
International Journal of Theoretical and Applied Finance
c© World Scientific Publishing Company

A FAST, STABLE AND ACCURATE NUMERICAL METHOD FOR

THE BLACK–SCHOLES EQUATION OF AMERICAN OPTIONS

MATTHIAS EHRHARDT

Institut für Mathematik, Technische Universität Berlin,
Straße des 17. Juni 136, D–10623 Berlin, Germany,

ehrhardt@math.tu-berlin.de
http://www.math.tu-berlin.de/˜ehrhardt/

RONALD E. MICKENS

Department of Physics, Clark Atlanta University,
Atlanta, GA 30314, USA
rohrs@math.gatech.edu

Received (Day Month Year)
Revised (Day Month Year)

In this work we improve the algorithm of Han and Wu (SIAM J. Numer. Anal. 41
(2003), 2081–2095) for American Options with respect to stability, accuracy and order
of computational effort. We derive an exact discrete artificial boundary condition (ABC)
for the Crank–Nicolson scheme for solving the Black–Scholes equation for the valuation
of American options. To ensure stability and to avoid any numerical reflections we derive
the ABC on a purely discrete level.

Since the exact discrete ABC includes a convolution with respect to time with a
weakly decaying kernel, its numerical evaluation becomes very costly for large–time sim-
ulations. As a remedy we construct approximate ABCs with a kernel having the form
of a finite sum–of–exponentials, which can be evaluated in a very efficient recursion. We
prove a simple stability criteria for the approximated artificial boundary conditions.

Finally, we illustrate the efficiency and accuracy of the proposed method on several

benchmark examples and compare it to previously obtained discretized ABCs of Mayfield
and Han and Wu.
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1. Introduction

The famous Black–Scholes equation is an effective model for option pricing. It was

named after the pioneers Black, Scholes and Merton who suggested it 1973 [9],

[29] and received in 1997 the Nobel Prize in Economics for their discovery [16].

Mathematically it is a final value problem for a second order parabolic equation. A

concise derivation of the Black–Scholes equation can be found in [39].

An option is a contract that admits the owner the right (not the duty) to buy

(‘call option’ ) or to sell (‘put option’ ) an asset (typically a stock or a parcel of
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shares of a company) for a prespecified price E (‘strike price’ ) by the date T to

receive some payoffs. The basic problem here is to specify a fair price to charge for

permitting these rights. A closely related question is how to hedge the risks that

arises when selling these options. ‘European’ options can only be exercised at the

expiration date T . For ‘American’ options exercise is permitted at any time until the

expiry date. The notion European or American are not meant geographically, they

just declare the type of option. We remark that most of the options traded in stock

exchanges are of American style. While for European options the Black–Scholes

equation results after a standard transformation in a boundary value problem (that

can be solved explicitly for cases with constant coefficients and simple payoffs [39]),

for American options it results in a free boundary problem for the heat equation.

In general, closed–form solutions do not exist (especially for American options)

and the solution has to be computed numerically (cf. the references given in [20]).

The standard approach for solving the Black–Scholes equation for American options

consists in transforming the original equation to a heat equation posed on a semi–

unbounded domain with a free boundary [34], [39]. For a new alternative direct

method using the Mellin transformation we refer the reader to [23], [31].

Usually finite differences [37] or finite elements [1] are used to discretize this heat

equation and an artificial boundary condition (ABC) is introduced in order to con-

fine the computational domain appropriately. If the solution on the computational

domain coincides with the exact solution on the unbounded domain (restricted to

the finite domain), one refers to this boundary condition as a transparent boundary

condition (TBC). While the numerical treatment of the free boundary has attracted

a lot of attention and different strategies were developed (e.g. [11]) less attention was

payed to the accurate treatment of the artificial boundary even though the analytic

TBC for the heat equation is well–known, cf. [19], [32], [41]. In fact, many textbooks

propose to use a homogeneous Dirichlet boundary condition at some (sufficiently

large) finite distance [39].

This very simple method is clearly stable and widely used in practice often

jointly with an unequally spaced grid, that becomes coarser towards the artificial

boundary. While these frequently used approach might be easy to use and to ex-

tend for more general settings, from a mathematical point of view one must argue

that using a Dirichlet boundary condition means solving a quite different model of

equation. I.e. using Dirichlet conditions commits an error in the model right from

the beginning and there exists no error estimate for the American Option problem

that tells in advance how far this Dirichlet boundary should be for a prescribed

error tolerance. Moreover, unequally spaced grids (as mentionend above) lead to

well–known internal grid reflections [26]; another factor that must be included in

an error estimate.

Hence the ”correct” way of solving this kind of problem is to limit the domain

by artificial BCs (instead of solving a different model with Dirichlet BCs) and im-

plement/approximate the artificial BC such that one can prove stability, does not
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increase the overall effort and have a high accuracy. Kangro and Nicolaides con-

sidered in [24] a multidimensional Black–Scholes equation for European options

and derived pointwise bounds for the error caused by various boundary conditions

imposed on the artificial boundary. Windcliff, Forsyth and Vetzal [40] derived nec-

essary stability conditions for a finite difference discretization of the Black–Scholes

equation for European options with the common linear asymptotic boundary con-

dition, i.e. assuming that the second derivative of the option value vanishes as the

market price becomes large. Recently, Han and Wu [20] proposed a discretization

strategy of the analytic TBC to solve the Black–Scholes equation for the American

option problem in conjunction with the Crank–Nicolson scheme. The authors also

introduced a simple explicit treatment of the free boundary.

However, ad-hoc discretizations of an analytic TBC may induce numerical re-

flections at this artificial boundary and also may destroy the unconditional stability

of the Crank–Nicolson finite difference method. To overcome both problems a so–

called discrete TBC (DTBC) is derived from the fully discretized problem on the

unbounded domain. This discrete TBC is completely reflection–free and conserves

the stability property of the underlying scheme. Since the discrete TBC includes a

convolution with respect to time with a weakly decaying kernel, its numerical eval-

uation becomes very costly for large–time simulations. As a remedy we construct

an approximate discrete TBC with a kernel having the form of a finite sum-of-

exponentials [5], which can be evaluated by a very efficient recursion formula.

While we focus here on the standard linear Black–Scholes model in one dimen-

sions we want to point out that our new discrete approach generalizes to non–

constant coefficients (e.g. if the volatility is a function of (S, t) obtained by calibra-

tion to market prices) using the modified Lentz’s method in the Z–transformed space

[15], the ’iteration from infinity’ method [6] or by extraction of sets of limiting so-

lutions [42]. Moreover, this approach can be extended to systems of equations [44],

higher–dimensions (multi–asset options) [4] and even to nonlinear Black–Scholes

models [3], [45].

This paper is organized as follows: first we introduce the Black–Scholes equation

and recall the standard transformations to a forward–in–time heat equation. In

§3 we derive the analytic TBC for the heat equation and for the case of time–

dependent parameters. To incorporate the TBC into a finite difference method we

review in §4 two approaches to discretize the analytic TBC and construct a DTBC

for the Crank–Nicolson discretization. In §6 we discuss the numerical treatment

of the free boundary. To reduce the numerical effort we present in §5 an efficient

implementation by the sum-of-exponentials approximation. Afterwards we analyze

in §7 the stability of the resulting numerical scheme. Finally we illustrate in §8 the

accuracy and efficiency of the new method with a numerical example and compare

it to the known discretized TBCs of Mayfield [27] and Han and Wu [20].
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2. The Black–Scholes equation

In this paper we consider an American call option. The treatment of an American

put option is analogous. The value of a call option is denoted by V and depends on

the current market price of the underlying asset, S, and the remaining time t until

the option expires: V = V (S, t). The Black–Scholes equation is a backward–in–time

parabolic equation and posed on a time–dependent domain

∂V

∂t
+

1

2
σ2S2 ∂2V

∂S2
+(r−D0)S

∂V

∂S
−rV = 0, 0 < S < Sf (t), 0 ≤ t < T, (2.1a)

where σ denotes the annual volatility of the asset price, r the risk–free interest rate

and T is the expiry date (t = 0 means ’today’). We assume that dividends are paid

with a continuous yields of constant level D0 > 0. Note that we have to include the

payment of dividends. Otherwise, for D0 = 0 early exercise does not make sense

and the American call would be equivalent to the European one [29].

In (2.1a) Sf (t) denotes the (a priori unknown) free boundary and is also called

‘early exercise boundary’ or ’optimal exercise price’. The American call option

should be exercised if the value of the asset S is equal or greater than Sf (t) at

time t; otherwise the option should be held. Thus the free boundary Sf (t) separates

the holding region (S < Sf (t)) from the exercise region (S ≥ Sf (t)).

The final condition (‘payoff condition’) at the expiry t = T can be written as

V (S, T ) = (S − E)+, 0 ≤ S < Sf (T ), (2.1b)

with the notation f+ = max(f, 0). Here E > 0 denotes the previously agreed

exercise price or ‘strike’, of the contract and Sf (T ) = max(E, rE/D0).

The ‘spatial’ or asset–price boundary conditions at S = 0, and S = Sf (t) are

V (0, t) = 0, 0 ≤ t ≤ T, (2.1c)

V (Sf (t), t) = (Sf (t) − E)+,
∂V

∂S
(Sf (t), t) = 1, 0 ≤ t ≤ T, (2.1d)

i.e. at S = 0 the option is worthless. Note that we need two conditions at the free

boundary S = Sf (t). One condition is necessary for the solution of (2.1a) and the

other one is needed for determining the position of the free boundary Sf (t) itself.

The first condition in (2.1d) (’value matching’ condition) is the continuity of the

mapping S 7→ V (S, t) since V (S, t) = (S − E)+ = S − E, in the exercise region

S ≥ Sf (t). At S = Sf (t) one requires additionally that V (S, t) touches the payoff

function tangentially (’high contact condition’), i.e. the function S 7→ ∂V (S, t)/∂S

should be continuous at S = Sf (t). The conditions (2.1d) are jointly referred as the

’smooth–pasting conditions’. Note that the later condition can be derived from an

arbitrage argument [37], [39].

Since American options can be exercised at any time, we have the a priori bound

V (S, t) ≥ (S − E)+, S ≥ 0, 0 ≤ t ≤ T.

If V (S, t) < (S − E)+ for one value S > E and t ≤ T then the purchase of a

call for V and the immediate exercise of this option to buy the underlying asset



Fast, stable and accurate method for the Black–Scholes Equation of American Options 5

for E (although its value is S) would lead to an instantaneous risk–free profit of

S − V −E > 0, in violation to the no–arbitrage principle. Of course, this reasoning

ignores transaction costs.

2.1. The transformation to the heat equation

In the sequel we shall show how to transform (2.1a) into a pure diffusion equation

(cf. [39, § 5.4]). First it is convenient to apply a time reversal and transform (2.1)

to a forward–in–time equation by the change of variable t = T − 2τ/σ2. The new

time variable τ stands for (up to the scaling by σ2/2) the remaining life time of the

option. We denote the new variables by:

Ṽ (S, τ ) = V (S, t) = V
(
S, T − 2τ

σ2

)
, S̃f (τ ) = Sf

(
T − 2τ

σ2

)
,

r̃ =
2

σ2
r, D̃0 =

2

σ2
D0, T̃ =

σ2

2
T.

The resulting forward–in–time equation then reads:

∂Ṽ

∂τ
= S2 ∂2Ṽ

∂S2
+ (r̃ − D̃0)S

∂Ṽ

∂S
− r̃ Ṽ , 0 < S < S̃f (τ ), 0 ≤ τ < T̃ , (2.2a)

with the initial condition

Ṽ (S, 0) = (S − E)+, 0 ≤ S < S̃f (0) = S0, (2.2b)

and the boundary conditions

lim
S→0

Ṽ (S, τ ) = 0, 0 ≤ τ ≤ T̃ , (2.2c)

Ṽ (S̃f (τ ), τ ) = (S̃f (τ ) − E)+,
∂Ṽ

∂S
(S̃f (τ ), τ ) = 1, 0 ≤ τ ≤ T̃ . (2.2d)

The right hand side of (2.2a) is a well–known Euler‘s differential equation and

therefore it is standard practice (cf. [34, § 4.1]) to transform (2.2a) to the heat

equation. To do so, we let

α = −1

2
(r̃ − D̃0 − 1), β = −α2 − r̃,

and use the change of variables

S = Eex, Ṽ (S, τ ) = Eeαx+βτv(x, τ). (2.3)

Then problem (2.2) is equivalent to the free boundary problem for the heat equation:

∂v

∂τ
=

∂2v

∂x2
, −∞ < x < xf (τ ), 0 ≤ τ < T̃ , (2.4a)

where xf (τ ) = ln(S̃f (τ )/E). The equation (2.4a) is supplied with the initial condi-

tion

v(x, 0) = g(x, 0) =
(
e

1
2 (r̃− eD0+1)x − e

1
2 (r̃− eD0−1)x

)+
, x < xf (0), (2.4b)
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with xf (0) = ln(max(1, r/D0)) and the boundary conditions

lim
x→−∞

v(x, τ) = 0, 0 ≤ τ ≤ T̃ , (2.4c)

v(xf (τ ), τ ) = g(xf (τ ), τ ), 0 ≤ τ ≤ T̃ , (2.4d)

e(α−1)x+βτ
(
αv(xf (τ ), τ ) +

∂v(xf (τ ), τ )

∂x

)
= 1, 0 ≤ τ ≤ T̃ , (2.4e)

where

g(x, τ) = e−αx−βτ (ex − 1)+,

It is well–known [29] that the free boundary Sf (t) is a nondecreasing function and

Sf (T ) ≤ Sf (t) ≤ S∗
f , 0 ≤ t ≤ T, (2.5)

with

S∗
f =

√
−β + α√

−β + α − 1
E.

Thus if we set x∗
f = ln(S∗

f/E), then the free boundary xf (τ ) has the property [1]:

0 ≤ xf (τ ) ≤ x∗
f , 0 ≤ τ ≤ T̃ . (2.6)

Remark 2.1. We remark that the original Black–Scholes equation (2.1a) is de-

generate at S = 0. However, the change of variables (2.3) transformed it into a

uniformly parabolic initial boundary value problem (2.4).

3. The transparent boundary condition

The boundary problem (2.4) is posed on an unbounded and time–dependent domain

Ω(τ ):

Ω(τ ) = {(x, τ) ∈ R
2 |x < xf (τ ), 0 ≤ τ ≤ T̃}.

In the following we briefly present the derivation of the (analytic) TBC at the

artificial boundary x = a. For this purpose we split the domain Ω(τ ) into the

bounded time–dependent interior domain

Ωint(τ ) = {(x, τ) ∈ R
2 | a < x < xf (τ ), 0 ≤ τ ≤ T̃},

and the unbounded time–independent exterior domain

Ωext = {(x, τ) ∈ R
2 |x < a, 0 ≤ τ ≤ T̃}.
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3.1. Derivation of the TBC

Here we determine the TBC at x = a < 0 such that the solution of the resulting

initial boundary value problem coincides with the solution of the problem (2.4)

restricted to Ωint. For simplicity we assume that the initial data v(x, 0) is compactly

supported in the interior domain Ωint, i.e. g(x, 0) = 0 for x < a. A strategy to

overcome this restriction can be found in [14].

The analytic TBC for the heat equation was derived by several authors, e.g. [1],

[19], [20]. Historically, this TBC was first derived by Papadakis [32] in the context of

the Schrödinger equation. We remark that the derivation of the TBC for a parabolic

convection diffusion equation with reaction term can be found in [13], [14].

For the derivation of the TBC at x = a we consider the interior problem

∂v

∂τ
=

∂2v

∂x2
, (x, τ) ∈ Ωint(τ ),

v(x, 0) = g(x, 0), a < x < xf (0),

vx(a, τ) = (Tav)(a, τ), 0 ≤ τ ≤ T̃ ,

(3.1)

together with the boundary conditions (2.4d), (2.4e) at the free boundary x = xf (τ ).

We obtain the Dirichlet–to–Neumann map Ta by solving the exterior problem:

∂u

∂τ
=

∂2u

∂x2
, (x, τ) ∈ Ωext,

u(x, 0) = 0, x < a,

u(a, τ) = Φ(τ ), 0 ≤ τ ≤ T̃ , Φ(0) = 0,

u(−∞, τ ) = 0, 0 ≤ τ ≤ T̃ ,

(TaΦ)(τ ) = ux(a, τ), 0 ≤ τ ≤ T̃ .

(3.2)

The problem on the exterior domain Ωext is coupled to the problem on the inte-

rior domain Ωint by the assumption that v, vx are continuous across the artificial

boundary at x = a. One can solve (3.2) explicitly by the Laplace–method, i.e. we

use the Laplace transformation of u

û(x, s) =

∫ ∞

0

u(x, τ) e−sτ dτ,

where we set s = ζ + iξ, ξ ∈ R, and ζ > 0 is fixed, with the idea to later perform

the limit ζ → 0. Now the exterior problem (3.2) is transformed to

ûxx − s û = 0, x < a,

û(a, s) = Φ̂(s).
(3.3)

The solution to (3.3) which decays as x → −∞ is simply û(x, s) = Φ̂(s) e
+
√

s(x−a),

x < a, where +
√

denotes the branch of the square root with nonnegative real part.

Consequently, the transformed TBC is:

ûx(a, s) = +
√

s û(a, s),
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and after an inverse Laplace transformation (cf. [8]) the TBC at x = a reads:

vx(a, τ) =
1√
π

∫ τ

0

vτ (a, ξ)√
τ − ξ

dξ. (3.4)

We observe that (3.4) has a weakly singular kernel and is a memory–type non–local

function of τ , i.e. the computation of the solution at some time uses the solution at

all previous times.

Remark 3.1. As noted in [20] the solution in Ωext can also be computed with

v(x, τ) = −x − a

2
√

π

∫ τ

0

e−
(x−a)2

4(τ−ξ)
v(a, ξ)

(τ − ξ)3/2
dξ, x < a. (3.5)

Remark 3.2. The treatment of an American put option is completely analogous.

Now one has to consider the Black–Scholes equation (2.1a) on the domain S > Sf (t).

The terminal condition at the expiry date t = T then reads

V (S, T ) = (E − S)+, S > Sf (T ), (3.6a)

and the ‘spatial’ boundary conditions at S = Sf (t), S → ∞ are given by

V (Sf (t), t) = (E − Sf (t))+,
∂V

∂S
(Sf (t), t) = −1, 0 ≤ t ≤ T, (3.6b)

lim
S→∞

V (S, t) = 0, 0 ≤ t ≤ T. (3.6c)

Thus the TBC has to be constructed at x = b with b > Sf (t), for all 0 ≤ t ≤ T .

3.2. Time–dependent parameters

It is possible to derive a TBC for American call options with time–varying interest

rate r = r(t), dividend yield D = D(t) and volatility σ = σ(t). This situation is

more realistic but the time–dependence of the parameters r = r(t) and σ = σ(t)

is unknown and must be modeled stochastically. In this case the Black–Scholes

equation reads (cf. [39, §6.5])

∂V

∂t
+

1

2
σ2(t)S2 ∂2V

∂S2
+ (r(t) − D(t))S

∂V

∂S
− r(t)V = 0, (3.7)

0 < S < Sf (t), 0 ≤ t < T . Making the substitutions

S̄ = Seα(t), V̄ = V eβ(t), t̄ = γ(t),

with

α(t) =

∫ T

t

(
r(τ ) − D(τ )

)
dτ, β(t) =

∫ T

t

r(τ ) dτ, γ(t) =

∫ T

t

σ2(τ ) dτ,

then (3.7) becomes

∂V̄

∂t̄
=

1

2
S̄2 ∂2V̄

∂S̄2
, 0 < S̄ < S̄f (t̄), 0 ≤ t̄ ≤ T̄ = γ(0). (3.8)
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supplied with the initial condition V̄ (S̄, 0) = V (S, T ) because γ(T ) = 0. Since the

right hand side of (3.8) is again of Euler–type one can proceed analogously to §3.1.

The Laplace–transformed exterior problem reads:

x2

2
ûxx − s û = 0, x < a,

û(a, s) = Φ̂(s).

(3.9)

The solution to (3.9) which decays as x → −∞ is simply

û(x, s) = Φ̂(s)
(x

a

)( 1
2−

1
2

+
√

1+8s)

, x < a,

and therefore the transformed TBC is:

ûx(a, s) = a−1

(
1

2
−
√

2
+

√
s +

1

8

)
û(a, s).

Finally an inverse Laplace transformation yields the desired TBC at x = a:

V̄x(a, t̄) =
V̄ (a, t̄)

2a
−

√
2

a
√

π

∫ t̄

0

(
V̄t̄(a, ξ) +

V̄ (a, ξ)

8

)
e−(t̄−ξ)/8

√
t̄ − ξ

dξ. (3.10)

Remark 3.3. Most dividend payments on an index (e.g. the Dow Jones Industrial

Average (DJIA) or the Standard and Poor’s 500 (S&P500)) are so frequent that they

can be modeled as a continuous payment. However, if companies make two or four

payments per year then one has to treat the dividend payments discretely and the

question is how to incorporate discrete dividend payments into the Black–Scholes

equation. In the sequel we briefly review the results from [39]. We assume that there

is only one dividend payment during the lifetime of the option at the dividend date

td. Neglecting other factors like taxes, the asset price S must decrease exactly by

the amount of the dividend payment d0. Thus we have the jump condition

S(t+d ) = (1 − d0)S(t−d ),

where t−d , t+d denotes the moments just before and after td. This leads to the fol-

lowing effect on the option price

V (S, t−d ) = V ((1 − d0)S, t+d ), (3.11)

i.e. the value of the option at S and time t−d is the same as the value immediately

after the dividend date td but at the asset value (1 − d0)S. To value a call option

with one divident payment we solve the Black–Scholes equation from expiry t = T

until t = t+d and use the relation (3.11) to compute the values at t = t−d . Finally,

we continue to solve the Black–Scholes equation backwards starting at t = t−d
using these values as initial data. The transparent boundary conditions need not be

modified for this case.
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4. Discrete Transparent Boundary Conditions

In this section we shall address the question how to adequately discretize the an-

alytic TBC (3.4) for a chosen full discretization of (2.4a) which in this example

will be the Crank–Nicolson scheme. This scheme has been extremely popular for

numerical solutions in finance since it is unconditionally stable and has second order

accuracy in time and space. Furthermore it obeys a discrete maximum principle.

Instead of discretizing the analytic TBC (3.4) with its singularity our strategy is

to derive the discrete TBC of the fully discretized problem. With the uniform grid

points xj = a + j∆x, j = 0, 1, . . . , τn = n∆τ , n = 0, 1, . . . and the approximation

v
(n)
j ≈ v(xj , τn) the Crank–Nicolson scheme for solving the heat equation (2.4a) is:

v
(n+1)
j − v

(n)
j = ρ

(
v
(n+1/2)
j+1 − 2v

(n+1/2)
j + v

(n+1/2)
j−1

)
, (4.1)

with the abbreviation v
(n+1/2)
j = (v

(n+1)
j + v

(n)
j )/2 and the parabolic mesh ratio

ρ = ∆τ/(∆x)2. While a uniform grid in x is necessary in the exterior domain, the

interior grid may be nonuniform (e.g. logarithmic) in x. In the sequel we present

different strategies to incorporate the analytic TBC (3.4) into the finite difference

scheme (4.1).

4.1. Discretization strategies for the TBC

Here we want to compare three strategies to discretize the TBC (3.4) which is a

rather delicate question with its mildly singular convolution kernel. First we review

two known discretization techniques from Mayfield [27] and Han and Wu [20].

Discretized TBC of Mayfield

To compare our results we first review the ad-hoc discretization strategy of Mayfield

applied to the heat equation (2.4a). According to the approach of Mayfield [27] for

the Schrödinger equation, one way to discretize the analytic TBC (3.4), at x = a,

in the equivalent form

v(a, τ) =
1√
π

∫ τ

0

vx(a, ξ)√
τ − ξ

dξ (4.2)

is
∫ τn

0

vx(a, τn − ξ)√
ξ

dξ ≈ 1

∆x

n−1∑

m=0

(v
(n−m)
1 − v

(n−m)
0 )

∫ τm+1

τm

dξ√
ξ

=
2
√

∆τ

∆x

n−1∑

m=0

(v
(n−m)
1 − v

(n−m)
0 )√

m + 1 +
√

m
.

This approach leads to the following discretized TBC for the heat equation:

v
(n)
1 − v

(n)
0 =

√
π∆x

2
√

∆τ
v
(n)
0 −

n−1∑

m=1

ℓ̃(m)
(
v
(n−m)
1 − v

(n−m)
0

)
, (4.3)
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with the convolution coefficients given by

ℓ̃(m) =
1√

m + 1 +
√

m
. (4.4)

Discretized TBC of Han and Wu

Recently a very similar discretization strategy was introduced in [20]. The authors

discretized the analytic TBC (3.4) in the following way

∫ τn

0

vτ (a, ξ)√
τn − ξ

dξ ≈
n−1∑

m=0

vτ (a, ξm)

∫ τm+1

τm

dξ√
τn − ξ

= 2∆τ
n−1∑

m=0

vτ (a, ξm)√
τn − τm+1 +

√
τn − τm

.

This approach leads to the condition

v
(n)
1 − v

(n)
−1 =

4√
π

1√
ρ

n∑

m=1

v
(m)
0 − v

(m−1)
0√

n − m +
√

n − m + 1
. (4.5)

By applying a purely implicit scheme to the heat equation at the artificial boundary

x0 = a, i.e.

v
(n)
0 − v

(n−1)
0 = ρ

(
v
(n)
1 − 2v

(n)
0 + v

(n)
−1

)
,

one can eliminate the fictitious value v
(n)
−1 in (4.5) to obtain the discretized TBC of

Han and Wu [20]:

(1 + 2ρ + B) v
(n)
0 − 2ρ v

(n)
1 = (1 + B) v

(n−1)
0 −B

n−1∑

m=1

ℓ̃(n−m)
(
v
(m)
0 − v

(m−1)
0

)
, (4.6)

with the abbreviation B = 4
√

ρ/
√

π and the convolution coefficients given in (4.4).

On the fully discrete level the discretized TBCs like (4.3), (4.6) are not exactly

transparent any more and can lead to an unstable numerical scheme. This was

proven for a discretized TBC of the form (4.3) by Mayfield [27] in the case of the

Schrödinger equation.

The discrete transparent boundary condition

In order to avoid any numerical reflections at the artificial boundary and to ensure

unconditional stability of the resulting scheme we will construct in the next sub-

section a discrete TBC instead of choosing an ad–hoc discretization of the analytic

TBC (3.4) like Mayfields approach [27] or the approach of Han and Wu [20]. The

discrete TBC completely avoids any numerical reflections at the boundary at no

additional computational costs (compared to ad–hoc discretization strategies like

(4.3), (4.6)).
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4.2. Derivation of the DTBC

We mimic the derivation from §3 on a purely discrete level: we obtain the DTBC

by solving the discrete exterior problem, i.e. (4.1) for j ≤ 1.

We apply for j fixed the Z–transformation:

Z{v(n)
j } = v̂j(z) :=

∞∑

n=0

v
(n)
j z−n, |z| > Rv̂j

,

(Rv̂j
denotes the convergence radius of the Laurent series) to solve (4.1) for j ≤ 1

explicitly. Again we assume for the initial data, v
(0)
j = 0, j ≤ 1 and obtain the

transformed exterior scheme

2

ρ

z − 1

z + 1
v̂j(z) = v̂j+1 − 2v̂j + v̂j−1, j ≤ 1. (4.7)

The two linearly independent solutions of the resulting second order difference equa-

tion (4.7) take the form

v̂j(z) = (ν1,2)
j+1(z), j ≤ 1,

where ν1,2(z) are the solutions of the quadratic equation

ν2 − 2
[
1 +

1

ρ

z − 1

z + 1

]
ν + 1 = 0.

Since we are seeking decreasing modes as j → −∞ we have to require |ν1| > 1 and

obtain the Z–transformed discrete TBC as

v̂1(z) = ν1(z) v̂0(z). (4.8)

It only remains to calculate the inverse Z–transform of ν1(z) to obtain the

discrete TBC from (4.8). In a tedious calculation this can be performed explicitly

(cf. [14]) and the discrete TBC becomes:

v
(n)
1 = ℓ(n) ∗ v

(n)
0 =

n∑

k=1

ℓ(n−k)v
(k)
0 , n ≥ 1, (4.9)

with convolution coefficients ℓ(n) given in [14]. Since the asymptotical behaviour

ℓ(n) ∼ 4(−1)n/ρ of the convolution coefficients may lead to subtractive cancellation

in (4.9) we prefer to use the following summed coefficients in the implementation

s(n) := ℓ(n) + ℓ(n−1), n ≥ 1, s(0) := ℓ(0). (4.10)

The DTBC then reads

v
(n)
1 − s(0)v

(n)
0 =

n−1∑

k=1

s(n−k)v
(k)
0 − v

(n−1)
1 , n ≥ 1, (4.11)

with the convolution coefficients

s(0) = 1 +
1 +

√
1 + 2ρ

ρ
, s(1) = 1 − 1

ρ
− 1

ρ
√

1 + 2ρ
,

s(n) = −
√

1 + 2ρ

ρ

P̃n(µ) − λ−2P̃n−2(µ)

2n − 1
, n ≥ 2,

(4.12)
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where P̃n(µ) := λ−nPn(µ) denotes the “damped” Legendre polynomials (P̃0 ≡ λ−1,

P̃−1 ≡ 0). The parameters λ, µ are given by

λ =

√
1 + 2ρ

+
√

1 − 2ρ
, µ =

1√
1 + 2ρ +

√
1 − 2ρ

.

Alternatively, the convolution coefficients can be computed by the recursion formula

s(n+1) =
2n − 1

n + 1
µλ−1s(n) − n − 2

n + 1
λ−2s(n−1), n ≥ 2, (4.13)

which can be used after calculating s(n), n = 0, 1, 2 by the formula (4.12).

In Fig. 1 the values of the summed coefficients s(n) are presented in a logarithmic

plot. One clearly observes their rapid decay property s(n) = O(n−3/2) [14] which

motivates a simplified discrete TBC by restricting (4.11) to a convolution over the

“recent past” (last M time levels):

v
(n)
1 − s(0)v

(n)
0 =

n−1∑

k=n−M

s(n−k)v
(k)
0 − v

(n−1)
1 , n ≥ 1, (4.14)

We note that the stability of the resulting scheme is still not proven yet.

For a concise discussion of several discretization strategies of analytic TBCs, the

derivation of the DTBC for a class of difference schemes for a general convection

diffusion equation and a stability proof of the recursion formula (4.13) we refer to

[14].
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Fig. 1. Convolution coefficients s(n) (4.12) (left axis, dashed line) and error |s(n) − s̃(n)| of the

approximated convolution coefficients (5.1) (right axis, solid line); ρ = 1, L = 20.
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5. Approximation by Sums of Exponentials

An ad-hoc implementation of the discrete convolution (4.11), with convolution co-

efficients s(n) from (4.12), has still one disadvantage. The boundary condition is

non–local in time and therefore computationally expensive. In fact, the evaluation

of (4.11) is as expensive as for the discretized TBCs (4.3), (4.6). As a remedy, we

proposed in [5] the sum-of-exponentials ansatz. In the work to come, we briefly

review this approach.

In order to derive a fast numerical method to calculate the discrete convolution in

(4.11), we approximate the coefficients s(n) by the following (sum of exponentials):

s(n) ≈ s̃(n) :=





s(n), n = 0, 1
L∑

l=1

bl q−n
l , n = 2, 3, . . . ,

(5.1)

where L ∈ N is a fixed number. Note that the approximation properties of s̃(n)

depend on L, and the corresponding set {bl, ql}. Below we propose a deterministic

method of finding {bl, ql} for fixed L.

The “split” definition of {s̃(n)} in (5.1) is motivated by the different nature of the

first two coefficients in (4.12). Including them into the discrete sum-of-exponential

would then yield less accurate approximation results.

Let us fix L and consider the formal power series:

f(x) := s(2) + s(3)x + s(4)x2 + . . . , |x| ≤ 1. (5.2)

If there exists the [L − 1|L] Padé approximation

f̃(x) :=
PL−1(x)

QL(x)

of (5.2), then its Taylor series

f̃(x) = s̃(2) + s̃(3)x + s̃(4)x2 + . . .

satisfies the conditions

s̃(n) = s(n), n = 2, 3, . . . , 2L + 1, (5.3)

due to the definition of the Padé approximation rule.

Theorem 5.1 ([5]). Let QL(x) have L simple roots ql with |ql| > 1, l = 1, . . . , L.

Then

s̃(n) =

L∑

l=1

bl q−n
l , n = 2, 3, . . . , (5.4)

where

bl := −PL−1(ql)

Q′
L(ql)

ql 6= 0, l = 1, . . . , L. (5.5)
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It follows from (5.3) and (5.4) that the set {bl, ql} defined in Theorem 5.1 can

be used in (5.1) at least for n = 2, 3, .., 2L + 1. The main question now is: Is it

possible to use these {bl, ql} also for n > 2L + 1? In other words, how good is the

approximation

s̃(n) ≈ s(n), n > 2L + 1.

The above analysis permits us to give the following description of the approx-

imation to the convolution coefficients s(n) by the representation (5.1) if we use a

[L−1|L] Padé approximant for (5.2): the first 2L coefficients are reproduced exactly,

see (5.3); however, the asymptotic behaviour of s(n) and s̃(n) (as n → ∞) differs

strongly (algebraic versus exponential decay). A typical graph of |s(n)− s̃(n)| versus

n for L = 20 is shown in Fig. 1.

So far we have discussed how to calculate and approximate the DTBC for one

fixed discretization. However, a nice property of this approach consists of the fol-

lowing: once the approximate convolution coefficients {s̃(n)} are calculated for a

particular mesh ratio ρ, it is easy to transform them into appropriate coefficients

for any mesh ratio ρ∗.

Theorem 5.2 ([5]). Let a rational function

ˆ̃s(z) := s(0) +
s(1)

z
+

L∑

l=1

bl

qlz − 1
(5.6)

approximate the Z-transform of the convolution kernel {s(n)}∞n=0 corresponding to

a DTBC for the equation (4.1) with a given mesh ratio ρ (ˆ̃s is the Z-transform of

{s̃(n)} from (5.1)). Then, for another mesh ratio ρ⋆, one can take the approximation

ˆ̃s⋆(z) := s
(0)
⋆ +

s
(1)
⋆

z
+

L∑

l=1

b⋆
l

q⋆
l z − 1

, (5.7)

where

s
(0)
⋆ := ˆ̃s(a/b) (:= s(0) if b = 0),

b⋆
l := blql

a2 − b2

(a − qlb)(qla − b)

1 + q⋆
l

1 + ql
, q⋆

l :=
qla − b

a − qlb
, (5.8)

a := (
1

ρ
+

1

ρ⋆
), b := (

1

ρ
− 1

ρ⋆
).

While the Padé–algorithm provides a method to calculate approximate convo-

lution coefficients s̃(n) for a fixed mesh ratio ρ, this transformation rule yields the

natural link between different mesh ratios ρ⋆ (and L fixed).

Example 5.1. For L = 20 we calculated the coefficients {bl, ql} with the mesh ratio

ρ = 1 and then used the Transformation rule 5.2 to calculate the coefficients {b∗l , q∗l }
for the mesh ratio ρ⋆ = 0.8. Fig. 2 shows that the resulting convolution coefficients
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s̃
(n)
∗ are in this example even better approximations to the exact coefficients s(n)

than the coefficients s̃(n), which are obtained directly from the Padé algorithm

discussed in Theorem 5.1. Hence, the numerical solution of the corresponding heat

equation is also more accurate.

5.1. Fast Evaluation of the Discrete Convolution.

Let us consider the approximation (5.1) of the discrete convolution kernel appearing

in the DTBC (4.11). With these “exponential” coefficients the convolution

C(n) :=

n−1∑

m=1

s̃(n−m)v
(m)
0 , s̃(n) =

L∑

l=1

bl q−n
l , (5.9)

where |ql| > 1, of a discrete function v
(m)
0 , m = 1, 2, . . . , with the kernel coefficients

s̃(n), can be calculated by recurrence formulas, and this will reduce the numerical

effort significantly.

A straightforward calculation (cf. [5]) yields: The value C(n), from (5.9) for

n ≥ 2, can be represented by

C(n) =

L∑

l=1

C
(n)
l , (5.10)

0 50 100 150 200 250 300 350 400
10

−20

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

n

error |s(n)−s~(n)|, |s(n)−s~
*
(n)|

Fig. 2. Approximation error of the approximate convolution coefficients for ρ = 0.8: The error of

s̃
(n)
∗

(- - -) obtained from the transformation rule and the error of s̃(n) (—) obtained from a direct
Padé approximation of the exact coefficients s(n).
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where

C
(1)
l ≡ 0,

C
(n)
l = q−1

l C
(n−1)
l + bl q−1

l v
(n−1)
0 , n = 2, 3, . . . , l = 1, . . . , L. (5.11)

In summary we now list the steps of the proposed method to evaluate an ap-

proximate DTBC:

1. Prescribe L in (5.1), take ρ = 1, and calculate s(n), n = 0, . . . , 2L+1, by formula

(4.12).

2. Use the [L − 1|L]–Padé algorithm for the series (5.2) with s̃(n) := s(n), n =

2, 3, . . . , 2L+1 in order to find {bl, ql} for (5.1) in accordance with Theorem 5.1.

The steps 1. and 2. are made once and for all; see Appendix with the table

of coefficients for L = 5, 10.

3. For given ratio ρ⋆, use formulas (5.8), with ρ = 1 and {bl, ql} from step 2, for

the calculation of {b⋆
l , q

⋆
l }.

4. Implement the recurrence formulas (5.10)–(5.11) to calculate the approximate

convolutions in (4.11). The coefficients s
(0)
∗ , s

(1)
∗ have to be calculated by use of

(4.12).

We remark that the Padé approximation must be performed with high precision

(2L − 1 digits mantissa length) to avoid a ‘nearly breakdown’ by ill conditioned

steps in the Lanczos algorithm. If such problems still occur or if one root of the

denominator is smaller than 1 in absolute value, the orders of the numerator and

denominator polynomials are successively reduced.

6. Numerical treatment of the free boundary

In this section we shall describe briefly how to treat numerically the free boundary

xf (τ ) in (2.4). For more details on the optimal exercise time we refer the reader to

[7].

Up to now no exact analytical formula for the free boundary profile xf (τ ) in

(2.4) is known but several authors derived approximate expressions for valuing

American call and put options, e.g. [18]. Recently, in a promising approach [33],

Ševčovič obtained a semi–explicit formula for an American call in the case r > D0.

By transforming (2.1) to a nonlinear parabolic equation on a fixed domain and

applying Fourier sine and cosine transformations he derived a nonlinear singular

integral equation determining the shape of the free boundary. This integral equation

can be solved effectively by means of successive iterations.

However, since the Black–Scholes equation (2.1a) couples V (S, t) to Sf (t) we

prefer to determine the option value numerically in connection with the free bound-

ary. To do this, many different numerical methods are developed, e.g. the standard

method consists in the reformulation to a linear complementary problem and solu-

tion by the projected SOR method of Cryer [12]. Alternatively, penalty and front–

fixing methods were developed (e.g. in [17], [30]). A disadvantage of these methods
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is the change of the underlying model. A different approach [21] is based on a re-

cursive calculation of the early exercise boundary, estimating the boundary only at

some points and then approximating the whole boundary by Richardson extrapo-

lation. Explicit boundary tracking algorithms are e.g. a finite difference bisection

scheme [25] or the front–tracking strategy of Han and Wu [20]. In this work we will

use the later approach of Han and Wu, which will be described now briefly.

In [20] the authors applied the strong maximum principle for parabolic equations

to the Black–Scholes equation for the derivative ṼS and the equation (2.2a) extended

to the time–independent domain S > 0 (which is known in the literature as the

Jamshidian equation [22]). The outcome is a very useful inequality [20, Eq. (30]

for the numerical determination of the location of the free boundary xf (τ ): for a

given τ the free boundary is the only point that fulfils both the equation (2.4a)

and the high contact condition VS(S, t) = 1, i.e. (2.4e). If the boundary condition

v(x, τ) = g(x, τ) is posed at some point x > xf (τ ) then v(x, τ) < g(x, τ) will occur

for some x < xf (τ ). To solve the Crank–Nicolson scheme (4.1) Han and Wu used

the common Thomas algorithm [38] for the arising tridiagonal system. Once the

boundary condition

v
(n+1)
J+1 = g

(n+1)
J+1 , (6.1)

with g
(n)
J = g(xJ , τn), is given at some grid point xJ+1 then the backward sweep of

the Thomas algorithm calculates the solution v
(n+1)
j for all 0 ≤ j ≤ J . The index

J is simply the largest index such that

v
(n+1)
J ≥ g

(n+1)
J (6.2)

holds.

Remark 6.1. For the American call (in contrast to the American put) it is possible

to derive a series for the location of the optimal exercise boundary close to expiry

using standard asymptotic analysis (cf. [2], [39]). This local analysis of the free

boundary Sf (t) yields

Sf (t) ∼ Sf (T )

(
1 + ξ0

√
1

2
σ2(T − t) + . . .

)
, as t → T, (6.3)

where ξ0 = 0.9034 . . . is a ’universal’ constant of call option pricing. Equation (6.3)

can be rewritten as

xf (τ ) ∼ ln

[
Sf (T )

E

(
1 + ξ0

√
τ + . . .

)]
, as τ → 0. (6.4)

With only a very few terms one gets a fairly accurate result and thus (6.4) will

serve us as a check of the above mentioned tracking strategy of Han and Wu. Note

that this result is especially useful in the first time levels of a numerical calculation

where rapid changes in xf (τ ) influence the whole solution region.
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7. Stability analysis of the artificial boundary condition

Here we analyze the stability of the Crank–Nicolson scheme (4.1) along with the

DTBC (4.11) or its approximated version. Since we will focus on the fact that the

(approximated) DTBC does not destroy the unconditional stability of the under-

lying finite difference scheme, we consider the following problem on the half–space

j ≥ 0:




v
(n+1)
j − v

(n)
j = ρ

(
v
(n+1/2)
j+1 − 2v

(n+1/2)
j + v

(n+1/2)
j−1

)
, j ≥ 1,

v
(0)
j = g(xj , 0), j = 0, 1, 2, . . .

with v
(0)
0 = v

(0)
1 = 0,

v̂1(z) = ℓ̂(z)v̂0(z),

(7.1)

where the transformed boundary kernel ℓ̂(z) = ν1(z) is given by (4.8). In the sequel

we want to bound the exponential growth of solutions to the numerical scheme (7.1)

for a fixed mesh ratio. We will prove an estimate of the discrete solution to (7.1) in

the discrete ℓ2–norm:

‖v(n)‖2
2 := ∆x

∞∑

j=1

|v(n)
j |2. (7.2)

Theorem 7.1 (Growth condition). Let the transformed boundary kernel ℓ̂ sat-

isfy

ℜℓ̂(βeiϕ) ≥ 1, ∀ 0 ≤ ϕ ≤ 2π, (7.3)

for some (sufficiently large) β ≥ 1. Assume also that ℓ̂(z) is analytic for |z| ≥ β.

Then, the solution of (7.1) satisfies the a-priori estimate in the discrete ℓ2–norm:

‖v(n+1)‖2 ≤ βn
(
‖v(0)‖2 +

√
(β − 1)ρ

2
‖∆−v(0)‖2

)
, n ∈ N0. (7.4)

Proof. The proof is based on a discrete energy estimate for the new variable

u
(n)
j := v

(n)
j β−n,

which fulfills

β−n
(
v
(n+1)
j ± v

(n)
j

)
= u

(n+1)
j ± u

(n)
j + (β − 1)u

(n+1)
j ,

and therefore satisfies

u
(n+1)
j − u

(n)
j = ρ

(
u

(n+1/2)
j+1 − 2u

(n+1/2)
j + u

(n+1/2)
j−1

)
(7.5a)

+ (β − 1)
[ρ
2

(
u

(n+1)
j+1 − 2u

(n+1)
j + u

(n+1)
j−1

)
− u

(n+1)
j

]
, j ≥ 1

u
(0)
j = v

(0)
j , j = 0, 1, 2 . . . , (7.5b)

∆+û0(z) = (ℓ̂(βz) − 1) û0(z). (7.5c)
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The transformed discrete TBC (7.5c) can be written in physical space as

∆+u
(n)
0 =

ℓ̃(n)

βn
∗ u

(n)
0 =

n∑

m=0

(
ℓ̃(n−m) βm−n

)
u

(m)
0 ,

where ℓ̃(n) := ℓ(n) − δ0
n is given in (4.9) and ∆+u

(n)
0 = u

(n)
1 − u

(n)
0 denotes the usual

forward difference. First we multiply (7.5a) by u
(n)
j /β and then by u

(n+1)
j :

u
(n)
j

(
u

(n+1)
j − u

(n)
j

)
= ρu

(n)
j

(
u

(n+1/2)
j+1 − 2u

(n+1/2)
j + u

(n+1/2)
j−1

)

− β−1(β − 1)u
(n)
j

[ρ
2

(
u

(n)
j+1 − 2u

(n)
j + u

(n)
j−1

)
+ u

(n)
j

]
,

(7.6a)

u
(n+1)
j

(
u

(n+1)
j − u

(n)
j

)
= ρu

(n+1)
j

(
u

(n+1/2)
j+1 − 2u

(n+1/2)
j + u

(n+1/2)
j−1

)

+ (β − 1)u
(n+1)
j

[ρ
2

(
u

(n+1)
j+1 − 2u

(n+1)
j + u

(n+1)
j−1

)
− u

(n+1)
j

]
.

(7.6b)

Note that we used equation (7.5a) to modify the last term of (7.6a). Next we

add (7.6a) and (7.6b), sum it up for the range j = 1, 2, . . . and obtain using the

summation by parts rule:

∞∑

j=1

[
(u

(n+1)
j )2 − (u

(n)
j )2

]
= −2ρ

∞∑

j=1

(∆−u
(n+1/2)
j )2

− (β − 1)
ρ

2

∞∑

j=1

(∆−u
(n+1)
j )2 +

β − 1

β

ρ

2

∞∑

j=1

(∆−u
(n)
j )2

− (β − 1)

∞∑

j=1

(u
(n+1)
j )2 − β − 1

β

∞∑

j=1

(u
(n)
j )2

− ρ

2β
(u

(n)
0 + βu

(n+1)
0 )∆+(u

(n)
0 + βu

(n+1)
0 ),

(7.7)

where ∆−u
(n)
j = u

(n)
j − u

(n)
j−1 denotes the backward difference. Now summing (7.7)

from time level n = 0 to n = N yields:

β‖u(N+1)‖2
2 = β−1‖u(0)‖2

2 −
(β2 − 1)

β

N∑

n=1

‖u(n)‖2
2

− 2ρ
N∑

n=0

‖∆−u(n+1/2)‖2
2 −

(β − 1)2

β

ρ

2

N∑

n=1

‖∆−u(n)‖2
2

+
(β − 1)

β

ρ

2
‖∆−u(0)‖2

2 − (β − 1)
ρ

2
‖∆−u(N+1)‖2

2

− ρ

2β

N∑

n=0

(u
(n)
0 + βu

(n+1)
0 )∆+(u

(n)
0 + βu

(n+1)
0 ).

(7.8)



Fast, stable and accurate method for the Black–Scholes Equation of American Options 21

Noting that β ≥ 1, we obtain from (7.8) the following estimate:

‖u(N+1)‖2
2 ≤ β−2‖u(0)‖2

2 +
(β − 1)

β2

ρ

2
‖∆−u(0)‖2

2

− ρ

2β2

N∑

n=0

(u
(n)
0 + βu

(n+1)
0 )∆+(u

(n)
0 + βu

(n+1)
0 ).

(7.9)

It remains to show that the boundary–memory–term in (7.9) is of positive type. To

this end we define (for N fixed) the two sequences,

g(n) :=

{
u

(n)
0 + βu

(n+1)
0 , n = 0, . . . , N,

0, n > N,

f (n) :=
ℓ̃(n)

βn
∗ g(n) =

n∑

m=0

ℓ̃(n−m)

βn−m
g(m), n ∈ N0,

i.e.
∑N

n=0 f (n) g(n) ≥ 0 is to show. The Z–transform Z{f (n)} = f̂(z) is analytic

for |z| > 0, since it is a finite sum. The Z–transform Z{f (n)} then satisfies f̂(z) =

(ℓ̂(βz) − 1)ĝ(z) and is analytic for |z| ≥ 1. Using Plancherel’s Theorem for Z–

transforms we have

N∑

n=0

f (n)g(n) =
1

2π

∫ 2π

0

f̂(eiϕ)ĝ(eiϕ) dϕ =
1

π

∫ π

0

ℜ
{
f̂(eiϕ) ĝ(eiϕ)

}
dϕ

=
1

π

∫ π

0

|ĝ(eiϕ)|2
(
ℜ
{
ℓ̂(βeiϕ)

}
− 1
)
dϕ,

(7.10)

where we have used the fact that f̂(z̄) = f̂(z), ĝ(z̄) = ĝ(z), since fn, gn ∈ R. Using

(7.10) for the boundary term in (7.9) now gives:

‖u(N+1)‖2
2 ≤ β−2‖u(0)‖2

2 +
(β − 1)

β2

ρ

2
‖∆−u(0)‖2

2

− ρ

2πβ2

∫ π

0

|(1 + βeiϕ)û0(e
iϕ)|2

(
ℜ
{
ℓ̂(βeiϕ)

}
− 1
)
dϕ.

Our assumption on ℓ̂ therefore implies

‖u(N+1)‖2 ≤ β−1‖u(0)‖2 +

√
β − 1

β

√
ρ

2
‖∆−u(0)‖2, ∀N ≥ 0,

and the result of the theorem follows.

Example 7.1. For the case of the exact discrete DTBC the assumption of Theorem

7.1 can easily be checked: This property of ℓ̂ can be shown for β = 1 in the following

way. On the unit circle z = eiϕ, 0 ≤ ϕ ≤ 2π, we have

y(z) :=
1

ρ

(z − 1

z + 1

)
=

1

ρ

(
i tan

ϕ

2

)
, 0 ≤ ϕ ≤ 2π.
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Therefore we obtain the requested property

ℜ{ℓ̂(z)} = 1 + ℜ
{

+

√
y(z)

(
2 + y(z)

)}
≥ 1,

for z = eiϕ, 0 ≤ ϕ ≤ 2π, i.e. for the exact discrete TBC we have the estimate

‖v(n)‖2 ≤ ‖v(0)‖2, n ∈ N. (7.11)

Remark 7.1. Above we have assumed that the Z–transformed boundary kernel

ℓ̂(z) is analytic for |z| ≥ β. Hence its real part is a harmonic function there. Since

the average of ℓ̂(z) on the circles z = βeiϕ equals ℓ(0) = ℓ̂(z = ∞), condition (7.3)

implies ℜℓ̂(z = ∞) ≥ 1. Then we have the following simple consequence of the

maximum principle for the Laplace equation:

If condition (7.3) holds for some β0, it also holds for all β > β0.

8. Numerical examples

In this section we consider the two examples of American call options from [11],

which were also used in [20]. We compare the numerical result from using our new

(approximated) discrete TBC to the solution using the discretized TBC (4.3) or

(4.6) and use the explicit free boundary treatment from [20] described in §6. Since

the method of [20] turned out to be superior to the projected SOR method with

asymptotic boundary conditions we will compare our results only to the method of

Han and Wu. In the sequel the dimension of time is year and dimension of value is

US dollar.

Example 8.1. We consider an American call with an expiry of T = 0.5 years and

a dividend yield D0 = 0.03. The risk–free interest rate is r = 0.03, the volatility is

σ = 40% p.a. and the exercise price is E = $100. We choose a mesh ratio ρ = 1 and

computed N = 400 time steps with different artificial boundary conditions at the

left boundary a = x0 = −1.0 which corresponds to an asset price S = Eea ≈ 36.79.

Fig. 3 shows the option values V (S, 0) calculated with the exact discrete TBC (4.11).

We recall the fact that all option values for x < a can be calculated using (3.5) at

the final time τ = T̃ , i.e. at t = 0.

An upper bound of the free boundary xf (τ ) was calculated by (2.5) as x∗
f = 1.5.

However the largest value of xf (τ ) is much smaller; it is about 0.62. The time

evolution of the nondecreasing free boundary xf (τ ) is plotted in Fig. 4.

Next we want to investigate the stability of the scheme using the approximated

discrete TBC (5.1) with L = 20 exponentials. Thus we have to check numerically the

growth condition (7.3) needed for stability. It turned out that (7.3) is fulfilled for all

β ≥ 1.42. In Fig. 5 the real part of the transformed kernel ˆ̃ℓ(z) of the approximated

DTBC on the circle z = β eiϕ with β = −1.42 is presented.

Finally we want to compare the error when using the different artificial boundary

conditions described previously. Since the discrete TBC (4.11) yields the exact nu-

merical solution to the discrete problem (4.1) (up to round–off errors), we will take
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this solution as a reference solution vref . In order to make the induced errors more

apparent we reduce the computational domain using a = −0.2 (which corresponds

to an asset price S = Eea ≈ 81.87). We plot in Fig. 6 the errors ‖v(n) − v
(n)
ref‖2

2

measured in the discrete ℓ2–norm (cf. (7.2)) on the computational interval.
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Fig. 3. Option values V at time t = 0 (i.e. at τ = eT ).
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Fig. 4. Time evolution of the free boundary xf (τ) (the largest value of xf (τ) is about 0.62)
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ℓ(z = β eiϕ) ≥ 1 for the approximated discrete transparent boundary
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The discretized TBC of Han & Wu (4.6) induced a smaller error than the dis-

cretized TBC of Mayfield (4.3) and the approximated discrete TBC (5.1) with

L = 10. However, increasing the number of exponentials to L = 20 the approxi-

mated discrete TBC outperforms all other boundary conditions in this comparison.

In the second example we will consider a longer expiry time which is a more

challenging task for the artificial boundary conditions.

Example 8.2. Now the parameters are expiry T = 3 years, risk–free interest rate

r = 0.03, dividend yield D0 = 0.07, volatility σ = 40% p.a., exercise price E = $100,

number of time steps N = 400 and mesh ratio ρ = 1. Fig. 7 shows the option values

V (S, 0) calculated with the exact discrete TBC (4.11) and a = −1.0.

The upper bound of the free boundary xf (τ ) was calculated to be x∗
f = 0.8722

and the largest value of xf (τ ) is about 0.71. Thus the estimate (2.5) is quite good

in this example. In Fig. 8 the time evolution of the free boundary xf (τ ) is plotted.

As in the previous example we compare the error when using the different ar-

tificial boundary conditions and shrink the domain using a = −0.2 to make the

differences in the approaches more visible. The resulting errors ‖v(n) − v
(n)
ref‖2

2 in

the discrete ℓ2–norm are shown in Fig. 9. The results are comparable to the ones

of Example 1 (cf. Fig. 6). The discretized TBC of Han & Wu (4.6) yielded more

accurate results than the discretized TBC of Mayfield (4.3) and the approximated

DTBC (5.1) with L = 10. Again the approximated DTBC with L = 20 exponentials

turned out to be the best in this example. Note that the accuracy of the approxi-

mated DTBCs can be easily improved by increasing the parameter L in (5.1).

20 30 40 50 60 70 80 90 100 110 120
0

5

10

15

20

25

30

35

O
pt

io
n 

va
lu

e 
V

(S
,T

)

Stock price S

Option values for a=−1.0

Fig. 7. Option values V at time t = 0 (i.e. at τ = eT ).
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9. Conclusions and Outlook

In this paper we have derived an exact discrete artificial boundary condition for

the Crank–Nicolson scheme for solving the Black–Scholes equation for the pricing

of American options.

To reduce the numerical effort we introduced a sum–of–exponentials approxi-

mation that leads to an artificial boundary condition that can be evaluated very

efficiently. To ensure stability we proved a simple criteria and showed that it held

for the exact artificial boundary condition. In the numerical examples all considered

artificial boundary conditions yielded satisfactory results. However, the introduced

approximated discrete TBC is faster (it does not increase the order of complexity of

the interior scheme) and more accurate than existing discretized TBCs. Moreover

its stability can be checked numerically in advance.

In this work we focused on standard options (known as plain–vanilla options) of

American type. However, future work will deal with extensions: forward and future

contracts, options on futures, general pay–off functions (e.g. ‘cash–or–nothing call’)

with transaction costs and instalment options. Also, we will derive our DTBC for

other schemes like Crandall–Douglas Scheme [28] which is fourth-order accurate in

‘space’ (i.e. asset price) or the high–order compact methods proposed in [35], [36],

[43]. Especially, the method of [36] is promising, since it is already an improvement

of the Han and Wu method [20] with a higher order interior scheme and more

accurate tracking of the free boundary.

Appendix

In the following table we list the coefficients {ql, bl} of the sum–of–exponentials

boundary condition with the convolution kernel (5.1) for the cases L = 5, and

L = 10 with the “normalized” mesh ratio ρ = 1.

The coefficients b∗l , q
∗
l for another mesh ratio ρ∗ can then be obtained from the

explicit formulas in the Transformation rule 5.2. A Maple Code that was used to to

calculate the coefficients ql, bl in the approximation (5.1) can be downloaded from

the first author’s homepage: www.math.tu-berlin.de/˜ehrhardt/.
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Table 1. Coefficients {ql, bl} of the sum–of–
exponentials ansatz (5.1).

ql bl

-4.1208652177 -.27811124956
1.0967679400 -.18959940485e-1

L=5 1.4922001539 -.10590997564
2.9552027966 -.55958332115
248.92225574 -3015.7838647

-9.9136756987937 -1.9875713184493
-4.4195037755990 -.20293132298409
-3.2680718769142 -.30208445829485e-1
1.0274687817901 -.28888450814493e-2
1.1170922091207 -.12593213109395e-1

L=10 1.2954421237783 -.33173856847540e-1
1.6304865463006 -.76395446779077e-1
2.3151684017807 -.18317560643301
4.1269461454773 -.58495741977923
16.738352410466 -8.1688546950878
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[33] D. Ševčovič, Analysis of the free boundary for the pricing of an American call option.
Euro J. Appl. Math 12 (2001) 25–37.



30 Matthias Ehrhardt and Ronald E. Mickens

[34] R. Seydel, Tools for Computational Finance, Second ed., Springer, 2003.
[35] D.Y. Tangman, A. Gopaul and M. Bhuruth, Numerical pricing of options using high–

order compact finite difference schemes, in press: J. Comput. Appl. Math. (2007).
[36] D.Y. Tangman, A. Gopaul and M. Bhuruth, A Fast High–Order Finite Difference

Algorithm for Pricing American Options, submitted to: J. Comput. Appl. Math.

[37] D. Tavella and C. Randall, Pricing financial instruments: The finite difference method,
John Wiley & Sons, 2000.

[38] L. H. Thomas, Elliptic problems in linear difference equations over a network, Watson

Sci. Comput. Lab. Rept., Columbia University, New York, 1949.
[39] P. Wilmott, S. Howison, and J. Dewynne, The Mathematics of Financial Derivatives,

A Student Introduction, Cambridge University Press, 2002.
[40] H. Windcliff, P. A. Forsyth, and K. R. Vetzal, Analysis of the stability of the linear

boundary condition for the Black–Scholes equation, J. Comp. Finance 8 (2004) 65–92.
[41] X. Wu and Z.-Z. Sun, Convergence of difference scheme for heat equation in un-

bounded domains using artificial boundary conditions, Appl. Numer. Math. 50 (2004)
261–277.

[42] A.I. Zadorin and A.V. Chekanov, Numerical method for three–point vector difference
schemes on infinite interval, Int. J. Numer. Anal. Model. 5 (2008) 190–205.

[43] J. Zhao, M. Davison and R.M. Corless, Compact finite difference method for American
option pricing, J. Comput. Appl. Math. 206 (2007) 306–321.

[44] A. Zisowsky and M. Ehrhardt, Discrete Transparent Boundary Conditions for
Parabolic Systems, Math. Comput. Modelling 43 (2006) 294–309.

[45] A. Zisowsky and M. Ehrhardt, Discrete artificial boundary conditions for nonlinear
Schrdinger equations, in press: Math. Comput. Modelling, 2007.


