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Abstract. In the present paper we complement the work in [2] with presenting the
analytical framework for general optimal boundary control problems of the Boussinesq
approximation. We prove existence of optimal controls, use results of [6] to prove ex-
istence and uniqueness of solutions to state and the adjoint system, and derive first
order necessary as well as second order sufficient optimality conditions.
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1 Introduction

In the present work we analyze the following optimal boundary control problem
considered in [2];

(P )
{

minJ(y, θ, u)
s.t. u ∈ Uad

and (1)

yt + (y · ∇)y − ν∆y +∇p + β θ g = 0 in ΩT , (2)
−div y = 0 in ΩT , (3)
θt + (y · ∇)θ − χ∆θ − f = 0 in ΩT , (4)

y = 0, on ΓT ,
χ ∂θ

∂n + bθ = Bu on ΓT ,

}
(5)

with initial conditions are chosen as

y = 0 in Ω, (6)
θ(0) = θ0 in Ω, (7)

with a given temperature field θ0. Here, Ω ⊂ IR2 denotes the bounded flow
domain with boundary Γ , and the time horizon is given by [0, T ]. Further, y =
(y1, y2, y3) denotes the flow velocity vector field, p a pseudo pressure scaled by the
density1, and θ denotes the temperature. Furthermore, the function Bu denotes
1 pseudo pressure p here means that p has the form p̂−ρ0(x1 +x2 +x2) with the scalar

pressure p̂ and the mean density ρ0
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the temperature flux on the boundary with u serving as abstract control variable.
System (2)-(7) represents a mathematical model for the thermally driven flow
of a semi-conductor melt with the viscosity ν > 0, thermometric conductivity
χ > 0, and thermal expansion coefficient β > 0, compare [2]. The force of gravity
is denoted by g ∈ IR3. Further ΩT := Ω × [0, T ], ΓT := Γ × [0, T ], and b > 0
denotes a coefficient which models the heat conductivity of the container walls
which form the domain boundary Γ . B : U → L2(0, T ;H−1/2(Γ )) denotes the
bounded, linear control operator which maps abstract controls of the Hilbert
space U to feasible temperature boundary controls, and Uad ⊆ U the closed and
convex set of admissible controls.

We consider cost functionals of separated type, i.e.

J(y, θ, u) = J1(y, θ) + J2(u) ,

where J1 : Wy ×Wθ → IR, J2 : U → IR are bounded from below, and are weakly
lower semi–continuous, twice continuously Fréchet-differentiable with Lipschitz
continuous second derivatives. Further, J2 is assumed to be radially unbounded,
i.e. J2(u) →∞ for ‖u‖U →∞. The spaces Wy,Wθ are specified in Section 2.

The following frequently considered examples are covered by this setting.

Example 1. Typical cost functionals are given by

J1(y, θ) =
1
2

∫ T

0

∫
Ω

[|y − ȳ|2 + |θ − θ̄|2] dΩdt , J2(u) =
α

2
‖u‖2U , (8)

J1(y, θ) =
1
2

∫ T

0

∫
Ω

[|curl y|2 + |∇θ|2] dΩdt , J2(u) =
α

2
‖u‖2U , (9)

where ȳ ∈ L2(Q)2 and θ̄ ∈ L2(Q) denote desired velocity and temperature fields
respectively. The constant α > 0 denotes a weighting factor for the control costs.

Typical control operators and control spaces are given by

1. U = L2(ΓT ), B := I, where I : U → L2(0, T ;H−1/2(Γ )) denotes the injec-
tion. Uad := {u ∈ L2(ΓT ); a ≤ u ≤ b a.e. on ΓT }, where a, b ∈ L∞(ΓT ).

2. U = L2(0, T )m, Bu(t) :=
m∑

i=1

ui(t)fi, where fi ∈ H−1/2(Γ ), i = 1, . . . ,m.

Uad := {u ∈ L2(0, T ); a ≤ u ≤ b a.e. on (0, T )}, where a, b ∈ L∞(0, T ) .

3. U = IRm, Bu(t) :=
m∑

i=1

uigi(t), where gi ∈ L2(0, T ;H−1/2(Γ )), i = 1, . . . ,m.

Uad := {u ∈ IRm; a ≤ u ≤ b a.e. on (0, T )}, where a < b componentwise in
IRm.

4. U = {u ∈ H1(0, T ;L2(Γ ));u(0) = 0} ≡ H0, where B := I, with I : U →
L2(0, T ;H−1/2(Γ )) denoting the injection. Uad = U .

A discussion of the related literature [1,4,5,7–14] is given in [2]. Let us em-
phasize, that Belmiloudi in [5] discusses Robin boundary control in three spatial
dimensions for a model related to the Boussinesq approximation, where he im-
poses certain smallness assumptions on the data and on the controls. The scope
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of the present paper differs from that of Belmiloudi [5] in that it focusses on
a functional analytic framework which is tailored to the algorithmic approach
presented in [2]. In particular more general boundary controls are allowed and
first and second order necessary, and second order suffient optimality conditions
are presented. Moreover a different proof technique is used which is based on
Gajewski’s work [6].

Above, and from now onwards, derivatives w.r.t. time are denoted by the
subscript t, i.e. vt := ∂v

∂t .

2 Mathematical model

In order to formulate problem (P) mathematically we introduce the solenoidal
spaces

H = {v ∈ L2(Ω), div v = 0} , V = {v ∈ H1
0 (Ω), div v = 0} ,

and set

Wy = {v ∈ L2(V ), vt ∈ L2(V ∗)} , Wθ = {θ ∈ L2(H1(Ω)), θt ∈ L2(H1(Ω)∗)} .

Here, we abbreviate Lp(Z) = Lp(0, T ;Z) for Z denoting a Banach space.
Next, we introduce the operator

e : Wy ×Wθ × U → L2(V ∗)×H × L2(H1(Ω)∗)× L2(Ω) =: Z∗

by

e(y, θ, u) = (yt + (y · ∇)y − ν∆ y + β θg, y(0),
θt + (y · ∇)θ − χ∆ θ + E(bθ −Bu), θ(0)) ,

where
E : L2(H−1/2(Γ )) → L2(H1(Ω)∗)

defines a linear bounded operator whose action is defined by

〈E z, v〉L2(H1(Ω)∗),L2(H1(Ω)) =
∫ T

0

〈z, γv〉H−1/2(Γ )),H1/2(Γ ) dt,

with γ : H1(Ω) → H1/2(Γ ) denoting the trace operator. The action of e applied
to an element
z = (z1, z2, z3, z4) ∈ Z = L2(V )×H × L2(H1(Ω))× L2(Ω) is given by

〈e(y, θ, u), z〉Z∗Z =
∫ T

0

〈yt, z1〉V ∗V dt +
∫ T

0

∫
Ω

ν∇y∇z1 + (y · ∇)yz1 dxdt+

+ (y(0), z2)H +
∫ T

0

〈θt, z3〉H1∗H1 dt +
∫ T

0

∫
Ω

χ∇θ∇z3 + (y · ∇)θz3 dxdt+

+
∫ T

0

[
∫

Γ

bθz3 ds− 〈Bu, z3〉H−1/2(Γ )H1/2(Γ )] dt + (θ(0), z4)L2(Ω)

=: 〈(e1, e2, e3, e4)(y, θ, u), z〉Z∗Z .
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Using e, the system of state equations can be written in the form

e(y, θ, u) = 0 in Z∗ . (10)

Considering [6, Bemerkung 2.1] together with [6, Satz 3.1,Folgerung 5.1] gives

Theorem 1. Let f ∈ L2(V ∗), q ∈ L2(H1(Ω)∗), y0 ∈ H, θ0 ∈ L2(Ω) and u ∈ U .
Then

e(y, θ, u) = (f, y0, q, θ0) in Z∗

admits a unique solution (y, θ) ∈ Wy ×Wθ.

For the differentiability of the operator e we prove

Theorem 2. The operator e is infinitely often Fréchet-differentiable with Lips-
chitz continuous second derivatives and vanishing derivatives of third and higher
order. For the first and second derivatives there holds

ey(y, θ, u) v = (vt + (v · ∇)y + (y · ∇)v − ν∆ v, v(0), (v · ∇)θ, 0)
eθ(y, θ, u) s = (β sg, 0, st + (y · ∇)s− χ∆ s + E(bs), s(0))
eu(y, θ, u) ũ = (0, 0, E(−Bũ), 0)
eyθ[v, s] = (0, 0, (v · ∇)s, 0)
eθy[s, v] = (0, 0, (v · ∇)s, 0)
eyy[v1, v2] = ((v2 · ∇)v1 + (v1 · ∇)v2, 0, 0, 0) ,

all other derivatives vanish.

Proof. Since e2, e4 represent linear operators, it is sufficient to consider e1 and
e3. Let

bθ(y, θ, χ) := 〈(y · ∇)θ, χ〉H1∗H1

and
by(y, v, φ) := 〈(y · ∇)v, φ〉V ∗V .

Since we only consider two-dimensional spatial domains, it follows from [15,
p. 293] that

|bθ(y, θ, χ)|2 ≤ 2‖y‖H‖y‖V ‖θ‖L2‖θ‖H1‖χ‖2H1 (11)

and
|by(y, v, φ)|2 ≤ 2‖y‖H‖y‖V ‖v‖H‖v‖V ‖φ‖2V . (12)
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hold. In order to argue Lipschitz continuity of e1, we estimate the difference

〈e1(y, θ, u)− e1(ỹ, θ̃, ũ), φ〉L2(V ∗)L2(V ) =
〈(y − ỹ)t + [(y − ỹ) · ∇]ỹ + (y · ∇)(y − ỹ), φ〉L2(V ∗)L2(V )

+ ν

∫ T

0

(∇(y − ỹ),∇φ)(L2)2dt−
∫ T

0

((θ − θ̃)g, φ)L2dt

≤
√

2
∫ T

0

‖y − ỹ‖1/2
H ‖y − ỹ‖1/2

V (‖ỹ‖1/2
H ‖ỹ‖1/2

V + ‖y‖1/2
H ‖y‖1/2

V )‖φ‖V dt

+ C{‖θ − θ̃‖Wθ
+ ‖y − ỹ‖Wy

}‖φ‖L2(V )

≤ C

‖y − ỹ‖1/2
C(H)

(
‖ỹ‖1/2

C(H) + ‖y‖1/2
C(H)

)(∫ T

0

‖y − ỹ‖V (‖ỹ‖V + ‖y‖V ) dt

)1/2

+‖θ − θ̃‖Wθ
+ ‖y − ỹ‖Wy

}
‖φ‖L2(V )

≤ C
{

(‖y‖Wy + ‖ỹ‖Wy + 1)‖y − ỹ‖Wy + ‖θ − θ̃‖Wθ

}
‖φ‖L2(V ) .

Here, we have used the continuous embeddings

Wy,Wθ ↪→ C([0, T ];H), C([0, T ];L2(Ω)) .

A similar estimate holds for e3. In order to argue Fréchet differentiability, it is
sufficient to consider component e3, since component e1 admits a similar struc-
ture. We obtain

e3(y, θ, u)− e3(ỹ, θ̃, ũ)− e3
(y,θ,u)(y, θ, u)(y− ỹ, θ− θ̃, u− ũ) = [(y− ỹ) · ∇](θ− θ̃) ,

so that estimation similar as above yields

‖e3(y, θ, u)− e3(ỹ, θ̃, ũ)− e3
(y,θ,u)(y, θ, u)(y − ỹ, θ − θ̃, u− ũ)‖L2(H1)

= sup
‖χ‖L2(H1)=1

∫ T

0

|bθ(y − ỹ, θ − θ̃, χ)| dt

≤ C‖y − ỹ‖Wy
‖θ − θ̃‖Wθ

.

The expression for the second derivative can be verified by an estimate analogous
to the one for the first derivative. The second derivative is independent of the
point at which it is taken, and thus it is necessarily Lipschitz continuous.

From here onwards, it is appropriate to set x = (y, θ), W = Wy × Wθ, and to
denote derivatives with respect to (y, θ) accordingly.

Lemma 1. Let (x, u) ∈ W ×U . Then ex(x, u) : W → Z∗ is a homeomorphism,
and thus also e∗x : Z → W ∗.
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Proof. Let (f, v0, h, s0) ∈ Z∗. It suffices to prove that the system

vt − ν∆v + (y · ∇)v + (v · ∇)y +∇pv + β sg = f (13)
v(0) = v0 (14)
st − χ∆s + (y · ∇)s + (v · ∇)θ = h (15)
s(0) = s0 (16)

admits a unique solution u = (v, s). With a = (a1, a2, a3), b = (b1, b2, b3) we set

B(a, b) =
(

(a1,2 · ∇)b1,2

(a1,2 · ∇)b3

)
, C(b) =

(
β b3g
0

)
and for u = (v1, v2, s) we define

Au =

 ν∆v1

ν∆v2

χ∆s

 and F =
(

f
h

)
.

Then system (13) may be written as initial value problem in the form

u′ + Au + B(x, u) + B(u, x) + C(u) = F , u ∈ W , u(0) = (v0, s0) ,

and admits exactly the form of the system [6, 2.15] if there Br(u, u) is replaced
by B(x, u)+B(u, x)+C(u). This completes the proof since the analysis presented
in [6] also applies to this slightly modified situation. �

The action of the adjoint of the operator ex applied to z ∈ Z as an element of
W ∗ is defined as

〈ex(x, u)∗z, x̃〉W∗W = 〈ex(x, u)x̃, z〉Z∗Z .

From lemma 1 we have

‖ex(x, u)∗‖L(Z,W∗) = ‖ex(x, u)‖L(W,Z∗) ,

and for g ∈ W ∗, the unique solution w ∈ Z of ex(x, u)w = g in W ∗ satisfies

‖w‖Z ≤ C‖g‖W∗ . (17)

The constant C depends on u through x(u). Due to theorem 1, it is meaningful
to define the reduced functional

Ĵ(u) = J(x(u), u) ,

where for given u ∈ U the function x(u) denotes the unique solution of e(x, u) =
0. Our optimization problem (1) then can be rewritten in the form

(P̂ ) min
u∈Uad

Ĵ(u) .
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Theorem 3. Problem (P̂ ) admits a solution.

Proof. Since Ĵ is bounded from below, we have d := infu∈Uad
Ĵ ≥ −∞. Let

(un) denote a minimizing sequence, i.e. Ĵ(un) → d for n → ∞. Since J2 is
radially unbounded we infer ‖un‖U ≤ M uniformly in n, so that un ⇀ u for a
subsequence. Since Uad is convex and closed, it is weakly closed so that u ∈ Uad

holds. For all un exists a unique xn satisfying e(xn, un) = 0 and ‖xn‖W ≤ M
for all n. Since W is a Hilbert space, we have xn ⇀ x for a further subsequence.
Because of the compact embedding W ↪→ L2([0, T ];H) × L2(Q), we also have
xn → x ∈ W in L2(H)×L2(Q) for a further subsequence. Moreover, W ↪→ C(H),
so that xn ⇀ x weak-∗ in L∞(H)× L∞(L2) for a further subsequence. Since B
is bounded and linear it is weakly continuous so that we finally can proceed as
in [15, chapter 3] to pass to the limit in the equation 0 = e(xn, un) → e(x, u) for
n →∞, i.e. x = x(u).

Finally, u is a solution to (P̂ ) since the cost functional is weakly lower semi-
continuous, so that Ĵ(u) ≤ lim infn→∞ Ĵ(un) = d.

As a consequence of the previous theorems, the implicit function theorem, and
the suppositions on the functional J , the functional Ĵ is twice Fréchet differen-
tiable with Lipschitz continuous second derivative.

In order to formulate necessary and sufficient optimality conditions we next
specify the first and the second derivative of Ĵ . For the first derivative we obtain

〈Ĵ ′(u), δu〉U∗U = 〈Jx(x, u), x′(u)δu〉W∗W + 〈Ju(x, u), δu〉U∗U .

Differentiation of the state equation e(x, u) = 0 yields

ex(x, u)x′(u) + eu(x, u) = 0 in Z∗

and thus
x′(u)δu = −ex(x, u)−1eu(x, u)δu .

Introducing the adjoint variable λ = (µ, µ0, κ, κ0) ∈ Z by

λ = ex(x, u)−∗Jx(x, u)

we obtain
Ĵ ′(u) = Ju(x, u)− eu(x, u)∗λ .

Note that in our setting eu(x, u∗) = (0, 0,−B∗, 0) holds.
Analogously, we obtain the second derivative of Ĵ by differentiating ex(x, u) =

0 one more time to obtain

x′′(u)(δu, δv) = −e−1
x exx(x, u)(x′(u)δu, x′(u)δv) .

Using this, we find

〈Ĵ ′′(u)δu, δv〉U∗U = 〈Jxx(x, u)x′(u)δu, x′(u)δv〉W∗W−
〈λ, exx(x, u)(x′(u)δu, x′(u)δv)〉Z,Z∗ + 〈Juu(x, u)δu, δv〉U∗,U .

For example 1 we have



8 G. Bärwolff and M. Hinze

• B∗ : L2(0, T ;H1/2(Γ )) → L2(ΓT )∗ ≡ L2(ΓT ), so that B∗ denotes the injec-
tion.

• B∗ : L2(0, T ;H1/2(Γ )) → L2(0, T )m, v 7→ (B∗v)i(t) = 〈fi, v〉H−1/2(Γ )H1/2(Γ ),
for i = 1, . . . ,m.

• B∗ : L2(0, T ;H1/2(Γ )) → IRm v 7→ (B∗v)i =
T∫
0

〈gi(t), v(t)〉H−1/2(Γ )H1/2(Γ )dt,

for i = 1, . . . ,m.
• B∗ : L2(0, T ;H1/2(Γ )) → H∗

0 denotes the injection and we have

〈Bu, f〉L2(0,T ;H−1/2(Γ ))L2(0,T ;H1/2(Γ )) =

〈u, B∗f〉H0H∗
0

= 〈u, f〉H0H∗
0

=

(u, Rf)H0 =
∫ T

0

∫
Γ

[uRf + ut(Rf)t]dt ,

where R : H∗
0 → H0 denotes the Riesz operator, whose action in the present

situation is defined through

w = Rf ⇐⇒
∫ T

0

∫
Γ

[vw + vtwt]dΓdt = 〈v, f〉H0H∗
0
∀ v ∈ H0 .

Thus
B∗f = −wtt + w .

For the cost functionals of example 1 we find

〈Jx(x, u), x̃〉W∗W =

{∫
Q

[(y − ȳ)ỹ + (θ − θ̄)θ̃dxdt∫
Q

[−curl y curlỹ +∇θ∇θ̃]dxdt,

and 〈Ju(x, u), v〉U∗,U = α〈u, v〉U∗,U , so that in fact Jx(x, u) is an element of
L2(Q)2 × L2(Q), or L2(V ∗)× L2(0, T ;H1(Ω)∗), respectively. In these cases the
adjoint variable has the form λ = (µ, µ0, κ, κ0) with µ ∈ L2(V ), µt ∈ L4/3(V ∗)∩
W ∗

y , κ ∈ L2(H1(Ω)), κt ∈ L4/3(H1(Ω))∗ ∩W ∗
θ (compare [11]),

−µt − ν∆µ + (∇y)tµ− (y · ∇)µ +∇ξ = −κ∇θ +
{

(y − ȳ)
−curl curl y in ΩT ,

−div µ = 0 in ΩT ,
µ = 0 on ΓT ,

µ(T ) = 0 in Ω,

−κt − χ∆κ− y · ∇κ = −β g · µ +
{

(θ − θ̄)
−∆θ

in ΩT ,

χ ∂κ
∂n + bκ = 0 on Γ,

κ(T ) = 0 in Ω,


(18)

and µ0 = µ(0), κ0 = κ(0). We are now in the position to specify the first order
necessary optimality condition for problem P̂ . Since Ĵ is Fréchet differentiable
it reads

〈Ĵ ′(u), v − u〉U∗U ≥ 0 for all v ∈ Uad .
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Finally let us specify a second order sufficient condition for a solution u of
our control problem.

Theorem 4. Let u denote a solution of (P̂ ), such that Jx(x, u) is sufficiently
small, where x denotes the state associated to u. Furthermore let us assume that
Juu(x, u) is positive definite, i.e.

〈Juu(x, u)v, v〉U∗U ≥ C‖v‖2U ,

holds with some positive constant C, and Jxx(x, u) is positive semi definite. Then
Ĵ ′′(u) is positive definite.

Proof. We have

〈Ĵ ′′(u)v, v〉U∗U = 〈Jxx(x, u)x′(u)v, x′(u)v〉W∗W−
〈λ, exx(x, u)(x′(u)v, x′(u)v)〉Z,Z∗ + 〈Juu(x, u)v, v〉U∗,U

≥ C‖v‖2U − 〈λ, exx(x, u)(x′(u)v, x′(u)v)〉Z,Z∗

≥ C‖v‖2U − c(u)‖v‖2U‖λ‖Z ≥ C‖v‖2U − c(u)‖v‖2U‖Jx(x, u)‖W∗ ≥ C

2
‖v‖2U ,

if c(u)‖Jx(x, u)‖W∗ ≤ C
2 .

Let us finally comment on the smallness assumption on Jx. For the tracking-
type functional of Example 1 this assumption is satisfied if in the optimal solution
the flowfield y and the temperature field θ are close to the desired fields ȳ and
θ̄, say. In the case of minimizing the curl and the temperature stresses Jx is
small if these quantities are small in the optimal solution, which is an realistic
assumption.

3 Conclusion

In the present work we provide an analytical framework for optimal boundary
control of instationary Boussinesq systems in two spatial dimensions. Among
other things, we use the results of [6] to prove existence and uniqueness of so-
lutions to the adjoint of the Boussinesq approximation. Furthermore we derive
a first order necessary optimality condition and prove a second order sufficient
optimality condition under some smallness assumptions on the derivatives of the
cost functional.
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Elektromagnetische Strömungsbeeinflussung in Metallurgie, Kristallzüchtung und
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