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Abstract. The inverse transfer of magnetic helicity is studied through a fourth-order finite
volume numerical scheme in the framework of compressible ideal magnetohydrodynamics
(MHD), with an isothermal equation of state. Using either a purely solenoidal or purely
compressive mechanical driving, a hydrodynamic turbulent steady-state is reached, to which
small-scale magnetic helical fluctuations are injected. The steady-state root mean squared Mach
numbers considered range from 0.1 to about 11. In all cases, a growth of magnetic structures
is observed. While the measured magnetic helicity spectral scaling exponents are similar to the
one measured in the incompressible case for the solenoidally-driven runs, significant deviations
are observed even at relatively low Mach numbers when using a compressive driving. A tendency
towards equipartition between the magnetic and kinetic fields in terms of energy and helicity
is noted. The joint use of the helical decomposition in the framework of shell-to-shell transfer
analysis reveals the presence of three distinct features in the global picture of a magnetic helicity
inverse transfer. Those are individually associated with specific scale ranges of the advecting
velocity field and commensurate helical contributions.

1. Introduction
Magnetic helicity HM =

∫
a ·bdV (with the magnetic vector potential a,b = ∇× a) is an ideal

invariant of the magnetohydrodynamics (MHD) equations [11, 27]. It quantifies topological
aspects of the magnetic field lines, such as their interlinkage, twist, writhe and knotedness and
is approximately conserved even during reconnection events [23, 4]. This implies significant
constraints on the dynamics of many astrophysical systems. For example, both hemispheres of
the sun present helical magnetic fields, with opposite signs [4]. These helical fields are known to
play an important role for the dynamics of solar flares and coronal mass ejections [19]. Magnetic
helicity is also transferred to the interplanetary medium through the solar wind [5]. Another
key property of magnetic helicity is that it exhibits an inverse transfer in Fourier space [25], i.e.
it is transferred from small to larger scales, which makes its study relevant for the theory of
magnetic dynamo processes and the formation of large-scale magnetic structures in general [7].

Because of the nearly vanishing molecular dissipation in space, astrophysical systems are
generally expected to be in a turbulent state, often accompagnied by supersonic fluid motion
with Mach numbers of up to 10 and beyond, see e.g. [17, 10]. Therefore the present investigation
applies a recently developed higher-order constrained-transport scheme to evolve the MHD Euler
equations in a triply periodic configuration to study the spectral dynamics of magnetic helicity
under supersonic flow conditions [26].
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The inverse transfer of magnetic helicity has been studied in the deeply subsonic,
incompressible case in references [21, 24], where it has been observed that the magnetic helicity
spectrum exhibits a power-law behaviour, with HM

k ∼ k−3.3 in the inverse transfer range. A
dynamic balance involving the magnetic and kinetic energy and their helicities has been observed,
as well. A study of shell-to-shell magnetic helicity transfer rates [1] has shown, in addition,
that local and non-local transfer processes coexist in incompressible MHD turbulence. The
inverse transfer has also been recently studied using the so-called “helical decomposition”, a
decomposition in eigenfunctions of the curl operator in Fourier space [18].

However, regarding the inverse transfer in compressible turbulence, only the subsonic and
the mildly supersonic case have been investigated so far [2, 6, 8]. The present work considers
high Mach number turbulence in the ideal isothermal MHD framework. The inverse transfer
of magnetic helicity is studied by injecting magnetic helical fluctuations at small scales in a
steady state of large-scale driven hydrodynamic turbulence, as described in section 2. Section
3 introduces the applied analysis tools, namely the helical decomposition and the shell-to-shell
transfers, which are used to shed some light on the magnetic helicity inverse transfer and the
role of compressibility. The simulation results are discussed in section 5, after having considered
in section 4 general aspects of the inverse transfer, including the growth of magnetic structures
and the observation of scaling exponents in Fourier space. Section 6 concludes with a summary.

2. Numerical experiments
The ideal compressible MHD equations, using an isothermal equation of state, read:

∂tρ = −∇ · (ρv), (1)

∂t(ρv) = −∇ ·
(
ρvvT + (p+

1

2
|b|2)I − bbT

)
, (2)

∂tb = ∇× (v × b), (3)

∇ · b = 0, (4)

with ρ the mass density, v the velocity, p = ρc2s the isothermal pressure with cs the constant
sound speed, b the magnetic field and I the 3 × 3 identity matrix. These equations are solved
through a fourth-order finite-volume scheme described in reference [26]. The magnetic field
solenoidality is preserved up to machine precision through a constrained-transport approach
[12]. As strong shocks are common in supersonic runs and lead to stability issues for higher-
order numerical methods, the robustness of the scheme is enhanced by resorting to lower-order
reconstruction methods in their vicinity. This procedure is called “flattening” or “fallback
approach” [9, 3, 26].

The runs are performed in a triply periodic cubic box of size L = 1, at resolution 5123, with
an isothermal sound speed of cs = 0.1.

Starting with a fluid at rest, a large scale mechanical forcing drives the plasma until a
statistical steady-state with a desired root mean squared (RMS) Mach number M is reached.
This driving is done through an Ornstein-Uhlenbeck process either with a purely solenoidal
or purely compressive driving (in a way similar to references [14, 13]). The wavenumbers for
which 1 ≤ |k|/κ < 3, with κ = 2π

L the smallest wavenumber in the system, are forced and the
acceleration field in configuration space is normalised so that a constant kinetic energy injection
rate εKinj is achieved. This normalisation is done in order to control exactly the magnetic-
to-kinetic injection ratio, see below. The forcing autocorrelation time is constant, set to the
turbulent turnover time tT = L

2csM∗ with M∗ an a priori estimate of the expected RMS Mach

number (based on the empirical relation between εKinj andM given in reference [20]). This forcing
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generates a weak mean velocity field which is removed at each iteration, since the magnetic field
is not Galilean invariant.

Five solenoidally and four compressively driven runs are considered. The (s)olenoidally-driven
runs, labelled with an “s”, have steady-state Mach numbers of M ≈ 0.116, 1.09, 5.06, 7.03 and
11.1 for the M01s, M1s, M5s, M7s and M11s runs respectively. The (c)ompressively-driven runs
M1c, M3c, M5c and M8c exhibit steady-state Mach numbers of M≈ 0.797, 2.80, 5.05 and 7.87
respectively.

When the steady-state is reached, magnetic helical fluctuations with maximum helical fraction
are injected at the wavenumbers 48 ≤ K < 53, with K = |k|/κ. The magnetic energy injection
rate εMinj is constant and such that Rinj = εMinj/ε

K
inj is equal to unity for all the runs but the

M01s and M1s ones, for which Rinj = 4 and Rinj = 2 respectively. This increased Rinj has been
chosen in order to observe faster convergence of the inverse transfer scaling laws.

3. Analysis tools
The magnetic helicity transfers are analysed using jointly a shell-to-shell transfer formalism
[1, 16] and the so-called “helical decomposition”[18], where the fields are projected in Fourier
space along a basis formed by the eigenvectors of the curl operator [7]:

ĥ±k =
1√
2

k× (k× ê)∓ ik(k× ê)

k2
√

1− (k · ê/k)2
, (5)

where ê is an arbitrary unitary vector non-parallel to k. These eigenvectors verify ik× ĥ±k =

±kĥ±k . A third eigenvector of the curl operator is k/k, which corresponds to compressive modes

and is associated with the eigenvalue 0. The three vectors (k/k, ĥ+
k , ĥ

−
k ) form an orthonormal

basis in Fourier space, on which the magnetic and velocity field can be projected, before being
transformed in configuration space. The resulting fields are denoted bP , vP for the (p)ositive

helical parts of the magnetic and velocity fields, which results from a projection along ĥ+
k .

Similarly, bN and vN are their (n)egative helical parts (projection along ĥ−k ). The compressive
part of the velocity field is denoted vC .

The shell-to-shell magnetic helicity transfer function defined in reference [1] is thus extended
to:

T HM

sKsP sQ
(Q,P,K) = 2

∫
bsKK · (v

sP
P × b

sQ
Q )dV, (6)

where the subscripts sK , sQ ∈ {P,N} correspond to the positive and negative helical parts
of the magnetic field and sP ∈ {P,N,C} for the velocity field, so that twelve combinations
are possible. The K,P,Q subscripts stand for the shell-decomposed fields. For example, bsKK
corresponds to the sK-helical part of the magnetic field in configuration space, but keeping only
the modes so that K ≤ |k|/κ < K + 1 with κ = 2π

L the smallest wavenumber in the system.

For sK = sQ, the antisymmetric property T HM

sKsP sK
(Q,P,K) = −T HM

sKsP sK
(K,P,Q) allows to

interpret these terms as the transfer rate of magnetic helicity from shell Q to shell K of the bsQ

field, mediated by the vsP field at shell P . When sK 6= sQ, the terms have to be considered
pairwise to verify this antisymmetric property.
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4. Growth of magnetic structures and scaling laws
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Figure 1. Time evolution of the magnetic helicity spectra for the M1s and M8c runs.

As in the incompressible case, the growth of magnetic structures is observed in the highly
supersonic isothermal case. This is shown through the development to smaller wavenumbers of
the magnetic helicity spectra HM in figure 1 for the M1s and M8c runs. Figure 2 shows the
time evolution of magnetic helicity slices using the Coulomb gauge (∇ · a = 0) for the M8c run.

−4.0 0. 4.0 8.0 12 16 20

Figure 2. Magnetic helicity density slices at an early (left) and later (right) instant in time, for the M8c run.
The values are normalised by the mean magnetic helicity density in the system.

The magnetic helicity Fourier spectra exhibit scaling laws with an exponent relatively close
to −3.3 for all the solenoidally-driven runs, even for a RMS Mach number as high as 11
(figure 3.(a)). A least-squares fit in the region 20 ≤ K ≤ 30 gives indeed HM ∼ Km with
m ≈ −3.3,−3.3,−3.2,−3.1,−3.0 for the M01s, M1s, M5s, M7s and M11s runs respectively,
when considering spectra at the instant in time when the magnetic helicity integral scale
IHM =

∫
K K

−1HMdK/
∫
K H

MdK is close to L
6 . These values are close to the −3.3 one observed

in the incompressible case [24]. However, for the compressively-driven runs (figure 3.(b)), even
though the scaling exponent is close to −3.3 for the M1c run, clear departures are already visible
for the M3c run for which M ≈ 2.80. The spectral index measured through a least squares fit
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in the region 15 ≤ K ≤ 25 gives HM ∼ Km with m ≈ −3.2,−2.6,−2.2,−2.3 for the M1c, M3c,
M5c and M8c runs respectively, for the spectra at the instant when IHM = L

6 .
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Figure 3. Magnetic helicity spectra for the M1s, M11s, M3c and M8c runs at the instant when IHM = L
6

,
compensated by K3.3.

In several numerical experiments involving helical fields, a tendency towards equipartition
both in terms of magnetic and kinetic energies as well as in terms of current and kinetic helicities
has been reported. Namely, the specific kinetic energy spectrum EV (which is the same as the
kinetic energy spectrum in the incompressible case), the magnetic energy spectrum EM , the
kinetic helicity spectrum HK and the current helicity spectrum HJ = K2HM have been found
to verify the following balance [22, 15, 24]:(

EV

EM

)γ
∝ HK

HJ
, (7)

in a certain spectral range. While references [22, 15] observed this balance for γ = 1 in the
direct transfer region, reference [24] found that an exponent γ = 2 would be more consistent
with the experimental data in the inverse transfer region. For the compressible runs presented
here, a good agreement with the experimental data has been found for:(

EV,sol

EA,sol

)γ
∝ HK

HA
, (8)

with EV,sol the solenoidal part of the velocity power spectrum, EA,sol the solenoidal part of the
Alfvén velocity power spectrum and HA the “Alfvénic helicity spectrum”, that is, the spectrum
of HA =

∫
vA · (∇ × vA)dV . The rationale behind this extension of relation (7) comes from

the fact that the incompressible exponent of −1.3 [24] for the current helicity HJ is retrieved
even at high compressibility when considering HA (see figure 4). The energies associated with
the Alfvénic and kinetic helicities are then the solenoidal parts of the corresponding velocity

power spectra. For this choice, plotting
(
EV,sol

EA,sol

)γ
HA

HK as a function of K gives a small spread

between the curves for both the least compressible (the M01s, M1s and M1c) and the most
compressible (the M3c, M5c and M8c) runs. Other relations have been tested, considering for
example the magnetic energy spectrum, the power spectrum of w =

√
ρv, or the co-spectrum of

velocity and momentum. Several of these empirical relations are approximately verified in the
inverse transfer region, but the best agreement with the experimental data has been obtained
with relation (8) so far. These other choices seem furthermore to lead to a higher spread of the
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curves. For the low Mach number M01s, M1s and M1c runs, relation (8) is well followed with
γ = 2 in the spectral region 15 ≤ K ≤ 40, with a constant close to 1.1 ± 0.3. For the highly
compressible M3c, M5c and M8c runs, relation (8) is well followed with γ = 1 in the region
16 ≤ K ≤ 31, with a constant close to 2.7 ± 0.5. The M5s, M7s and M11s runs present an
intermediate behaviour.
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Figure 4. “Alfvénic helicity” spectra for the M1s, M11s, M3c and M8c runs at the instant when IHM = L
6

,
compensated by K1.3.

5. Shell-to-shell helical transfers
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Figure 5. Magnetic helicity transfer rates from shell Q to shell K0 ∈ {8, 25, 49} at the instant when IHM = L
10

.
The black curve is the total transfer rate, sum of the twelve helical contributions, whereas the other ones correspond
to the dominant PPP and PCP helical contributions. A positive (negative) value means that shell Q gives
(receives) magnetic helicity to (from) shell K0. The transfer rates are normalised by the magnetic helicity
injection rate.

In the global picture of an inverse transfer of magnetic helicity, three features can be clearly
distinguished through a shell-to-shell transfer analysis:

• a (d)irect (l)ocal (t)ransfer, hereafter “DLT” (figure 5.(b)),

• a (l)ocal (i)nverse (t)ransfer, henceforth “LIT” (T HM

PPP curve in figure 5.(a)),
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Figure 6. Magnetic helicity transfer rates to shell K0 = 8, mediated by certain velocity shells at the instant
when IHM = L

10
.

• a (n)on-(l)ocal (i)nverse (t)ransfer from the magnetically-forced scales, called “NLIT” in
the following (figure 5.(c)).

A helical decomposition allows to determine which helical contributions play the biggest roles.
In the case of the M8c run, the PPP and PCP terms, which correspond to sK = sQ = P and
sP ∈ {P,C} respectively, are the dominant terms. As shown in figure 5, while the NLIT is
carried out by both terms in a comparable manner, the LIT is essentially done by the PPP
term and the DLT predominantly by the PCP one.

Furthermore, these three features can also be associated with different mediating velocity
shells: the large-scale velocity field (P ∈ [1 − 3]) is responsible for the DLT, the intermediate-
scale velocity field (P ∈ [4− 29]) for the LIT and the small-scale velocity field P ≥ 30 mediates
the NLIT (figure 6).

For the other runs, these three features (DLT, LIT and NLIT) are also present, even though
the dominant terms and their relative importance regarding each of these features varies. For the
M01s run for example, the PCP term is negligible, and the dominant terms are the PPP and
PNP (mediated by the negative helical part of the velocity field) helical contributions. When
high compressibility is present however, the DLT is preferentially mediated by the compressive
part of the velocity field.

6. Summary and conclusion
The inverse transfer of magnetic helicity has been investigated in the case of highly compressible
isothermal MHD turbulence. For all the considered runs, an inverse transfer to large scales
occurs. While the magnetic helicity spectral index does not change significantly as compared to
the incompressible case when using a purely solenoidal driving up to a RMS Mach number of
about 11, significant deviations are visible at relatively low RMS Mach numbers (of the order of
3) for compressively-driven turbulence. When considering the Alfvén velocity helicity spectra
however, a spectral index close to the current helicity one in the incompressible case is retrieved.
This suggests an extension of the Alfvénic balance found in the incompressible case, which seems
well verified for highly compressible flows.

Furthermore, helically-decomposed shell-to-shell transfer analysis reveals three features in the
global picture of a magnetic helicity inverse transfer: (i) a direct local transfer, preferentially
mediated by the compressive part of the velocity field at large scales, (ii) an inverse local transfer,
preferentially mediated by the positive helical part of the velocity field at intermediate scales and
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(iii) a non-local inverse transfer from the magnetically-forced scales, mediated by the small-scale
velocity field, both positive helical and compressive part of the velocity field playing a significant
role.
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