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Based on the example of wear of polymers, which exhibit a power-law time variation of the
wear loss under constant loading conditions, a fractional time-derivative wear equation has
been introduced. The wear contact problem with a fixed contact zone is solved using the
known method of separation of spatial and time variables. It is shown that during the wear
process, the contact pressure approaches a uniform distribution over the contact area,
which is termed as a quasi-steady-state solution, since the mean volumetric wear rate
does not tend to become constant. It is of interest that the contact pressure variation
displays a decaying oscillatory nature in the case of severe wear, when the mean
volumetric wear rate increases with time.
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1 INTRODUCTION

Wear is a tribological phenomenon that accompanies contact interaction of solids with interfacial
sliding between their surfaces and manifests itself primarily in gradual loss of material due to the
subsurface damage accumulation and surface degradation (Zmitrowicz, 2006). In wear material
testing, the wear loss is usually measured in terms of the volume of lost material, V, which yields the
wear depth, w, by relating to the area of contact, A, as

w � V

A
. (1)

Eq. 1 tentatively assumes that the wear loss is the same at each point of the contact zone, and this
condition is characteristic of the steady-state wear process (Dundurs and Comninou, 1980; Páczelt
and Mróz, 2007).

Usually, sliding wear tests are performed under constant normal loading conditions, which are
characterized by either contact load, P, or mean contact pressure,

�p � P

A
. (2)

In the cases of mild or moderate wear, after some initial running-in (Wright and Kukureka, 2001;
Khonsari et al., 2021) or wearing-in (Blau, 2005) period of time, the condition of steady state
p(x, t) ≡ �p is realized at the contact interface and maintained for a long time period, during which
the wear material characteristics have been measured.

In the steady-state wear process, the linear wear rate, defined as the time derivative _w � dw/dt, is
constant in time, and moreover, the contact pressure p achieves a constant value over the entire
contact zone. So, in the steady-state wear regime, the volumetric wear loss V will be a linear function
of the time variable t, and thus, the linear wear rate can be evaluated as
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_w � V t2( ) − V t1( )
A t2 − t1( ) , (3)

where t1 and t2 are any two different moments of time taken
during the steady-state period.

In many cases, the wear equation can be written in the
following form (Kragelsky, 1965):

V � kwPvt. (4)
Here, v is the sliding velocity, and kw is the wear coefficient. In

view of Eqs 1, 2, Eq. 4 can be represented as

_w � kw �pv, (5)
which is known as Archard’s equation (Meng and Ludema, 1995),
though similar wear equations were introduced earlier by Reye
(1860), Khrushchov and Babichev (1941), and Holm (1946). The
wear coefficient kw is determined during the steady-state
conditions by using Eqs 3, 5.

A generalization of the wear Eq. 4, which was suggested by
Rhee (1970) for polymer-bonded friction materials, takes the
form

V � KwP
γvβtα, (6)

where Kw is the wear factor, and α, β, γ are parameters. However,
while Eq. 6 has been successfully used to predict the wear
resistance of polymer composite materials designed for
extreme environmental conditions (Gardos, 1982; Sedakova
and Kozyrev, 2021), there is a problem with applying the wear
Eq. 6 for solving the wear contact problems with the spatial-
temporal variation of the contact pressures (Grzelczyk and
Awrejcewicz, 2015; Ciavarella et al., 2020).

In recent years, there has been a growing interest in modeling
severe wear (Nguyen et al., 2018; Popov and Pohrt, 2018; Li et al.,
2020). In a broad sense, severe wear is defined as a form of wear
characterized by a rapid increase in the amount and size of wear
particles (Blau, 1992). In many situations, the regime of severe

wear can be characterized by the absence of any steady-state
regime under constant conditions. This is so, for example, in wear
of polymers (Viswanath and Bellow, 1995), when under constant
normal load and sliding speed (see Figure 1), the wear volume
loss V varies proportionally to some power of time, that is tα, and
therefore, the wear rate _w will be a function of time (proportional
to tα−1) during the entire testing period.

It is clear that in experiments like that, whose results are shown
in Figure 1, Eq. 3 is not applicable. Instead we can consider the
ratio V(t)/t that defines the mean volumetric wear rate. The two
cases α = 0.812 and α = 1.595 differ by the decreasing/increasing
trend of this quantity. The wear process with increasing in time
mean volumetric wear rate (that is when α > 1) will be termed as
severe wear in a narrow sense. At the same time, the case α < 1
may called mild wear, as the wear rate decreases towards zero
during the wear process.

Further, when comparing the Archard Eq. 4 with the Rhee Eq.
6, we see that for polymers the Archard wear coefficient kw, which
is evaluated as the ratio V/Pvt, is found to depend on time, that is
kw ~ tα − 1. This means that for polymer-bonded friction
materials, for which the Rhee wear equation applies, the
concept of wear coefficient as a constant characteristic of
tribo-pair is not applicable. However, the two cases α < 1 and
α > 1 drastically differ in the time variation of the linear wear rate.
In what follows, to avoid misinterpretations of mild and severe
wear regimes, these two cases will be termed as the sub-Archard
and super-Archard regimes of wear.

However, a natural concern arises about the effect of the
wearing-in period, when the initial contact pressure evolves
due to the contact geometry adaptation (Argatov I and Chai,
2020). In a pin-on-disk sliding wear tests, when a wearable pin is
put on an abrasive disk, there exists a small initial gap between the
surfaces brought into contact (see Figure 2A), which influences
the initial contact pressure, p(x, t) at t = 0, in the loaded state (see
Figure 2B).

During the wear process, because of the contact geometry
adaptation, the contact pressure p(x, t) evolves in time and
approaches a steady-state pattern of uniform distribution over
the contact zone (see Figure 3A). The corresponding steady-state
shape of the pin surface facing the disk is characterized by the
limiting gap function, Δ∞(x), which does not depend on the initial
gap (see Figure 3B).

FIGURE 1 | Volume loss vs. time on linear coordinates with best fit
power-law lines for Delrin against two counterparts (based on the
experimental data taken obtained by Viswanath and Bellow (1995)).

FIGURE 2 | Initial contact configuration: (A) Unloaded state; (B)
Loaded state.
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When the theoretical modeling framework of the contact
geometry adaptation (Figures 2, 3) is applied to the case of
super-Archard wear, the main problem to solve in this way is a
generalization of the experimentally observed non-stationary
relation between _w and �p � const for the practically important
case p ≠ const. To date there are no publications on
generalizations of the Rhee model (6) similar to the Archard
wear equation, which follows from Eq. 5 by replacing the mean
contact pressure �p with the contact pressure p. It should be
stressed that the same approach does not work for the Rhee wear
Eq. 6. To this extent, the concept of fractional time-derivative can
be efficiently applied to gain insight into the contact pressure
evolution in severe wear.

In recent years, the apparatus of fractional differentiation
has been used in mechanics, in particular, to generalize models
of diffusion (Mainardi, 1996), rough contact (Argatov, 2003),
and viscoelasticity (Su et al., 2021). In the present study, we use
the classical Riemann–Liouville derivative. It should be noted
that a number of different approaches exist to introduce a
more general notion of the derivative (Ortigueira and
Machado, 2015). In particular, a so-called fractal fractional
derivative (Chen et al., 2010; He, 2011) does not involve the
integral convolution and represents a local operator. However,
whereas fractals have emerged as a useful mathematical tool in
tribological research (Ling, 1990; Borodich and Onishchenko,
1993; Borodich, 1999), the present study pioneers the use of
concept of the fractional derivative in modeling wear
processes.

Since the theory of wear contact problem is well established
(Aleksandrov and Kovalenko, 1980; Kovalenko, 1985), we adopt
the approach suggested in the constructive review (Argatov I and
Chai Y. S, 2020) and take a general point of view on the
description of the pin/disk contact interaction, which is
applicable both in the three- and two-dimensional settings. To
illustrate the contact pressure evolution, we consider a two-
dimensional wear contact problem (Galin, 1976), for which a
detailed analysis has been available in the literature (Aleksandrov
et al., 1978; Argatov and Fadin, 2011). It is anticipated that with
certain modifications the fractional time-derivative approach
developed below can be applied to model other temporary-
spatial severe damage processes like mechanochemical
corrosion (Sedova and Pronina, 2022), wear/scratch damage
(Dasari et al., 2009), and wear of metamaterials (Garland
et al., 2020).

The rest of the paper is organized as follows. In Section 2, we
introduce a fractional time-derivative (FTD) wear equation as a
straightforward generalization of the Archard wear equation by
replacing the time derivative in the definition of the linear wear
rate with appropriate fractional derivative. The FTD wear
equation when applied under constant load conditions
predicts a power-law time variation for the volumetric wear
similar to the Rhee wear equation. This observation explains the
main goal of the present study and that is to generalize the Rhee
wear equation to the case of non-constant (spatial-temporal)
variations of the contact pressure. It is hypothesized that the
FTD wear equation provides such a generalization. The main
body of the paper is devoted to the analysis of implications
drawn from the solution of the model wear contact problem
formulated in Section 3. In particular, the existence of a quasi-
steady state is identified in Section 4 and, using the method of
variables separation (Section 5), the evaluation of the contact
pressure towards the quasi-steady state is considered in detail in
Section 6. A particularly novel aspect—oscillatory nature—of
the contact pressure variations is discussed in Section 7. The
spatial-temporal variation of the worn profile is presented in
Section 8. Finally, in Section 9, we discuss the obtained results
and further generalizations and formulate the conclusions.

2 FRACTIONAL TIME-DERIVATIVE WEAR
EQUATION

In its basic version due to Archard (1953), the wear equation
linearly relates the wear rate at a point with coordinate x and at
time t to the contact pressure as

_w x, t( ) � κp x, t( ) (7)
with some constant κ, which is related to the wear coefficient, kw,
as κ = kwv, where v is the speed of relative sliding at the contact
interface.

Under the assumption that the worn material is absent at the
initial moment t = 0 , that is w(x, 0) = 0, Eq. 7 is equivalent to the
relation

w x, t( ) � κ∫
t

0

p x, τ( ) dτ. (8)

The integral form Eq. 8 of the wear Eq. 7 is used in
formulating the wear contact problems (Galin, 1976; Argatov
and Tato, 2012), as the wear depth w(x, t) directly describes the
evolution of the contact geometry in the direction normal to the
contact interface.

Let us replace the differentiation with respect to time on the
left-hand side of Eq. 7 with a more general notion of the
derivative. In particular, we make use of the fractional
Riemann–Liouville derivative of order α, which will be
denoted by Dα

t . In this way, we straightforwardly arrive at the
equation

Dα
t w x, t( ) � κp x, t( ), (9)

FIGURE 3 | Steady-state contact configuration: (A) Loaded state; (B)
Unloaded state.
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which contains two parameters, namely, κ and α.
In the framework of fractional calculus, from Eq. 9, it follows

that

w x, t( ) � κ

Γ α( ) ∫
t

0

p x, τ( )
t − τ( )1−α dτ, (10)

where Γ(x) is the gamma function.
The right-hand side of Eq. 10 contains the Riemann–Liouville

integral of order α which is consistent with the inversion of the
respective fractional derivative appearing in Eq. 9.

It is to emphasize that by taking α = 1 in Eq. 10, in view of the
normalization condition Γ(1) = 1, we recover the integral form
Eq. 8 of the non-fractional Archard wear equation. Therefore, it
makes sense to assume that 0 < α < 2, since Eq. 9 generalizes
Archard’s Eq. 7, which exactly corresponds to the basic case α = 1.

Remark 1. Observe that in the case of steady state, when
p(x, t) ≡ �p, Eq. 10 yields

w � κ�p

αΓ α( )t
α, (11)

and thus, themean linear wear rate (evaluated from the very onset
of the wear process) will be non-constant

w

t
� κ�p

αΓ α( )t
α−1.

In view of Eq. 1, from Eq. 11, it follows that

V � κP

αΓ α( )t
α. (12)

Eq. 12 can be fitted to the experimental data shown in Figure 1
to uniquely determine both parameters κ and α.

3 WEAR CONTACT PROBLEM
FORMULATION

Following Komogortsev (1985) and Argatov and Fadin (2011),
we consider a wear contact problem for an elastic solid (pin) in
contact with a rigid base (disk) with a fixed zone of contact, x ∈ ω,
under a constant normal load, P. In this case, the resultant of the
contact pressure p(x, t) satisfies the equilibrium equation

∫
ω

p x, t( ) dx � P, t≥ 0. (13)

The wear contact problem can be reduced to the following
governing integral equation in the domain x ∈ ω, t ≥ 0, which
involves two unknowns, namely, the contact pressure p(x, t) and
the contact displacement δ0(t):

∫
ω

K x, ξ( )p ξ, t( ) dξ � δ0 t( ) − Δ0 x( ) + w x, t( )[ ]. (14)

Here,K(x, ξ) is a given surface-influence function (with x and ξ
being the points of observation and integration), Δ0(x) is a known

function of initial gap between the contacting surfaces, andw(x, t)
is the wear depth which is related to the contact pressure p(x, t) by
Eq. 10. It is to note that the gap function is usually subject to the
centering condition Δ0(0) = 0.

We recall that the surface-influence function K(x, ξ) is defined
as the normal component of the corresponding vector Green’s
function restricted to the surface of the elastic solid, and thus, the
equilibrium equations inside the elastic solid (Shillor et al., 2004)
are naturally satisfied by the construction of the function K(x, ξ).
The reduction of the wear contact problem to the corresponding
governing integral equation is well known (Argatov I and Chai Y.
S, 2020) and allows applying the boundary element method
(Sfantos and Aliabadi, 2006) for the direct evaluation of the
contact pressures.

4 UNIFORM CONTACT PRESSURE AS A
QUASI-STEADY STATE

By integrating Eq. 10 over the contact interval and taking into
account the equilibrium Eq. 13, we derive the following the
relations for the volumetric wear loss:

V t( ) � ∫
ω

w x, t( ) dx

� κ

Γ α( ) ∫
t

0

dτ

t − τ( )1−α ∫
ω

p x, τ( ) dx � κPtα

αΓ α( ).
(15)

Thus, making use of Eq. 15 and following the previously
introduced method (Komogortsev, 1985), we can reduce the
governing integral Eq. 14 to the equation

∫
ω

K x, ξ( ) − 1
A
K1 ξ( )( ) p ξ, t( ) − p ξ, 0( )[ ] dξ + w x, t( )

� κP

A

tα

αΓ α( ), (16)

where x ∈ ω and t > 0. Moreover, A denotes the measure of the
contact area defined as

A � ∫
ω

dx, (17)

and we have introduced the notation

K1 ξ( ) � ∫
ω

K x, ξ( ) dx. (18)

The form of Eq. 16 is preferable in wear contact problems
(Komogortsev, 1985), as the effect of the initial contact
configuration, which is associated with the gap function Δ0(x), is
now incorporated into the initial contact pressure density p(x, 0).

Now, let us introduce the notation for the mean contact
pressure and the point-wise deviation of the contact pressure
from its mean value

�p � P

A
, q x, t( ) � p x, t( ) − �p. (19)
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Thus, in view of (Eqs 15, 19), Eq. 16 can be rewritten in the
form

∫
ω

K2 x, ξ( ) q ξ, t( ) − q ξ, 0( )[ ] dξ + κ

Γ α( ) ∫
t

0

q x, τ( )
t − τ( )1−α dτ � 0,

(20)
where x ∈ ω and t > 0, and we have introduced the notation

K2 x, ξ( ) � K x, ξ( ) − 1
A
K1 ξ( ) − 1

A
K1 x( ). (21)

We note that in regard to the kernel of the integral Eq. 16, the
third term on the right-hand side of Eq. 21 has been introduced
for symmetrization (Argatov and Chai, 2019). This is convenient
but does not affect the result because of the zero-mean property

∫
ω

q ξ, t( ) dξ � 0, t≥ 0, (22)

which follows from the definition (19)2 of the function q(x, t) and
the equation of equilibrium Eq. 13.

To this end, the behavior of the residual function q(x, t) as time
progresses is shown to be described by Eq. 20. By analogy with the
wear contact problems based on the Archard wear equation, it
can be anticipated that the deviation of the contact pressure from
its mean value diminishes with time. In the case under
consideration, we also find that q(x, t) → 0 as t → ∞, and
hence the mean contact pressure �p will be termed as a quasi-
steady-state solution.

5 NON-DIMENSIONALIZATION AND
SEPARATION OF VARIABLES

For the sake of simplicity, we assume that the pin material is
isotropic and can be characterized by Young’s modulus, E, and
Poisson’s ratio, ]. In contact mechanics, an important role is
played by the reduced elastic modulus E* = E/(1 − ]2). Also, let a
denote a characteristic size of the contact domain ω, which can be
taken to be equal to the half-diameter of ω.

Following Komogortsev (1985), we take advantage of the fact
that Eq. 20, in view of Eq. 10, is in a separable form (the kernel
function K2(x, ξ) does not depend on the time variable t) that
makes it possible to construct its solution in the form

q x, t( ) � ∑∞
n�1

bn t( )ϕn x( ), (23)

where ϕn(x) is the nth eigenfunction of the integral operator with
the kernel K2(x, ξ) given by Eq. 21, i.e.,

E*
a

∫
ω

K2 x, ξ( )ϕn ξ( ) dξ � λnϕn x( ), x ∈ ω. (24)

We note that the non-dimensionalising factor E*/a has been
introduced on the left-hand side of Eq. 24 to ensure that the
eigenvalues λ1, λ2, . . . are dimensionless. It is pertinent to note

here that, in view of Eqs 21, 22, the eigenfunctions possess the
zero-mean property

∫
ω

ϕn ξ( ) dξ � 0 n � 1, 2, . . .( ). (25)

Without loss of generality, we assume that the solutions of the
eigenvalue problem Eq. 24 are normalized as

1
A

∫
ω

ϕn ξ( )[ ]2dξ � 1 n � 1, 2, . . .( ). (26)

Thus, taking into account relations (19)2 and Eq. 23, we can
represent the contact pressure in the form

p x, t( ) � �p +∑∞
n�1

bn t( )ϕn x( ), (27)

where �p is given by (19)1, and the set of coordinate functions
ϕn(x) is uniquely defined by Eqs 24, 26).

By setting t = 0, from Eq. 27, it follows that

p x, 0( ) � �p +∑∞
n�1

bn 0( )ϕn x( ), (28)

where p(x, 0) solves the integral equation of initial contact, which
is obtained from Eq. 14 by setting t = 0, whereas, in view of Eq. 26,
the coefficients of the infinite sum are given by

bn 0( ) � 1
A

∫
ω

p x, 0( ) − �p[ ]ϕn x( ) dx. (29)

In the next section, we consider the evolution of the functions
bn(t), which satisfy the initial conditions (29). The corresponding
equation is simply obtained by substituting the expansion (Eq.
23) into Eq. 20 and utilizing Eq. 24.

6 EVOLUTION OF THE CONTACT
PRESSURE TOWARDS THE
QUASI-STEADY STATE
In view of Eq. 24, the series solution Eq. 23 satisfies Eq. 20, if and
only if

bn t( ) + E*κ
λnaΓ α( ) ∫

t

0

bn τ( )
t − τ( )1−α dτ � bn 0( ). (30)

Equation 30 is classified as Abel’s integral equation of the
second kind (see, e.g., (Gorenflo and Mainardi, 1997; Gorenflo
et al., 2014)), and its solution bn(t) is given in the form

bn t( ) � bn 0( )Eα −E*κ
λna

tα( ) (31)

in terms of the single-parameter Mittag-Leffler function of order
α, defined as

Eα x( ) � ∑∞
k�0

xk

Γ αk + 1( ), (32)
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where Γ(x) is the gamma function.
It is also convenient to consider the Mittag-Leffler type

function

eα x( ) � Eα −xα( ), (33)
which for α ∈ (0, 1) is known (Mainardi, 2020) to be completely
monotone on the positive real semi-axis. The variation of the
function eα(x) for different values of the parameter α ∈ (1, 2) in
shown in Figure 4.

Moreover, let us introduce a characteristic time of the wearing-
in process

τ in � a

E*κ
( )1/α

. (34)

So, in view of Eqs 33, 34, Eq. 31 can be represented as

bn t( ) � bn 0( )eα t

λ1/αn τin
( ) (35)

and thus, using Eqs 27, 35, we find that

p x, t( ) � �p +∑∞
n�1

bn 0( )eα t

λ1/αn τ in
( )ϕn x( ). (36)

To characterize the evolution of the contact pressure p(x, t) as
the time variable t tends to infinity, we consider the following
asymptotic formula for eα(x), α ∈ (0, 2), α ≠ 1, is known for
sufficiently large values of the argument (Mainardi, 2020):

eα x( ) ~ sin απ( )
π

Γ α( )
xα

, x → ∞ . (37)

Thus, in view of Eqs 36, 37, the contact pressure approaches
the uniform distribution �p at large times. It is to emphasize that
this conclusion is valid for both cases α ∈ (0, 1) and α ∈ (1, 2).
Finally, we note that when α = 1, we have Eα( − xα) = exp( − x),
and thus we recover the known solution for the wear contact
problem (Komogortsev, 1985; Argatov and Fadin, 2011), and the
approach of p(x, t) to �p is exponentially fast.

Remark 2. It should be noted that the asymptotic Eq. 37 reflects
the decaying behavior of the Mittag-Leffler function Eα(x) on the
negative real axis as x→ −∞. This formula can be used to analyze
the asymptotics of the contact pressure (Eq. 36), provided all
eigenvalues λn are positive. To prove that this is the fact, we
consider the elastic energy, E0, produced by the surface load q(x,
0), which, in view of Eqs 23, 26, can be evaluated as follows:

2E0 � ∫
ω

q x, 0( )∫
ω

K x, ξ( )q ξ, 0( ) dξdx

� ∑∞
m�1

bm 0( )∫
ω

ϕn x( ) E*
a

∑∞
n�1

λnbn 0( )ϕn x( ) + const
⎧⎨⎩ ⎫⎬⎭dx

� E*A
a

∑∞
n�1

λn bn 0( )[ ]2.

(38)
Thus, since the elastic energy E0 is positive for any nontrivial

set of coefficients bn(0), n = 1, 2, . . ., from Eq. 38 it follows that λn
> 0, n = 1, 2, . . ..

7 OSCILLATORY NATURE OF THE
CONTACT PRESSURE VARIATION IN
SUPER-ARCHARD WEAR
Equation 37 provides information about the limiting evolution of
the contact pressure p(x, t) as the time variable t tends to infinity.
During the wearing-in period, the evolution of p(x, t) strongly
depends on the variation of theMittag-Leffler type function eα(x),
which changes its behavior from completely monotonic for α ∈ (0,
1) to decaying oscillatory for α ∈ (1, 2) (see Figure 4).

To illustrate the contact pressure variation during the wearing-
in period, we consider the example of two-dimensional contact
for an elastic layer and a wearable indenter, which establishes a
fixed contact interval x ∈ ( − a, a) of a relatively small half-width,
a, compared to the layer thickness. The corresponding wear
contact problem in the case of the Archard type wear equation
was studied by Aleksandrov et al. (1978), using the Galerkin
method for evaluating the eigenfunctions. We refer to the paper
by Argatov and Fadin (2011) for more details.

Figure 5 shows the time-variation of the relative contact
pressure p(x, t)/�p at the center of the contact zone, x = 0, for
the cases of sub-Archard (α = 0.812) and super-Archard (α =
1.595) wear. It is clear that both curves start from the same point
at t = 0 (because of the same initial condition) and tends to a
horizontal line of unit value as t→∞ (because of the same quasi-
steady state). A striking difference between them occurs during
the wearing-in period that lasts about a few times as much as the
characteristic time τin, where the super-Archard curve shows a
marked decaying oscillatory behavior.

In the example of contact geometry under consideration,
which is taken to be almost flat (with a small initial gap
between the contacting surfaces), the initial contact pressure
shows a strong stress concentration in a periphery region of
contact (see curves τ = 0 in Figures 6, 7). That is why, in the
initial period of time, the wear rate Dα

t w(x, t) will be much

FIGURE 4 | Mittag-Leffler type function.
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higher near the contact contour, and, as a result of the contact
geometry adaptation, the evolution of the contact pressure in
the periphery region may be non-monotonic even in the sub-
Archard wear case (see Figure 8). However, as it is seen from
both Figures 5, 8, the oscillatory type of the contact pressure
evolution is a characteristic feature of the case of super-
Archard wear only.

The discrete-time progression of the spatial variation of the
contact pressure is shown in Figures 6, 7 in the cases of sub-
Archard and super-Archard wear, respectively. Observe that a
drastic reduction in the contact stress concentration occurs
during the initial time interval of duration comparable with
the characteristic time τin. From the comparison of Figures 6,
7, it can be concluded that the wearing-in period in super-
Archard wear lasts much longer than in the case of sub-
Archard wear.

8 EVOLUTION OF THE WORN PROFILE

Due to the wear process, the contact geometry gradually changes,
while the contact pressure approaches a uniform distribution of
the applied load over the contact area. The initial contact
geometry is characterized by the initial gap function Δ0(x),
which is subject to the centering condition Δ0(0) = 0. The
current gap function, Δ(x, t), is defined as follows (Argatov I.
I and Chai Y. S, 2020):

Δ x, t( ) � ∫
ω

K 0, ξ( ) −K x, ξ( )[ ]p ξ, t( ) dξ. (39)

When the contact pressure density p(x, t) is given by the
eigenfunction expansion method in the form Eq. 36, in view of
Eqs 18, 24, we will have

FIGURE 5 | Time-variation of the contact pressure at the center of the
contact zone.

FIGURE 6 | Space-variation of the contact pressure for different values
of the relative time variable τ = t/τin in the sub-Archard wear case.

FIGURE 7 | Space-variation of the contact pressure for different values
of the relative time variable τ = t/τin in the super-Archard wear case.

FIGURE 8 | Time-variation of the contact pressure at some point away
from the center.
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∫
ω

K x, ξ( )p ξ, t( ) dξ � �pK1 x( ) + a

E*
∑∞
n�1

λnbn t( )ϕn x( )

+∑∞
n�1

bn t( )
A

∫
ω

K1 ξ( )ϕn ξ( ) dξ,
(40)

where we have used the zero-mean property (Eq. 22) of the
eigenfunctions ϕn(x), n = 1, 2, . . ., and the symmetry property of
the surface influence function, that is K(x, ξ) = K(ξ, x).

Since bn(t) → 0 as t → ∞, the limiting gap function is defined
only by the first term on the right-hand side of Eq. 40, and thus,
we obtain

Δ∞ x( ) � �p K1 0( ) − K1 x( )[ ]. (41)
So, from Eqs 39–41, it follows that

Δ x, t( ) � Δ∞ x( ) + a

E*
∑∞
n�1

λnbn t( ) ϕn 0( ) − ϕn x( )[ ]. (42)

The evolution of the relative gap function is illustrated in
Figures 9, 10. It is of interest to observe a non-monotonic
progression of the worn profile Δ(x, t) towards the limiting
shape Δ∞(x) in the case of super-Archard wear.

Figure 11 presents the evolution of wear depth w(0, t), which
corresponds to the evolution of the contact pressure at the center
of the contact zone shown in Figure 5. It is to note that, in view of
Eq. 34, the wear equation transforms as

w x, t( ) � a

E*Γ α( ) ∫
t/τin

0

t

τ in
− �τ( )α−1

p x, �τ( ) d�τ,

where �τ is a dimensionless integration time-variable. The above
formula explains the normalization used in Figures 11–13.

Interpretation of the evolution of the relative gap function
shown in Figures 9, 10 will be simplified if we consider the
evolution of the pin shape described by the function D(x, t) =
Δ0(x) + w(x, t) (see Figures 12, 13). It is of interest to observe that

in the case of super-Archard wear, the evolution of the worn
profile is also found to be slightly oscillatory (see Figures 10, 13),
as it could be predicted based on Eq. 39, which defines the current
gap function, and the oscillatory evolution of the contact
pressure. It should be emphasized that, though the worn
profile progresses non-monotonically in time, this does not
mean that locally (in spatial sense) there could exist profile
growth, because the fractional wear Eq. 9 predicts a positive
wear depthw(x, t) for any positive contact pressure history p(x, τ),
τ ∈ (0, t).

In the case of sub-Archard wear, when 0 < α < 1, the duration
of wearing-in process, when the contact pressure approaches the
mean value �p over the entire contact area, is proportional to the
characteristic time parameter τin, introduced by Eq. 34. In the
case of super-Archard wear, as it is seen from Figure 14, the
duration of the wearing-in period, Tin, strongly depends on the

FIGURE 9 | Space-variation of the gap function for different values of the
relative time variable τ = t/τin in the sub-Archard wear case.

FIGURE 10 | Space-variation of the gap function for different values of
the relative time variable τ = t/τin in the super-Archard wear case.

FIGURE 11 | Time-variation of the wear depth at the center of the
contact zone.
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value of α ∈ (1, 2), because, if it increases, the amplitude of the
decaying oscillations increases as well.

9 DISCUSSION AND CONCLUSION

First of all, we note that the example of two-dimensional contact
has been used for illustrative purposes. A more realistic
information about the eigenvalues λn, which depend on the
global geometry of the wearable pin, can be obtained by
means of finite element simulations (Liu et al., 2014).

We would like to emphasize that the numerical results
presented in Figures 5–13 were obtained based on the exact
solution of the model two-dimensional wear contact problem for
an elastic layer (Aleksandrov et al., 1978) with a controllable error
determined by the approximate evaluation of the eigenvalues λn.

In the analysis of real pin-on-disk experiments, the application of
FEM-based numerical methods is required (Liu et al., 2014).
However, the oscillating nature of the contact pressure variation
observed in Figure 5 is caused by the properties of solutions (see
Figure 4) of Abel’s integral Eq. 30, which will remain the same in
the three-dimensional contact problems. To be more precise, the
contact geometry affects the eigenvalue problem Eq. 24, which
depends on the surface-influence function (see Eq. 21), whereas
the evolution Eq. 30 is fully determined by the adopted fractional
time-derivative (FTD) model for wear. This means that while
FEM simulations cannot serve for the model verification, spatial-
temporal variation of the contact geometry and the contact
pressures, if observed experimentally, would support the
introduced FDT wear equation. At the same time, though
verification experimental studies fall outside the scope of this
theoretical work, the simple analytical model presented above will
definitely aid in planning such experiments.

Based on the presented analysis, it becomes clear that the
temporary evolution of wear process, which is governed by the
fractional time-derivative model (10), is determined by the
properties of the Mittag-Leffler type function eα(x), which, in
turn, strongly depend on the value of the index α. In particular,
for α ∈ (1, 2), the number of zeros, n(α), of the function eα(x), x ∈
(0, ∞), which determines the number of oscillations,
exponentially increases as α approaches 2 (see Figure 15).

Observe that the FTD wear Eq. 9 is linear, and under the
constant load condition (Eq. 13) it implies the following relation
between the contact load and the worn volume (see Eq. 12):

V � kPtα. (43)
Here, k = κ/αΓ(α) is a constant coefficient. It is to emphasize

again that Eq. 43 is in complete agreement with the Rhee Eq. 6,
which in this special case (γ = 1) takes the form

V � KwPv
βtα. (44)

FIGURE 12 | Pin shape at different values of the relative time variable τ =
t/τin in the sub-Archard wear case. The dashed lines correspond to the limiting
profile.

FIGURE 13 | Pin shape at different values of the relative time variable τ =
t/τin in the super-Archard wear case. The dashed lines correspond to the
limiting profile.

FIGURE 14 | Time-variation of the contact pressure at the center of the
contact zone for different values of the parameter α ranging from 0.1 to 0.9
with an increment of 0.1.
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Thus, by comparing Eqs 43, 44, we can write that k = Kwv
β,

and therefore, we obtain κ = αΓ(α)Kwv
β. In other words, under the

condition of constant sliding velocity, the wear coefficient κ in the
FTD wear Eq. 9may be regarded to be parametrically dependent
on the sliding velocity v. The effect of surface roughness of the
hard counterpart (disk), along which a wearable solid (pin) slides,
is incorporated in the value of the coefficient κ as well.

It is of practical interest to have a closer look at the quality of
power-law approximations of the experimental data for the
volumetric wear loss under constant load (Viswanath and
Bellow, 1995), which are presented in Figure 1. In particular,
it is instructive to consider the variation of the absolute error as
shown in Figure 16, from where it is seen that in the case of
super-Archard wear (α > 1), the experimental data exhibits
pronounced deviations from the power-law curve. This fact
implies that the fractional wear rate Dα

t w(x, t) may depend
nonlinearly on the contact pressure. In this way, we can
generalize Eq. 9 as

Dα
t w x, t( ) � κ p x, t( )[ ]γ (45)

by introducing an additional fitting constant γ.
Correspondingly, in light of Eq. 45, Eq. 10 can be generalized

as follows:

w x, t( ) � κ

Γ α( ) ∫
t

0

p x, τ( )[ ]γ
t − τ( )1−α dτ. (46)

As a consequence of the nonlinear wear Eq. 46, the volumetric
wear loss V(t) will no longer be predicted by the power-law Eq.
15. Indeed, by integrating Eq. 46, we arrive at the equation

V t( ) � κ

Γ α( ) ∫
t

0

dτ

t − τ( )1−α ∫
ω

p x, τ( )[ ]γdx, (47)

where the inner integral over the contact domain will no longer be
constant under a constant load, but may become oscillatory
during the wear process.

It is to note that the nonlinearity in the fractional wear Eqs
45–47 has been introduced in the spirit of the Archard–Kragelsky
model for the linear wear rate (Kragelsky, 1965), and thus, they
can be applied under the assumption of constant speed of relative
sliding at the contact interface with the wear coefficient κ being
nonlinearly dependent on the sliding speed.

It should be emphasized that though the simple example of
two-dimensional wear contact problem has been employed in the
analysis above, the main findings about the decaying oscillatory
nature of the approach to the quasi-steady state will hold true for
the corresponding three-dimensional contact configurations,
since this feature is rooted in the fractional time description of
the wear process.

Observe (Soldatenkov, 2010) that the wear Eq. 10 is merely a
special case of the more general type

w x, t( ) � ∫
t

0

K1 τ( )K2 t − τ( )p x, τ( ) dτ, (48)

where K1(t) and K2(t) are known functions. In particular, Eq. 48
with K1(t) ≡ 1 and K2(t) = (κ/Γ(α))tα−1 simply coincides with Eq.
10. On the other side, it is of interest to observe that Eq. 48 with
K1(t) = (κ/Γ(α))tα−1 and K2(t) ≡ 1 in the case of constant loading
also leads to Eq. 11. Moreover, it can be shown that Eq. 9 with Dα

t
being interpreted as the fractal derivative of the order α is also
consistent with Rhee’s Eq. 6, γ = 1, which served as a basis for
introducing the fractional wear Eq. 9.

Thus, there are possible different ways of generalizing the Rhee
wear Eq. 6 to the case of non-constant (spatial-temporal)
variations of the contact pressure, which have the same
power-law time behavior in the steady state. While the present
study gives no physical motivation for the fractional wear model
(9), the hypotheses and implications formulated above can be
verified experimentally without much difficulty. Also, a separate
study is required to identify key differences and similarities
between the wear equations discussed in the previous paragraph.

FIGURE 15 | Number of real zeros of the Mittag-Leffler type function
eα(x) based on the numerical results from presented by Hanneken et al. (2007).

FIGURE 16 | Difference between the power-law predictions and the
experimental data (Viswanath and Bellow, 1995) shown in Figure 1 (the same
legend applies).
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The systematic analysis of the physical variables that influence
the wear process of polymers (Viswanath and Bellow, 1995) is
showing an intensive effect of temperature and thus deserves a
comment that the thermo-elasticity framework (Yevtushenko
and Pyryev, 1999) should be applied for modeling contact
deformations once the temperature exceeds a certain threshold.

To conclude, the fractional time-derivative wear rate is
introduced to describe a power-law time-growth of the
volumetric wear loss under constant loading conditions,
which is encountered in wear testing of polymers. The
newly introduced fractional time-derivative wear equation
allows to extend the experimentally observed dependence to
the case of a variable contact pressure. The cases of sub-
Archard and super-Archard wear are distinguished based
on the value of the time exponent α ∈ (0, 2), which
describes decreasing (α < 1, “mild” wear) or increasing (α >
1, “severe” wear) variation of the mean wear rate.

A striking implication of the developed wear contact model is
the prediction of a decaying oscillatory behavior for the contact
pressure variation in time during the wearing-in period, when it
approaches a uniform distribution over the contact area. The
main theoretical finding of the paper is supported by the analysis
of the power-law approximations for the volumetric wear loss
obtained under constant applied loads. The developed fractional
time-derivative approach can be applied to modeling other
temporary-spatial damage processes that maintain a power-law

growth of the accumulated damage under constant loading
conditions.
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