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Abstract

In this work we construct and analyze discrete artificial boundary conditions (ABCs)
for different finite difference schemes to solve nonlinear Schrödinger equations. These
new discrete boundary conditions are motivated by the continuous ABCs recently
obtained by the potential strategy of Szeftel. Since these new nonlinear ABCs are
based on the discrete ABCs for the linear problem we first review the well–known
results for the linear Schrödinger equation. We present our approach for a couple of
finite difference schemes, including the Crank–Nicholson scheme, the Dùran–Sanz–
Serna scheme, the DuFort–Frankel method and several split–step (fractional step)
methods such as the Lie splitting, the Strang splitting and the relaxation scheme
of Besse. Finally, several numerical tests illustrate the accuracy and stability of our
new discrete approach for the considered finite difference schemes.
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1 Introduction

The nonlinear cubic Schrödinger equation (NLS) is a typical dispersive non-
linear partial differential equation (PDE) that plays a key role in a variety of
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areas in mathematical physics. It describes the spatio–temporal evolution of
the complex field u = u(x, t) ∈ C and has the general form

i∂tu + ∂2
xu + q|u|2u = 0, x ∈ R, t > 0, (1a)

u(x, 0) = uI(x), x ∈ R, (1b)

where the parameter q ∈ R corresponds to a focusing (q > 0) or defocusing
(q < 0) effect of the nonlinearity. The NLS equation (1) describes many phys-
ical problems and is the prototype for many dispersive systems. The fields of
application varies from optics [1], propagation of the electric field in optical
fibers [2], self–focusing and collapse of Langmuir waves in plasma physics [3]
to modelling deep water waves and freak waves (so–called rogue waves) in the
ocean [4].

Since the Schrödinger equation is defined on an unbounded spatial domain
x ∈ R the finite computational domain Ω = (xl, xr) must be restricted by in-
troducing artificial boundary conditions (ABCs). These ABCs are constructed
with the objective to approximate the exact solution of the whole–space prob-
lem, restricted to the computational domain Ω. Such boundary conditions are
called absorbing boundary conditions if they yield a well–posed initial bound-
ary value problem (IBVP), where some “energy functional” is absorbed at the
boundary. If this approximate solution actually coincides on the computational
domain Ω with the exact solution of the whole–space problem, one refers to
these boundary conditions as transparent boundary conditions (TBCs). The
artificial boundary at x = xl and x = xr splits the problem into three parts:
the interesting interior problem defined on Ω and a left and right exterior
problem.

For constant coefficients the linear exterior problems can be solved explicit-
ly by the Laplace method. Assuming (spatial) C1–continuity of the solution
at the artificial boundaries yields the TBCs as Dirichlet–to–Neumann maps.
However, an ad–hoc discretization of these continuous TBCs can destroy the
stability of the employed numerical scheme for the PDE and induce strong
numerical reflections. To avoid this, we derive discrete TBCs for the fully dis-
cretized PDE. The procedure is analogous to the well–known continuous case
and uses the Z–transformation which is the discrete analogue to the Laplace
transformation. The inverse Laplace/Z–transformation yields a convolution in
time. Hence, the perfectly exact TBC is non–local in time and therefore costly
for long–time simulations. For the linear Schrödinger equation discrete TBCs
proved to be much more accurate than ad–hoc discretizations of the analytic
TBCs. Moreover, discrete TBCs are well adapted to the interior difference
scheme and thus preserve the stability properties of the underlying scheme.
As will be shown in this paper, the discrete approach also yields excellent
results for the NLS equation (1).
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For nonlinear evolution equations the above mentioned derivation of exact
TBCs does not work due to the involved integral transformation. In a recent
paper [5], Boutet de Monvel et al. constructed by the inverse scattering method
the exact TBCs for the nonlinear cubic Schrödinger equation (1). Zheng [6] re-
formulated these continuous TBCs to make them more suitable for numerical
approximations and showed that these implemented TBCs avoid any reflec-
tions at the boundaries. However, since this approach [5] is based on the inverse
scattering theory, the derivation is restricted to fully integrable systems (i.e. a
cubic nonlinearity in the Schrödinger equation). Thus we want to consider in
this paper a different strategy: we will mimick the potential strategy of Szef-
tel on a discrete level. Szeftel [7], [8] applies a pseudodifferential factorization
directly to the linearized equation with the potential term V u. This yields a
hierarchy of ABCs, and finally the nonlinearity V (u) = −q|u|2 is plugged into
the results.

This paper is organized as follows. In Section 2 we briefly introduce the linear
Schrödinger equation and review the well–known continuous TBCs and the
well–posedness of the resulting IBVP. Afterwards, in Section 3 we present two
common difference methods for the linear case and sketch their basic proper-
ties. In the following Section 4 we state the derivation of the discrete TBCs
for the linear difference schemes. In Section 5 we turn to the nonlinear case
and discuss the basic properties of the nonlinear cubic Schrödinger equation
(1). We present in Section 6 a couple of finite difference methods for solving
the NLS (1) including implicit schemes and methods based on splitting ap-
proaches. The new discrete ABCs obtained by the discrete potential strategy
for the proposed schemes are outlined in Section 7. Finally, we conclude in
Section 8 with a couple of numerical examples illustrating the accuracy and
stability of our approach for the nonlinear cubic Schrödinger equation (1).

2 The linear Schrödinger equation

The linear Schrödinger equation is one of the fundamental equations of quan-
tum mechanics and it arises in many application areas, e.g. in quantum semi-
conductors [9], in electromagnetic wave propagation [10], and in seismology
[11]. Let us note that the Schrödinger equation is the lowest order one–way
approximation (paraxial wave equation) to the Helmholtz equation and is
called standard parabolic equation in underwater acoustics, or Fresnel equa-
tion in optics.

In this section we shall sketch the derivation of the exact TBCs for the linear
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Schrödinger equation

i∂tu = −∂2
xu + V (x, t)u, x ∈ R, t > 0, (2a)

lim
|x|→∞

u(x, t) = 0, t > 0, (2b)

u(x, 0) = uI(x), x ∈ R, (2c)

where uI ∈ L2(R) and for the given electrostatic potential we assume V (., t) ∈
L∞(R), V (x, .) is piecewise continuous. In (2) the unknown u denotes the
complex valued wave function.

It is well–known (cf. [12]) that the linear Schrödinger equation (2) is well–
posed in L2(R):

Theorem 1 Let uI ∈ L2(R) and V ∈ C([0,∞[, L∞(R)). Then the Cauchy
problem (2) has a unique solution u ∈ C(R+, L2(R)). Moreover, the mass is
preserved, i.e.

‖u(., t)‖2
L2(R) =

∥

∥

∥uI
∥

∥

∥

2

L2(R)
, ∀t ≥ 0.

2.1 The TBC for the linear Schrödinger equation

The goal is to design (analytic) transparent boundary conditions (TBCs) at
x = xl and x = xr, such that the resulting IBVP is well–posed and its solution
coincides with the solution of the whole–space problem restricted to (xl, xr).

We make the two basic assumptions that the initial data uI is supported in
the computational domain Ω, (i.e. supp(uI) ⊂ [xl, xr]) and that the given
electrostatic potential is constant outside this finite domain: V (x, t) = Vl for
x ≤ xl, V (x, t) = Vr for x ≥ xr. For a concise derivation of the TBCs we refer
the reader to [13], [14] and strategies to overcome the first assumption can be
found in [15]. The left TBC at x = xl (written as a Dirichlet–to–Neumann
map) is obtained by Laplace transformation techniques as

ux(xl, t) =
e−i π

4

√
π

e−iVlt
d

dt

∫ t

0

u(xl, τ) eiVlτ

√
t − τ

dτ, (3a)

and similarly the right TBC at x = xr reads:

ux(xr, t) = −e−i π
4

√
π

e−iVrt d

dt

∫ t

0

u(xr, τ) eiVrτ

√
t − τ

dτ. (3b)

The analytic TBCs (3) for the linear Schrödinger equation (2) were indepen-
dently derived by several authors from various application fields [16], [17],
[18], [19], [20]. The TBCs (3) are non–local in time and of memory–type, thus
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requiring the storage of all previous time levels at the boundary in a numer-
ical discretization. A second difficulty in numerically implementing (3) is the
discretization of the weakly singular convolution kernel.

2.2 Well–posedness of the IBVP

We now turn to the discussion of the well–posedness of the Schrödinger equa-
tion on the bounded interval Ω = (xl, xr) with the TBCs (3). The existence
of a solution to the 1D Schrödinger equation with the analytic TBCs (3) is
clear from the used construction in [13]. For regular enough initial data, e.g.
uI ∈ H1(Ω), the whole–space solution u(x, t) will satisfy the TBCs at least in
a weak sense. A more detailed discussion is presented in [21].

It remains to check the uniqueness of the solution, i.e. whether the TBCs give
rise to spurious solutions. In [14] Ehrhardt and Arnold proved the following
uniform estimate in time for the L2–norm of solutions to the Schrödinger
equation on the bounded interval Ω with TBCs at x = xl and x = xr:

‖u(., t)‖L2(Ω) ≤ ‖uI‖L2(Ω), t > 0.

This implies uniqueness of the solution to the Schrödinger IBVP and reflects
the fact that some of the initial mass leaves the computational domain Ω
during the evolution. In the whole–space problem, x ∈ R, ‖u(t)‖L2(R) is of
course conserved (cf. Thm. 1).

Discretizing the TBCs (3) in an ad–hoc way leads to the following two typical
problems of discretized TBCs. First, on the fully discrete level the result-
ing boundary conditions are no longer perfectly transparent and secondly this
strategy may also destroy the stability properties of the underlying finite differ-
ence scheme. To circumvent these problems connected with the discretization
of the analytic TBCs (3) we propose a different approach and derive in the
next two sections so–called discrete TBCs of the discretized linear Schrödinger
equation. First we present in §3 two appropriate discretizations from the lit-
erature and then we derive in §4 the discrete TBCs directly for the proposed
difference methods.

3 Finite difference schemes for the linear Schrödinger equation

In this section we review two popular finite difference schemes to solve numer-
ically the linear Schrödinger equation (2): the Crank–Nicholson method and
the DuFort–Frankel scheme. We introduce a uniform grid with the step sizes
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∆x in space and ∆t in time: xj = xl + j∆x, tn = n∆t with j ∈ Z, n ∈ N0. In
the sequel we denote by un

j an approximation of u(xj, tn).

3.1 The Crank–Nicholson finite difference scheme

Most existing discretization schemes for the linear Schrödinger equation (2)
are based on the Crank–Nicholson finite difference method:

i
un+1

j − un
j

∆t
= −D2

x

un+1
j + un

j

2
+

V n+1
j + V n

j

2

un+1
j + un

j

2
, j ∈ Z, n ∈ N0,

lim
|j|→∞

un
j = 0, n ∈ N0,

u0
j = uI(xj), j ∈ Z,

(4)

where D2
xuj = (uj+1 − 2uj + uj−1)/∆x2 denotes the standard second order

difference quotient. This method (4) is obtained by a trapezoidal integration
rule in time. It is unconditionally stable and second order in space and time.

Moreover, an easy calculation shows that it preserves the discrete ℓ2–norm:
||un||2ℓ2(Z) = ∆x

∑

j∈Z |un
j |2, which is the discrete analogue of the mass con-

servation property of (2) (cf. Thm. 1). In order to show this conservation

property we introduce the time averagings wn+1
j = (un+1

j + un
j )/2, V

n+1/2
j =

(V n+1
j + V n

j )/2 and multiply (4) with −iwn+1
j :

w̄n+1
j D+

t un
j = i w̄n+1

j D2
xw

n+1
j − iV

n+ 1

2

j

∣

∣

∣wn+1
j

∣

∣

∣

2
.

Summing it up for j ∈ Z (i.e. in absence of boundary conditions) gives with
summation by parts

∑

j∈Z

w̄n+1
j D+

t un
j = −i

∑

j∈Z

∣

∣

∣D+
x wn+1

j

∣

∣

∣

2 − i
∑

j∈Z

V
n+ 1

2

j

∣

∣

∣wn+1
j

∣

∣

∣

2
,

where D+
t , D+

x denote the usual forward difference quotient in time and space,
respectively. Finally, taking the real part by using the simple identity

D+
t

∣

∣

∣un
j

∣

∣

∣

2
= 2 Re {w̄n+1

j D+
t un

j }, (5)

yields the conservation of the mass :

D+
t

∑

j∈Z

∣

∣

∣un
j

∣

∣

∣

2
= 0, i.e.

∑

j∈Z

∣

∣

∣un
j

∣

∣

∣

2
=
∑

j∈Z

∣

∣

∣u0
j

∣

∣

∣

2
. (6)
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3.2 The DuFort–Frankel finite difference scheme

The DuFort–Frankel finite difference scheme combines the benefits of the
unconditionally stable Crank–Nicholson scheme and the fast explicit Euler
method. It was introduced in [22], [23] for the Schrödinger equation and reads

i
un+1

j − un−1
j

2∆t
= −un

j+1 − (un+1
j + un−1

j ) + un
j−1

(∆x)2
+ V (xj, tn)

un+1
j + un−1

j

2
,

j ∈ Z, n ∈ N, (7a)

lim
|j|→∞

un
j = 0, n ∈ N0, (7b)

u0
j = uI(xj), j ∈ Z, (7c)

u1
j = ũI(xj), j ∈ Z. (7d)

Remark 2 Replacing the time averaging term (un+1
j + un−1

j )/2 in (7a) by un
j

yields the well–known Leap–Frog scheme.

Note that the (n + 1)st time level terms on the r.h.s. of (7a) appear only on
the diagonal and thus the DuFort–Frankel method is an explicit method. The
above scheme (7) is a two–level in time scheme, i.e. additional initial data
at t1 = ∆t must be prescribed. This scheme is unconditionally stable by the
von–Neumann stability analysis [23].

The grid points can be arranged by the leapfrog ordering of calculation [24]
into two sets, odd and even: the computation of un+1

j with an even number j =
2, 4, . . . is independent of the previous values un

j with even indices j = 2, 4, . . .

and the next previous values un−1
j with odd indices j = 1, 3, 5 . . . Hence, only

one set is used for the computation of one new time level thus saving 50%
of the computation time. Additionally, the DuFort–Frankel scheme allows for
a highly parallel implementation which is advantageous especially in higher
space dimensions.

However, it is well–known that special care must be taken when considering
the consistency of the DuFort–Frankel method. In [23] and [25] the authors
examined the stability and consistency of the DuFort–Frankel method for both
the linear and the nonlinear Schrödinger equation. Moreover, in [26] these
questions were addressed in the semiclassical regime. In order to study the
consistency (i.e. the local discretization error) it is insightful to rewrite the
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scheme (7) as

i
un+1

j − un−1
j

2∆t
= −un

j+1 − 2un
j + un

j−1

(∆x)2
+ V (xj, tn)un

j

+
un+1

j − 2un
j + un−1

j

(∆t)2

{

(∆t)2

(∆x)2
+

(∆t)2

2
V (xj, tn)

}

.

(8)

From (8) it is now clear that the scheme is only consistent if ∆t/∆x goes to
zero as ∆t → 0 and ∆x → 0. In other words, the DuFort-Frankel method is
only conditionally consistent: if ∆t → 0 faster than ∆x then there exists c > 0
such that ∆t = O(∆x1+c). In this case the scheme (7) is consistent of order
min(2c, 2). On the other hand, if ∆t → 0 slower than ∆x then the scheme is
not consistent. Finally, when considering the linear Schrödinger equation (2)
as a paraxial wave equation it can be argued that the extra error arising in (8)
is of the same order as the error in neglecting the second derivative in deriving
the paraxial wave equation.

4 Derivation of the discrete TBC

In this section we derive discrete TBCs for the fully discretized whole–space
problem, i.e. directly for the finite difference methods presented in §3. To do so,
we consider the linear problem (2) discretized by the two previously proposed
methods.

The right artificial boundary is located at j = J (i.e. xr = xl + J∆x) and
the left boundary at j = 0. In the sequel we will focus on the right boundary,
since the left discrete TBC is derived analogously. The main tool is the Z–
transformation of a sequence (un) which is defined by

Z(un) = û(z) :=
∞
∑

n=0

un z−n, z ∈ C, |z| > R(Z(un)). (9)

Here R(Z(un)) denotes the radius of convergence of the Laurent series Z(un).

4.1 The Discrete TBC for the Crank–Nicholson scheme

To derive the discrete TBC for the Crank–Nicholson scheme (4) we apply the
Z–transformation to (4) for j ≥ J − 1 and obtain in the Z–transformed right
exterior domain

(

D2
x + i

δ(z)

∆t
− Vr

)

ûj(z) = 0, j ≥ J, (10)

8



where δ(z) = 2 z−1
z+1

denotes the generating function of the trapezoidal rule.
Equation (10) is a second order difference equation with constant coefficients
which reads explicitly

ûj+1(z) − 2
[

1 − i

2

∆x2

∆t
δ(z) +

∆x2

2
Vr

]

ûj(z) + ûj−1(z) = 0, j ≥ J.

Its two linearly independent solutions take the form ûj(z) = ℓ̂j(z), j ≥ J − 1,

where ℓ̂(z) solves the quadratic equation

ℓ̂2 − 2
[

1 − iR

2

(

z − 1

z + 1
+ i

∆t

2
Vr

)]

ℓ̂ + 1 = 0,

with the mesh ratio R = 2∆x2/∆t. Finally, we obtain the Z–transformed right
discrete TBC [16]:

ûJ−1(z) = ℓ̂(z)ûJ(z), (11a)

where the transformed boundary kernel ℓ̂(z) is calculated as:

ℓ̂(z) = 1 − iζ ±
√

−ζ(ζ + 2i), ζ =
R

2

z − 1

z + 1
+ i

∆x2

2
Vr. (11b)

In order to have decaying solutions ûj(z) outside of the computational do-
main (i.e. for j → ∞) we have to choose the branch of the square root such
that |ℓ̂(z)| > 1. The inverse Z–transform of ℓ̂(z) then defines the convolution
coefficients

(ℓn) := Z−1{ℓ̂(z)}, n ∈ N0,

for the right discrete TBC:

un
J−1 − ℓ0u

n
J =

n−1
∑

k=1

ℓn−ku
k
J , n ∈ N. (12)

Since the magnitude of ℓn does not decay as n → ∞ (ℓn behaves like const ·(−1)n

for large n), it is more convenient to use a modified formulation of the discrete
TBCs (cf. [14]). We introduce

ŝ(z) :=
z + 1

z
ℓ̂(z), and (sn) = Z−1{ŝ(z)}, (13)

which satisfy

s0 = ℓ0, sn = ℓn + ℓn−1 = O(n− 3

2 ), n ∈ N. (14)

The corresponding Laurent series of

ŝ(z) =
∞
∑

n=0

snz
−n

converges (and is continuous) for |z| ≥ 1 because of the decay (14).

9



In physical space the right discrete TBC (written as Dirichlet–to–Neumann
map) then reads (cf. Th. 3.8 in [14]):

un
J − un

J−1 = −
n
∑

k=1

sn−ku
k
J + un−1

J−1, n ∈ N, (15)

with the explicitly calculated convolution weights [13], [14] :

sn =
[

−i
R

2
+

σ

2

]

δ0
n +

[

1 + i
R

2
+

σ

2

]

δ1
n + γ e−inϕ Pn(µ) − Pn−2(µ)

2n − 1
, (16)

ϕ = arctan
2R(σ + 2)

R2 − 4σ − σ2
, µ =

R2 + 4σ + σ2

√

(R2 + σ2)
[

R2 + (σ + 4)2
]

,

σ = 2∆x2Vr, γ =
i

2
4

√

(R2 + σ2)
[

R2 + (σ + 4)2
]

eiϕ/2.

Here Pn denotes the Legendre polynomials (P−1 ≡ P−2 ≡ 0), and δk
n is the

Kronecker symbol.

In order to formulate the discrete TBC as in (11a) it is necessary that the
discrete initial condition vanishes at the two adjacent (spatial) grid points ap-
pearing in (11a). Here, we chose to formulate the discrete TBC at the bound-
ary of the computational interval and one grid point in the interior. Hence we
have assumed that the initial condition satisfies u0

J−1 = u0
J = 0. However, one

could also prescribe the right discrete TBC at j = J , J + 1. Techniques to to
overcome this restriction are given in [15].

4.2 The Discrete TBC for the DuFort–Frankel scheme

Here we will carry over the basic ideas of §4.1 to the DuFort–Frankel scheme
(7). It will turn out that we have to compute the convolution coefficients by
an numerical inverse Z–transformation using an FFT.

With the abbreviations b = 2i∆t/∆x2, c = b+ i∆tVr we rewrite (7) for j ≥ J :

(1 + c) un+1
j = (1 − c) un−1

j + b (un
j+1 + un

j−1), j ≥ J.

Applying the Z–transformation (9) yields in the right exterior domain:

(1 + c)z2 ûj(z) = (1 − c) ûj(z) + bz
(

ûj+1(z) + ûj−1(z)
)

, j ≥ J.

The two solutions ûj(z) = ℓ̂j(z) of this second order difference equation with
constant coefficients solve the quadratic equation

ℓ̂2 +
1 − c − (1 + c)z2

bz
ℓ̂ + 1 = 0. (17)
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The inverse Z–transformation of ℓ̂(z) does not exist since the solutions ℓ̂(z)
involve terms that are multiples of z. Therefore, we divide the convolution
kernel ℓ̂(z) by z which corresponds to a backward shift in the time index:

z−1ûJ−1 = z−1ℓ̂(z) ûJ . (18)

Here we choose the solution of (17) with |ℓ̂(z)| > 1 to have decaying solu-
tion for j → ∞. Finally, an inverse Z–transformation yields the convolution
coefficients

(ℓn) := Z−1
(

z−1ℓ̂(z)
)

, n ∈ N0.

for the right discrete TBC:

ℓ0u
n
J = un−1

J−1 −
n−1
∑

k=1

ℓn−ku
k
J . (19)

This inverse Z–transformation is computed numerically using the Cauchy in-
tegral representation

(ℓn) = Z−1
(

z−1ℓ̂(z)
)

=
τn−1

2π

2π
∫

0

ℓ̂(τeiϕ)ei(n−1)ϕ dϕ, n ∈ Z0, τ > 0. (20)

For details about the numerical inversion technique based on FFT we refer to
[27], [28].

5 The cubic nonlinear Schrödinger equation

The following sections extend the results of §2–§4 to the cubic nonlinear
Schrödinger equation (1). For the NLS a nonlinear term is included in the
Schrödinger equation through a nonlinear potential function

V (u) = −q|u|2.

The NLS equation reads

i∂tu + ∂2
xu + q|u|2u = 0, x ∈ R, t > 0. (21)

The NLS (21) equation has a hamiltonian structure and conserves the (parti-
cle) density (cf. Theorem 1):

N(t) = ‖u(., t)‖2
L2(R) =

∥

∥

∥uI
∥

∥

∥

2

L2(R)
, ∀t ≥ 0, (22a)

and the energy

E(t) =
∫

R

1

2
|ux(x, t)|2 − q

4
|u(x, t)|4 dx = const, ∀t ≥ 0. (22b)
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It is well–known that (21) admits solitary wave solutions and is globally well–
posed in H1(R) for q > 0 (focusing case). Moreover, a blow–up of the solution
may occur in finite time in the defocusing case q < 0 (see e.g. [29]).

It is worthwhile to have a look at the dispersion relation of the NLS (21)
equation. A periodic wave train

u(x, t) = aei(kx−ωt) (23)

with constant amplitude a, wave number k and frequency ω is a solution to
(21), provided the dispersion relation

ω = k2 − q|a|2 = k2 + V (a), (24)

is satisfied. I.e. in the nonlinear Schrödinger equation the amplitude is involved
in the dispersion relation.

5.1 The TBC for the cubic nonlinear Schrödinger equation

Boutet de Monvel et al. derived in a recent paper [5] by using inverse scattering
theory the nonlinear Dirichlet–to–Neumann map (i.e. the exact analytic TBC)
associated with the NLS (21). Zheng [6] proposed a strategy to reformulate and
numerically implement this nonlinear Dirichlet–to–Neumann map through a
set of nonlinear integro-differential equations. The simulations in [6] showed
that the global Dirichlet–to–Neumann map avoids any visible reflections at
the boundary. However, this approach seems to be restricted to the cubic
nonlinearity for the one–dimensional case because of the involvement of the
inverse scattering theory in its derivation.

5.2 The Artificial Boundary Conditions for the NLS equation

Szeftel developed in [8] his approach for a general nonlinear one-dimensional
Schrödinger equation. He applies a pseudodifferential factorization directly
to the linearized equation with the potential term V u (’potential strategy’).
This yields approach a hierarchy of ABCs, and finally the nonlinearity V (u)
is plugged into the results. The basic three steps of his method (in case of the
NLS) are outlined below.

(1) Set V = −q|u|2 and forget (for a moment) that V depends on u, i.e.
regard the nonlinearity as a potential multiplied by the unknown function
u. This strategy leads to a linear Schrödinger equation of the form (2a)
with a potential V (x, t) = −q|u(x, t)|2.
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(2) Apply the classical method of Engquist and Majda [30] (formulated for
Schrödinger–type equations). This leads to the second order ABC

ux(xr, t) = −e−iπ/4∂
1/2
t u(xr, t) −

V

2
eiπ/4I

1/2
t u(xr, t).

(3) Finally, recalling V = −q|u|2 this ABC becomes

ux(xr, t) = −e−iπ/4∂
1/2
t u(xr, t) + q

|u(xr, t)|2
2

eiπ/4I
1/2
t u(xr, t). (25)

Here we have used the notation of the 1/2-derivative and the 1/2-integration
operator:

∂
1/2
t v(t) =

1√
π

∂t

∫ t

0

v(τ)√
t − τ

dτ, I
1/2
t v(t) =

1√
π

∫ t

0

v(τ)√
t − τ

dτ.

The fractional derivative ∂
1/2
t already appeared in the exact TBCs (3).

Let us state another approach for analytic ABCs for the NLS equation: the
pseudodifferential operator approach. In [31], the authors use a gauge change
to handle the nonlinearity V (u)u in (21). While [31] actually only deals with
the cubic NLS (21), the very same approach applies to general nonlinearities,
and this is a big advantage over the strategy from [6]. By using approximate
factorization techniques and a fractional pseudodifferential operator calculus,
a hierarchy of increasing order ABCs is derived.

6 Finite difference schemes for the NLS

Now we present the generalizations of the finite difference schemes of §3 to
compute numerically the solution to the nonlinear Schrödinger equation (21).
Next we will introduce different splitting schemes. For a review of finite dif-
ference schemes for the NLS we refer the reader to [32], [33].

6.1 The Crank–Nicholson finite difference scheme

A generalization of the Crank–Nicholson method (4) to solve the NLS equa-
tion (21) was introduced by Delfour, Fortin and Payre in [34]. It consists in
approximating u and |u|2 implicit midpoint rule in time:

i
un+1 − un

∆t
= −D2

x

un+1 + un

2
+

V (un+1) + V (un)

2

un+1 + un

2
, (26)
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This implicit scheme is second order in both space and time and it was proven
in [34][Prop. 2.1] that it conserves, analogue to (22), the discrete invariants
density

Nn = ‖u(., t)‖2
ℓ2(Z) := ∆x

∑

j∈Z

|un
j |2 =

∥

∥

∥u0
∥

∥

∥

2

ℓ2(Z)
, ∀n ∈ N0, (27a)

and energy

En = ∆x
∑

j∈Z

(

1

2
|D+

x un
j |2 −

q

4
|un

j |4
)

= const, n ∈ N0. (27b)

The following scheme is a slight modification of (26) that allows for an easier
solution of the nonlinear system (26).

6.2 The Dùran–Sanz–Serna scheme

The Dùran–Sanz–Serna scheme [35]

i
un+1 − un

∆t
= −D2

x

un+1 + un

2
+ V

(

un+1 + un

2

)

un+1 + un

2
, (28)

is obtained when using the implicit midpoint rule only for the time integration
of u. To solve the nonlinear system we introduce the time average wn+1

j =
(un+1

j + un
j )/2, and rewrite the scheme (28) as

i
un+1

j − un
j

∆t
= −D2

xw
n+1
j − q|wn+1

j |2wn+1
j . (29)

This nonlinear system must be solved with some iterative techniques. While
many authors use Newtons method to solve (29) we consider here a fixed point
algorithm from [31][Table 4.1].

All these Crank–Nicholson–type difference schemes are of second order and
have the important property to conserve density and energy on a discrete
level. They are unconditional stable and convergent, but these schemes are
implicit and thus have a costly numerical treatment of the nonlinearity. In each
time step a nonlinear system must be solved (mostly by Newtons method).
To avoid this iterative costly process one can use an extrapolation technique
to approximate the nonlinear term and linearize the scheme [33]. Another
alternative method is the DuFort–Frankel scheme, a difference method that is
only conditionally stable, but explicit.

14



6.3 The DuFort–Frankel finite difference scheme

The DuFort–Frankel difference method [23] is a three–level explicit scheme and
reads

i
un+1

j − un−1
j

2∆t
= −un

j+1 − un+1
j − un−1

j + un
j−1

∆x2
+ V (un)

un+1 + un−1

2
. (30)

This scheme has solution–independent Courant–Friedrichs–Levy (CFL) con-
ditions [23] and it is conditional stable and convergent in C and W 1

2 norms
[25].

At this point we want to discuss the discrete analogue of the dispersion relation
(24). Consider a discrete periodic wave train with constant amplitude a, wave
number k and frequency ω, namely

un
j = aei(kj∆x−ωn∆t). (31)

Inserting this ansatz (31) into the scheme (30) yields

sin(ω∆t)

∆t
+

4

∆x2
sin2

(

ω∆t

2

)

=
4

∆x2
sin2

(

k∆x

2

)

+ V (a) cos(ω∆t). (32)

Keeping terms up to second order in ∆x and ∆t one gets the quadratic equa-
tion for ω

[

∆t2

∆x2
+

∆t2

2
V (a)

]

ω2 + ω −
(

k2 + V (a)
)

= 0, (33)

and with the approximation
√

1 + 4x = 1 + 2x + O(x2) we can write the two
solutions to (33) as

ω1 ≈ k2 + V (a), (34a)

ω2 ≈ − 1
∆t2

∆x2 + ∆t2

2
V (a)

−
(

k2 + V (a)
)

, (34b)

i.e. we have two discrete dispersion relations for the DuFort–Frankel scheme.
The first one in (34) is consistent with the continuous one (24). and the sec-
ond solution ω2 corresponds to undesired so–called ghost solutions or spurious
modes. This problem can be circumvented by initializing the method properly
(cf. [36] for a numerical view of that topic).

Finally, another approach to obtain more efficient schemes is to decouple linear
and nonlinear parts of the NLS. Thus, we will turn in the sequel to splitting
schemes (cf. the reviews in [37], [38]).
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6.4 Splitting methods

Splitting schemes are based on the decomposition of the flow Z of the NLS
(1): u(., t) = ZuI . We introduce the two flows X and Y as solutions to the
two subproblems:

i∂tv + ∂2
xv = 0, x ∈ R, t > 0, (35a)

v(., t) = Xv(., 0), x ∈ R, (35b)

and

i∂tw + q|w|2w = 0, x ∈ R, t > 0, (36a)

w(., t) = Y w(., 0), x ∈ R. (36b)

The first subproblem (35) (kinetic part) is a linear PDE and can easily be
solved. The nonlinear subproblem (36) (potential part) is an ordinary dif-
ferential equation (ODE) and requires no boundary condition. The idea of
splitting methods is to approximate the flow Z by combining the two flows X
and Y . The different splitting methods vary in the way the flow Z is approx-
imated: most common is the first order Lie splitting with Z = XY and the
second order splitting of Strang Z = Y 1/2XY 1/2. The general time–splitting
procedure is given by the Baker–Campbell–Hausdorff formula.

The splitting approach makes the interior scheme more effective but the de-
composition makes it difficult to adapt the analytic ABCs adequately. An
obvious idea is to use the (discrete) TBCs of Section 4 for solving the linear
subproblem (35). However, doing so, one neglects the effects of the second
nonlinear step (36) in the boundary convolution.

The Lie splitting method

We discretize (35) by the Crank–Nicholson scheme and use a discrete formula
to solve the nonlinear ODE. Introducing the intermediate variable vn+1

j as the
solution of the linear subproblem we obtain the following equations

i

∆t
vn+1

j +
1

2
∂2

xv
n+1
j =

i

∆t
un

j − 1

2
∂2

xu
n
j and (37a)

un+1
j = eiq|vn+1

j
|2∆tvn+1

j . (37b)

The Strang splitting method

The most widely used approach is the Strang splitting method [39]. It is ob-
tained similiar to the Lie splitting but operates on half time steps. It is of
second order in time and reads
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vn
j = eiq|un

j
|2∆t/2un

j (38a)

i

∆t
vn+1

j +
1

2
∂2

xv
n+1
j =

i

∆t
vn

j − 1

2
∂2

xv
n
j and (38b)

un+1
j = eiq|vn+1

j
|2∆t/2vn+1

j . (38c)

6.5 The Relaxation Scheme of Besse

The basic idea of Besse [40] is to regard the NLS (21) as a Schrödinger–
Poisson system where the Poisson equation for the potential φ is replaced by
the explicit formula φ = |u2|, i.e. we rewrite (21) as a system of two equations

φ = |u|2, x ∈ R, t > 0, (39a)

i∂tu + ∂2
xu + q φu = 0, x ∈ R, t > 0. (39b)

Let us define tn+ 1

2

= (n + 1
2
)∆t and the variable φ

n+ 1

2

j as an approximation of

|u|2 at time tn+ 1

2

and x = xj. Then, the relaxation scheme of Besse [40] (with

standard finite difference spatial discretization) reads for j ∈ Z and n ∈ N0:

φ
n+ 1

2

j + φ
n− 1

2

j

2
= |un

j |2, (40a)

i
un+1

j − un
j

∆t
+ D2

x

un+1
j + un

j

2
+ q φn+ 1

2

(

un+1
j + un

j

2

)

= 0, (40b)

with the initial data φ− 1

2 = |u0(x)|2.

In [40] Besse proved that this efficient explicit scheme is convergent and pre-
serves the two invariants density and energy. Moreover, it is easily adaptable
to other dispersive systems.

7 The Discrete Artificial Boundary Conditions

In this section we present our new discrete ABCs for the fully discretized
version of the NLS by mimicking Szeftel’s potential strategy of Section 5.2 on
a purely discrete level, i.e. we propose a discrete potential strategy. Again we
focus on the right boundary at j = J .

The Crank–Nicholson scheme

We use the right discrete TBC (15) derived for the linear Crank–Nicholson
scheme (4). The convolution coefficients sn from (16) are re-computed at each
time step using the potential value Vr = −q|un

J |2.
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The Dùran–Sanz–Serna scheme

The Dùran–Sanz–Serna scheme reduces to the Crank–Nicholson scheme in the
linear case. Hence, we use the same boundary conditions as for the Crank–
Nicholson scheme. But since the solution of the nonlinear system operates on
the time average wn+1

j := (un+1
j + un

j )/2 the implementation of the ABC is
quite different. For an adequate formulation we add the equations (cf. (12))

um
J−1 − ℓ0u

m
J =

m−1
∑

k=1

ℓm−ku
k
J ,

for the time levels m = n + 1, n and divide by 2. With sn = ℓn + ℓn−1, s0 = ℓ0

we have

wn+1
J−1 − s0w

n+1
J =

1

2

[

n−1
∑

k=1

sn+1−ku
k
J + ℓ1u

n
J

]

. (41)

Since we compute the summed convolution coefficients sn only, we have to
calculate ℓ1 = s1 − s0 separately.

The DuFort–Frankel scheme

We use again the discrete TBC (19) for the linear version of the method. The
convolution coefficients ℓn obtained numerically in (20) are updated at each
time step with the value Vr = −q|un

J |2.

The splitting methods and the relaxation scheme of Besse

All splitting schemes include the solution of a linear subproblem. For these lin-
ear subproblems we use the discrete TBC (15) for the linear Crank–Nicholson
scheme. The convolution coefficients sn from (16) are re-computed at each
time step with the potential value Vr = −q|un

J |2.

8 Numerical Examples

In this section we will test the accuracy of our new discrete artificial boundary
conditions for the NLS equation (21) on several examples and schemes.
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8.1 Example 1

As an illustrating example we consider the NLS (21) with the focusing param-
eter q = 2 and the time evolution of a single soliton solution

f(x, t) = sech
(√

a((x − xc) − ct)
)

,

g(x, t) = exp
(

i
c

2
(x − ct) + iθ0

)

exp
(

i(a +
c2

4
)t
)

, (42)

uana(x, t) =

√

2

q
a f(x, t) g(x, t).

The real parameter a denotes the amplitude of the wavefield and c is the
velocity of the soliton. The computational domain is selected to be Ω = (10, 20)
with a step size ∆x = 0.01, i.e. we use 1000 spatial grid points. We compute
T = 2000 time steps of size ∆t = 0.0002 and use the following parameters for
the initial data

xc = 15, a = 2.25, c = 20, θ0 = 0.
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Fig. 1. Time evolution of the numerical solution for t = 0, t = 0.24, t = 0.32 and
t = 0.4.
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The time evolution of the soliton solution (42) computed by the Dùran-Sanz-
Serna scheme (28) is shown in Fig. 1. This figure presents the absolute value
of the solution at four different time steps, namely for n = 0 (initial data),
n = 1200, n = 1600 and n = 2000. Please observe the change in the scaling
of the vertical axis in the last two plots. The soliton solution in Fig. 1 travels
to the right without changing its form and there are no visible reflections.
However, after a change of the scaling by factor 40 one can see some oscillations
in the solution at t = 0.4.

Accuracy of the ABCs

Here, we want to study the accuracy of the different ABCs and compare the
error due to the ABCs with the discretization error. To do so, we compute a
reference solution uref on a significant larger domain (10, 40). Moreover, we
compare the computed solution to the analytical soliton solution uana given by
(42). The error eABC = ||u−uref ||ℓ2 to uref is the error due to the used ABCs
and is measured in the discrete ℓ2–norm on the computational interval. The
second error eNUM = ||u−uana||ℓ2 additionally incorporates the discretization
error of the interior scheme. The errors to the reference solution and to the
analytical solution are given in the following figures. Fig. 2 shows eABC and
eNUM for the Dùran–Sanz–Serna scheme with the continuous ABCs (25) by
Szeftel (left) and the new discrete ABC (41) (right). For the continuous ABC
the error due to the boundary condition eABC dominates the numerical error.
Whereas for the discrete ABC eABC is factor 10 smaller than eNUM . A direct
comparison of these errors is given in Fig. 3.
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Fig. 2. Dùran–Sanz–Serna scheme with ABC of Szeftel (25) (left) and new discrete
ABC (41) (right).

Figures 4 and 5 show eNUM and eABC for the three splitting schemes with
the discrete ABCs. The time evolution and the maximum of the errors is for
all schemes similiar to those of the Dùran–Sanz–Serna scheme with discrete
ABCs.

20



0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.005

0.01

0.015

0.02

0.025

0.03

||u
 −

 u
re

f ||
l 2

n

 

 

continuous ABC
discrete ABC

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.005

0.01

0.015

0.02

0.025

0.03

||u
 −

 u
an

a ||
l 2

n

 

 

continuous ABC
discrete ABC

Fig. 3. Errors eABC (left) and eNUM (right for the Dùran–Sanz–Serna scheme with
ABC of Szeftel (25) and new discrete ABC (41).
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Fig. 4. Errors eNUM and eABC for Lie splitting (left) and Strang splitting (right).
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Fig. 5. Errors eNUM and eABC for the Relaxation scheme of Besse.

Next, we investigate the dependancy of the errors on the velocity c. Therefore,
we use the same discretization and equation parameters and vary c from 20
to 25, 30 and 40. The corresponding errors eABC are shown in Fig. 6. As ex-
pected, the maximum peak occurs earlier for faster solitons and the maximum
decreases for higher velocities. Here, the opposite is true for the discretized
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continuous ABCs.
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Fig. 6. ℓ2-error of the ABC for different velocities c = 20, 25, 30 and 40 computed
by the Dùran–Sanz–Serna scheme with discrete ABCs (left) and continuous ABC
(right).

If we set q = 0 (i.e. the linear case) eNUM is less than 0.01 during the complete
computation, eABC is less than 10−13, because the ABCs are exact for the linear
equation and only round–off errors occur.

Numerical stability

To check numerically the stability of the Dùran–Sanz–Serna scheme (28) with
discrete ABCs (41) we consider the discrete equation

i
un+1

j − un
j

∆t
= −D2

xw
n+1
j − q|wn+1

j |2wn+1
j . (43)

We proceed analogously to the mass conservation of the Crank-Nicholson
scheme in §3.1: we apply a discrete energy method and multiply by w̄n+1

j

from the left, sum up for the finite interior range from j = 1 to J and perform
summation by parts. This procedure yields

i(
J
∑

j=1

w̄n+1
j D+

t un
j ) =

J
∑

j=0

D+
x w̄n+1

j D+
x wn+1

j − q
J
∑

j=1

|wn+1
j |4

− 1

∆x

(

w̄n+1
J+1D

+
x wn+1

J − w̄n+1
0 D+

x wn+1
0

)

.

(44)

Finally, we multiply by −i∆x and take the real parts using (5) to obtain

1

2
D+

t ||un||22 = ∆x Re



−i
J
∑

j=0

|D+
x w̄n+1

j |2 + iq
J
∑

j=1

|wn+1
j |4





+ Re
(

iw̄n+1
J+1D

−
x wn+1

J+1 − iw̄n+1
0 D+

x wn+1
0

)

,

(45)
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and after summation with respect to the time index n we get

||uT+1||22 = ||u0||22 − 2∆t
T
∑

n=0

Im
(

w̄n+1
J+1D

−
x wn+1

J+1 − w̄n+1
0 D+

x wn+1
0

)

. (46)

To our knowledge, the boundary terms in (46) cannot be analyzed further
analytically. Therefore, we check in the sequel the sign of the summands nu-
merically: if the sum in (46) remains positive the Dùran–Sanz–Serna scheme
with the ABCs is stable. And indeed, this is the case for the chosen parame-
ters: Fig. 7 shows the summands Re

(

iw̄n+1
J+1D

−
x wn+1

J+1 − iw̄n+1
0 D+

x wn+1
0

)

of (46)
for each time step.
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in (46).

8.2 Example 2

As a more complex example we consider two interacting solitons moving in
opposite directions. The initial solitons are centered at xc = 10 and xc =
−10, respectively. The computational domain is Ω = (−15, 15) with a spatial
step size of ∆x = 0.01. The time is calculated in steps of ∆t = 0.002 up to
T = 1200. As in the previous example the equation parameters are chosen
as a = 2.25, c = ±20 and q = 2. As shown in Fig. 8 both solitons run to
the opposite boundary and in the middle of the domain dive into each other.
After their overlay they move again as solitons and leave the computational
domain.
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Fig. 8. Numerical solution at the time steps t = 0, t = 2.4, t = 3.2 and t = 4.

Accuracy of the ABCs

The overall numerical error eNUM is shown on the l.h.s. of Fig. 9. It is computed
as the discrete ℓ2–norm of the deviation to the analytical solution uana given
by

f1,2(x, t) = sech
(√

a((x ∓ xc) ∓ ct)
)

,

g1,2(x, t) = exp
(

±i
c

2
(x ∓ ct) + iθ0

)

exp
(

i(a +
c2

4
)t
)

, (47)

uana(x, t) =

√

2

q
a f1(x, t) g1(x, t) +

√

2

q
a f2(x, t) g2(x, t).

The numerical solution is computed by the Dùran–Sanz–Serna (DSS) scheme
with the continuous ABCs (dashed line) in Fig. 9 and with our discrete ABCs
(solid line). They coincide for about 600 time steps. This result shows that
the discretization error is the dominating part in this simulation. On the r.h.s.
of Fig. 9 we give the deviation to the reference solution computed an a larger
domain (-75,75), i.e. the error caused by the artificial boundary condition.
Here, the new discrete ABC is about factor 10 better than the continuous
ABC!
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Fig. 9. Numerical error in comparison to the exact soliton solution uana (left) and
to the reference solution uref on a larger domain (right).
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Fig. 10. Numerical error in comparison to the exact soliton solution (left) and to
the reference solution on a larger domain (right).

The same behaviour can be seen for the relaxation scheme of Besse and the
Strang splitting both with the discrete ABC. The errors to the analytical
solution (left) and to the reference solution (right) is given in Fig. 10 for all
schemes. We observe, that the error of the discrete ABC is of the same order
for all implemented numerial schemes. The error of the continuous ABC is
factor 10 bigger (see Fig. 10 r.h.s.).

8.3 Example 3

In the last example we consider the DuFort–Frankel scheme (30) to solve the
NLS (21) with q = 2. The computational domain is Ω = (10, 20) with a spatial
step size of ∆x = 0.02 and and the time is forwarded in steps of ∆t = ∆x2

up to T = 3000. Again we consider the time evolution of the soliton solution
(42) and choose the following parameters for the initial data

xc = 15, a = 2.25, c = −20, θ0 = 0. (48)

25



The time evolution of the soliton solution (42) computed by the DuFort–
Frankel scheme (30) is shown in Fig. 11. This figure presents the absolute
value of the solution at four different time steps, namely for n = 500, n = 730,
n = 900 and n = 1500. Clearly, one can observe some small oscillations in the
solution (check the change scaling of the vertical axis).
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Fig. 11. Time evolution of the soliton solution (42) computed by the DuFort–Frankel
scheme for n = 500, 730, 900 and 1500.

Finally we present in Fig. 12 the deviation to the reference solution computed
an a larger domain (10,60), i.e. the error caused by the discrete artificial bound-
ary condition (19). The maximum of this error due to our new ABC is 7 ·10−3

and thus neglectible in practical calculations.
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Fig. 12. Error eABC in comparison to the reference solution uref on a larger domain.
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Conclusion

In this study we have proposed a new kind of discrete artificial boundary
conditions (ABCs) that are derived by a discrete potential strategy. It turned
out in the numerical tests that the discrete ABCs have a significantly higher
accuracy than the corresponding discretized continuous ABCs.

While our discrete ABCs yielded very satisfactory results concerning the ac-
curacy the resulting numerical effort of this approach is yet too high and is
subject to further investigations. In a subsequent paper we will introduce a
suitable approximation to the discrete boundary convolutions in the spirit of
the ideas in [41]. This will circumvent the costly update of the coefficients at
each time step.
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