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Abstract. Non-stationarity in data is an ubiquitous problem in signal processing. The recent
stationary subspace analysis procedure (SSA) has enabled to decompose such data into a
stationary subspace and a non-stationary part respectively. Algorithmically only weak non-
stationarities could be tackled by SSA. The present paper takes the conceptual step generalizing
from the use of first and second moments as in SSA to higher order moments, thus defining
the proposed higher order stationary subspace analysis procedure (HOSSA). The paper derives
the novel procedure and shows simulations. An obvious trade-off between the necessity of
estimating higher moments and the accuracy and robustness with which they can be estimated
is observed. In an ideal setting of plenty of data where higher moment information is dominating
our novel approach can win against standard SSA. However, with limited data, even though
higher moments actually dominate the underlying data, still SSA may arrive on par.

Key words. Stationary subspace analysis, blind source separation, non-stationary data,
multivariate time series analysis, dimensionality reduction.

1. Introduction
Non-stationary effects in observed data are a common phenomenon, ranging from the
neurosciences (e.g. [1, 2, 3, 4, 5, 6]) to econometrics (e.g. [7]). The causes for temporal
distribution changes are manifold. In electroencephalography (EEG) analysis, for instance, non-
stationary effects have been attributed to slow drifts of the mental state, the neural response to
external stimulation and non-neural (e.g. technical) artefacts (see [8] for discussion).

However, detecting distribution changes is difficult in the case where (a) no auxiliary
information regarding the distribution changes is available and (b) the observed multivariate data
is generated as a mixture of underlying latent factors. In the absence of auxiliary information,
such as timing information or a target variable, regression or classification methods are infeasible
(unsupervised or explorative setting). Secondly, when each observed variable is generated as a
linear combination of latent variables, changes in the joint distribution may not be easily visible
in the original coordinates.

Therefore, stationary subspace analysis (SSA) [9] has been proposed to discern the stationary
and non-stationary contributions to each observed variable in a completely unsupervised
approach. In the SSA model, the observed D-variate time series is generated as a linear mixture
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of ds latent stationary sources ss(t) and dn latent non-stationary sources sn(t),

x(t) = A

[
ss(t)
sn(t)

]
, (1)

where A is an unknown time-constant square mixing matrix of dimension ds + dn. In the
original SSA algorithm [9], this mixture model is inverted by minimizing the distance in
distribution of the estimated stationary sources over epochs of the time series (that are
defined e.g. by a sliding window). This SSA algorithm has been applied successfully to
brain-computer-interfacing (e.g. [9, 10]), myoelectric control [11], computer vision [12], domain
adaptation [13], geophysical data analysis [14] and change detection [15, 16]; there is an open-
source implementation of the algorithm [17].

(a) Epoch 1 (b) Epoch 2 (c) Epoch 3

Figure 1: The distribution of this bivariate dataset changes between epochs but the mean and
the covariance matrix stays the same; the non-stationarity affects only the higher order moments.

However, the SSA algorithm [9] is based on the restricted notion of weak stationarity. That is,
a time series is considered stationary when its mean and covariance remains constant over time.
This means that information in the higher order moments is ignored; e.g. a component with
constant mean and covariance but changing kurtosis would be considered stationary. Figure 1
shows an example. In the presence of such a latent factor, the existing SSA algorithm fails
to invert the mixture (1). It has been shown that higher moments contain useful information,
e.g. in information theory [18, 19], independent component analysis [20] and vision [21].

In this paper, we present the first SSA algorithm which utilizes information from higher order
moments based on an approximation of the Kullback-Leibler divergence. For ease of exposition,
we restrict ourselves to the third and fourth order moments. Note that our contribution is
primarily conceptual in nature. In controlled simulations, we demonstrate the validity of our
contribution for higher order information.

The remainder of this paper is organized as follows. In the next Section 2, we briefly review
the SSA model and algorithms based on weak stationarity. In Section 3 we derive the proposed
method, making use of some concepts of the SSA approach. We compare the performance of
SSA and HOSSA in toy examples in Section 4 to reveal drawbacks and advantages of both
methods. In the final section, we recapitulate in which situations using HOSSA instead of SSA
may improve results and when to stick with SSA.
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2. Stationary Subspace Analysis
The aim of SSA is to invert the mixing model (1) given only samples from x(t). That is, we
want to find the estimated demixing matrix,

B̂ =
[
B̂s

B̂n

]
,

that separates the contribution of the stationary and the non-stationary sources in the
observations. Let A =

[
As An

]
be the unknown mixing matrix where the first ds columns As

and the last dn columns An span the stationary and the non-stationary subspace respectively.
In this paper, we assume that the subspace dimensions ds and dn are fixed in advance. By
using the maximum likelihood version of SSA [10], it may be possible to construct selection
procedures of these dimensions from data. However, this is out of the scope of our paper. By
applying the demixing matrix B̂ to the observations x(t) we obtain estimates ŝs(t) and ŝn(t) for
the underlying latent sources,[

ŝs(t)
ŝn(t)

]
= B̂x(t) =

[
B̂s

B̂n

]
x(t) =

[
B̂sAs B̂sAn

B̂nAs B̂nAn

] [
ss(t)
sn(t)

]
.

The inverse of the mixing matrix A−1 is a demixing matrix, but it is not unique: any linear
transformation within the two groups of estimated sources yields another valid separation,
because it leaves the stationary resp. non-stationary nature of the sources unchanged. But
also the separation into s- and n-sources itself is not unique: adding stationary components
to a non-stationary source leaves it non-stationary, whereas the converse is not true. That is,
the entire set of solutions to the SSA problem is given by the condition B̂sAn = 0. Hence we
can identify the true stationary sources derived by applying B̂s, up to the linear transformation,
and the true non-stationary subspace spanned by the columns of An, whereas the non-stationary
sources and the stationary subspace are not identifiable in general (see also [22]).

The SSA algorithm [9] finds the projections B̂s and B̂n that minimize resp. maximize
the distance in distribution across epochs of the time series. The design of the epoch
structure depends on the particular applications; common choices include a sliding window
or a chronological segmentation. The distribution in each of the N epochs is approximated
by a multivariate Gaussian distribution where µ̂i and Σ̂i are the sample mean and sample
covariance matrix in the i-th epoch. After a pre-whitening and centering of the average mean
and covariance, such that

1
N

N∑
i=1

µ̂i = 0 and
1
N

N∑
i=1

Σ̂i = I,

the distance in distribution across the epochs is measured as the sum of the Kullback-Leibler
(KL) divergences DKL between each epoch and the average epoch. KL divergence is the
most standard criterion measuring differences of two probability distributions used in statistics,
information theory and statistical signal processing. The minimum 0 of this sum is achieved for
projections that keep the means and covariances constant. Thus, by minimizing the objective

B̂s = argmin
BB>=I

N∑
i=1

DKL

[
N (Bµ̂i, BΣ̂iB

>)
∣∣∣∣∣∣ N (0, I)

]
= argmin

BB>=I

N∑
i=1

(
− log det

(
BΣ̂iB

>
)

+ ‖Bµ̂i‖2
)

,
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we find a stationary projection due to the weak stationarity assumption. This optimization
problem can be solved efficiently by using multiplicative updates with rotation matrices
parametrized as matrix exponentials of antisymmetric matrices [9, 23, 17]. Alternatively an
algebraic version of SSA has been proposed [22].

3. SSA With Higher Order Moments
Keeping the concepts of second order SSA in mind, we now formulate the task of finding the
s-sources as an optimization problem in an analogous way.

3.1. Establishing an Objective Function
Since we now need to consider differences between the first four moments Gaussian distributions
are not adequate, as they are already uniquely determined given the first two moments, such
that there exists no degree of freedom to adjust third and fourth moments. Instead we make use
of a density approximation, that allows for a direct specification of the first four moments. More
specifically, we employ Gram-Charlier expansion which was also applied to ICA for defining
non-Gaussianity criteria [24]. Beforehand we will discuss in which form and how to estimate the
required moments from data.

3.1.1. Efficient Estimation of Cumulants: Cumulants are a transformed version of simple
moments and can therefore be used to represent the corresponding distribution. They are
more convenient for our purpose as we can directly find distributions with specified moments
setting up a series expansion in terms of the cumulants.

Unlike estimating the first two (multivariate) moments or their variants from data, estimating
higher order moments is less commonly known. Given n samples {X1, . . . , Xn} of a D-
dimensional distribution, an unbiased j-th order cumulant estimate κ̂j

= [κ̂i1,...,ij ]Di1,...,ij=1 is in
general, component-wise, given by (see e.g. [25], Chapter 4):

κ̂i1,...,ij =
1
n

n∑
k1,...,kj=1

φk1...kjXi1
k1
· . . . ·Xij

kj

where φk1...kj = (−1)ν−1

(n−1
ν−1)

with ν = #{k1, . . . , kj}, the number of different indices.

Determination of these components in that general form is computationally inefficient, i.e. in
O(nj). However, rearranging the formulas can reduce the complexity to linear time in n: The
j-th order cumulant can be expressed in terms of weighted, already determined lower order
cumulants and a linear time sum of j-th order data products. This yields the well known sample
mean and covariance for the first and second cumulant. For our purpose we also require the
cumulant estimates of third and fourth order, given by

κ̂r,s,t =
n

(n− 1)(n− 2)

[ n∑
i=1

Xr
i Xs

i Xt
i − nκ̂rκ̂sκ̂t − (n− 1)(κ̂rκ̂s,t + κ̂sκ̂r,t + κ̂tκ̂r,s)

]
and

κ̂r,s,t,u =
1

(n− 1)(n− 2)(n− 3)

[
n(n + 1)

n∑
i=1

Xr
i Xs

i Xt
iX

u
i − n2(n + 1)κ̂rκ̂sκ̂tκ̂u

− n(n− 1)(n + 1)(κ̂rκ̂sκ̂t,u + κ̂rκ̂tκ̂s,u + κ̂rκ̂uκ̂s,t + κ̂sκ̂tκ̂r,u + κ̂sκ̂uκ̂r,t + κ̂tκ̂uκ̂r,s)

− (n− 1)3(κ̂r,sκ̂t,u + κ̂r,tκ̂s,u + κ̂r,uκ̂s,t)

− (n + 1)(n− 1)(n− 2)(κ̂rκ̂s,t,u + κ̂sκ̂r,t,u + κ̂tκ̂r,s,u + κ̂uκ̂r,s,t)
]
.
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3.1.2. Difference Measurement with KL Divergence: After estimating the first four cumulants
for each epoch κ̂1

i , . . . , κ̂
4
i and over the whole time κ̂1

0, . . . , κ̂4
0 we try, equivalently to second

order SSA, to find a transformation of the form IdsBW , which, applied on the time series, gives
the ds estimated stationary components, where Ids are the upper ds rows of the unity matrix,
W is the already mentioned whitening matrix, and B ∈ O(D) is an orthogonal matrix.

Note that cumulants obey the transformation law of contravariant tensors (see e.g. [25],
Chapter 2). Therefore it holds that, given a linear transformation A = [aij ]d,D

i,j=1 ∈ Rd×D and an
D-dimensional random vector X with jth-order cumulants κj = [κi1,...,ij ]Di1,...,ij=1, the cumulants

of the transformed random vector AX, denoted as κ̃j
, are given by

κ̃j
= [κ̃i1,...,ij ]di1,...,ij=1,

κ̃i1,...,ij =
D∑

k1,...,kj=1

ai1k1 · . . . · aijkjκk1,...,kj .

Let κ̃1
i , . . . , κ̃

4
i be the epoch-wise cumulant estimates transformed by IdsBW , and κ̃1

0, . . . , κ̃
4
0

the respective estimates over the whole time.
Note that due to centering, the definition of W and the constraint BB> = I it is

κ̃1
0 = 0 and κ̃2

0 = I.

Now, the matrix parameterized by B transforms the time series to the ds stationary components,
when the epoch wise moments are constant over time, i.e. equalling the moments over the whole
time. This can be reformulated as the KL divergence being zero between adequately chosen
distributions pi := pi( · ; κ̃1

i , κ̃
2
i , κ̃

3
i , κ̃

4
i ), and p0 := p0( · ; 0, I, κ̃3

0, κ̃
4
0) respectively, possessing these

moments. Formally we want to minimize

L(B) =
N∑

i=1

DKL

[
p0

∣∣∣∣∣∣ pi

]
subject to BB> = I. How such distributions can be constructed is part of the next subsection.

3.1.3. The Gram Charlier Expansion Assume all moments of a distribution exist and were
known. When formulating appropriate coefficients ηi1...ij , which are functions of the first j
moments we can expand the distribution as an infinite series

f(t) = Φ(t;κ1,κ2)

1 +
∞∑

j=3

D∑
i1,...,ij=1

1
j!

ηi1...ijhi1...ij (t)

 (2)

where Φ( · ;κ1,κ2) is the density function of the Gaussian distribution N (κ1,κ2) and

hi1...ij (t) =
1

Φ(t;κ1,κ2)
∂jΦ(t;κ1,κ2)
∂xi1 · · · ∂xij

are (multivariate) Hermite polynomials.
Now, that we are interested in the first four moments, we truncate the series (2) to fourth

order. Furthermore for simplicity of subsequent estimations, we consider the one-dimensional
case, generalizing to arbitrary dimensions later on. The series therefore reduces to

f(t) = Φ(t;κ1, κ2)
{

1 +
1
3!

κ3h3(t) +
1
4!

κ4h4(t)
}

(3)

Note, that the corresponding first four moments are still exact, though f is not necessarily a
valid probability density anymore.
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3.1.4. Approximation of the Objective Function In contrast to SSA the present case exhibits
no analytical form of the integral in the KL divergence. Instead we approximate a part of the
objective function with a second order Taylor expansion:

log(1 + x) ≈ x− x2

2
, (4)

which then gives:

L(B) =
N∑

i=1

DKL

[
p0

∣∣∣∣∣∣ pi

]
(3)
'

N∑
i=1

∫
R

Φ(x; 0, 1)
{

1 +
1
3!

κ̃3
0h

3
0(x) +

1
4!

κ̃4
0h

4
0(x)

}

× log

(
Φ(x; 0, 1){1 + 1

3! κ̃
3
0h

3
0(x) + 1

4! κ̃
4
0h

4
0(x)}

Φ(x; κ̃1
i , κ̃

2
i ){1 + 1

3! κ̃
3
i h

3
i (x) + 1

4! κ̃
4
i h

4
i (x)}

)
dx

(4)
'

N∑
i=1

∫
R

Φ(x; 0, 1)
{

1 +
1
3!

κ̃3
0h

3
0(x) +

1
4!

κ̃4
0h

4
0(x)

}

×

{
log
(

Φ(x; 0, 1)
Φ(x; κ̃1

i , κ̃
2
i )

)
+

1
3!

κ̃3
0h

3
0(x) +

1
4!

κ̃4
0h

4
0(x)− 1

2

(
1
3!

κ̃3
0h

3
0(x) +

1
4!

κ̃4
0h

4
0(x)

)2

− 1
3!

κ̃3
i h

3
i (x) − 1

4!
κ̃4

i h
4
i (x) +

1
2

(
1
3!

κ̃3
i h

3
i (x) +

1
4!

κ̃4
i h

4
i (x)

)2
}

dx

Solving integrals of the form above is trivial in the sense that the integrand is a product of a
Gaussian density and a polynomial. Unfortunately, the polynomial is large and complicated,
such that there is no compact solution which we could present in this paper due to limited space.

3.2. The Minimization
In order to make use of powerful standard analysis gradient descent methods for optimization an
adjustment is necessary. Namely standard gradient methods perform additive updates. But the
orthogonal matrices form no additive group as they are not closed under addition. So it would
be hard to perform such updates ensuring to stay within the set O(D) of D × D orthogonal
matrices. However, they form a multiplicative group such that multiplicative updates do not
suffer from this problem. And since orthogonal matrices can be parameterized with additively
closed anti-symmetric matrices we can circumvent the problems making use of the advantages
of both sets, performing additive gradient descent in the parameter space of anti-symmetric
matrices guaranteeing it to result into a multiplicative update within the orthogonal matrices
(see [23] for a detailed version). Note that exp(A + B) = exp(A) exp(B) = exp(B) exp(A) is
only guaranteed, if A and B commute. Therefore we perform gradient descent steps as a line
search along the commutating subgroup generated by soH = {tH|t ∈ R}:

(i) Assume, we are at an initial point B0 ∈ O(D)
(ii) Denote by B the desired updated position after a line search step, such that B can be

factorized as RB0 with an orthogonal matrix R = exp(tH) with positive determinant (i.e.
an element in SO(D)) and an anti-symmetric matrix H (i.e. H> = −H) from the parameter
space.
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(iii) We can consider the initial position B0 as a constant and rewrite
L(B) = LB0(R) = (LB0 ◦ exp)(tH). That is, (LB0 ◦ exp)(0) = L(B0).

One can see that, in order to find H, we simply need to build the gradient of LB0 ◦ exp at
position 0 for each step, since we can set B0 ← RB0 at the end of each step. The gradient is
given by

∇(LB0 ◦ exp)(0) = (
∂LB0

∂R
(I))I> − I(

∂LB0

∂R
(I))>,

where ∂LB0
∂R (I) can be derived by differentiating the solution from LB0(R) along R making use

of the fact that R>R = I. Note that ∇(LB0 ◦ exp)(0) is antisymmetric. In summary we perform
a conjugate gradient method along search directions as proposed by Polak and Ribière [26] as
in Algorithm 1, where we denote by vec the vectorization of a matrix.

Algorithm 1 Conjugate gradient procedure for HOSSA
1: Choose B0 ∈ O(D) at random and set k = 0.
2: repeat
3: Determine the next search direction vec(Hk) = g>k (gk−gk−1)

g>k−1gk−1
for k > 0 and vec(H0) = −g0,

where gk = vec(∇(LBk
◦ exp)(0)).

4: Find t ∈ R that minimizes LBk
(exp(tHk)) along exp(soHk

).
5: Update Bk+1 = exp(tHk)Bk.
6: Set k ← k + 1.
7: until convergence

After minimization, the first component of the signal transformed by BW is one of the
estimated stationary components. Further components can be extracted by successively applying
the algorithm on the remaining estimated components, ending up with a set of orthogonal
transformations b1, . . . , bds (of decreasing dimension). The final transformation is then given
by

B := Bds ·Bds−1 · . . . ·B1,

with the embedded transformations

Bi :=

 b1 , i = 1[
Ii−1 0
0 bi

]
, else ,

where Ik is the k-dimensional identity matrix (further details can be found in [27]).

4. Experiments
The goal of the experiments is to show the validity of the proposed concept in comparison to
second order SSA not only in general, but especially in the case, where non-stationarity is not
measurable within the first two moments, where we expect second order SSA to fail. In order
to analyze the latter case we need a controlled setting fulfilling the specification of the first two
moments exhibiting no non-stationarity information. This means, that over all epochs the mean
and covariance stay constant. For this purpose we generate a toy dataset with that property.
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4.1. Toy Data Generation
Suppose we want to simulate N discriminable epochs of D dimensional data with ds < D
stationary components, where the first two moments stay constant. Let K = dlog2 Ne, then we
can generate the specified epochs using a Gaussian mixture model with 2K components pairing
up each two of those. For each pair we generate two states of distribution, that exhibit the
property of constant first two moments. Then by choosing one of the two states for all K pairs
we can generate up to 2K > N discriminable epochs with the required properties.

Let π1, . . . , π2K > 0 be the mixture probabilities the 2K components with
2K∑
i=1

πi = 1.

Furthermore let X0
1 , . . . , X0

2K be independent random vectors with X0
i ∼ N (ai, Σi) with

aK+i = − πi
πK+i

ai, i ∈ {1, . . . , K} and Σi = Σ̃i + λiaia
>
i with Σ̃i positive definite and

λi = λK+i > 0.
For the other state of the distributions let X1

1 , . . . , X1
2K be independent with

X1
i ∼ N (

√
1 + λiai, Σi − λiaia

>
i ).

Now we choose for the l-th epoch one of the two states for each of the K pairs, i.e. Sl ∈ {0, 1}K .
Then the Gaussian mixture model of the l-th epoch is given by

Y l =
K∑

i=1

[
1{P=i}X

Sl
i

i + 1{P=K+i}X
Sl

i
K+i

]
,

where P indicates the selected component based on the distribution (πi)i, 1{·} denotes the
indicator function and is independent of all Xj

i . For all Sl, Sm ∈ {0, 1}K the following holds:

E[Y l] = E[Y m] = 0,

Cov[Y l] = Cov[Y m] =
2K∑
i=1

πi

[
Σi + aia

>
i

]
Now, in order to enforce ds of the D components to be unchanged in distribution, one can simply
set the first ds entries of each ai to zero.

4.2. Identifiability
With the toy data from above, we test the subspace identifiability of second order SSA against
higher order SSA for different numbers of epochs. As the performance measure we determine
the angle between the unique true non-stationary subspace An and its approximation Ân, given
by
[
Âs Ân

]
= Â = B̂−1.

The results in Figure 2 show that, not surprisingly, standard SSA fails to identify the true
subspace, invariant of the epoch number. In contrast, higher order SSA converges, in the
case of D = 4 dimensions, for more than ten epochs to a solution that lies close to the true
subspace. Note, that especially the higher order part of the optimization suffers from the limits of
approximation such that here the hope of finding and exact solution rather than an approximated
one is unfeasible. This can be seen in Figure 2 for the case of D = 6 dimensions, where higher
order SSA needs much more epochs to converge to a solution, that is close to the true subspace.
However, if there is information contained in the first two moments, this information dominates
the higher order SSA optimization, letting it act similar to standard SSA.

In fact, we can observe this behavior when we inject information within moments up to second
order in a controlled manner. For this we modify the strict model from above, containing no
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Figure 2: Average deviation of second and higher order SSA from the true solution, measured
as the angle between the estimated and the true non-stationary subspace, when the first two
moments exhibit no information. Setup: ds = 2, exact (theoretical) Moments, 100 Repetitions.
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Figure 3: Average deviation of second and higher order SSA from the true solution, measured as
the angle between the estimated and the true non-stationary subspace, for a varying amount of
data per epoch and information content of first order moments. Setup: ds = 2, D = 4, N = 32,
20 Repetitions.

information in moments up to second order, by allowing λi 6= λK+i to a controlled extent. That
is, set λK+i ← λi + Cui for ui ∼ U [0, 1] and a parameter C ≥ 0, which controls the information
content in the first moment. For C = 0 we have the strict model with no information in the
mean and by increasing C accordingly more information accumulates in the first moment. When
fixating a sufficiently large amount of epochs, we can observe in Figure 3 the influence of the
parameter C (Degree of Mean Information) for a varying amount of data. Not surprisingly,
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second order SSA is more sensitive to the mean-information, starting to benefit for smaller
values of C than higher order SSA. For a large C higher order SSA approaches second order
SSA despite some approximation related inaccuracy. Since lower order moments are less prone
to inexact estimation than higher order moments, for a growing C both methods become more
robust with respect to noisy moments or small dataset size. In the area of smaller values of C -
where second order SSA is not sensitive enough - we can see that higher order SSA gives usable
results in a low noise setting, whereas second order SSA acts completely random. Figure 4
shows slices of Figure 3 for three dataset sizes, namely a too small, a medium and a sufficiently
large size, resulting into higher order SSA performing worse, on par or significantly better,
respectively, compared to second order SSA.

5. Discussion
Methods to decompose non-stationary data into their stationary and non-stationary subspaces
have become important tools for modern data analysis. While the earlier SSA method has
made use of the estimation of the second order moments only, the present conceptual extension
HOSSA has contributed by employing in addition also higher order moments for decomposition.

Clearly, there is a well-known intrinsic trade-off between robustness and the ability to capture
higher order information that we also encounter when comparing SSA and HOSSA. In cases
where the information contained in the first two moments is insufficient, a higher order approach
can better find the true solution compared to second order SSA – as expected. The proposed
method was shown to yield improvement.

When second and higher order information is both hidden in the signals, we observe that
the second order method generally provides a higher robustness. Note, however, that for
lower dimensional systems, HOSSA has no significant disadvantage in performance. In higher
dimensional examples we have demonstrated that the difficulty in accurately estimating higher
order moments becomes the leading reason for a degradation of HOSSA; when the noise level
is increased, then this effect becomes amplified. Then, clearly the second order method SSA
becomes the more robust estimator for identifying the stationary subspace.

While we might initially think that the additional higher order moments in HOSSA provide
additional information allowing an easier identifiability, the experiments show that this potential
advantage does not materialize in practice.

Future work will aim to therefore improve the approximation part of HOSSA, in particular,
we will study sampling based approaches. In the independent component analysis field, there
have been used other non-Gaussian distributions (e.g. generalized Gaussian distribution in [28])
except for the Gram-Charlier expansion by [24]. More robust implementation of HOSSA might
be possible with such a non-Gaussian model.
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(a) Slice for 1000 data points per epoch
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(b) Slice for 2.2 · 104 data points per epoch
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(c) Slice for 2.2 · 109 data points per epoch

Figure 4: Slices of Figure 3 along fixed data amounts, including approximated 95 % confidence
intervals.
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[9] von Bünau P, Meinecke F C, Király F J and Müller K R 2009 Finding stationary subspaces in multivariate

time series Phys. Rev. Lett. 103 21 213101
[10] Kawanabe M, Samek W, von Bünau P and Meinecke F C 2011 Artificial neural networks and machine

learning – ICANN 2011 An information geometrical view of stationary subspace analysis Lecture notes in
computer science vol 6792 (Springer Berlin / Heidelberg) 397–404

[11] Hahne J, Dähne S, Hwang H J, Müller K R and Parra L 2015 Concurrent adaptation of human and machine
improves simultaneous and proportional myoelectric control IEEE Transactions on Neural Systems and
Rehabilitation Engineering 23 4 618–627

[12] Meinecke F C, von Bünau P, Kawanabe M and Müller K R 2009 Learning invariances with stationary
subspace analysis Lecture notes in computer science vol 6792 IEEE 12th International Conference on
Computer Vision Workshops (ICCV Workshops) 87–92

[13] Hara S, Kawahara Y, Washio T and von Bünau P 2010 Stationary subspace analysis as a generalized
eigenvalue problem Proceedings of the 17th international conference on neural information processing:
theory and algorithms 1 (Springer Berlin / Heidelberg) 422–9

[14] Hara S, Kawahara Y, Washio T, von Bünau P, Tokunaga T and Yumoto K 2012 Separation of stationary
and non-stationary sources with a generalized eigenvalue problem Neural Netw. 33 (Elsevier Science Ltd.)
7–20

[15] Blythe D A J, von Bünau P, Meinecke F C and Müller K R 2012 Feature extraction for change-point detection
using stationary subspace analysis IEEE Transactions on Neural Networks and Learning Systems 23 4
631–43

[16] Blythe D A J, Meinecke F C, von Bünau P and Müller K R 2013 Explorative data analysis for changes in
neural activity Journal of Neural Engineering 10 2 (IOP Publishing) 26018–33
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