms η

(1)
n,ω̄

are defined in a slightly different manner, when the second term in η
(1)
n,ω̄ is integrated

by parts over ω̄, and the resulting boundary terms of neighboring terms are combined
to jump terms which are then equally allocated to the respective local error indicators
[6] [26] . Often, w is chosen to be the interpolant of wl in Vh3,τ3

.
There are several ways to use (54) or similar representations for error control and

adaptive meshing. Solving the dual problem numerically with sufficient accuracy, the
indicators can directly be evaluated, cf. Section 8.2. Another possibility is to apply the
Cauchy-Schwarz inequality to the local error indicators and take the resulting upper
bounds as new local error indicators, see e.g. [1]. Aiming to extract information on
the local contribution to the time discretization error and to the spatial discretization
error, the local error indicators may be split by appropriate projections into respective
space and time error indicators, see e.g. [26] and [39].

Often, the error due to a numerical approximation of the dual solutions wl is ne-
glected, since it vanishes asymptotically with higher order. But in order to obtain
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reliable error results also for moderately accurate solutions of the dual problem, the
global state error in the dual solution should be itself controlled by appropriate a
posteriori estimations, see e. g. [1].

An example how the local error estimators ηn,ω̄ can be used in a mesh adaption
strategy is presented in Section 8.2.

The previous discussion justifies the following assumption.

Assumption 2. Given a tolerance tol > 0, we can ensure (by using appropriate error
estimators and mesh refinements) that the solution zl of (43) and the solution zl,tol of
(46) satisfy

Jl(zl − zl,tol) = ||K:,l − K̃:,l||L2(0,T ;Rq) < tol, l = 1, . . . , p.

We note that Assumption 1 implies Assumption 2, and that Assumption 2 im-
plies that we can ensure, for every given tol > 0 to solve (43) such that ||Kw

:,l −
K̃w

:,l||L2(0,T ;Rq) < tol.

7. Total error estimates

We will summarize previous error results for the total error in the approximation of G

and of its adjoint G
∗.

Theorem 1. Consider the i/o map G ∈ L (U ,Y) of an infinite-dimensional LTI
system as given in (5) and assume that

(i) G|Us
∈ L (Us,Ys) with spaces of higher regularity in space and time

Us = Hα1(0, T ;L2(Θ)) ∩ L2(0, T ;Hβ1(Θ)),

Ys = Hα2(0, T ;L2(Ξ)) ∩ L2(0, T ;Hβ2(Ξ)),

where α1, α2, β1, β2 ∈ N.

(ii) The families of subspaces {Uh1,τ1
}h1,τ1

and {Yh2,τ2
}h2,τ2

satisfy

||u− PU ,h1,τ1
u||U ≤ (cRτ

α1
1 + cUh

β1

1 )||u||Us
, u ∈ Us,

||y − PY,h2,τ2
y||Y ≤ (cSτ

α2
2 + cY h

β2

2 )||y||Ys
, y ∈ Ys,

with positive constants cR, cS , cU and cY .

(iii) The error in solving for the state dynamics can be made arbitrarily small, i.e.
Assumption 2 holds.

Let δ > 0 be given. Then one can choose two subspaces Uh∗
1 ,τ∗

1
and Yh∗

2 ,τ∗
2

such that

τ∗1 <

(
δ

8cR||G||L (U ,Y)

)1/α1

, h∗1 <

(
δ

8cU ||G||L (U ,Y)

)1/β1

, (55a)

τ∗2 <

(
δ

8cS ||G||L (Us,Ys)

)1/α2

, h∗2 <

(
δ

8cY ||G||L (Us,Ys)

)1/β2

, (55b)
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and one can solve the PDEs (43) for l = 1, . . . , p(h1) such that one of the following
conditions holds.

(i) ||Kw
:,l − K̃w

:,l||L2(0,T ;Rq) <
δ

2
√
Tp(h∗1)

, (56a)

(ii) ||K:,l − K̃:,l||L2(0,T ;Rq) <
δ

2
√
Tp(h∗1)

√

λmin(MU,h∗
1
)

λmax(MY,h∗
2
)
, (56b)

(iii) ||zl − zl,tol||L2(0,T ;Z) <
δ

2
√
Tp(h∗1)

√

λmin(MU,h∗
1
)

λmax(MY,h∗
2
)
||C||−1

L (Z,Y )





q(h∗
2)

∑

i=1

||νi||2Y





−1/2

.

(56c)

In this case,
||G − GDS||L (Us,Y) < δ.

Moreover, the signal error εS = ||G − GS ||L (Us,Y) and the system dynamics error
εD = ||GS − GDS ||L (U ,Y) are balanced in the sense that εS , εD < δ/2.

Proof. Since ||u||U ≤ ||u||Us
for all u ∈ Us, we have

||G − GDS||L (Us,Y) ≤ ||G − GS ||L (Us,Y) + ||GS − GDS||L (U ,Y).

Proposition 1 in combination with (55) ensures that

εS := ||G − GDS||L (Us,Y) < δ/2, (57)

and Proposition 2 in combination with (56) and in view of (49) ensures that

εD := ||GS − GDS ||L (U ,Y) < δ/2, (58)

which concludes the proof.

Remark 15. (i) The tolerances for the PDE calculations are coupled to the input
signal approximation, if error estimators for (56a) are used. They are even
coupled to the choice of basis functions for the input and output signals if (56b)
or (56c) are used.

(ii) If the signal approximation error εS can be measured in the L (U ,Y)-norm, then
one obtains also a total error estimation in the L (U ,Y)-norm.

(iii) If B ∈ L (Hβ1(Θ), D(A)), then one can obtain total error estimates containing
the global space and time mesh sizes h3 and τ3 for the numerical solution of the
PDEs (43) via (50).

Corollary 2. Consider the heat control system in Example 1 with U = Y = L2(0, 1)
and let δ > 0 be given. We assume that

C|H2(Ω) ∈ L (H2(Ω), H2(0, 1)) (59)
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and that the input signals are restricted to Us = Ys = H1(0, T ;L2(0, 1))∩L2(0, T ;H2(0, 1)),
i.e. G|Us

∈ L (Us,Ys). We choose Uh1
and Yh2

as spaces of continuous piecewise lin-
ear functions with respect to equidistant grids on [0, 1], and we choose Rτ1

and Sτ2
as

spaces of piecewise constant functions with respect to equidistant grids on [0, T ], with
dimensions satisfying

p > 2

√

||G||L (U ,Y)

δ
+ 1, q > 2

√

||G||L (Us,Ys)

δ
+ 1, (60a)

r >

√
24||G||L (U ,Y)

δ
, s >

√
24||G||L (Us,Ys)

δ
. (60b)

If the homogeneous heat equations (43) are solved for l = 1, . . . , p such that one of the
conditions (i)-(iii) in (56) holds, then

||G − GDS||L (Us,Y) < δ.

Proof. We recall that (59) implies conditions (i) and (ii) of Theorem 1 with α1 = α2 =
1 and β1 = β2 = 2, cf. Corollary 1. Remark 13 ensures condition (iii). For chosen
ansatz functions on regular grids we have h1 = 1/(p−1), h2 = 1/(q−1), τ1 = 1/r and
τ2 = 1/s. Hence condition (55) becomes (60) in view of Remark 3.

Remark 16. We consider the question how Corollary 2 can be used to choose the
dimensions in (60) and the tolerances in (56) in practice.

If we choose nodal bases (i.e. the usual hat functions) in Yh2
, then

q
∑

l=1

||νl||2L2(0,1) = 2/3

independent of h2 = 1/(q − 1). If we choose hierarchical bases in Yh2
, we have, with

q = 2n + 1 and h2 = 1/2n for some n ∈ N, that

q
∑

l=1

||νl||2L2(0,1) = (n+ 2)/3.

Note that λmax(MU,h∗
1
) and λmax(MY,h∗

2
) can be either directly numerically cal-

culated for fixed choices of p and q or they can be estimated via (18) and (19) and
numerical approximations of cλ, Cλ and c′λ, C ′

λ. It remains to estimate or calculate
the operator norms of G and C. Recalling Lemma 3, ||G||L (U ,Y) can be numeri-

cally approximated by ||G̃||h with some sufficiently accurate G̃, though one should
be aware that this may lead to choices of insufficiently large dimensions in view of
||G||h ≤ ||G||L (U ,Y). The question, how good estimates of ||G||L (Us,Ys) can be obtained,
has still to be investigated, as well as the question, how sharp the error estimations
are.
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The next result shows that (GDS)∗ ∈ L (Y ,U) automatically approximates the
adjoint G

∗ with ||G∗ − (GDS)∗||L (Ys,U) < c δ with a G-specific constant c, under the
assumption that G

∗
|Ys

∈ L (Ys,Us). Note that G
∗ ∈ L (Y ,U) is given by

(G∗y)(s) =

∫ T

0

K(s− t)∗y(t)dt.

Theorem 2. The adjoint (GDS)∗ ∈ L (Y ,U) of GDS ∈ L (U ,Y) has the matrix
representation

G̃∗ := M−1
U G̃T MY = M−1

U H̃T ∈ R
pr,qs (61)

For a given δ > 0, assume that all conditions in Theorem 1 hold, ensuring that ||G −
GDS ||L (Us,Y) < δ. If, in addition, G

∗
|Ys

∈ L (Ys,Us), then

||G∗ − (GDS)∗||L (Ys,U) < δ(
1

2
+ c∗) (62)

with c∗ = 1
4 (||G∗||L (Ys,Us)/||G||L (Y,U) + ||G∗||L (Y,U)/||G||L (Ys,Us)).

Proof. We first observe that G̃∗ is the adjoint of G̃ : R
pr
w → R

qs
w , since

(G̃u,y)qs;w = uT G̃T MYy = (u,M−1
U G̃T MYy)pr;w.

For u ∈ U and y ∈ Y and omitting the dependencies on h1, h2, τ1, τ2 and tol, we have

(GDSu, y)Y = (PYκ
−1
Y G̃κUPUu, y)Y = (G̃κUPUu, κYPYy)qs;w

= (κUPUu, G̃
∗κYPYy)qs;w = (u,PUκ

−1
U G̃∗κYPYy)U

= (u, (GDS)∗y)U ,

where we have used that PU = P
∗
U , PY = P

∗
Y , κ∗U = κ−1

U and κ∗Y = κ−1
Y . To show (62),

we estimate

||G∗ − (GDS)∗||L (Ys,U) ≤ ||G∗ − (GS)∗||L (Ys,U) + ||G∗
S − (GDS)∗||L (Y,U),

where (GS)∗ = PUG
∗
PY is the adjoint of GS ∈ L (U ,Y). In analogy to Proposition 1,

one can show

ε∗S := ||G∗ − (GS)∗||L (Ys,U) ≤ c′′Rτ
α1
1 + c′′Uh

β1

1 + c′′Sτ
α2
2 + c′′Y h

β2

2

with c′′U = ||G∗||L (YS ,US)cU , c′′Y = ||G∗||L (Y,U)cY , c′′R = ||G∗||L (Ys,Us)cR and c′′S =
||G∗||L (Y,U)cS . Hence, (55) implies

ε∗S ≤ δ

8

(
c′′U
cU

+
c′′R
cR

+
c′′Y
cY

+
c′′S
cS

)

=
δ

4

( ||G∗||L (Ys,Us)

||G||L (Y,U)
+

||G∗||L (Y,U)

||G||L (Ys,Us)

)

.

In order to estimate ε∗D := ||G∗
S − (GDS)∗||L (Y,U), we recall the definition of Gm in

(41) and of GD in (42) and obtain

ε∗D ≤ ||PU ||L (U)||(Gm)∗ − (GD)∗||L (Y,U)||PY ||L (Y)

≤
√
T (

∫ T

0

||Km(t)∗ − K̃(t)∗||2
L (Y,U) dt)

1/2.
(63)
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We observe that

Km(t) = PUκ
−1
U K(t)∗κY PY and K̃(t)∗PUκ

−1
U K̃κY PY (64)

with K(t)∗ = M−1
U K(t)T MY and K̃(t)∗ = M−1

U K̃(t)T MY , and that

||K(t)∗ − K̃(t)∗||Rp,q
w

= ||K(t) − K̃(t)||Rq,p
w

for t ∈ [0, T ]. (65)

Since each of the conditions in (56) ensures ||K− K̃||Rq,p
w

< δ/2
√
T , we have by means

of (63) - (65) that ε∗D < δ/2, which concludes the proof.

Remark 17. It remains to investigate the accuracy of the respective approximation
of the (possibly regularized) pseudo-inverses (G∗

G + αI)−1G
∗ with α ≥ 0, which play

an important role e.g. in optimal control problems.

8. Applications and numerical results

8.1. A test problem

As test problem, we consider the heat equation with homogeneous Dirichlet boundary
conditions in Example 1 with input and output operators of the following form, cf.
Fig 3. Let Ω ⊂ R2 be a set with sufficiently smooth boundary, and let

Ωc = {(x1, x2) ∈ Ω : ac,1 < x1 ≤ bc,1, ac,2 < x2 ≤ bc,2},
Ωm = {(x1, x2) ∈ Ω : am,1 < x1 ≤ bm,1, am,2 < x2 ≤ bm,2},

with 4 appropriate points ac, bc, am, bm ∈ Ω̄, be rectangular subdomains where the
control is active and the observation takes place, respectively. Setting U = Y =
L2(0, 1), we define B ∈ L (U,L2(Ω)) and C ∈ L (L2(Ω), Y ) by

(Bu)(x1, x2) =

{

u(θ(x1))ωc(x2), if (x1, x2) ∈ Ωc

0 if (x1, x2) /∈ Ωc

,

(Cz)(ξ) =
1

bm,1 − am,1

∫ bm,1

am,1

z(x1, x2(ξ)) dx1

where ωc ∈ L2(ac,2, bc,2) is a weight function and

θ : [ac,1, bc,1] → [0, 1], θ(x1) = (x1 − ac, 1)/(bc,1 − ac,1),

x2 : [0, 1] → [am,1, bm,1], x2(ξ) = am,2 + ξ(bm,2 − am,2).

Note that C preserves the inherent spatial state regularity, i.e. C|H2(Ω) ∈ L (H2(Ω), H2(0, 1)).
As special case, let T = 1 and

Ω = [0, 1]2, Ωc = Ω, Ωm = [0.1, 0.2] × [0.1, 0.9], ωc(x2) = sin(πx2). (66)
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Ω
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Figure 3: Test case 1 - Heat equation with homogeneous Dirichlet boundary conditions:
The input (heating) is active on Ωc, its intensity can be varied in time t and
in the x1 direction. The observation is the distribution of the temperature
at time t in the strip Ωm in the x2-direction, averaged in x1 direction.

For inputs of the special form

u(t; θ) = sin(ωTπt) sin(mπθ), ωT ,m ∈ N (67)

we have
(Bu)(t;x1, x2) = sin(ωTπt) sin(mπx1) sin(πx2).

Since the Laplace operator 4 : H2([0, 1]2)∩H1
0 ([0, 1]2) → L2([0, 1]2) has the eigenfunc-

tions vm,n(x1, x2) = 2 sin(mπx1) sin(nπx2) to the eigenvalue λm,n = −2(m2 + n2)π2,
the corresponding state and, hence, the output can be explicitely calculated and we
obtain

y(t, ξ) =

(
ωT π e

λm,1 t − ωT π cos (ωT πt) − λm,1 sin (ωT πt)
)

λ2
m,1 + ωT

2π2
· . . .

cos(0.1mπ) − cos(0.2mπ)

0.1mπ
sin(π(0.1 + 0.8ξ))

8.2. Numerical PDE solution in practice

In order to calculate the matrix approximation G̃ of the i/o-map G of the test problem
(66), the underlying homogeneous heat equations (34) are solved numerically. Two
different implementations have been carried out and investigated.

The first implementation realizes the standard approach of first carrying out a FEM
space discretization and then applying a stiff ODE solver, cf. Remark 11. The corre-
sponding solver code is written in Matlab [38] and uses the FEM software Femlab

[13]. The spatial meshes are controlled by means of Femlab’s mesh parameter ’hauto’,

33



which automatically adjusts the global mesh size and a number of related mesh pa-
rameters [13]. Femlab works with triangular meshes and provides several types of
shape functions. In the presented calculations quadratic Lagrange elements have been
used. Local mesh refinements in Ω are carried out a priori in the support of bl = Bµl

and ν∗k = C∗νk and in the neighborhoods of the supports in order to capture steep
gradients which can be expected there. However, no error control with respect to the
space discretization error is applied so far. By default, Femlab solves the resulting
stiff ODEs by means of Matlab’s ode15s, a variable order solver based on numerical
differentiation formulas and optionally using backward differentiation formulas, which
has an adaptive step size control with respect to the user-provided tolerance param-
eters ’atol’ and ’rtol’ [13]. A resulting typical step size distribution can be seen in
Fig. 4.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
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0.09

0.1

t

k n

Figure 4: Typical time step size distributions. Femlab’s stiff ODE solver (227 time
steps).

The second implementation, which is based on the C++ FEM software package
deal.ii [5], realizes a discontinuous Galerkin scheme (46) and applies goal-oriented
DWR-based error control, see [34] for details. We choose the ansatz spaces Vh3,τ3

as functions which are piecewise constant in time and piecewise polynomial in space,
leading to a backward-Euler like scheme. However, the spatial grids can vary from
time step to time step. The spatial grids are based on quadrilaterals and hexahedra
and several shape functions can be chosen. We work with linear Lagrangian ansatz
functions for the primal problem and quadratic ansatz functions for the dual problem.

We apply the DWR-based error estimation for Jl(zl−zl,tol) = ||K:,l−K̃:,l||L(0,T ;Rq) in
the following way, cf. Section 6.3. The dual problems (52) are solved numerically, i.e.
for l = 1, . . . , p we find a numerical approximation w̃l ∈ Wh∗

3 ,τ∗
3

of the exact solution
wl ∈W (0, T ) satisfying

B(v, w̃l) = Ĵl(v) for all v ∈ Wh∗
3 ,τ∗

3
. (68)

Here, Wh∗
3 ,τ∗

3
is an appropriately chosen finite-dimensional space, and Ĵl(v) = (v, σ̂l)L2(0,T ;L2(Ω))

is the approximation of the exact error functional Jl(v) = (v, σl)L2(0,T ;L2(Ω)) resulting

from estimating the error E(t) = K(t) − K̃(t) by Ê(t). The error Ê can, for instance,
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be estimated by interpolating a calculated solution zl,tol ∈ Vh3,τ3
in a larger ansatz

space Vh′
3,τ ′

3
⊃ Vh3,τ3

and taking the difference as an estimation for the state error.
Note that the dual problems (52) correspond, in the case of the heat equation and the
chosen type of error functionals, to heat equations backwards in time, cf. [26],

−∂twl(t) = 4wl(t) + σl(t), t ∈ [0, T ),

wl(T ) = 0.

The approximate dual solutions w̃l are then used to directly evaluate the error repre-
sentation formula (53), i.e. for all w ∈ Vh3,τ3

,

Jl(zl − zl,tol) ≈ J̃l(zl − zl,tol) := B(zl − zl,tol, w̃l)

= (bl, (w̃l − w)+0 )L2(Ω) +B(zl,tol, w̃l − w)

=

N∑

n=1

∑

ω̄∈Thn

η̃m,ω̄

A solution zl,tol is accepted if for some fixed α ∈ [0, 1) and given tolerance tol,

α tol ≤ J̃l(zl − zl,tol) < tol. (69)

Otherwise the local error indicators η̃m,ω̄ are used in the following way to adapt the
time grid and the meshes Thn

. An α > 0 makes sense if one is interested in a reduced
number of degrees of freedom in order to achieve a given accuracy.

Defining η̃n =
∑

ω̄∈Thn
η̃n,ω̄ and scaling η̃n,ω̄ and η̃n to η̄n,ω̄ and η̄n such that

η̃n,ω̄ =
kn

T

|ω̄|
|Ω| η̄nω̄, η̃n =

kn

T
η̄n,

we observe that (69) is ensured if one of the following conditions holds

(i) αtol ≤ η̄n < tol, for all n = 1, . . . , N,

(ii) αtol ≤ η̄n,ω̄ < tol, for all n = 1, . . . , N, ω̄ ∈ Thn
.

A simple mesh adaption strategy which aims at achieving (69) is the following. Refine
a time step kn if η̄n > tol, and refine a mesh element ω̄ ∈ Thn

if η̄n,ω̄ > tol. Reduce
the number of time steps by merging neighboring time steps kn which all satisfy
η̄n < αtol and reduce the number of mesh elements by merging neighboring elements
ω̄ with η̄n,ω̄ < αtol.

The underlying idea of balancing the error contribution over the space time domain
is the basis of many mesh adaption strategies. Note that it is not clear that an iterative
scheme based on this refinement strategy does actually produce a solution satisfying
(69), in particular for α near 1, and nothing is said about the optimality of the space
and time grids in the sense of a minimal error with respect to the degrees of freedom.
Moreover, for the practical mesh and grid handling it is preferable to limit the number
of hanging nodes, i.e. a refinement strategy should not only focus on single mesh
elements and time steps but also take the neighboring elements into account. Many
other refinement strategies are discussed in the literature, cf. [18].
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Remark 18. Numerical experiments show that J̃l(zl−zl,tol) only approximates Jl(zl−
zl,tol) quantitatively well if the dual solution wl is approximated with rather high ac-
curacy [34]. This is comprehensible in view of the following considerations. Neglecting
rounding errors and assuming that Jl = Ĵl, we focus on the estimation error introduced
by approximating w̃l ≈ wl. We note that the primal state error el := zl −zl,tol and the
dual state error e∗l := wl − w̃l satisfy the following Galerkin orthogonality conditions,

B(el, v) = 0 for v ∈ Vh3,τ3
, and B(w, e∗l ) = 0 for w ∈ Wh∗

3 ,τ∗
3
.

A direct consequence is that the ansatz space Wh∗
3 ,τ∗

3
for w̃l must not coincide with

Vh3,τ3
, since then J̃l(el) = B(el, w̃l) = 0. Denoting the B-orthogonal projection onto

Wh∗
3 ,τ∗

3
by PW , i.e.

B((I − PW)v, w) = 0 for all v ∈ V , w ∈ Wh∗
3 ,τ∗

3
,

we observe

J̃l(el) = B(el, w̃l) = B(PWel, w̃l) = B(PWel, w̃l) + B(PWel, e
∗
l ), (70a)

= B(PWel, wl) = Jl(PWel). (70b)

This means, the practical implementation of the DWR approach catches only the
contribution of PWel to the exact error Jl(el), and that Jl(el) − J̃l(el) = B((I −
PW)el, e

∗
l ) is neglected.

In practical applications one aims to start with coarse (primal and dual) meshes and
to refine subsequently only where it is necessary, and to spend less numerical effort on
the error estimation than on the original problem. First numerical tests indicate that
the approximated local error indicators η̃n,ω̄ approximate the exact terms ηn,ω̄ qualita-
tively well even for coarse primal and dual meshes, such that it seems reasonable to use
them for adaptive space and time mesh refinement anyway, systematic investigations
of this topic are ongoing [34].

We conclude this subsection with a remark on the numerical costs and with a short
discussion of the two implementations.

Remark 19. The numerical solution of the (possibly many) homogeneous PDEs rep-
resents the key cost factor in the proposed approximation framework, such that code-
optimization is an important issue. For instance, much calculation time can be saved
if the assembling of the mass and stiffness matrices does not have to be carried out
for each initial value bl = Bµl, l = 1, . . . , p again. However, the support of the bl
differ and local refinements in the neighborhood of their supports are reasonable, such
that different spatial meshes may be useful. An intelligent updating of meshes and the
corresponding mass and stiffness matrices may therefore speed up the calculation of
the i/o-approximation considerably.

The Femlab implementation stands out for its high flexibility and easy adaptivity
to new problem formulations, i.e. geometries, boundary conditions and the partial
differential equations can easily be modified. However, a posteriori error control for
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the time and space discretization error has still to be implemented in order to obtain
reliable approximations and thus to be useful for the proposed i/o-map approximation
framework. Though Femlab provides tools for comfortable spatial mesh refinement,
tools for the rigorous error control of time-depending problems are missing and have to
be developped by the user, and spatial meshes which vary in time will be very difficult
to implement.

The deal.ii-based code has the advantage of providing reliable results with errors
within a given tolerance range and producing problem-optimized space and time grids
by means of DWR-based error control. However, in the current implementation this
is achieved by a very accurate solution of the dual PDEs and thus with considerable
extra costs.

This inconvenience is acceptable in the present academical context of investigating
the influence of the accuracy in the PDE solutions on the overall accuracy of the
i/o map approximation. In practice, the effort of calculating a very accurate dual
solution is too high and would better be invested directly in a more accurate solution
of the original problems. An optimization and cost-reduction for the error estimation
procedure is thus necessary, probably involving appropriate a posteriori estimations
for the global error in the dual solution, see e.g. [1]. We note that the extra costs due
to the numerical solution of the dual problem may be outweighed by the reduction of
computational costs due to optimized meshes and by the advantage of reliable results
more easily in the case of nonlinear problems, see e.g. [27].

Remark 20. Since the DWR-based error estimation is still under development, the
i/o approximations used in the presented numerical experiments have predominantly
been calculated with the Femlab implementation and therefore miss quantitative
information about their accuracy with respect to the dynamics approximation. I/o
approximations with rather accurate error information on the basis of the deal.ii-
based implementation are ongoing work.

8.3. Tests of convergence

Convergence of single outputs

We consider the test problem (66), apply inputs of the form (67) with several choices
for m and ωT , and compare y = Gu with ỹ = GDSu for different approximations
GDS(h).

In Fig. 5, the input u(t; θ) = sin(3πt) sin(3πθ) has been chosen, and the relative
error ||Gu − GDSu||Y/||u||Us

is plotted for the following approximations GDS. The
black lines (labeled in the legend as G1) correspond to approximations GDS which
have been calculated with the Femlab-based code with moderately high tolerance
tolPDE (i.e. Femlab parameters hauto = 5, atol = 1e− 3 and rtol = 1e− 2). The
red lines (labeled in the legend as G2) correspond to approximations GDS which have
been calculated with the same code but a lower tolerance tolPDE (i.e. hauto = 3,
atol = 1e − 6 and rtol = 1e − 5). The signal discretizations have been carried out
with hierarchical linear finite elements in space and Haar wavelets in time.
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In the upper row, the number of space ansatz functions µi and νi is varied with
p = q = 5, 9, 17, 33, 65 whereas the number of time basis functions φi and ψi is fixed to
r = s = 64. According to Cor. 1, a quadratic convergence in h1 = h2 is expected and
can also be approximately observed: The dotted lines in the upper left image show
best (in the least square sense) quadratic fits f(h1) = a+ ch2

1 and the corresponding
estimated limit a. The corresponding values of the two constants a, c ∈ R are given
in Table 1. The error does not seem to converge to zero but to a value a, which can
be mainly explained by the still present dynamic approximation error. Note that a
corresponding to the better dynamical approximation G2 is lower than a corresponding
to G1. The right upper image shows the convergence to the estimated limit a in a
double-logarithmic scale.

In the lower row, the number of time ansatz functions φi and ψi is varied with
r = s = 4, 8, 16, 32, 64 whereas the number of space basis functions µi and νi is fixed
to p = q = 65. Here we expect and also observe a linear convergence, the dotted
lines show now linear best fits f(h1) = a+ ch1 and the corresponding estimated limits
a. The lower right image shows again the convergence to the estimated limit a in a
double-logarithmic scale.

Fig. 6 shows similar numerical results for a more oscillatory input u(t; θ) = sin(10πt) sin(10πθ).
Though the order of magnitude of the corresponding relative errors is comparable to
the results of the less oscillatory input, a quadratic, respectively, linear convergence
can no longer be observed. It is remarkable that the approximations GDS calculated
with different tolerances tolPDE lead to the same errors with respect to the space
discretization (cf. 6-upper row), and that the errors corresponding to GDS with more
accurate dynamics approximation become larger than the errors corresponding with
less accurate dynamics for small τ1 = τ2. Since we do not have convincing explications
for these observations, further investigations are necessary.

Fig. 6 shows the output errors over the space-time domain for the input u(t; θ) =
sin(10πt) sin(10πθ), again for different approximations GDS. This time, only the num-
bers p, q, r and s of basis functions for the signal discretizations are varied. The
dynamics has been approximated with the Femlab-based code with moderately high
tolerances (hauto = 5, atol = 1e− 3 and rtol = 1e− 2).

Another important future task is the investigation, how the preceeding error results
correspond to the total error estimation in Thm. 1 and Cor. 2, and how such numerical
results can be used in order to estimate unknown constants in these estimates.

Successive signal approximation and convergence of the norm ||GS(h)||L (U ,Y)

We investigate numerically the convergence of ||GS(h)||L (U ,Y) for growing nested sub-
spaces Uh1

, Yh2
, Rτ1

and Sτ2
, compare Lemma 3. As an example, we consider the ap-

proximation GS(h) of the i/o-map G corresponding to the test problem (66) and choose
hierarchical linear finite elements in Uh1

and Yh2
and Haar wavelets in Rτ1

and Sτ2
.

We approximate ||GS(h)||L (U ,Y) ≈ ||GDS(h)||L (U ,Y), where GDS has been calculated
with the Femlab-based solver with tolerances hauto= 5, atol= e − 2, rtol= e − 3
and local support refinements. Figure 8 shows the approximated ||GS(h)||L (U ,Y) for
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Fig. m ωT varied param. α tolPDE a c

5(top) 3 3 h1 = h2 2 low (G1) 3.57e-5 3.49e-3
high (G2) 1.71e-5 3.43e-3

5(down) 3 3 τ1 = τ2 1 low (G1) 2.96e-5 9.49e-4
high (G2) 2.14e-5 9.97e-4

6(top) 10 10 h1 = h2 2 low (G1) (-5.64e-5) (1.21-e3)
high (G2) (-5.34e-5) (1.24e-3)

6(down) 10 10 τ1 = τ2 1 low (G1) (4.72e-6) (7.07e-5)
high (G2) (8.18e-6) (3.45e-5)

Table 1: Coefficients a and c of best fitting curves f(h) = a+chα with varied parameter
h and expected convergence order α.

subspace dimensions

p = q = r + 1 = s+ 1 = 2, 3, . . . , 65.

In the first row of Figure 9 we only vary one subspace dimension while keeping the
others fixed to a maximal pmax = qmax = 65 or rmax = smax = 64, respectively. In the
second row first the numbers r = s of time bases functions are increased synchronously
while fixing p = q = 65, second the numbers of space basis functions are increased
while fixing r = s = 64. In the third image, the number of input basis functions
p = r + 1 is increased synchronously, while fixing q = s + 1 = 65, and in the fourth,
the number of output basis functions q = s+1 is increased synchronously, while fixing
p = r + 1 = 65.

It remains to investigate the dependence of this norm convergence of the dynamical
error εD, i.e. for different GDS ≈ GS . Moreover, it would be interesting to investi-
gate further test problems. Aiming to test also the convergence for higher subspace
dimensions p, q > 65 and r, s > 64, we note that the norm calculations get increasingly
costly due to the involved singular value decompositions.

Convergence in the operator norm

Next we investigate the behavior of ||GDS(h1, h2, τ1, τ2, tol)||L (U ,Y) for varying dis-
cretization parameters. Again, we consider approximations GDS of the i/o-map of the
test problem (66) with one fixed tol, calculated with the Femlab code. In Figure 10,

||GDS(h1, h2, τ1, τ2, tol) − GDS(
h1

2
,
h2

2
,
τ1
2
,
τ2
2
, tol)||L (U ,Y) (71)

is plotted over h1 = h2 = τ1 = τ2. The norms are calculated via the matrix norm
(15) and appropriate embeddings of G̃(h1, h2, τ1, τ2, tol) ∈ Rpq,rs

w into the larger space
Rp̄q̄,r̄s̄

w with G̃(h1

2 ,
h2

2 ,
τ1

2 ,
τ2

2 , tol) ∈ Rp̄q̄,r̄s̄
w .

In Figure 11,

||GDS(h1, h2, τ1, τ2, tol) − GDS(
h1

2
,
h2

2
, τ1, τ2, tol)||L (U ,Y) (72)
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Figure 5: Relative output errors for input (67) with m = 3 and ωT = 3. Upper row:
error for h1 = h2 → 0 and τ1 = τ2 = 1/64. Lower row: error for τ1 = τ2 → 0
and h1 = h2 = 1/64. (Note: the values in the images on the left have to be
scaled by the factor 10−4.)

is plotted over h1 = h2 for fixed τ1 = τ2 = 1/64 and in Figure 12,

||GDS(h1, h2, τ1, τ2, tol) − GDS(h1, h2,
τ1
2
,
τ2
2
, tol)||L (U ,Y) (73)

is plotted over τ1 = τ2 for fixed h1 = h2 = 1/64.
Unfortunately, it is not possible to observe a convergence rate of at least one as

suggested by Corollary 2. A possible reason is that the dynamical approximation
error εD is too large and destroys the order. It therefore remains to investigate the
convergence with approximations GDS with lower error εD. It would be preferable
to investigate directly the L (Us,Y)-norm, but we do not have a convenient discrete
counterpart of this norm for the chosen signal basis functions.

8.4. Matrix reduction on the basis of SVDs

In order to resolve the input signal space and the output signal space by means of
general purpose basis functions like finite elements or Haar wavelets with sufficient
accuracy, a large number of basis functions is needed in general, thus leading to i/o-
matrices G̃ of relative large dimensions. We propose a matrix reduction which is
based on singular value decompositions (SVDs) but which preserves the ’space-time’
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Figure 6: Relative output errors for input (67) with m = 10 and ωT = 10. Left: error
for h1 = h2 → 0 and τ1 = τ2 = 1/64. Right: error for τ1 = τ2 → 0 and
h1 = h2 = 1/64. (Note: the values in the images on the left have to be
scaled by the factor 10−4.)

tensor structure of the input and output signal bases [42]. We note that similar
reductions have been developed independently before, and can be found in literature
e.g. as ’higher order singular value decomposition’ (HOSVD), see e.g. [14], [15] and
[16] and the references therein. These tensor decompositions are mostly motivated by
applications from higher order statistics, e.g. in psychology, but also in computer facial
recognition, image processing, telecommunications and other fields [35], but are not
aware that they have been applied for the model reduction of linear control systems.

Such a system reduction can be useful in the following ways.

• To obtain a low-dimensional matrix-representation of the system, which is small
enough to be used for real-time feedback control design.

• To identify relevant input and output signals. They may be instructive for the
actuator and sensor design, i.e. they might help to answer where actuators and
sensors have to be placed and which resolution in time and space they should
have.

Roughly, the matrix reduction for G̃ works in the following way.

1. Put all elements belonging to µ1, µ2, . . . , µp into one respective column and carry
out SVD on the corresponding (qsr)× p matrix to determine the relevant linear
combinations of µi’s.
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Figure 7: Output errors over the space-time domain for input with m = 10, ωT = 10

2. Put all elements belonging to ν1, ν2, . . . , νq into one respective row and carry
out SVD on the corresponding q× (psr) matrix to determine the relevant linear
combinations of νi’s.

3. Put all elements belonging to φ1, φ2, . . . , φr into one respective column and carry
out SVD on the corresponding (qsp) × r matrix determine the relevant linear
combinations of φi’s.

4. Put all elements belonging to ψ1, ν2, . . . , νs into one respective row and carry
out SVD on the corresponding s× (psq) matrix to determine the relevant linear
combinations of ψi’s.

5. Transform G̃ with respect to the new basis functions

6. Truncate columns and rows corresponding to new time basis functions of low
relevance and truncate block rows and block colums corresponding to space time
basis functions of low relevance.

For a detailed and formalized description see [42] and primariliy [14], [15] and [16] for
truncation error results. The relevance of basis functions can be evaluated by means
of the decay of the singular values of the respective SVDs. A more significant criterion
is to consider so-called n-mode singular values which are related to a so-called core
tensor, which is the higher-order tensor analogon to the matrix Σ in a SVD A = UΣV ′

of a matrix A, cf. [14].
In Figure 13 the tensor SVD has been applied to a matrix G̃ ∈ R

qs,pr approximating
the i/o-map G of the test problem, with p = q = 65 hierarchical linear finite element
basis functions in space and r = s = 64 Haar wavelet basis functions in time. The first
row shows the singular values of the SVDs corresponding to steps (1)-(4) in the above
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Figure 8: Norm ||GDS(h)||L (U ,Y) for synchronously increasing approximation space di-
mensions p = q = r + 1 = s+ 1 and one fixed tolerance tol.

procedure in a semilogarithmic scale. Underneath the first and most relevant three
transformed/new basis functions µ̂i, ν̂i, φ̂i and ψ̂i, are plotted. It is not surprising
that µ1 is large in the neighborhood of [0.1, 0.2], since the observation takes place
in [0.1, 0.2] × [0.1, 0.9]. We do not have an explanation yet, why the transformed
basis functions ν̂i do not show the symmetry of the underlying problem. The most
relevant input and output time basis functions seem to be the sinusoidal functions
and the corresponding singular values decay slowly. The direct coupling of inputs and
outputs via overlapping input and output domains may be a reason why also higher
frequencies keep to be important, though the heat equation is known for damping such
higher oscillations.

It remains to investigate other test problems and to apply truncation error results
in order to obtain global error estimates for ĜDS − G, where ĜDS is the tensor SVD
reduced approximation of G. An application of a reduced approximation ĜDS in an
optimization problem follows in the next subsection.

8.5. Unconstrained optimization

We investigate the use of the i/o-map approximation in optimization problems of the
following form.
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Figure 9: Norm ||GDS(h)||L (U ,Y): one fixed tolerance tol, varying the dimensions of
one subspace (upper row) or two subspaces (lower row) while keeping the
other dimensions fixed.

Let J be a quadratic cost functionals of the tracking type,

J : U × Y → R, J(u, y) =
1

2
||y − yD||2Y + α||u||2U . (74)

Here yD ∈ Y is a desired output signal that one wants the system to achieve and α > 0
is a regularization parameter. The optimization problem consists in the minimization

min J(u, y) subject to y = Gu, u ∈ Uad (75)

where Uad ⊂ U is the subset of admissible controls.
We define the discretize cost functional

J̄h : R
pr × R

qs → R, J̄h(u,y) =
1

2
||y − yD||2qs;w + α||u||2pr;w, (76)

with yD = κY,h2,τ2
PY,h2,τ2

yD, and instead of (75) we solve

min J̄h(u,y) subject to y = G̃u, u ∈ Ūad (77)

with Ūad = {u ∈ Rpr : u = κU ,h1,τ1
PU ,h1,τ1

u, u ∈ Uad}.
We note that the continuous formulation of (76) and (77) is given by

Jh : U × Y → R, Jh(u, y) =
1

2
||PY,h2,τ2

(y − yD)||2Y + α||PU ,h1,τ1
u||2U , (78)

min Jh(u, y) subject to y = GDSu, u ∈ PU ,h1,τ1
Uad. (79)
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Figure 10: The figure shows (71) over h1 = h2 = τ1 = τ2 in a decimal and in a double
logarithmic scale, and estimations of the numerical convergence order α.
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Figure 11: The figure shows (72) over h1 = h2 in a decimal and in a double logarithmic
scale, and estimations of the numerical convergence order α.

Considering optimization problems without control constraints, i.e. Uad = U and
Ūad = R

pr, the solution ū of (77) is characterized by

(G̃T MYG̃ + αMU )ū = G̃T MYyD. (80)

As concrete example, we consider the test problem (66) and choose yD = Gu0 to be
the output for an input u0 ≡ 1 which is equal to 1 on all of [0, T ]× (0, 1). We then try
to find an optimized input u∗ of less energy, such that Gu∗ ≈ yD, or more exactly, u∗
that minimizes the cost functional (75).

Fig. 14 shows the numerical results for α = 10−6. Here an i/o map approximation
G̃ ∈ R

65·64×65·64 with p = q = 65 hierarchical linear basis functions in space and
r = s = 64 Haar wavelets in time is used, the calculation of ū∗ = κU ū

∗ via (80)
on a normal desktop PC takes 12.9 seconds. The u-norm is reduced by 22.7% and
the relative deviation of Gū∗ from yD is only 2.4%. The outputs resulting from u0

and u∗ have been calculated in simulations independent from the calculation of the
i/o-matrix.
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Figure 12: The figure shows (73) over τ1 = τ2 in a decimal and in a double logarithmic
scale, and estimations of the numerical convergence order α.

In Fig. 15 the same calculations have been carried out with Ĝ ∈ R5·5,5·5, where Ĝ

arises from a tensor SVD-based matrix reduction of G̃ ∈ R
65·64,65·64, where all but

the five most relevant input and output basis functions in space and time have been
truncated, cf. Fig. 13. Using this approximation, the norm of u is reduced by 21.3%,
whereas the relative deviation of Gu∗ from yD is 13%. The cost functional has been
reduced by 38.0%, and the calculation of u∗ took 0.0005 seconds on a normal desktop
PC.

It remains to investigate, if analytical results concerning the performance of the
approximated optimal solution can be developed. Moreover, it would be interesting to
investigate, how GDS can be directly used in feedback control, e.g. in the framework
of model predictive control [11].

9. Final remarks and outlook

We have presented a systematic framework for the discretization of the i/o-maps of
linear infinite-dimensional control systems with spatially distributed inputs and out-
puts. Global error estimates have been provided, which allow to choose the involved
discretization parameters in such a way that a desired overall accuracy is achieved and
that the signal and the system dynamics approximation errors are balanced. More-
over, the error results are capable to take many practical and technical restrictions
in sensor and actuator design like limited spatial and temporal resolutions or the use
of piece-wise constant controls and observations due to digital devices directly into
account.

For the moment only the example of a heat control system has been considered in
detail. It remains to investigate other linear control systems, e.g. based on the wave
equation or Stokes equations, and for which the general results also apply. The transfer
of results to time-varying or nonlinear systems or pointwise and boundary controls and
observations will be less straight forward and presents an interesting research topic.

The numerical costs of the approach are primarily governed by the numerical cal-
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Figure 13: Tensor SVD-based reduction for the approximation of the i/o map of the
testproblem (66). First row: Singular values of the 4 respective SVD in
semilogarithmic scale. 2nd to 4th row: Respective three most relevant
basis functions.
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Figure 14: Application of an approximated i/o map G̃ ∈ R65·64,65·64 in an optimization
problem. From left to right: optimized control u∗, original output yD =
Gu0, optimized output Gu∗ and their difference.

Figure 15: Application of the SVD-reduced approximated i/o map Ĝ ∈ R
5·5,5·5 in an

optimization problem. From left to right: optimized control u∗, original
output yD = Gu0, optimized output Gu∗ and their difference.

culation of p underlying homogeneous PDEs, where p is the number of input basis
functions in space, which can become problematic when the spatial resolution of the
input signal space has to be accurate. In this case, code-optimization, e.g. due to
parallelization and appropriate updating of mass and stiffness matrices from prior
calculations, promises to have a large potential for speed-up which has not yet been
investigated.

A bottle-neck of the proposed framework may be the large dimensions and memory
requirements of the approximations G̃ due to the full space-time discretization of the
i/o-map, in the case where high accuracy of the i/o approximation is required. There-
fore it would be worthwile to investigate if data-sparse matrix formats like hierarchical
matrices and possibly also related efficient arithmetics can be employed.

The SVD-based dimension reduction for the matrix representation can be considered
as an alternative model reduction approach, and the resulting reduced i/o-models prove
to be useful in first numerical optimization applications. Moreover, the SVD-based
reduction may be able to provide useful insight for efficient actuator and sensor design
by filtering out relevant input and output signals.
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Figure 16: From left to right: maximal and minimal eigenvalues of mass matrices
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hierarchical basis, nonzero elements in a mass matrix for a hierarchical
basis

opment of the deal.ii-based code for the numerical solution of PDEs.

A. Appendix

A.1. Eigenvalues of mass matrices

In Fig. 16 we can see the maximal and minimal eigenvalues of the mass matrices
corresponding to nodal bases and to hierarchical bases, as well as the pattern of nonzero
elements of a hierarchical mass matrix. The eigenvalue plots are in agreement with
(18) and (19). In order to estimate the constants cλ, Cλ, c′λ and C ′

λ in (18) and
(19) numerically, the eigenvalues of the corresponding mass matrices MU,h1

have been
calculated for h1 = 1/(p − 1), where p = 3, . . . , 257, with Matlab. For the mass
matrices with respect to nodal bases we approximate

cλ ≈ min
3≤p≤257

λmin(MU,h1(p))/h1 = 0.211325,

Cλ ≈ max
3≤p≤257

λmin(MU,h1(p))/h1 = 0.999975

and note that λmin(MU,h1(p))/h1 → 0.25 for h1 → 0 numerically. For the mass matrices
with respect to hierarchical bases we approximate

c′λ ≈ min
3≤p≤257

λmin(MU,h1(p))/h1 = 0.041949,

C ′
λ ≈ max

3≤p≤257
λmin(MU,h1(p)) = 1.030179.
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