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Abstract

This paper is concerned with transparent boundary conditions

(TBCs) for the time-dependent Schrödinger equation in one and two
dimensions. Discrete TBCs are introduced in the numerical simula-

tions of whole space problems in order to reduce the computational
domain to a finite region. Since the discrete TBC for the Schrödinger

equation includes a convolution w.r.t. time with a weakly decaying
kernel, its numerical evaluation becomes very costly for large-time
simulations.

As a remedy we construct approximate TBCs with a kernel hav-
ing the form of a finite sum-of-exponentials, which can be evaluated

in a very efficient recursion. We prove stability of the resulting initial-
boundary value scheme, give error estimates for the considered ap-

proximation of the boundary condition, and illustrate the efficiency of
the proposed method on several examples.
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1 Introduction

The development of grid algorithms for solving initial–boundary–value prob-
lems on unbounded domains involves the question of formulating boundary
conditions on an (artificial) boundary that cuts off a finite computational do-
main from the original, infinite portion of space. These boundary conditions
(BCs) are not contained in the original problem formulation: they should be
obtained by a transformation of the given asymptotic conditions at infinity
onto the artificial boundary. Such a transfer must provide an approximation
of the solution on the unbounded domain by the solution calculated in a
finite domain with an artificial boundary. If the approximation is exact, the
transfer is called exact, and the corresponding artificial boundary condition
is called exact or transparent. For instance, different transparent bound-
ary conditions (TBCs) for the wave equation are derived in [43, 40, 18, 41];
examples for other evolution problems are contained in [19].

Clearly, transparent boundary conditions permit us to consider compu-
tational domains of a minimal size, and therefore, they allow potentially to
construct fast algorithms of computing solutions. However, there are several
problems towards this goal: the first one is connected with the derivation
of the boundary conditions themselves. Secondly, the numerical treatment
(approximation, stability, efficiency) of corresponding analytical formulas for
the BCs is a very delicate question. As a promising approach one can con-
sider so–called discrete transparent boundary conditions (DTBCs) that are
derived for a finite–difference approximation of the original evolution problem
on an unbounded domain. The idea of such boundary conditions for general
evolution difference equations is discussed in [32, 33]. DTBCs keep the ap-
proximation and stability properties of the difference scheme used. However,
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usually there still remains the question of relatively high computational costs
required for their implementation.

This paper is concerned with the numerical treatment of DTBCs for a
finite–difference scheme of the 2D–Schrödinger equation governing the time
evolution of the wave function ψ(x, y, t) ∈ CI under the action of a given
electrostatic potential V (x, y, t) ∈ IR.

Schrödinger equation. Consider a rectangular geometry that appears
e.g. in the modeling of quantum waveguides and wave couplers (cf. [11]). In
these applications the wave function ψ(x, y, t) satisfies (within a good ap-
proximation) homogeneous Dirichlet BCs at the channel boundaries. There-
fore, the (scaled) transient Schrödinger equation for such an (infinitely long)
channel (or “lead”) of a waveguide reads:

iψt = −1

2
∆ψ + V (x, y, t)ψ, x ∈ IR, 0 < y < Y, t > 0,

ψ(x, 0, t) = ψ(x, Y, t) = 0, (1.1)

ψ(x, y, 0) = ψI(x, y).

We assume that the given potential V is constant outside of the computational
domain [0,X] × [0, Y ] (cf. Figure 1):

computational

domain

exterior

domain

exterior

domain

0
0 X

Y

x

y

Figure 1: The artificial BCs at x = 0, x = X cut off the exterior domains.

V (x, y, t) = V− ≡ const for x ≤ 0, V (x, y, t) = V+ ≡ const for x ≥ X,
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0 < y < Y, t ≥ 0, and that the initial data has a compact support:

supp ψI ⊂ [0,X] × [0, Y ].

Discussions of strategies to soften these restrictions could be found in [22,
39, 6, 17].

Also, the computational domain is chosen here as a rectangle only for
simplicity of the presentation. The geometry could be more complex, as it
is the case in [11], e.g. The only constrains for our subsequent discussion
of TBCs is that the exterior domains are semi–infinite strips (cf. [9] for a
related stationary model).

Equation (1.1) has also important applications in optics (“Fresnel equa-
tion”, [37]) and acoustics (“parabolic equation”, [44]) as a paraxial approxi-
mation to the wave equation in the frequency domain.

Analytic TBCs. Let us exemplify first analytic TBCs that can be
derived for the Schrödinger equation. For simplicity, we restrict us here to
the 1D case when none of the considered functions depend on y. These TBCs
were independently derived by several authors from various application fields
(cf. [30, 8, 20]). They are non–local in t and read

ψx(0, t) =

√
2

π
e−

π
4
i d

dt

∫ t

0

ψ(0, τ )√
t− τ

dτ (1.2)

for the left boundary at x = 0, and

ψx(X, t) = −
√

2

π
e−

π
4
ie−iV+t d

dt

∫ t

0

ψ(X, τ )eiV+τ

√
t− τ

dτ (1.3)

for the right boundary at x = X.
Since TBCs are of memory–type, their numerical implementation requires

to store the boundary data ψ(0, .) and ψ(X, .) of all the past history. More-
over, the discretization of the left and right TBCs (1.2), (1.3) is not trivial at
all and has attracted lots of attention. For the many proposed strategies of
discretizations of the TBCs (1.2), (1.3) (as well as semi–discrete approaches),
we refer the reader to [3, 8, 10, 28, 35, 37] and references therein. We remark
also that inadequate discretizations may introduce strong numerical reflec-
tions at the boundary or render the discrete initial boundary value problem
only conditionally stable, see [17] for a detailed discussion.
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Difference equations. We consider a Crank–Nicolson finite difference
scheme, which is one of the commonly used discretization methods for the
Schrödinger equation. With the uniform grid points xj = j∆x, yk = k∆y
(where J∆x = X, K∆y = Y ), tn = n∆t, and the approximation ψj,k,n ∼
ψ(xj, yk, tn), j ∈ ZZ, 0 ≤ k ≤ K, n ∈ IN0, this scheme reads for the whole
space problem:

− 4i

∆t
(ψj,k,n+1 − ψj,k,n) (1.4)

=
ψj+1,k,n+1 − 2ψj,k,n+1 + ψj−1,k,n+1

∆x2
+
ψj+1,k,n − 2ψj,k,n + ψj−1,k,n

∆x2

+
ψj,k+1,n+1 − 2ψj,k,n+1 + ψj,k−1,n+1

∆y2
+
ψj,k+1,n − 2ψj,k,n + ψj,k−1,n

∆y2

−2Vj,k,n+ 1

2
(ψj,k,n+1 + ψj,k,n) , j ∈ ZZ, 1 ≤ k ≤ K − 1, n ≥ 0,

with
Vj,k,n+ 1

2
= V (xj, yk, tn+ 1

2
).

Transparent boundary conditions are obtained by explicit solution of the
equation in the two exterior domains x ≤ 0 and x ≥ X. In order to reduce
the problem to the simpler 1D case, the Fourier method is used in y-direction.
Due to the homogeneous Dirichlet BCs at the channel walls (y = 0, y = Y )
we have

ψj,0,n = ψj,K,n = 0, j ∈ ZZ, n ≥ 0, (1.5)

and hence, use discrete Fourier transform of ψj,k,n in y-direction with respect
to sine-functions:

ψm
j,n :=

1

K

K−1∑

k=0

ψj,k,n sin

(
πkm

K

)
, m = 1, . . . ,K − 1.

The scheme (1.4), (1.5) in the two exterior domains j ≤ 0 and j ≥ J then
transforms into:

− 4i

∆t
(ψm

j,n+1 − ψm
j,n) (1.6)

=
ψm

j+1,n+1 − 2ψm
j,n+1 + ψm

j−1,n+1

∆x2
+
ψm

j+1,n − 2ψm
j,n + ψm

j−1,n

∆x2

−2V m
j

(
ψm

j,n+1 + ψm
j,n

)
,

V m
j := Vj +

1 − cos πm
K

∆y2
, j ∈ ZZ \ [1, J − 1], 1 ≤ m ≤ K − 1, n ≥ 0.
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The modes ψm, m = 1, . . . ,K − 1 are independent of each other in the
exterior domains since the potential V is constant there. Therefore we can
continue our analysis for a separate mode only.

Thus, by omitting the superscript m in the notation, we will consider a
discrete 1D–Schrödinger equation of the following form:

−iR(ψj,n+1 − ψj,n) = ψj+1,n+1 − 2ψj,n+1 + ψj−1,n+1 (1.7)

+ ψj+1,n − 2ψj,n + ψj−1,n − wVj,n+ 1
2
(ψj,n+1 + ψj,n) ,

where

R =
4∆x2

∆t
, w = 2∆x2, Vj,n+ 1

2
= V (xj, tn+ 1

2
),

V (x, t) = V− for x ≤ 0, V (x, t) = V+ for x ≥ X, t ≥ 0, (1.8)

with constant V− and V+. We remark that the spatial discretization on the
computational interval [0,X] can be nonuniform (e.g. adaptive in time) for
our subsequent analysis.

Note two important advantages of this second order (in ∆x and ∆t)
scheme: it is unconditionally stable, and it preserves the discrete L2–norm

‖ψn‖2
2 := ∆x

∑

j∈ZZ

|ψj,n|2

with respect to time (these properties will be used for stability analysis in
§5).

Discrete TBCs. Discrete transparent boundary conditions for the equa-
tion (1.7) were introduced in [4]. These DTBCs at the two boundary points
j = 0 and j = J (with X = J∆x) can most easily be expressed for the
Z–transformed problem:

ψ̂1(z) = ˆ̀
0(z)ψ̂0(z), ψ̂J−1(z) = ˆ̀

J (z)ψ̂J(z), (1.9)

where the Z–transform of the sequence {ψj,n}, n ∈ IN0 (with j considered
fixed) is defined as the Laurent series, see [15]:

Z{ψj,n} = ψ̂j(z) :=
∞∑

n=0

ψj,nz
−n, z ∈ CI . (1.10)
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The two transformed boundary kernels ˆ̀
j(z) are respectively calculated as

(cf. [4, 17]):

ˆ̀
0(z) = 1 − iζ0 ±

√
−ζ0(ζ0 + 2i), ζ0 =

R

2

z − 1

z + 1
+ i∆x2V−, (1.11a)

ˆ̀
J (z) = 1 − iζJ ±

√
−ζJ(ζJ + 2i), ζJ =

R

2

z − 1

z + 1
+ i∆x2V+. (1.11b)

In order to have decaying solutions ψ̂j(z) outside of the computational do-
main (i.e. for j → ±∞) we have to choose the branch of the square root such
that |ˆ̀0(z)| > 1 and |ˆ̀J(z)| > 1. The inverse Z–transform of ˆ̀

j, j = 0, J
then defines the convolution coefficients for the DTBCs:

{`j,n} := Z−1{ˆ̀
j(z)}, j = 0, J.

Since the magnitude of `j,n does not decay as n → ∞ (`j,n behaves like
const ·(−1)n for large n), it is more convenient to use a modified formulation
of the DTBCs (cf. [17]). We introduce

ŝj(z) :=
z + 1

z
ˆ̀
j(z), j = 0, J, (1.12)

and

{sj,n} = Z−1{ŝj(z)}, (1.13)

which satisfy

sj,0 = `j,0, sj,n = `j,n + `j,n−1 = O(n− 3

2 ), n ≥ 1. (1.14)

The corresponding Laurent series of

ŝj(z) =
∞∑

n=0

sj,nz
−n (1.15)

converges (and is continuous) for |z| ≥ 1 because of the decay (1.14).
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In physical space the DTBCs then read (cf. Th. 3.8 in [17]):

ψ1,n − s0,0ψ0,n =
n−1∑

k=1

s0,n−kψ0,k − ψ1,n−1, n ≥ 1, (1.16a)

ψJ−1,n − sJ,0ψJ,n =
n−1∑

k=1

sJ,n−kψJ,k − ψJ−1,n−1, n ≥ 1, (1.16b)

with the explicitly calculated convolution kernel:

sj,n =
[
1 − i

R

2
+
σj

2

]
δn,0 +

[
1 + i

R

2
+
σj

2

]
δn,1 + αj e

−inϕj
Pn(µj) − Pn−2(µj)

2n− 1
,

(1.17)

ϕj = arctan
2R(σj + 2)

R2 − 4σj − σ2
j

, µj =
R2 + 4σj + σ2

j√
(R2 + σ2

j )
[
R2 + (σj + 4)2

] ,

σj = 2∆x2Vj , αj =
i

2
4

√
(R2 + σ2

j )
[
R2 + (σj + 4)2

]
eiϕj/2, j = 0, J.

Here Pn denotes the Legendre polynomials (P−1 ≡ P−2 ≡ 0), and δn,k is
the Kronecker symbol. We have assumed that the initial condition satisfies
ψ0,0 = ψ1,0 = 0 and ψJ−1,0 = ψJ,0 = 0.

The use of the formulas (1.16) for calculations permits us to avoid any
boundary reflections and it renders the fully discrete scheme uncondition-
ally stable (just like the underlying Crank–Nicolson scheme). However, the
linearly in t increasing numerical effort to evaluate the DTBCs can sharply
raise the total computational costs. Note that we need to evaluate just one
convolution of (1.16) at each time step (at the endpoint of the interval [0, tn]).
Since the other points of this convolution are not needed, using an FFT is
not practical. A strategy to overcome this drawback will be the key issue of
this paper.

The considered DTBCs (1.16) include the discrete convolution of the un-
known function with a given kernel (1.17). Our approach for fast evaluation
of this convolution consists of approximating the kernel by a finite sum of
exponentials that decay with respect to time (cf. [26]): this will permit us
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to use recurrence formulas for the time stepping, see Section 4. Such kind
of trick has been proposed in [40] for the continuous TBC in case of the 3D
wave equation, and developed in [1, 2, 41, 42, 13, 19] for various hyperbolic
problems.

Related results. As for the Schrödinger equation, we remark that a
related approach was proposed by Bruneau and Di Menza ([10, 14]). There
the authors consider the continuous TBC in Laplace space (for V− = 0):

ψ̂x(0, s) =
√

2e−
π
4
i +
√
s ψ̂(0, s); s = iξ, ξ ∈ IR (1.18)

where +
√

denotes the branch of the square root with positive real part. Its

symbol +
√
s is represented by a rational function calculated with the help of

a least-squares approximation on the imaginary axis. This approach gives
decaying sums of exponentials for the convolution kernel but does not allow
for a convergence analysis or error estimates of the resulting finite difference
scheme (see Example 6.3 below).

The limit ∆x → 0 of the DTBCs (1.16) coincides with the temporally
semi–discrete TBC of Schmidt and Deuflhard [37] and of Lubich and Schädle,
cf. [25, 34]. On the other hand, alternative derivations of the DTBC (1.16)
could be done by applying the Mikusiński operator approach, cf. [38], or the
operational calculus, cf. [25], to the convolution–type BC of the spatially
semi–discretized Schrödinger equation. A temporal semi–discretization of
the Dirichlet-to-Neumann map for the Schrödinger equation on a circular
domain was discussed in [34, 35].

In [26, 36] the continuous convolution kernel of the TBC for the Schrö-
dinger equation and its spatial semi–discretization is approximated by sums
of exponentials eλjt including terms with Re(λj) > 0, i.e. not decaying with
respect to time. However, the authors propose an algorithm allowing to
maintain a uniform relative error of the convolution kernel, but it requires to
introduce new sums of exponentials to handle time intervals of an exponen-
tially growing length.

Notice that all of the key ideas that we use for the Schrödinger equation
here can easily be generalized to parabolic problems where the DTBCs have
a similar form, see [16], e.g.

The paper is organized as follows. In §2 we discuss the numerical compu-
tation of the convolution coefficients (via the inverse Z–transform), approx-
imate them by a discrete sum of exponentials in §3, and present an efficient
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recursion for evaluating these approximate DTBCs in §4. In §5 we analyze
the stability of the resulting initial-boundary-value scheme, and derive error
estimates for the resulting Schrödinger solution in §6. Finally, the numerical
examples of §7 illustrate the efficiency of the proposed method.

2 Calculation of convolution coefficients

The convolution coefficients s0,n, sJ,n appearing in the DTBC (1.16) can be
calculated by the explicit formulae (1.17) as well as by 3-term-recurrence
formulae, see [17]. Let us describe another, more general method based on a
numerical calculation of the inverse Z–transform, see [15]. According to the
definition of the Z–transform, see (1.10), we need to calculate the coefficients
of the Laurent series (1.15). By using the Cauchy integral representation on
the circle with a radius ρ > 1 one obtains

sn =
ρn

2π

2π∫

0

ŝ(ρeiϕ)einϕ dϕ, n ∈ IN0, (2.1)

(for simplicity of notation we suppress here the index j).
The numerical approximation of (2.1) is made by the standard N–point

summation rule:

sn ≈ s(N)
n =

ρn

N

N−1∑

k=0

ŝ(ρeiϕk) einϕk , n = 0, 1, . . . , N − 1, (2.2)

where ϕk = 2πk/N . It is easy to show that the sum (2.2) yields the first N
values of sn with the accuracy

s(N)
n = sn + O(ρ−N ), n = 0, 1, . . . , N − 1, (2.3)

provided that the sequence {sn} is bounded: Indeed, using the Laurent series
(1.15) with z = ρeiϕ and taking into account the orthogonality property

N−1∑

k=0

einϕke−imϕk = Nδn,(m modN)
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we obtain

s(N)
n =

ρn

N

N−1∑

k=0

einϕk

(
∞∑

m=0

smρ
−me−imϕk

)
= sn + ρ−Nsn+N + ρ−2Nsn+2N + . . . .

Hence

|s(N)
n − sn| ≤

ρ−N

1 − ρ−N
max
k≥N

|sk|, n = 0, 1, . . . . (2.4)

Estimate (2.4) means that we can obtain very accurate coefficients s
(N)
n if

we take an appropriate value of ρ greater than 1: supposing that max
k≥N

|sk| <
1 − ρ−N , we find from (2.4) that the accuracy

ε := max
n≥0

|s(N)
n − sn|

can be guaranteed by the choice ρ ≥ ε−
1
N ; for example if ε = 10−6, N = 50

then ρ ≥ 1.32.
Note that estimates of kind (2.4) are well-known, see e.g. [24], [27], and

references therein.

Remark. By using the asymptotic behaviour |sn| ≤ Cn−3/2, see (1.14), we
get the sharper estimate

ρ ≥ (1 +
C

ε
N−3/2)1/N .

We shall now describe some numerical aspects of evaluating the inverse
Z–transform. Our tests show that the numerical inverse Z–transformation
based on (2.2) is very sensitive to the mantissa length (parameter Digits in
Figure 2), i.e. to the round–off error. For large numbers N , e.g. N > 100,
the usual accuracy (e.g. Digits=15) could be insufficient.

For instance, Figure 2 shows the relative error (discrete L2-norm) of s
(N)
n

in dependence of ρ ≥ 1 using N = 256 integration points. The curves
look like a ‘hook’: for each fixed mantissa length the error first drops with
increasing ρ in accordance with the error estimate (2.4); for larger ρ it then
grows because of exponential amplification of the round–off errors due to the
factor ρN in (2.2). Note that for different values of Digits the decreasing
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Figure 2: Relative error of the numerical inverse Z–transform of ŝ depending
on ρ (the radius of the integration circle) for different values of Digits (the
mantissa length). The three curves overlap exactly on the decaying branch,
and their increasing branches – corresponding to the amplified round-off error
– are 10 orders of magnitude apart. Here ∆x = 1/160, ∆t = 2 · 10−5,
N = 256.

part of the error curve (corresponding to the approximation error) overlaps
exactly. For further discussions of the numerical inverse Z–transform, we
refer the reader to [24] where, in particular, the question of choosing the
computational radius ρ in (2.2) is considered, and to [45] where a detailed
numerical investigation of this situation is given.

3 Approximation of convolution coefficients

by sums of exponentials

In order to derive a fast numerical method to calculate the discrete convo-
lutions in (1.16) (for the algorithm cf. Section 4), we will approximate the
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coefficients sn by the following ansatz (sum of exponentials):

sn ≈ s̃n :=

{
sn, n = 0, . . . , ν − 1,∑L

l=1 blq
−n
l , n = ν, ν + 1, . . . ,

(3.1)

where L ∈ IN, ν ≥ 0 are fixed numbers. Evidently, the approximation
properties of s̃n depend on L, ν, and the corresponding set {bl, ql}. Thus,
the choice of an (in some sense) optimal such approximation is a difficult
nonlinear problem. Below we propose a deterministic method of finding
{bl, ql} for fixed L and ν.

The “split” definition of {s̃n} in (3.1) is motivated by the fact that the
implementation of the DTBCs (1.16) involves a convolution sum with k rang-
ing only from 1 to k = n − 1. Since the first coefficient s0 does not appear
in this convolution, it makes no sense to include it in our sum-of-exponential
approximation, which aims at simplifying the evaluation of the convolution.
Hence, one may choose ν = 1 in (3.1). The “special form” of s0 and s1 in
definition (1.17) suggests even to exclude s1 from this approximation and to
choose ν = 2 in (3.1); note that α−1 einϕsn ∈ IR for n ≥ 2. We use this choice
in our numerical implementation.

Also, for the choice ν = 0 (or ν = 1) we typically obtain two (or one)
coefficient pairs (bl, ql) of big magnitude. These “outlier” values reflect the
different nature of the first two coefficients. Since the corresponding expo-
nentials b0q

−n
0 , b1q

−n
1 decay very quickly, they only yield a contribution in

(3.1) for n very small.

Let us fix L and ν in (3.1), and consider the formal power series:

f(x) := sν + sν+1x+ sν+2x
2 + . . . (3.2)

for |x| ≤ 1. If there exists the [L− 1|L] Padé approximation

f̃ (x) :=
PL−1(x)

QL(x)
(3.3)

of (3.2), then its Taylor series

f̃(x) = s̃ν + s̃ν+1x+ s̃ν+2x
2 + . . . (3.4)

satisfies the conditions

s̃n = sn, n = ν, ν + 1, . . . , 2L + ν − 1, (3.5)

according to the definition of the Padé approximation rule.
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Theorem 3.1. Let QL(x) have L simple roots ql with |ql| > 1, l = 1, . . . , L.
Then

s̃n =
L∑

l=1

blq
−n
l , n = ν, ν + 1, . . . , (3.6)

where

bl := −PL−1(ql)

Q′
L(ql)

qν−1
l 6= 0, l = 1, . . . , L. (3.7)

Proof. We use the following known representation of the rational function
(3.3):

PL−1(x)

QL(x)
=

L∑

l=1

blq
1−ν
l

ql − x
(3.8)

in terms of {bl, ql} defined in the formulation of this theorem, see e.g. [13].
Substituting the identity

1

ql − x
= q−1

l

∞∑

n=0

(
x

ql

)n

(3.9)

(with |x| < |ql|) in (3.8), we obtain (3.6) by comparing equations (3.3) and
(3.4).

Remark. All our practical calculations confirm that the assumption on QL(x)
in Theorem 3.1 holds for any desired L, although we cannot prove this.

It follows from (3.5) and (3.6) that the set {bl, ql} defined in Theorem 3.1
can be used in (3.1) at least for n = ν, ν + 1, . . . , 2L + ν − 1. The main
question now is: is it possible to use these {bl, ql} also for n > 2L + ν − 1?
In other words, what quality of approximation

s̃n ≈ sn, n > 2L + ν − 1 (3.10)

can we expect?
Having in mind to outline our approach for a general case (not only for

the specific sn defined in (1.17)) we will use (a slight generalization of) the
Baker-Gammel-Wills conjecture [7] concerning the existence of convergent
subsequences of diagonal Padé approximants.
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Conjecture (generalization of Baker-Gammel-Wills, [7]). Let p(x) be
a power series representing a function which is meromorphic in |x| < 1 and
continuous on |x| ≤ 1 (except at the poles inside the unit circle). Then, at
least a subsequence of the [L|L] Padé approximants converges uniformly to
p(x) (as L → ∞) in the domain formed by removing from the closed unit
disk small open circles around the poles of p.

Remark. The study of [L − 1|L] Padé approximants can be reduced to the
study of the [L|L] case by simply considering Padé approximants to g(x) =
xp(x).

Coming back to our function f(x) with sn defined in (1.17), we note that
it is analytic on |x| < 1 and continuous on |x| ≤ 1. This follows from the
analogous properties of ŝ(z) for |z| ≥ 1.

Theorem 3.2. If the Conjecture holds, we then have:

(i) at least a subsequence of the [L− 1|L] (bounded) Padé approximants to
(3.2) converge uniformly on the disk |x| ≤ 1, as L→ ∞;

(ii) all roots of QL(x) (of the above subsequence) have absolute values greater
than 1;

(iii) |sn − s̃n| = O(n− 3

2 ).

Proof. The power series (3.2) with sn defined in (1.17) is analytic on |x| < 1
and continuous for |x| ≤ 1. Therefore we obtain conclusion (i) immediately
from the conjecture. The property (ii) follows from (i) and (3.8). Finally,
(iii) follows from (ii) and (3.6), which shows that |s̃n| → 0 exponentially,
and from (1.14).

The above analysis permits us to give the following description of the ap-
proximation to the convolution coefficients (1.17) by the representation (3.1)
if we use a [L− 1|L] Padé approximant to (3.2): the first 2L + ν − 1 coeffi-
cients are reproduced exactly, see (3.5); however, the asymptotic behaviour
of sn and s̃n (as n→ ∞) differs strongly (algebraic versus exponential decay).
A typical graph of |sn − s̃n| versus n for L = 20 is shown in Figure 3.

So far we discussed how to calculate and to approximate the DTBCs
for one fixed discretization of the 1D–Schrödinger equation. However, a
nice property of the considered approach consists of the following: once
the approximate convolution coefficients {s̃n} are calculated for particular
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Figure 3: Convolution coefficients sn (left axis, dashed line) and error |sn−s̃n|
of the convolution coefficients (right axis); ∆x = 1/160, ∆t = 2 ·10−5, V = 0
(L = 20)

discretization parameters {∆x, ∆t, V }, it is easy to transform them into
appropriate coefficients for any other discretization. We shall confine this
discussion to the case ν = 2:

Transformation rule 3.1. For ν = 2, let the rational function

ˆ̃s(z) = s0 +
s1

z
+

L∑

l=1

bl
qlz − 1

1

qlz
(3.11)

be the Z–transform of the convolution kernel {s̃n}∞n=0 from (3.1), where {s̃n}
is assumed to be an approximation to a DTBC for the equation (1.7) with a
given set {∆x, ∆t, V }.
Then, for another set {∆x?, ∆t?, V?}, one can take the approximation

16



ˆ̃s
?
(z) := s?

0 +
s?
1

z
+

L∑

l=1

b?l
q?
l z − 1

1

q?
l z
, (3.12)

where

q?
l :=

qlā− b̄

a− qlb
, (3.13)

b?l := blql
aā− bb̄

(a− qlb)(qlā− b̄)

1 + q?
l

1 + ql
, (3.14)

a := 2
∆x2

∆t
+ 2

∆x2
?

∆t?
+ i(∆x2V − ∆x2

?V?), (3.15)

b := 2
∆x2

∆t
− 2

∆x2
?

∆t?
− i(∆x2V − ∆x2

?V?), (3.16)

and s?
0, s

?
1 are the exact convolution coefficients for the parameters {∆x?,

∆t?, V?} as given by (1.17).

Derivation. This transformation rule is based on the observation that the
exact Z-transformed boundary kernel ˆ̀(z) = z

z+1
ŝ(z) depends on the param-

eters ∆x, ∆t, and V only via the variable

ζ = 2
∆x2

∆t

z − 1

z + 1
+ i∆x2V, (3.17)

cf. (1.11).
Making the assumption that also the approximate transformed boundary

kernels

ˆ̀̃(z) :=
z

z + 1
ˆ̃s(z), (3.18)

ˆ̃
`
?

(z?) :=
z?

z? + 1
ˆ̃s

?
(z?) (3.19)

only depend on ζ yields a transformation between two sets of parameters
(we shall elaborate on this choice in §5, cf. (5.12)). By equating the func-
tions ζ and ζ? corresponding to the sets {∆x, ∆t, V } and {∆x?, ∆t?, V?},
respectively, we obtain the map

z? =
az − b

ā− b̄z
(3.20)

17



with a, b defined above.

With (3.18) and (3.19) the obvious transformation for
ˆ̃
`, i.e.

ˆ̃
`
?

(z?) ≡ ˆ̃
`(z(z?)) with z(z?) =

āz? + b

a+ b̄z?

translates into a transformation for ˆ̃s:

ˆ̃s
?
(z?) =

z? + 1

z?

ˆ̀̃?

(z?) =
z? + 1

z?

ˆ̀̃(z(z?)) =
z? + 1

z?

z(z?)

z(z?) + 1
ˆ̃s(z(z?)). (3.21)

Using z(z?) in (3.11) a lengthy but straight forward calculation yields

ˆ̃s
?
(z?) = c?0 +

c?1
z?

+
L∑

l=1

b?l
q?
l z

? − 1

1

q?
l z

?
, (3.22)

where q?
l and b?l are defined, respectively, in (3.13) and (3.14). The constants

c?0 and c?1 depend on s0, s1, bl, and ql, and, in general, they do not coincide
with the exact values s?

0 and s?
1. For our purposes, however, this does not

matter: Here, we are only interested in the transformation of the exponential
approximation, since only this part enters the convolution (1.16) (cf. §4 be-
low). And, otherwise, the calculation of {s̃n} would require to use the Padé
-algorithm discussed in Theorem 3.1.

(3.22) shows that the transformation (3.21) preserves the structure of our
approximate convolution coefficients {s̃n} as a sum of discrete exponentials
for n ≥ ν = 2 (cf. (3.1)).

It remains to note that due to |b| < |a|, the bilinear function (3.20) maps
the unit disc onto itself (see [21], e.g.). Therefore, for |ql| > 1 the map (3.13)
gives also |q?

l | > 1. Hence, {s̃?
n} also contains only decaying exponentials.

We now return to the discrete 2D–Schrödinger equation, which was de-
composed into the modes ψm, m = 1, ...,K − 1 in (1.6). Provided an ex-
ponential approximation of DTBCs for a single mode is known, we can use
formulas (3.13), (3.14) for a rapid calculation of approximate DTBCs for the
remaining Fourier modes by taking the corresponding values V m

j .

Example 3.1. (Transformation rule) We present a numerical example
for applying the above transformation rule. For L = 10 we calculated the
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Figure 4: Approximation error of the approximate convolution coefficients
for ν = 2, ∆x = 1/160, ∆t = 2 · 10−5, V = 4500: The error of s̃∗n (- - -)
obtained from the transformation rule and the error of s̃n (—) obtained from
a direct Padé approximation of the exact coefficients sn.

coefficients {bl, ql} with the parameters ∆x = 1, ∆t = 1, V = 0 (cf. Appendix
A) and then used the Transformation 3.1 to calculate the coefficients {b∗l , q∗l }
for the parameters ∆x∗ = 1/160, ∆t∗ = 2 · 10−5, V∗ = 4500.

Figure 4 shows that the resulting convolution coefficients s̃∗n are in this
example even better approximations to the exact coefficients sn than the coef-
ficients s̃n, which are obtained directly from the Padé algorithm discussed in
Theorem 3.1. Hence, the numerical solution of the corresponding Schrödinger
equation is also more accurate (cf. Example 7.2, Figure 17)
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4 Fast evaluation of the discrete convolution

with an “exponential” kernel

Let us consider the approximation (3.1) of the discrete convolution kernel
appearing in the DTBC (1.16). With these “exponential” coefficients the
convolution

C(n)(u) :=
n−ν∑

k=1

uks̃n−k , s̃n =
L∑

l=1

blq
−n
l , |ql| > 1, (4.1)

of a discrete function uk, k = 1, 2, . . . , can be calculated by recurrence for-
mulas. And this will reduce the numerical effort drastically (cf. Figure 18 in
Example 7.2).

Theorem 4.1. The function C (n)(u) from (4.1) for n ≥ ν+1 is represented
by

C(n)(u) =
L∑

l=1

C
(n)
l (u), (4.2)

where

C
(n)
l (u) = q−1

l C
(n−1)
l (u) + blq

−ν
l un−ν , n = ν + 1, ν + 2, . . . (4.3)

C
(ν)
l (u) ≡ 0.

Proof. A straightforward calculation yields:

C(n)(u) =
n−ν∑

k=1

uk

L∑

l=1

blq
−(n−k)
l =

L∑

l=1

C
(n)
l (u),

with

C
(n)
l (u) :=

n−ν∑

k=1

blq
−(n−k)
l uk.

And for each C
(n)
l (u) we have the recursion:

C
(n)
l (u) = q−1

l

n−ν−1∑

k=1

blq
−(n−1−k)
l uk + blq

−ν
l un−ν = q−1

l C
(n−1)
l (u) + blq

−ν
l un−ν ,
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with
C

(ν)
l (u) ≡ 0.

Finishing the algorithmic part of this study let us summarize the steps of
the proposed method to evaluate approximate DTBCs:

Step 1: Prescribe L, ν (e.g. ν = 2) in (3.1), take ∆x = ∆t = 1, ρ ≥ 1, N ≥
2L+ 1, and calculate by (1.17) or (2.2) the coefficients s

(N)
n , n = ν, ν +

1, · · · , 2L + ν − 1.

Step 2: Use the [L−1|L]–Padé algorithm for the series (3.4) with s̃n := s
(N)
n , n =

ν, ν + 1, · · · , 2L + ν − 1 in order to find {bl, ql} for (3.1) in accordance
with Theorem 3.1.

The Steps 1 and 2 are made once and for all; see Appendix A with the
table of coefficients for L = 5, 10.

Step 3: For given {∆x?, ∆t?, V?} use formulas (3.13)-(3.16) with {∆x = 1, ∆t =
1, V = 0} and {bl, ql} from Step 2 for the calculation of {b?l , q?

l }.
Step 4: Implement the recurrence formulas (4.2), (4.3) to calculate approximate

convolutions in (1.16). The coefficients s∗0, s
∗
1, . . . , s

∗
ν−1 have to be cal-

culated by (1.17) or (2.2).

5 Stability analysis of the numerical scheme

In this section we shall give a stability analysis of our numerical scheme
for the Schrödinger equation (1.7) along with BCs of convolution form like
(1.16). Usually, these BCs will be exactly or approximatively transparent,
depending on the chosen convolution kernel.

L2–a-priori estimate of continuous solution. To illustrate our subse-
quent calculations for the discrete case we shall first give an a-priori estimate
for a continuous IBVP for the Schrödinger equation:





iψt = −1
2
ψxx + V (x, t)ψ, 0 < x < X, t > 0,

ψ(x, 0) = ψI(x), 0 < x < X,

ψx(0, t) =
∫ t

0
f0(t− τ )ψ(0, τ ) dτ, t > 0,

ψx(X, t) =
∫ t

0
fX(t− τ )ψ(X, τ ) dτ, t > 0,

(5.1)
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where f0(t), fX(t) are given functions.
Alternatively, the two boundary conditions can be written in the Laplace

transform space as

ψ̂x(0, s) = f̂0(s)ψ̂(0, s), Re s ≥ 0, (5.2a)

ψ̂x(X, s) = f̂X(s)ψ̂(X, s), Re s ≥ 0, (5.2b)

where f̂0(s) and f̂X(s), s ∈ CI are the Laplace transforms of f0(t) and fX(t),
t ≥ 0, respectively.

For the system (5.1) we have the following estimate:

Proposition 5.1. (Stability condition) Let the transformed boundary ker-
nels f̂0, f̂X satisfy for some α1 ∈ IR:

Im f̂0(α1 + iξ) ≤ 0, Im f̂X(α1 + iξ) ≥ 0, ∀ξ ∈ IR. (5.3)

Then the solution of (5.1) satisfies the a-priori estimate

‖ψ(., t)‖L2(0,X) ≤ ‖ψI‖L2(0,X) e
α1t, t > 0. (5.4)

Proof. For smooth solutions ψ this proposition is easily proved by using
an energy estimate for the function φ(x, t) := ψ(x, t)e−α1t and by using
Plancherel’s identity for Laplace transforms:

‖φ(., t)‖2
L2(0,X) ≤ ‖ψI‖2

L2(0,X) + Im

∫ t

0

[
φ(X, τ )φx(X, τ ) − φ(0, τ )φx(0, τ )

]
dτ

= ‖ψI‖2
L2(0,X) + Im

∫ ∞

0

[
χ[0,t](τ )φ(X, τ ) {(χ[0,t]φ) ∗ f̃X}(X, τ )

− χ[0,t](τ )φ(0, τ ) {(χ[0,t]φ) ∗ f̃0}(0, τ )
]
dτ

= ‖ψI‖2
L2(0,X) −

1

2π

∫

IR

[
|χ̂[0,t]φ|2(X, iξ) Imf̂X(α1 + iξ)

− |χ̂[0,t]φ|2(0, iξ) Imf̂0(α1 + iξ)
]
dξ

≤ ‖ψI‖2
L2(0,X).

(5.5)

Here χ denotes the characteristic function, and we used the fact that

φx(τ ) =
(
φ ∗ f̃0

)
(τ ) =

(
(χ[0,t]φ) ∗ f̃0

)
(τ ), τ ≤ t,

22



with the notation
ˆ̃
f0(s) = f̂0(α1 + s) (and analogously for fX).

We remark that the calculation in (5.5) is rigorous for ψ(0, .), ψ(X, .) ∈
L2

loc(IR
+
0 ) and f0, fX ∈ L1

loc(IR
+
0 ) 1.

Example 5.1. (Stability of TBC) The functions

f̂TBC

0 (s) =
√

2 e−
π
4
i +
√
s+ iV−, f̂TBC

X (s) = −
√

2 e−
π
4
i +
√
s+ iV+ (5.6)

correspond to the TBCs (1.2), (1.3). An easy calculation shows that they
satisfy the stability conditions (5.3) for all α1 ≥ 0.

However, the above regularity assumptions on fTBC

0 , fTBC

X are not satisfied
here: With V− = 0 the left TBC (1.2) reads

ψx(0, t) =
√

2 e−
π
4
i d

1
2ψ

dt
1

2

(0, t),

where d
1
2

dt
1
2

denotes the semiderivative (cf. §7 in [29]). For smooth functions

ψ(0, .) it can be rewritten as

ψx(0, t) =

√
2

π
e−

π
4
i

[
1

2

∫ t

0

ψ(0, t)− ψ(0, τ )

(t− τ )3/2
dτ +

ψ(0, t)√
t

]
.

Apart of a singular (distributional) contribution at t = 0, its convolution
kernel (as appearing in (5.1)) is

fTBC

0 (t) = −(2π)−
1

2 e−
π
4
i t−

3

2 , t > 0. (5.7)

Note that this is the same decay rate as in the discrete case (1.14).
Obviously fTBC

0 /∈ L1
loc(IR

+
0 ), but using higher regularity of ψ one can still

give a sense to the boundary terms in (5.5): For a smooth potential V and
for ψI ∈ H1(0,X) the solution of the Schrödinger equation has the regularity
ψ ∈ C([0,∞),H1(0,X)) and its boundary traces satisfy ψ(0, .), ψ(X, .) ∈
H

1
4

loc(IR
+
0 ) (cf. Chap. XVIII §1,§7 in [12] for details).

Using a zero-extension of some φ ∈ H
1
4 (0, T ) to H

1
4 (IR+) and Plancherel’s

identity for Laplace transforms one easily verifies that d
1
2 φ

dt
1
2

is a continuous

linear functional on H
1

4 (IR+). And hence, the r.h.s. of (5.5) is well defined.

1With L
p

loc
we denote spaces of locally integrable functions.
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Example 5.2. (Sufficient condition for stability of “cut-off TBC”)
For the kernel of an approximate BC we assume a cut–off for t ≥ T and
define:

f0(t) = fTBC

0 (t)H(T − t), (5.8)

with H(t) being the Heaviside function and fTBC

0 (t) given by (5.6), (5.7).
We shall verify that this kernel f0(t) satisfies the stability condition (5.3).

To this end we rewrite it as

f0(t) = fTBC

0 (t)− fTBC

0 (t)H(t− T ).

Hence, its Laplace transform reads

f̂0(s) = f̂TBC

0 (s) −
∫ ∞

T

fTBC

0 (t) e−st dt

=
√

2 e−
π
4
i +
√
s+

1√
2π

e−
π
4
i

∫ ∞

T

t−
3
2 e−st dt

=
1√
T

(√
2 e−

π
4
i +
√
s̃+

1√
2π

e−
π
4
i

∫ ∞

1

τ−
3

2 e−s̃τ dτ
)
, s = α1 + iξ, ξ ∈ IR,

(5.9)

where s̃ = α̃1 + iξ̃, α̃1 = α1T , ξ̃ = ξT , τ = t/T . It is easy to find numerically
that (5.9) with T = 1 satisfies the stability condition (5.3) if α̃1 ≥ 0.23. For
general T > 0 condition (5.3) therefore holds for α1(T ) = α̃1/T . Note that
α1(T ) → 0 for T → ∞, which corresponds to Example 5.1.

Discretization. In the discrete case we shall use the following standard
notation for finite difference operators:

∆+ψj = ψj+1 − ψj, ∆−ψj = ψj − ψj−1, ∆2ψj = ψj+1 − 2ψj + ψj−1.

We are concerned with the stability (as ∆x, ∆t→ 0) of the Crank-Nicolson
scheme for the Schrödinger equation (1.7) along with convolution-type BCs:





−iR(ψj,n+1 − ψj,n) = ∆2 (ψj,n+1 + ψj,n) − wVj,n+ 1
2
(ψj,n+1 + ψj,n) ,

j = 1, . . . , J − 1,
ψj,0 = ψI(xj), j = 2, . . . , J − 2;
ψ0,0 = ψ1,0 = ψJ−1,0 = ψJ,0 = 0,

∆+ψ̂0(z) = (ĝ0(z) − 1) ψ̂0(z), |ĝ0(z)| > 1,

∆−ψ̂J (z) = −(ĝJ (z)− 1) ψ̂J (z), |ĝJ(z)| > 1,

(5.10)
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where ĝ0(z), ĝJ (z) are given functions. Alternatively, the two BCs can be
written as

∆+ψ0,n = ψ0,n ∗ g̃0,n =

n∑

k=0

ψ0,k g̃0,n−k; g̃0,n := g0,n − δ0,n, (5.11a)

∆−ψJ,n = −ψJ,n ∗ g̃J,n = −
n∑

k=0

ψJ,k g̃J,n−k ; g̃J,n := gJ,n − δ0,n. (5.11b)

We assume that the Z–transforms of the given sequences {gj,n}; j = 0, J ,
ĝj(z) := Z{gj,n} are analytic in a neighbourhood of z = ∞.

Typically, the BCs (5.11) should be a discrete approximation of the two
continuous, convolution-BCs in (5.1). And hence the two functions ĝj; j =
0, J are of course functions of z, ∆x, and ∆t, just as in the DTBCs (1.11a),
(1.11b). In this example their functional dependence is of the form

ˆ̀
j ≡ ĝj(z, ∆x, ∆t) = ĥj(y) with y = y(z,∆x,∆t) =

R

2

(z − 1

z + 1
+ iνj

)
,

(5.12)

where νj = ∆tVj/2 depends on the external potentials V0 and VJ . In analogy
to (1.8) we assume Vj = V− for j ≤ 0 and Vj = V+ for j ≥ J .
Note that y appearing in these discrete BCs is just the symbol of ∂t + iV
in the Crank-Nicolson scheme, and the Z–transformed equation (1.7) can be
recast in the exterior domain (i.e. for j ≤ 0 or j ≥ J) as

iy ψ̂j(z) = −∆2

2
ψ̂j(z).

Next we shall specify the typical ∆x– and ∆t–dependence of general
transformed boundary kernels ĝj. For arbitrary functions f0, fX the BCs
in (5.1) are usually not perfectly transparent. Therefore, their natural dis-
cretization cannot be obtained by calculating the discrete Dirichlet–to–Neu-
mann map for the fully discretized whole space problem, as it was done in
[4, 17] to derive the DTBCs.
After replacing ψx in the BCs (5.1) by a finite difference quotient we now
discuss the time discretization of their convolution integrals: A very natu-
ral method is based on the operational quadrature of [23, 24] by using the
same time discretization for the BCs as for the evolution equation, i.e. the
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trapezoidal rule in our case. We shall hence assume that the transformed
boundary kernels in (5.10) are also of the form

ĝj(z, ∆x, ∆t) = ĥj(y), (5.13)

with y given in (5.12) and some appropriate function ĥj. We remark that this
approach also reproduces the DTBCs (1.9)-(1.11b). In the Transformation
rule 3.1 we had already assumed this form (5.13) when calculating the explicit
∆x- and ∆t-dependence of the sum-of-exponentials-BCs derived in §3.

`2–a-priori estimate of discrete solution. In the following lemma we
shall derive an a-priori estimate for the temporal growth of the solution to
(5.10) with ∆x and ∆t considered fixed. This discrete analogue of Propo-
sition 5.1 will then be the key ingredient for our stability result (given in
Theorem 5.1 and Theorem 5.2 below). We shall use the discrete L2–norm:

‖ψn‖2
2 := ∆x

J−1∑

j=1

|ψj,n|2. (5.14)

Lemma 5.1. (Growth condition) Let the transformed boundary kernels
ĝ0, ĝJ satisfy

Im ĝ0(βe
iϕ) ≤ 0, Im ĝJ (βeiϕ) ≤ 0, ∀ 0 ≤ ϕ ≤ 2π, (5.15)

for some (sufficiently large) β ≥ 1. Assume also that ĝ0, ĝJ are analytic for
|z| ≥ β. Then, the solution of (5.10) satisfies the a-priori estimate

‖ψn‖2 ≤ ‖ψ0‖2β
n, n ∈ IN. (5.16)

Proof. The proof is analogous to that of Proposition 5.1 and it is based on a
discrete energy estimate for the new variable

φj,n := ψj,n β
−n,

which satisfies the equation

−iR (φj,n+1 − φj,n) =
(
∆2 −wVj,n+ 1

2

)
(φj,n+1 + φj,n) (5.17a)

+ (β − 1)
(
∆2 −wVj,n+ 1

2
+ iR

)
φj,n+1; j = 1, . . . , J − 1,

φj,0 = ψj,0; j = 0, . . . , J, (5.17b)

∆+φ̂0(z) = (ĝ0(βz) − 1) φ̂0(z), (5.17c)

∆−φ̂J(z) = −(ĝJ (βz)− 1) φ̂J (z). (5.17d)
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In physical space, the two BCs can be written as

∆+φ0,n = φ0,n ∗ g̃0,n

βn
=

n∑

k=0

φ0,k

(
g̃0,n−k β

k−n
)
, (5.18a)

∆−φJ,n = −φJ,n ∗ g̃J,n

βn
= −

n∑

k=0

φJ,k

(
g̃J,n−k β

k−n
)
. (5.18b)

First we multiply (5.17a) by φ̄j,n/β and its complex conjugate by φj,n+1:

−iRφ̄j,n (φj,n+1 − φj,n) = φ̄j,n

(
∆2 − wVj,n+ 1

2

)
(φj,n+1 + φj,n) (5.19)

+(β−1 − 1)φ̄j,n

(
∆2 − wVj,n+ 1

2
− iR

)
φj,n,

iRφj,n+1

(
φ̄j,n+1 − φ̄j,n

)
= φj,n+1

(
∆2 − wVj,n+ 1

2

) (
φ̄j,n+1 + φ̄j,n

)
(5.20)

+(β − 1)φj,n+1

(
∆2 − wVj,n+ 1

2
− iR

)
φ̄j,n+1.

Note that we used equation (5.17a) to modify the last term of (5.19). Next
we subtract (5.20) from (5.19), sum from j = 1 to j = J − 1, and take
imaginary parts. After a simple, but lengthy calculation we obtain:

J−1∑

j=1

(
|φj,n+1|2 − |φj,n|2

)
= −(1 − β−1)

J−1∑

j=1

|φj,n|2 − (β − 1)
J−1∑

j=1

|φj,n+1|2

+
1

βR
Im
[(
φ̄0,n + βφ̄0,n+1

)
∆+
(
φ0,n + βφ0,n+1

)

−
(
φ̄J,n + βφ̄J,n+1

)
∆−
(
φJ,n + βφJ,n+1

)]
.

(5.21)

Summing (5.21) from n = 0 to n = N yields (note that β ≥ 1):

‖φN+1‖2
2 ≤ ‖φ0‖2

2 +
∆x

β2R
Im

N∑

n=0

[(
φ̄0,n + βφ̄0,n+1

)
∆+(φ0,n + βφ0,n+1)

−
(
φ̄J,n + βφ̄J,n+1

)
∆−(φJ,n + βφJ,n+1)

]

= ‖φ0‖2
2 +

∆x

β2R
Im

N∑

n=0

[(
φ̄0,n + βφ̄0,n+1

)
(φ0,n + βφ0,n+1) ∗

g̃0,n

βn

+
(
φ̄J,n + βφ̄J,n+1

)
(φJ,n + βφJ,n+1) ∗

g̃J,n

βn

]
.(5.22)
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For the last identity we used the BCs (5.18) and φ0,0 = φJ,0 = 0.
To finish the proof it remains to determine the sign of the last term in

(5.22). To this end we define (for N fixed) the two sequences,

un :=

{
φ0,n + βφ0,n+1, n = 0, . . . , N,
0, n > N,

vn := un ∗ g̃0,n

βn
=

n∑

k=0

uk
g̃0,n−k

βn−k
, n ∈ IN0.

The Z–transform Z{un} = û(z) is analytic for |z| > 0, since it is a finite
sum. The Z–transform Z{vn} then satisfies v̂(z) = (ĝ0(βz) − 1)û(z) and is
analytic for |z| ≥ 1. Using Plancherel’s Theorem for Z–transforms (cf. §38
in [15]) we have

N∑

n=0

vnūn =
∞∑

n=0

vnūn =
1

2π

∫ 2π

0

v̂(eiϕ)û(eiϕ) dϕ

=
1

2π

∫ 2π

0

|û(eiϕ)|2(ĝ0(βe
iϕ) − 1) dϕ. (5.23)

Using (5.23) for the two boundary terms in (5.22) now gives:

‖φN+1‖2
2 ≤ ‖φ0‖2

2 +
∆x

2πβ2R

∫ 2π

0

[
|(1 + βeiϕ)φ̂0(e

iϕ)|2 Im(ĝ0(βe
iϕ) − 1)

+|(1 + βeiϕ)φ̂J(eiϕ)|2 Im(ĝJ (βeiϕ) − 1)
]
dϕ. (5.24)

Our assumptions on ĝ0 and ĝJ hence imply

‖φN‖2 ≤ ‖φ0‖2, ∀N ≥ 0,

and the result follows.

Remark. Above we have assumed that the two transformed boundary kernels
ĝj ; j = 0, J – as Z–transforms – are analytic for |z| ≥ β. Hence their
imaginary parts are harmonic functions there. Since the average of ĝj(z) on
the circles z = βeiϕ equals gj,0 = ĝj(z = ∞), condition (5.15) implies Im
ĝj(z = ∞) ≤ 0; j = 0, J . Then we have the following simple consequence of
the maximum principle for the Laplace equation:

If condition (5.15) holds for some β0, it also holds for all β > β0.
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Example 5.3. (Discrete counterpart of Example 5.1) For the exact
DTBC (1.16) (with ĝj = ˆ̀

j, j = 0, J) the stability condition (5.15) is clearly
satisfied for β = 1 (see Figure 5). In fact the DTBC satisfies (5.15) for all ∆x
and ∆t. Hence, the discrete L2-norm of ψn always decreases monotonically
in time. And in this case the L2-stability of the scheme (5.10) is trivial.

  0  π/2   π 3/2π  2π 
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Imag l
0

^ (z)

β = 1
β = 1.01
β = 1.1
β = 1.2

Figure 5: The imaginary part of ˆ̀
0(z) is non–positive on the unit circle

z = eiϕ, 0 ≤ ϕ ≤ 2π (and hence also for β ≥ 1). ∆x = 1/160, ∆t =
2 · 10−5, V ≡ 0.

Example 5.4. (Discrete counterpart of Example 5.2) As a second ex-
ample we consider a simplification of the exact DTBC (1.16), where the
convolution coefficients sj,n are cut off for n ≥ N (cf. [17] for a discussion
of the accuracy and practical relevance of these BCs). The corresponding
Z–transform,

ˆ̀(N)
j (z) =

z

z + 1
ŝ
(N)
j (z) =

z

z + 1

N∑

n=0

sj,nz
−n (5.25)
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satisfies the growth condition (5.15) only for β ≥ 1.25 if N = 10 (see Fig-
ure 6). (The continuous analogue of such a cut–off kernel was given in (5.8)).
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Stability of simplified DTBC: N=10

β = 1      
β = 1.25   
β = 2      
β = 5      
Imag( l0,0 )

^

Figure 6: Growth condition Im ˆ̀(N)
0 (z = β eiϕ) ≤ 0 for simplified discrete

transparent boundary conditions with cut–off after N = 10 convolution co-
efficients, ∆x = 1/160, ∆t = 2 · 10−5, V ≡ 0. The stability condition (5.15)
is satisfied for β ≥ 1.25, and Im `0,0 < 0 holds.

`2–stability. Now we turn to the stability of the numerical scheme (5.10)
as ∆t → 0. To this end we shall derive uniform estimates for ‖ψn‖2 (as
∆t → 0 and 0 ≤ n∆t ≤ T ) by using Lemma 5.1. This lemma bounds
the exponential growth of solutions to the numerical scheme for a fixed dis-
cretization (∆x, ∆t) and it will be applied for each value of ∆t along with
a corresponding radius β(∆t). Since the case β(∆t) ≡ 1 is trivial (cf. the
DTBC illustrated in Figure 5) we focus on the case when β = β(∆t) > 1.
For estimating ‖ψn‖2 we shall require that there exists a fixed ρ ≥ 0 such
that

β(∆t) ≤ eρ∆t, ∀ 0 < ∆t ≤ ∆t0.
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Using (5.16) this would then yield our final stability estimate

‖ψn‖2 ≤ ‖ψ0‖2β(∆t)n ≤ ‖ψ0‖2e
ρn∆t ≤ ‖ψ0‖2e

ρT , ∀n∆t ≤ T. (5.26)

Next we shall discuss conditions on the boundary function ĝj(z) for one
fixed discretization (∆x0, ∆t0), which imply that the stability estimate (5.15)
holds for all 0 < ∆t ≤ ∆t0 on circles with radius β(∆t) = eρ∆t, which de-
crease as ∆t → 0. In the following three cases we shall assume different
behaviours of the function ∆x = ∆x(∆t) (as ∆t → 0) that permit to prove
stability of the scheme (5.10):

Case 1. R = 4∆x2/∆t = const as ∆t→ 0, and Vj = 0:
Because of the functional dependence (5.12), ĝj is here independent of ∆t,
and therefore β in (5.15) would also be independent of ∆t. Hence, the sta-
bility estimate (5.26) can only be obtained if the condition (5.15) holds for
β = β(∆t0) = 1.

Case 2. ∆x = ∆x0 = const and Vj ∈ IR:

Theorem 5.1. Let the transformed boundary kernels ĝ0, ĝJ satisfy

Im ĝ0(z,∆x0,∆t0)
∣∣∣
C1

≤ 0, Im ĝJ (z,∆x0,∆t0)
∣∣∣
C1

≤ 0 (5.27)

for some fixed ∆x0 and ∆t0. Here, the circle C1 is defined by

z =
β0 − 1

2
+
β0 + 1

2
eiϕ, 0 ≤ ϕ ≤ 2π,

(cf. Figure 7) with some sufficiently large β0 = eρ∆t0 ≥ 1 (note that z = −1
and z = β0 ∈ C1).

Then, the stability estimate (5.26) holds for all 0 < ∆t ≤ ∆t0 and ∆x =
∆x0.

Proof. Following the above remark (after the proof of Lemma 5.1) we first
note that condition (5.27) implies

Im ĝj(z,∆x0,∆t0) ≤ 0 ∀z ∈ Co
1, (5.28)
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Figure 7: Illustration of the 2 maps y0(z) and y(z) from the proof of Theo-
rem 5.1: The circle z = βeiϕ (dashed line) is mapped onto y(βeiϕ) which lies
inside the (shaded) stability region y0(Co

1).

where Co
1 denotes the part of the complex plane “outside” of the circle C1.

The idea of the proof is to conclude that (5.28) implies

Im ĝj(z = β(∆t)eiϕ,∆x0,∆t) ≤ 0, ∀0 < ∆t ≤ ∆t0, 0 ≤ ϕ ≤ 2π, (5.29)

with β(∆t) = eρ∆t. To this end we shall compare the images of Co
1 and the

circles β(∆t)eiϕ from (5.29) under the respective maps y0(z) = y(z,∆x0,∆t0)
and y(z) = y(z,∆x0,∆t) from (5.12).

We first consider the rational map

y0(z) =
2∆x2

0

∆t0

(z − 1

z + 1
+ i

∆t0Vj

2

)
: CI → CI (5.30)

32



from (5.12). y0(Co
1), the image of Co

1 is the set y ∈ CI with

Re y ≥ Re y0(z = β0) =
2∆x2

0

∆t0

β0 − 1

β0 + 1
=

2∆x2
0

∆t0
tanh

ρ∆t0
2

. (5.31)

In order to verify the estimate (5.15) with β(∆t) = eρ∆t for 0 < ∆t ≤ ∆t0
we calculate:

ĝj(z = eρ∆t+iϕ,∆x0,∆t) = ĥj(y(∆t, ϕ)), (5.32)

with

y(∆t, ϕ) :=
2∆x2

0

∆t

[
eρ∆t+iϕ − 1

eρ∆t+iϕ + 1
+ i

∆tVj

2

]
.

Using the rational map y(z) =
2∆x2

0

∆t

(
z−1
z+1

+ i
∆tVj

2

)
we see that

Re y(∆t, ϕ) ≥ Re y(∆t, 0) =
2∆x2

0

∆t
tanh

ρ∆t

2
, ∀ 0 ≤ ϕ ≤ 2π.

Due to the monotonicity of the function tanh x/x we finally obtain for the
argument of ĥj in (5.32):

Re y(∆t, ϕ) ≥ 2∆x2
0

∆t0
tanh

ρ∆t0
2

= Re y0(z = eρ∆t0 = β0), ∀ 0 < ∆t ≤ ∆t0, 0 ≤ ϕ ≤ 2π.

Hence,
y−1

0 (y(∆t, ϕ)) ∈ Co
1, ∀ 0 < ∆t ≤ ∆t0, 0 ≤ ϕ ≤ 2π.

(5.28) now shows that

Im ĝj(βe
iϕ,∆x0,∆t) ≤ 0

holds with β = eρ∆t, and (5.26) follows.
Summarizing, the idea of the proof is based on the fact that all circles

β(∆t)eiϕ (with 0 < ∆t ≤ ∆t0) are mapped via y−1
0 ◦ y into Co

1 (cf. Figure 7).

Case 3. ∆x = α∆tγ (with α = ∆x0/∆t
γ
0, γ ≥ 1) and Vj ∈ IR:
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Theorem 5.2. (a) Let Vj = 0 and let the transformed boundary kernels
ĝ0, ĝJ satisfy

Im ĝ0(z,∆x0,∆t0)
∣∣∣
C2

≤ 0, Im ĝJ (z,∆x0,∆t0)
∣∣∣
C2

≤ 0 (5.33)

for some ∆x0 and ∆t0. Here, the circle C2 is defined by

z = −β0 − 1

2
+
β0 + 1

2
eiϕ, 0 ≤ ϕ ≤ 2π,

and some sufficiently large β0 = eρ∆t0 ≥ 1 (note that z = −β0 and z = 1 ∈
C2).

Then, the stability estimate (5.26) holds for all 0 < ∆t ≤ ∆t0 and
∆x = α∆tγ.

(b) Let Vj ∈ IR and let ĝ0
0, ĝ

0
J , the transformed boundary kernels pertaining

to Vj = 0, satisfy condition (5.33) for some ∆x0, ∆t0, and β0 = eρ∆t0 ≥ 1.
Then, the stability estimate (5.26) holds for all 0 < ∆t ≤ ∆t1 (with some

0 < ∆t1 ≤ ∆t0) and ∆x = α∆tγ.

Proof. Part (a):
We follow the strategy of the previous proof and first note that condition
(5.33) implies

Im ĝj(z,∆x0,∆t0) ≤ 0 ∀z ∈ Co
2, (5.34)

where Co
2 denotes the “outside” of circle C2. y0(Co

2), its image under the
rational map

y0(z) =
2∆x2

0

∆t0

z − 1

z + 1
(5.35)

is characterized by y ∈ CI with

∣∣∣∣y +
∆x2

0

∆t0

β0 + 1

β0 − 1

∣∣∣∣ ≤
∆x2

0

∆t0

β0 + 1

β0 − 1
. (5.36)

The disk y0(Co
2) is symmetric to the real axis, with left vertex at yl = 0 and

right vertex at yr =
2∆x2

0

∆t0
coth ρ∆t0

2
.
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In order to verify the estimate (5.15) with β(∆t) = eρ∆t for 0 < ∆t ≤ ∆t0
we calculate:

ĝj(z = eρ∆t+iϕ, α∆tγ,∆t) = ĥj(y(∆t, ϕ)), (5.37)

with

y(∆t, ϕ) := 2α2∆t2γ−1e
ρ∆t+iϕ − 1

eρ∆t+iϕ + 1
. (5.38)

For fixed 0 < ∆t ≤ ∆t0 the set {y(∆t, ϕ) | 0 ≤ ϕ ≤ 2π} is a circle, lying
symmetric to the real axis with left vertex at

y(∆t, 0) = 2α2∆t2γ−1 tanh
ρ∆t

2
> yl = 0,

and right vertex at

y(∆t, π) = 2α2∆t2γ−1 coth
ρ∆t

2
≤ yr.

Therefore the circles {y(∆t, ϕ) | 0 ≤ ϕ ≤ 2π} ⊂ y0(Co
2), for 0 < ∆t ≤ ∆t0.

Hence, (5.34) and (5.36) show that

Im ĝj(βe
iϕ,∆x,∆t) ≤ 0

holds with β = eρ∆t, ∆x = α∆tγ, and the stability estimate (5.26) follows.

Part (b):
To verify the estimate (5.15) we have to show that Im ĝj(z = eρ∆t+iϕ, α∆tγ,∆t)

= Im ĥj(y(∆t, ϕ)) ≤ 0, with

y(∆t, ϕ) := 2α2∆t2γ−1

[
eρ∆t+iϕ − 1

eρ∆t+iϕ + 1
+ i

∆tVj

2

]
.

The circles y(∆t, ϕ), 0 ≤ ϕ ≤ 2π are only vertical shifts of the circles (5.38),
and their left vertex is at

y(∆t, 0) = α2∆t2γ(ρ+ iVj) + O(∆t2γ+1) for ∆t→ 0.

Hence, the circles {y(∆t, ϕ) | 0 ≤ ϕ ≤ 2π} ⊂ y0(Co
2), for 0 < ∆t ≤ ∆t1

(for some 0 < ∆t1 ≤ ∆t0; cf. Figure 8) and the stability estimate (5.26)
follows.
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Figure 8: Illustration of the proof of Theorem 5.2 (b): For ∆t ≤ ∆t1 ≈ 0.82
the (small) circles {y(∆t, ϕ) | 0 ≤ ϕ ≤ 2π} are inside the (shaded) stability
region y0(Co

2). Parameters: ∆x0 = ∆t0 = V = γ = 1, ρ = 4.

We now illustrate the stability condition (5.27) of Case 2 and condition
(5.33) of Case 3 for the exponential–sum–coefficients introduced in Section 3.
The upper left graphic of Figure 7 shows the unit circle (dotted line) in the
complex plane and the circle C1 (solid line), on which we shall check the
stability condition.

Example 5.5. We consider the free 1D–Schrödinger equation with the dis-
cretization ∆x = 1/160, ∆t = 2 ·10−5. The transformed boundary kernel has

the form
ˆ̃
`(z) = z

z+1
ˆ̃s(z), where the Z–transform of {s̃n} with ν = 2 reads

ˆ̃s(z) = s0 + s1z
−1 +

L∑

l=1

bl
qlz − 1

1

qlz
, |z| ≥ 1. (5.39)

We recall that |ql| > 1, l = 1, . . . , L (cf. Theorem 3.2(ii)), and hence all poles
of ˆ̃s are inside the unit circle.

36



  0  π/2   π 3/2π  2π 
−1.5

−1

−0.5

0

0.5

ϕ

Im
 l(

z(
~̂

ϕ)
)

L=5: Im l(z) on shifted circle C
1
, ~̂ β

0
=1, 1.01, 1.1, 1.2

β0 = 1   
β0 = 1.01
β0 = 1.1 
β0 = 1.2 

Figure 9: Stability condition Im
ˆ̃
`|C1

≤ 0 for exponential–sum–coefficients
with L = 5. The condition is not satisfied for β0 = 1 but is satisfied for
β0 ≥ 1.0000008.

Figure 9 shows Im
ˆ̃
`|C1

for L = 5 and various values of β0. For β0 = 1,

Im
ˆ̃
` is not always negative on the unit circle (max Im

ˆ̃
`|C1

= 3.064e − 6 if
L = 5). Thus the stability condition is not satisfied for β0 = 1, but it is
satisfied for lager values of β0. Comparing these plots with the transformed
boundary kernel of the exact DTBC (Figure 5 in Example 5.3) we observe
that the ‘valley’ of the graph is at the same position. With increasing β0 this

valley becomes flatter and Im
ˆ̃
`|C1

converges to Im s0 ≈ −7.93.

Note that the imaginary part of
ˆ̃
` = ˆ̃s z

z+1
has no singularity at z = −1 ∈

C1. This is due to the fact that Re ŝ(z = −1) = 0 (cf. (1.11a), (1.11b))
and its (reasonable) approximations (5.39) also satisfy Re ˆ̃s(z = −1) = 0.
Furthermore, Re z

z+1
is continuous at z = −1 on the circle C1.

Similarly, Figure 10 shows that condition (5.33), i.e. Im
ˆ̃
`|C2

≤ 0 is satis-
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Figure 10: Stability condition Im
ˆ̃
`|C2

≤ 0 for exponential–sum–coefficients
with L = 5. The condition is not satisfied for β0 = 1 but is satisfied for
β0 ≥ 1.00025.

fied for β0 ≥ 1.00025

Remark. We recognized in this example that Im
ˆ̃
` is positive on parts of the

unit circle. This means that some modes of the discretized Schrödinger equa-
tion could grow very fast. However, we never observed this in our numerical
experiments.

We remark that the stability condition of Theorem 5.1 is independent of
the potential Vj in the exterior domain:

Proposition 5.2. Let the stability condition (5.27) hold on Co
1 for one value

of the potential Vj ∈ IR. Then this condition holds on the same circle (i.e.
for the same β0) for all Vj ∈ IR.

Proof. This result in easily seen from the properties of the map y0, defined in
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(5.30): Note that y0 maps Co
1 onto the half plane {y ∈ CI |Re y > Re y0(β0)},

independently of Vj (cf. Figure 7).

`2–stability in 2D. To finish this section we return to the original 2D-
problem and discuss the stability properties of the complete scheme (1.4)
(for j = 1, . . . , J − 1) along with the Dirichlet BCs (1.5) and (exact or
approximate) DTBCs for each transversal mode ψm; m = 1, . . . ,K − 1:

∆+ψ̂m
0 (z) = (ĝm

0 (z) − 1) ψ̂m
0 (z), (5.40)

∆−ψ̂m
J (z) = − (ĝm

J (z)− 1) ψ̂m
J (z).

Each mode satisfies in the 2 exterior domains a 1D-Schrödinger equation
with the effective potential V m

J ; j = 0, J (cf. (1.6)). If ĝj(z); j = 0, J are the
chosen transformed boundary kernels for the free 1D-Schrödinger equation
(i.e. with V± = 0), the corresponding kernels for the 2D-modes read

ĝm
j (z∗) = ĝj(z(z

∗)) = ĝj

(
¯̃az∗ + b̃

ã+ ¯̃bz∗

)
,

with ã = 4 − i∆tV m
j , b̃ = i∆tV m

j (cf. the derivation of the Transformation
3.1).

In fact the stability result of the 1D case readily carries over to 2 dimen-
sions and it is a simple consequence of Proposition 5.2 and of Theorem 5.2(b):

Proposition 5.3. Let the transformed boundary kernels ĝj(z); j = 0, J of
the free 1D–Schrödinger equation satisfy the conditions of either Theorem 5.1
or Theorem 5.2.

Then the 2D–Schrödinger scheme (1.4) with the BCs (1.5), (5.40) satisfies
the following stability estimate:

‖ψn‖2 ≤ ‖ψ0‖2e
ρT , ∀n∆t ≤ T,

with either 0 < ∆t ≤ ∆t0, ∆x = ∆x0, and ∀∆y > 0,

or 0 < ∆t ≤ ∆t1(≤ ∆t0), ∆x =
∆x0

∆tγ0
∆tγ(γ ≥ 1), and ∆y = ∆y0 > 0.
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6 Error estimates

In this section we consider the numerical scheme for the 1D–Schrödinger
equation (1.7) with (approximatively) transparent BCs of convolution form
(1.16). We shall derive error estimates for the numerical solution when re-
placing the exact DTBC by an approximation (like those introduced in §3).
First we extend the analytic a-priori estimate of Proposition 5.1 for the con-
tinuous IBVP for the Schrödinger equation when modifying the BCs. To
this end, let ψ(x, t) solve (5.1) with given functions f0, fX satisfying (5.3)
for some α1 ∈ IR.

H1–a-priori estimate of continuous solution. First we derive an
energy estimate for the function ψx(x, t):

Proposition 6.1. Assume that Vx ∈ L2
loc(IR

+
t ;L∞(0,X)), ψI ∈ H1(0,X).

Let the transformed boundary kernels f̂0, f̂X satisfy for some α2 ≥ 0:

Re
{

(s+ iV−)f̂0(s)
}
≥ 0, Re

{
(s+ iV+)f̂X(s)

}
≤ 0, s = α2 + iξ, (6.1)

for all ξ ∈ IR. Then the solution ψ of (5.1) satisfies the a-priori estimate

‖ψx(., t)‖2
L2(0,X) ≤ e2ct

[
‖ψI

x‖2
L2(0,X) + ‖ψI‖2

L2(0,X)V
max
x (t)

]
, (6.2)

where V max
x (t) :=

∫ t

0
e2(α1−α2)τ‖Vx(., τ )‖2

L∞(0,X) dτ and c = max(α2, 1/2).

Proof. A simple energy estimate for θ(x, t) := ψx(x, t)e
−α2t, α2 ≥ 0, gives

d

dt
‖θ(., t)‖2

L2(0,X) = Im
{
θ(x, t)θ̄x(x, t)

}∣∣∣
x=X

x=0

− 2α2‖θ(., t)‖2
L2(0,X) + 2

∫ X

0

Vx(x, t) Im
{
ψ(x, t)e−α2tθ̄(x, t)

}
dx. (6.3)

Using the Proposition 5.1 we can estimate the last term:

2

∫ X

0

Vx(x, t) Im
{
ψ(x, t)e−α2tθ̄(x, t)

}
dx

≤ 2‖θ(., t)‖L2(0,X)‖ψ(., t)e−α2t‖L2(0,X)‖Vx(., t)‖L∞(0,X)

≤ ‖θ(., t)‖2
L2(0,X) + ‖ψI‖2

L2(0,X)e
2(α1−α2)t‖Vx(., t)‖2

L∞(0,X).
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By integrating in time we obtain from (6.3)

‖θ(., t)‖2
L2(0,X) ≤ ‖ψI

x‖2
L2(0,X) + 2(c− α2)

∫ t

0

‖θ(., τ )‖2
L2(0,X) dτ

+ ‖ψI‖2
L2(0,X)

∫ t

0

e2(α1−α2)τ‖Vx(., τ )‖2
L∞(0,X) dτ

+ Im

∫ t

0

[
θ̄(0, τ )θx(0, τ ) − θ̄(X, τ )θx(X, τ )

]
dτ.

(6.4)

It remains to show that the last term in (6.4) is negative. We rewrite the
two boundary conditions (5.2)

ψ̂x(0, s) = f̂0(s)ψ̂(0, s) = ĥ0(s)ψ̂xx(0, s), ĥ0(s) =
f̂0(s)

2(V− − is)
, (6.5a)

ψ̂x(X, s) = f̂X(s)ψ̂(X, s) = ĥX(s)ψ̂xx(X, s), ĥX(s) =
f̂X(s)

2(V+ − is)
, (6.5b)

Re s ≥ 0. Note that ψxx is not necessarily continuous at x = 0, x = X.
Since the two boundary terms have to be evaluated at x = 0+, x = X−,
the Laplace transformed Schrödinger equation (5.1) was used to replace ψ̂
by ψ̂xx in (6.5).

By again denoting the cut–off function by χ[0,t] we use Plancherel’s iden-
tity for Laplace transforms (cf. (5.5)). This gives

Im

∫ t

0

θ̄(0, τ )θx(0, τ ) dτ = Im

∫ ∞

0

{(χ[0,t]θx) ∗ h̃0}(0, τ )χ[0,t](τ )θx(0, τ ) dτ

= − 1

2π

∫

IR

| ̂χ[0,t]θx|2(0, iξ)Imĥ0(α2 + iξ) dξ ≤ 0,

provided that (6.1) holds. Here h̃0 is given by
ˆ̃
h0(s) = ĥ0(α2 + s). An

analogous estimate holds for the boundary term at x = X. Finally a Gronwall
estimate yields the estimate (6.2).

Remark. Note that the choice of ĥ0(s), ĥX(s) in (6.5) is not uncommon; if
f̂0(s), f̂X(s) correspond to the TBCs (1.2), (1.3) (cf. Example 5.1) then

ĥ0(s) =
e

π
4
i

√
2

1
+
√
s + iV−

.
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An inverse Laplace transformation yields the impedance boundary condition
[30]:

ψ(0, t) =
ei π

4

√
2π

∫ t

0

ψx(0, τ ) e
−iV−(t−τ)

√
t− τ

dτ, (6.6)

which is equivalent (for smooth functions) to (1.2).

Combining Propositions 5.1 and 6.1 yields an a-priori estimate for the
solution at the boundaries (by using a Sobolev–imbedding):

|ψ(0, t)|2 + |ψ(X, t)|2

≤ C
{
e2α1t‖ψI‖2

L2(0,X) + e2ct
[
‖ψI

x‖2
L2(0,X) + ‖ψI‖2

L2(0,X)V
max
x (t)

]}
, (6.7)

where C denotes here and in the sequel generic but not necessarily equal
constants.

Example 6.1. (exact TBC) We return to the exact TBC of Example 5.1.
Its Laplace-transformed kernels f̂TBC

0 , f̂TBC

X , satisfy the condition (6.1) for all
α2 ≥ 0, i.e.

Re
{

(s+ iV−)f̂0(s)
}

=
√

2Re
{
e−

π
4
i(s+ iV−) +

√
s+ iV−

}
≥ 0, s = α2 + iξ,

(6.8)

holds for all ξ ∈ IR and analogously for f̂TBC

X . This is easily deduced
from arg(s + iV−) ∈ [−π/2, π/2], which implies arg

(
(s+ iV−) +

√
s+ iV−

)
∈

[−π/4, π/4].

Error estimate of continuous solution. Now let µ(x, t) solve (5.1)
with the exact TBC kernels fTBC

0 , fTBC

X (cf. Example 5.1) and let ψ(x, t) solve
(5.1) with given functions f0, fX satisfying (5.3) for some α1 ∈ IR. Then the
error κ(x, t) := µ(x, t) − ψ(x, t) solves the system





iκt = −1
2
κxx + V (x, t)κ, 0 < x < X, t > 0,

κ(x, 0) = 0, 0 < x < X,

κ̂x(0, s) = f̂TBC

0 (s)κ̂(0, s) + [f̂TBC

0 (s) − f̂0(s)]ψ̂(0, s), Re s ≥ 0,

κ̂x(X, s) = f̂TBC

X (s)κ̂(X, s) + [f̂TBC

X (s) − f̂X(s)]ψ̂(X, s), Re s ≥ 0,

(6.9)

and we can formulate the following error estimate:
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Theorem 6.1. Let the assumptions of Proposition 6.1 be fulfilled and let
c = max(α2, 1/2). Then the following estimate holds for all α ≥ 0, α 6= α1,
α 6= c:

‖κ(., t)‖2
L2(0,X) ≤ fmax

0,X

[
a1 (e2α1t − e2αt) + a2 (e2ct − e2αt)

+ a3(e
2ctV max

x (t) − e2αt

∫ t

0

e2(α1−α2)τ‖Vx(., τ )‖2
L∞(0,X)e

2(c−α)τ dτ )
]

(6.10)

with

fmax
0,X := ‖f̂TBC

0 (α+iξ)−f̂0(α+iξ)‖L∞(IRξ) + ‖f̂TBC

X (α+iξ)−f̂X(α+iξ)‖L∞(IRξ)

and

a1 =
C‖ψI‖2

L2(0,X)

(α1 − α)
, a2 =

C‖ψI
x‖2

L2(0,X)

(c− α)
, a3 =

C‖ψI‖2
L2(0,X)

(c− α)
.

For α = α1 or α = c one takes the obvious limits in (6.10).

Proof. As for Proposition 5.1 the theorem is easily proved by using an energy
estimate for the function η(x, t) := κ(x, t)e−αt, α ≥ 0, which satisfies:





iηt = −1
2
ηxx + (V (x, t)− iα)η, 0 < x < X, t > 0,

η(x, 0) = 0, 0 < x < X,

η̂x(0, s) = f̂TBC

0 (s+α)η̂(0, s) +
[
f̂TBC

0 (s+α) − f̂0(s+α)
]
ψ̂(0, s+α),

η̂x(X, s)= f̂TBC

X (s+α)η̂(X, s) +
[
f̂TBC

X (s+α)− f̂X(s+α)
]
ψ̂(X, s+α),

(6.11)

with Re s ≥ 0. An energy estimate for η(x, t) yields:

‖η(., t)‖2
L2(0,X) = −2α

∫ t

0

‖η(., τ )‖2
L2(0,X) dτ

+ Im

∫ t

0

[
η̄(0, τ )ηx(0, τ ) − η̄(X, τ )ηx(X, τ )

]
dτ. (6.12)
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Now Plancherel’s identity for Laplace transforms gives

Im

∫ t

0

η̄(0, τ )ηx(0, τ ) dτ

= Im

∫ ∞

0

χ[0,t](τ )η(0, τ ){(χ[0,t]η) ∗ f̃TBC

0 }(0, τ )

+ {(χ[0,t]ψe
−ατ) ∗ [f̃TBC

0 − f̃0]}(0, τ ) dτ

=
1

2π

∫

IR

|χ̂[0,t]η|2(0, iξ) Imf̂TBC

0 (α+iξ)

+ Im
[
f̂TBC

0 (α+iξ) − f̂0(α+iξ)
] ̂(χ[0,t]ψ)(0, α+iξ) ̂(χ[0,t]η)(0, iξ) dξ

and analogously for the right boundary term. Here ˆ̃f 0 is given by ˆ̃f0(s) =
f̂0(α + s). Since Imf̂TBC

0 (α+iξ) ≤ 0 and Imf̂TBC

X (α+iξ) ≥ 0 for all α ≥ 0,
ξ ∈ IR (cf. Example 5.1) we obtain

‖η(., t)‖2
L2(0,X)

≤ ‖f̂TBC

0 (α+iξ) − f̂0(α+iξ)‖L∞(IRξ)‖η(0, τ )‖L2(0,t)‖ψ(0, τ )e−ατ‖L2(0,t)

+ ‖f̂TBC

X (α+iξ) − f̂X(α+iξ)‖L∞(IRξ)‖η(X, τ )‖L2(0,t)‖ψ(X, τ )e−ατ‖L2(0,t).

It only remains to estimate the above boundary terms. Using the estimate
(6.7) we obtain

|η(0, t)|2 = e−2αt |µ(0, t) − ψ(0, t)|2

≤ Ce−2αt
{
e2α1t‖ψI‖2

L2(0,X) + e2ct
[
‖ψI

x‖2
L2(0,X) + ‖ψI‖2

L2(0,X)V
max
x (t)

]}

and analogously for |η(X, t)|2. Integrating in time yields

‖η(0, .)‖2
L2(0,t) ≤ a1(e

2(α1−α)t − 1) + a2(e
2(c−α)t − 1)

+ a3(e
2(c−α)tV max

x (t) −
∫ t

0

e2(α1−α2)τ‖Vx(., τ )‖2
L∞(0,X)e

2(c−α)τ dτ ) (6.13)

and an estimate of the same form holds for ‖ψ(X, τ )e−ατ‖L2(0,t), i.e. we obtain
the estimate (6.10).
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To illustrate this result we now consider two simple examples:

Example 6.2. (“cut-off” TBC) We continue the discussion of Exam-
ple 5.2 with the approximate BC–kernel

f0(t) = fTBC

0 (t)H(T − t).

Analogously to the procedure in Example 5.2 one can verify numerically that
its Laplace transform

f̂0(s) =
√

2 e−
π
4
i +
√
s+ iV− +

1√
2π

e−
π
4
i

∫ ∞

T

t−
3

2 e−st dt, s = α2 + iξ, ξ ∈ IR,

satisfies the condition (6.1) (with V− = 0) for α̃2 ≥ 0.25 if T = 1.
Next we verify that the two kernels fTBC

0 and f0 satisfy an error estimate
like those appearing on the right hand side of (6.10). These two kernels satisfy

‖fTBC

0 − f0‖L1(0,∞) =

√
2

πT
,

and hence

‖f̂TBC

0 (α+iξ) − f̂0(α+iξ)‖L∞(IRξ) ≤
√

2

πT
e−αT

holds for all α ≥ 0.

Example 6.3. (rational function kernel) As a second example assume
now that f̂0 is a rational function (as proposed in [3, 10, 14]):

f̂0(s) =
PL−1(s)

QL(s)
.

Since f̂TBC

0 (s) =
√

2 e−
π
4
i +
√
s and f̂0(s) have different asymptotic behaviours

for large |s|, we conclude

f̂TBC

0 (α+iξ) − f̂0(α+iξ) /∈ L∞(IRξ)

for any α ≥ 0. Hence Theorem 6.1 does not apply. We remark that this
difficulty will not arise for the discrete BCs with exponential–sum–coefficients
derived in §3 (cf. Example 6.5).
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h1–a-priori estimate of discrete solution. Analogously to the con-
tinuous case let ψj,n solve the Crank–Nicolson scheme (5.10) with ĝ0, ĝJ

satisfying (5.15) for some β = β1 ≥ 1. From now on we shall assume that
Vj = V− for j ≤ 1 and Vj = V+ for j ≥ J − 1 in addition to the assumptions
in §5. First we derive a discrete h1–estimate of the solution of (5.10) which
is the discrete analogue of Proposition 6.1:

Proposition 6.2. Let the transformed boundary transfer functions ĝ0, ĝJ

satisfy the following condition for some (sufficiently large) β2 ≥ 1:

Re

{
ȳ1(β2e

iϕ)
[
1 − 1

ĝ0(β2eiϕ)

]}
≥ 0, 0 ≤ ϕ ≤ 2π, (6.14a)

Re

{
ȳJ−1(β2e

iϕ)
[
1 − 1

ĝJ (β2eiϕ)

]}
≥ 0, 0 ≤ ϕ ≤ 2π, (6.14b)

with

yj(z) =
R

2

(z − 1

z + 1
+ iνj

)
, ν1 =

∆tV−
2

, νJ−1 =
∆tV+

2
. (6.15)

Assume also that ĝ0, ĝJ are analytic for |z| ≥ β2. Then the following estimate
holds for ∆t < 2, n ∈ IN:

‖∆+ψn‖2
2,∗ ≤ c2n

[
‖∆+ψ0‖2

2,∗ +
(1 + β1)

2

2β2
2

‖ψ0‖2
2

2 − ∆t
V max

∆+ ,n−1

]
, (6.16)

where

V max
∆+ ,n := ∆t

n∑

k=0

(
β1

β2

)2k

‖∆+Vk+ 1
2
‖2
∞, c = max

(
β2,

√
2 + ∆t

2 − ∆t

)

and the discrete norms are defined by

‖∆+ψn‖2
2,∗ = ∆x

J−2∑

j=1

|∆+ψj,n|2, ‖∆+Vn+ 1

2
‖∞ = max

j=1,...,J−2
|∆+Vj,n+ 1

2
|.

(Note the difference to the discrete L2–norm in (5.14).)
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Proof. The proof is based on a discrete energy estimate for the new variable

θj,n := β−n
2 ∆+ψj,n,

which solves the equation

−iR(θj,n+1 − θj,n) = (∆2 − wVj,n+ 1
2
) (θj,n+1 + θj,n)

+ (β−1
2 − 1)(∆2 − wVj,n+ 1

2
− iR)θj,n

− wβ−n−1
2 (ψj+1,n+1 + ψj+1,n)∆+Vj,n+ 1

2
.

(6.17a)

Alternatively this can be written as

−iR(θj,n+1 − θj,n) = (∆2 − wVj,n+ 1

2
) (θj,n+1 + θj,n)

+ (β2 − 1)(∆2 − wVj,n+ 1

2
+ iR)θj,n+1

− wβ−n
2 (ψj+1,n+1 + ψj+1,n)∆+Vj,n+ 1

2
,

(6.17b)

for j = 1, . . . , J − 2 together with the initial condition

θj,0 = ∆+ψj,0, j = 1, . . . , J − 2,

and the two transformed boundary conditions

θ̂0(z) =[ĝ0(β2z) − 1] ψ̂0(β2z), (6.18a)

θ̂J−1(z) =−[ĝJ(β2z) − 1] ψ̂J(β2z). (6.18b)

We multiply equation (6.17a) with θ̄j,n and the complex conjugate of (6.17b)
with −θj,n+1 and sum it up for j = 1, . . . , J − 2. After a lengthy calculation
one obtains the following formula:

‖θn+1‖2
2,∗−‖θn‖2

2,∗ =
∆t

4β2
2∆x

Im
[
(θ̄0,n + β2θ̄0,n+1)∆

+(θ0,n + β2θ0,n+1)

− (θ̄J−1,n + β2θ̄J−1,n+1)∆
−(θJ−1,n + β2θJ−1,n+1)

]

− (1 − β−2
2 )‖θn‖2

2,∗

+
∆t∆x

2βn+2
2

J−2∑

j=1

Im
[
(θ̄j,n+β2θ̄j,n+1)(ψj+1,n+1+ψj+1,n)

]
∆+Vj,n+ 1

2
,
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which is the discrete analogue of (6.3). We estimate the last term using
Lemma 5.1

∆x
J−2∑

j=1

Im
[
(θ̄j,n + β2θ̄j,n+1)β

−n
2 (ψj+1,n+1 + ψj+1,n)

]
∆+Vj,n+ 1

2

≤ ‖θn + β2θn+1‖2,∗β
−n
2 ‖ψn+1 + ψn‖2‖∆+Vn+ 1

2
‖∞

≤ ‖θn + β2θn+1‖2,∗(1 + β1)‖ψ0‖2

(
β1

β2

)n

‖∆+Vn+ 1

2
‖∞

≤ ‖θn‖2
2,∗ + β2

2‖θn+1‖2
2,∗ +

(1 + β1)
2

2
‖ψ0‖2

2

(
β1

β2

)2n

‖∆+Vn+ 1
2
‖2
∞

and we obtain

‖θn+1‖2
2,∗ − ‖θn‖2

2,∗ ≤
(
β−2

2 − 1 +
∆t

2β2
2

)
‖θn‖2

2,∗ +
∆t

2
‖θn+1‖2

2,∗

+
∆t

4β2
2

(1 + β1)
2‖ψ0‖2

2

(
β1

β2

)2n

‖∆+Vn+ 1

2
‖2
∞

+
∆t

4β2
2∆x

Im
[
(θ̄0,n + β2θ̄0,n+1)∆

+(θ0,n + β2θ0,n+1)

− (θ̄J−1,n + β2θ̄J−1,n+1)∆
−(θJ−1,n + β2θJ−1,n+1)

]
.

Summing for n = 0, . . . , N yields

(
1 − ∆t

2

)
‖θN+1‖2

2,∗ ≤ −
(
1 − ∆t

2

) N∑

n=1

‖θn‖2
2,∗ +

(
1 +

∆t

2

)
β−2

2

N∑

n=0

‖θn‖2
2,∗

+
(1 + β1)

2

4β2
2

‖ψ0‖2
2 V

max
∆+ ,N

+
∆t

4β2
2∆x

Im

N∑

n=0

[
(θ̄0,n + β2θ̄0,n+1)∆

+(θ0,n + β2θ0,n+1)

−(θ̄J−1,n + β2θ̄J−1,n+1)∆
−(θJ−1,n + β2θJ−1,n+1)

]
.

(6.19)

It remains to determine the sign of the last term in (6.19). To this end,
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we rewrite the two boundary conditions (6.18):

θ̂0(z) =
[
1 − 1

ĝ0(β2z)

]
ψ̂1(β2z) =

ˆ̃
h0(z)∆+θ̂0(z), (6.20a)

θ̂J−1(z) = −
[
1 − 1

ĝJ (β2z)

]
ψ̂J−1(β2z) =

ˆ̃
hJ(z)∆−θ̂J−1(z), (6.20b)

with

ˆ̃
h0(z) =

1 − 1
ĝ0(β2z)

−iR β2z−1
β2z+1

+ wV−
,

ˆ̃
hJ(z) =

−
[
1 − 1

ĝJ(β2z)

]

−iR β2z−1
β2z+1

+ wV+

. (6.21)

As in Section 5 we define (for N fixed) the two sequences,

un :=

{
∆+(θ0,n + β2θ0,n+1), n = 0, . . . , N,

0, n > N,

vn := un ∗ h̃0,n, n ∈ IN0, h̃0,n = Z−1{ˆ̃
h0(z)}.

Now using Plancherel’s Theorem for Z–transforms we can show that

Im
N∑

n=0

[
(θ̄0,n + β2θ̄0,n+1)∆

+(θ0,n + β2θ0,n+1)
]

= Im

N∑

n=0

v̄nun = −Im

∞∑

n=0

vnūn = − 1

2π

∫ 2π

0

|û(eiϕ)|2 Im
ˆ̃
h0(e

iϕ) dϕ

is negative since

Im ˆ̃h0(e
iϕ) = Im

i

2

1 − 1
ĝ0(β2eiϕ)

y1(β2eiϕ)
=

Re
{
ȳ1(β2e

iϕ)
[
1 − 1

ĝ0(β2eiϕ)

]}

2|y1(β2eiϕ)|2 ≥ 0

due to the assumption (6.14). An analogous estimate holds for the right
boundary term.

Finally (6.19) yields for ∆t < 2

‖θN+1‖2
2,∗ ≤ ‖θ0‖2

2,∗ +
(1 + β1)

2

2β2
2

‖ψ0‖2
2

2 − ∆t
V max

∆+ ,N +
(2 + ∆t

2 − ∆t
β−2

2 − 1
) N∑

n=0

‖θn‖2
2,∗.

(6.22)
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With the discrete Gronwall-type estimate [31, Lemma 1.4.2] for the function
‖θN+1‖2

2,∗ we obtain:

‖θN+1‖2
2,∗ ≤

(2 + ∆t

2 − ∆t
β−2

2

)N+1
[
‖θ0‖2

2,∗ +
(1 + β1)

2

2β2
2

‖ψ0‖2
2

2 −∆t
V max

∆+ ,N

]
(6.23)

provided that (2 + ∆t)/(2 −∆t) ≥ β2
2. This yields the estimate (6.16).

By combining Lemma 5.1 and Proposition 6.2 and using the discrete
Sobolev–inequality

|ψj,n|2 ≤ C(X)
{
‖ψn‖2

2 + (∆x)−2‖∆+ψn‖2
2,∗

}
, j = 1, . . . , J − 1, (6.24)

we now obtain an a-priori pointwise estimate for the discrete solution:

|ψj,n|2 ≤ C(X)

{
β2n

1 ‖ψ0‖2
2 + c2n(∆x)−2

[
‖∆+ψ0‖2

2 +
(1 + β1)

2

2β2
2

‖ψ0‖2
2

2 − ∆t
V max

∆+ ,n−1

]}

(6.25)

for j = 1, . . . , J − 1, n ∈ IN. Note that this is a discrete analogue of (6.7).

Example 6.4. (exact DTBC) We consider the exact DTBC of Exam-
ple 5.3. The Z–transformed boundary kernel

ĝTBC

0 (z) = ˆ̀
0(z) = 1 − iy1(z) +

√
−y1(z)

(
y1(z) + 2i

)

(with the branch of the square root chosen such that | ˆ̀0(z)| ≥ 1) satisfies the
condition (6.14) for all β2 ≥ 1. To verify this, one has to check that

Re

{
ȳ1

[
iy1 +

√
−y1

(
y1 + 2i

)]}
= Re

{
ȳ1

√
−y1(z)

(
y1 + 2i

)}
≥ 0 (6.26)

holds for all y1 = y1(z) with Re y1 ≥ 0 (cf. Figure 7): For β2 = 1 (i.e. Re
y1 = 0) this is easily done analytically, and for β2 > 1 one can do it numeri-
cally. Note that (6.26) is the analogue of (6.8) for the exact DTBC.

Error estimate of discrete solution. Now let µj,n be the solution of

(5.10) with the exact TBC kernels ĝTBC

0 = ˆ̀
0, ĝ

TBC

J = ˆ̀
J (cf. (1.9)) and let ψj,n

solve the Crank–Nicolson scheme (5.10) with other transformed kernels ĝ0, ĝJ
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satisfying (5.15) for some β1 ≥ 1. Then the discrete error κj,n := µj,n − ψj,n

solves




−iR(κj,n+1 − κj,n)= ∆2 (κj,n+1 + κj,n) − wVj,n+ 1

2
(κj,n+1 + κj,n) ,

j = 1, . . . , J − 1,

κj,0 = 0, j = 0, . . . , J,

∆+κ̂0(z) = [ĝTBC

0 (z) − 1] κ̂0(z) + [ĝTBC

0 (z) − ĝ0(z)]ψ̂0(z),

∆−κ̂J(z) = −[ĝTBC

J (z) − 1] κ̂J (z) − [ĝTBC

J (z) − ĝJ(z)]ψ̂J(z),

(6.27)

and the following estimate can be proved:

Theorem 6.2. Let the assumptions of Proposition 6.2 be fulfilled and as-
sume ∆t < 2. Then the following error estimate holds for all β ≥ 1, β 6= β1,
β 6= c = max

(
β2,
√

(2 + ∆t)/(2 − ∆t)
)

‖κn‖2
2 ≤

gmax
0,J

2
· ∆t(1 + β)2

{
β2n − β2n

1

β2 − β2
1

‖ψ0‖2
2 +

β2n − c2n

β2 − c2
X‖∆+ψ0‖2

2

+X
(1 + β1)

2

2β2
2

‖ψ0‖2
2

2 − ∆t
β2(n−1)

n−1∑

k=0

( c
β

)2k

V max
∆+ ,k−1

}
,

(6.28)

with

gmax
0,J :=

1

∆x

(∥∥∥∥
1

ĝ0(βe
iϕ)

− 1

ĝTBC

0 (βeiϕ)

∥∥∥∥
L∞(0,2π)

+

∥∥∥∥
1

ĝJ (βeiϕ)
− 1

ĝTBC

J (βeiϕ)

∥∥∥∥
L∞(0,2π)

)
.

For β = β1 or β = c we obtain the estimate by obvious limits.

Proof. The new discrete variable ηj,n := κj,nβ
−n, β ≥ 1, satisfies the two

equations

−iR(ηj,n+1 − ηj,n) =∆2 (ηj,n+1 + ηj,n) − wVj,n+ 1

2
(ηj,n+1 + ηj,n)

+ (β−1 − 1)(∆2 − wVj,n+ 1
2
− iR)ηj,n,

(6.29a)
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−iR(ηj,n+1 − ηj,n) =∆2 (ηj,n+1 + ηj,n) − wVj,n+ 1

2
(ηj,n+1 + ηj,n)

+ (β − 1)(∆2 − wVj,n+ 1

2
+ iR)ηj,n+1,

(6.29b)

for j = 1, . . . , J − 1 and the two boundary conditions

∆+η̂0(z) =[ĝTBC

0 (βz) − 1] η̂0(z) + [ĝTBC

0 (βz)− ĝ0(βz)] ψ̂0(βz), (6.30a)

∆−η̂J(z) =−[ĝTBC

J (βz)− 1] η̂J (z) − [ĝTBC

J (βz)− ĝJ (βz)] ψ̂J(βz). (6.30b)

We multiply equation (6.29a) with η̄j,n, the complex conjugate of (6.29b)
with ηj,n+1 and sum it up for j = 1, . . . , J − 1. This gives finally

−iR
J−1∑

j=1

|ηj,n+1|2−|ηj,n|2 =
J−1∑

j=1

η̄j,n∆
2(ηj,n+1+ηj,n) −

J−1∑

j=1

ηj,n+1∆
2(η̄j,n+1+η̄j,n)

+ (β−1−1)
J−1∑

j=1

η̄j,n∆2ηj,n − (β−1)
J−1∑

j=1

ηj,n+1∆
2η̄j,n+1

− (β−1−1)iR
J−1∑

j=1

|ηj,n|2 + (β−1)iR
J−1∑

j=1

|ηj,n+1|2

+ w
J−1∑

j=1

Vj,n+ 1

2
(β|ηj,n+1|2 − β−1|ηj,n|2).

After a lengthy calculation one obtains the following expression for the dis-
crete L2–norm of the error:

‖ηN+1‖2
2 =

1 − β2

β2

N∑

n=1

‖ηn‖2
2

+
∆t

4β2∆x
Im

N∑

n=0

[(
η̄0,n + βη̄0,n+1

)
∆+
(
η0,n + βη0,n+1

)

−
(
η̄J,n + βη̄J,n+1

)
∆−
(
ηJ,n + βηJ,n+1

)]
.

(6.31)

Since β ≥ 1 it only remains to estimate the boundary terms in (6.31). To
this end, we rewrite the two boundary conditions (6.30):

∆−η̂1(z) =
ˆ̃
h0(z) η̂1(z) +

ˆ̃
k0(z) ψ̂1(βz), (6.32a)

∆+η̂J−1(z) = −ˆ̃
hJ (z) η̂J−1(z) − ˆ̃

kJ (z) ψ̂J−1(βz). (6.32b)
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with

ˆ̃
hj(z) = 1 − 1

ĝTBC

j (βz)
,

ˆ̃
kj(z) =

1

ĝj (βz)
− 1

ĝTBC

j (βz)
, j = 0, J. (6.33)

Again we define (for N fixed) the three sequences,

un :=

{
η1,n+βη1,n+1, n = 0, . . . , N,

0, n > N,
wn :=

{
ψ1,n+βψ1,n+1, n = 0, . . . , N,

0, n > N,

and

vn := un ∗ h̃0,n + k̃0,n ∗ wn, n ∈ IN0,

where

h̃0,n = Z−1{ˆ̃
h0(z)}, k̃0,n = Z−1{ˆ̃k0(z)}.

Using Plancherel’s Theorem for Z–transforms we can now show that

∆t Im
N∑

n=0

(
η̄0,n + βη̄0,n+1

)
∆+
(
η0,n + βη0,n+1

)

= ∆t Im

N∑

n=0

(
η̄1,n + βη̄1,n+1

)
∆−
(
η1,n + βη1,n+1

)
= ∆t Im

∞∑

n=0

ūnvn

=
∆t

2π

∫ 2π

0

|û(eiϕ)|2 Im
ˆ̃
h0(e

iϕ) + Im
{

ˆ̃
k0(e

iϕ)ŵ(βeiϕ) ¯̂u(eiϕ)
}
dϕ

≤ (1 + β)2
∥∥∥ˆ̃k0(e

iϕ)
∥∥∥

L∞(0,2π)
‖β−nψ1‖`2(0,N)‖η1‖`2(0,N),

(6.34)

since Im
ˆ̃
h0(e

iϕ) ≤ 0 for all β ≥ 1. An analogous estimate holds for the right
boundary term. The discrete L2–norm in (6.34) is defined by ‖ηj‖`2(0,N) =

∆t
∑N

n=0 |ηj,n|2. For estimating the boundary term ‖η1‖`2(0,N) we use (6.25):

|η1,n|2 = β−2n |µ1,n − ψ1,n|2

≤ 2

{(β1

β

)2n

‖ψ0‖2
2 +

( c
β

)2n

X
[
‖∆+ψ0‖2

2 +
(1 + β1)

2

2β2
2

‖ψ0‖2
2

2 − ∆t
V max

∆+ ,n−1

]}

(6.35)
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n = 0, . . . , N + 1. Summing for n = 0, . . . , N yields

‖η1‖2
`2(0,N) ≤ 2∆t





1 −
(

β1

β

)2(N+1)

1 − β2
1

β2

‖ψ0‖2
2 +

1 −
(

c
β

)2(N+1)

1 − c2

β2

X‖∆+ψ0‖2
2

+X
(1 + β1)

2

2β2
2

‖ψ0‖2
2

2 − ∆t

N∑

n=0

( c
β

)2n

V max
∆+ ,n−1

}

(6.36)

and an analogous estimate holds for ‖β−nψ1‖`2(0,N), i.e. we obtain (6.28).

Remark. Instead of the discrete Sobolev–inequality (6.25) one could also use
the following trivial L2–estimates in (6.36):

|η1,n| ≤
1√
∆x

‖ηn‖2, |ψ1,n| ≤
1√
∆x

‖ψn‖2.

This would imply

‖β−nψ1‖`2(0,N)‖η1‖`2(0,N) ≤ 2
∆t

∆x
‖ψ0‖2

2

N∑

n=0

β−2n(1 + β2n
1 ),

i.e.

‖ηN+1‖2
2 ≤

(1 + β)2

2β2

∆t

∆x
gmax
0,J ‖ψ0‖2

2

N∑

n=0

β−2n(1 + β2n
1 ). (6.37)

This yields finally the error estimate

‖κn‖2
2 ≤ gmax

0,J

‖ψ0‖2
2

2∆x
· ∆t(1 + β)2

[
β2n − 1

β2 − 1
+
β2nβ2n

1

β2 − β2
1

]
. (6.38)

This estimate can be applied if we assume that ∆x = const (which corre-
sponds to Case 2 of Section 5, cf. Theorem 5.1). The advantage of (6.38) is
that the condition (6.14) is not necessary.

Note that gmax
0,J is the discrete analogue of fmax

0,X from (6.10). With the
standard connection between Laplace– and Z–transforms we have:

ĝTBC

0 (es∆t) − 1

∆x
→ f̂TBC

0 (s), ∆x,∆t→ 0,

s = α + iξ fixed.
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Example 6.5. (“cut-off” DTBC) We consider the simplified DTBC of
Example 5.4 where the convolution coefficients sj,n are cut off for n ≥ N . In
Figure 11 we verify for N = 10 that the corresponding transformed convo-
lution kernel (cf. (5.25)) satisfies the condition for the h1–a-priori estimate
(6.14a) only for β2 ≥ 1.24.

  0  π/2   π 3/2π  2π 
−10

0

10

20

30

40

50

60

70

80

90

ϕ

simplified DTBC: N=10, Real ( y−
1
(β

2
 eiϕ) (1 − 1/l

0
(N)(β

2
 eiϕ)) )

β
2
 = 1.1

β
2
 = 1.24

β
2
 = 2

β
2
 = 5

Figure 11: h1–condition (6.14a) for simplified discrete transparent bound-
ary conditions with cut–off after N = 10 convolution coefficients, ∆x =
1/160, ∆t = 2 · 10−5, V ≡ 0. The h1–condition (6.14a) is satisfied for
β2 ≥ 1.24.

As a discrete analogue of Example 6.2 we shall now illustrate the error
estimate of Theorem 6.2: In (6.28) the error between the two solutions is
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bounded by
∥∥∥∥∥

1

ˆ̀(N)
j (βeiϕ)

− 1
ˆ̀
j(βe

iϕ)

∥∥∥∥∥
L∞(0,2π)

, j = 0, J, (6.39)

the difference between the exact ({`j,n}) and the “cut-off” convolution kernels

({`(N)
j,n }).
In the following table we show, how this difference (6.39) decreases as N ,

the number of retained convolution coefficients, grows. Theorem 6.2 hence
implies convergence (as N → ∞) of the corresponding discrete Schrödinger
solutions for the scheme (5.10). The parameters are again ∆x = 1/160, ∆t =
2 · 10−5, V ≡ 0, and β = 1.25.

N = 5 10 20 30 40

error ‖1/ˆ̀(N)
0 − 1/ˆ̀0‖∞ 1.7346 0.97592 0.04391 0.004559 0.00048768

7 Numerical examples

In this section we shall present two examples to compare the numerical results
from using our new approach of the approximated DTBC with the sum-of-
exponentials-ansatz (3.1) (with ν = 2) to the solution using the exact DTBC
(1.16).

Example 7.1. As a first example we consider the Schrödinger equation (1.1)
in one space dimension on 0 ≤ x ≤ 1 with V ≡ 0, and initial data ψI(x) =
exp(i100x − 30(x − 0.5)2). The time evolution of the approximate solution
|ψa(x, t)| using the approximated DTBC with convolution coefficients {s̃n}
and L = 10, L = 20 is shown, respectively, in Figure 12 and Figure 13
(observe the viewing angle).

While one can observe some reflected wave when using the approximated
DTBC with L = 10, there are no reflections visible when using the approxi-
mated DTBC with L = 20.

Next we investigate the long–time stability behaviour of the approximated
DTBC with the sum-of-exponentials ansatz. The reference solution ψref with
∆x = 1/160, ∆t = 2 · 10−5 is obtained by using exact DTBCs (1.16) at the
end points x = 0 and x = 1. We vary the parameter L = 20, 30, 40, 50 in
(3.1) to find the corresponding approximate DTBCs, and show the error of the
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Figure 12: Time evolution of |ψa(x, t)|: The approximate convolution co-
efficients consisting of L = 10 discrete exponentials give rise to a reflected
wave.

approximate solution ψa measured in ||ψa(t)−ψref(t)||L2
/||ψI||L2

. The result
up to time step n = 15000 is shown in the Figure 14(a). Larger values of L
clearly yield more accurate coefficients and hence a more accurate solution
ψa.

In Figure 14(b) we show the analogous result for the “cut-off” DTBC,
where we retained N = 20, 30, 40, 50 exact convolution coefficients. While
the numerical effort is the same for both approaches with L = N , our sum-
of-exponentials DTBC yields an error that is 3-4 orders of magnitude smaller.

Example 7.2. The second example considers the time evolution of a wave
function in a potential well of finite depth: We solve the 1D–Schrödinger
equation (1.1) on [0, 2] with zero potential in the interior (V (x) ≡ 0 for 0 <
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Figure 13: Time evolution of |ψa(x, t)|: The approximate convolution coef-
ficients consisting of L = 20 discrete exponentials make reflections already
invisible.

x < 2) and V (x) ≡ 4500 outside the computational domain. Figure 15 shows
the time evolution of a right travelling Gaussian beam [ψI(x) = exp(i100x−
30(x−1)2)] using the rather coarse space discretization ∆x = 1/160, the time
step ∆t = 2 · 10−5, and the exact DTBC (1.16). We observe in Figure 15
that the main part of the wave is reflected at the boundaries. The value of
the potential is chosen such that at time t = 0.08, i.e. after 4000 time steps
75% of the mass (‖ψ(., t)‖2

2) has left the domain.
While the discrete TBCs (1.16) yield the exact numerical solution to

the discrete whole–space problem (up to round–off errors), the approximated
DTBC induces small errors. Figure 16 shows the error of the approximate
solution ψa defined by eL(x, t) := (ψa(x, t)− ψref(x, t))/||ψI||L2

.
Figure 17 shows the time decay of the discrete `2-norm ‖ψ(., t)‖2 and

the temporal evolution of the error ‖eL(., t)‖2 when using an approximated
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Figure 14: Error of the approximate solution ψa(t) with (a) approximate
convolution coefficients consisting of L = 20, 30, 40, 50 discrete exponentials;
(b) “cut-off” DTBC: The convolution coefficients are cut off for n ≥ N with
N = 20, 30, 40, 50. The error-peak between t = 0.01 and t = 0.02 corresponds
to the first reflected wave, which is clearly visible in Figure 12.

DTBC with L = 20, 30, 40. Additionally, we calculated for L = 20 the co-
efficients {bl, ql} for the “normalized parameters” ∆x = 1, ∆t = 1, V = 0
(cf. Appendix A) and then used the Transformation rule 3.1 to calculate the
coefficients {b∗l , q∗l } for the desired parameters (cf. Example 3.1). The result
is better than calculating the convolution coefficients “directly” (compare the
error-curves “L = 20 (trafo)” and “L = 20 ”. One observes that the error
increases with time. This is not surprising since each reflection at the bound-
aries induces an additional error.

Evaluating the convolution appearing in exact DTBCs is quite expensive
for long-time calculations. Therefore we shall now illustrate the difference in
the computational effort for both approaches in Figure 18: The computational
effort for the exact DTBCs is quadratic in time, since the evaluation of the
boundary convolutions dominates for large times. On the other hand, the
effort for the approximated DTBC only increases linearly. For L = 10, 20, 30
the lines are indistinguishable since the evaluation of the sum-of-exponential
convolutions has a negligible effort compared to solving the PDE in the inte-
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Figure 15: Time evolution of |ψ(x, t)| in a potential well. The Gaussian beam
is almost perfectly reflected by the walls of height V = 4500.

rior domain.
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Figure 16: Time evolution within the potential well (V = 4500) of the error
|eL(x, t)| due to an approximated DTBC with L = 20. As expected, the error
accumulates with each reflection of the main wave.
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Figure 17: Time evolution within the potential well (V = 4500) of the dis-
crete `2-norm ‖ψ(., t)‖2 and of the errors ‖eL(., t)‖2 that are due to approx-
imated DTBCs with L = 20, 30, 40. “L = 20 (trafo)” uses convolution
coefficients calculated by the Transformation 3.1.
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Figure 18: Comparison of CPU times: the sum-of-exponential approximation
to DTBCs has linear effort (—), while exact DTBCs have quadratic effort.
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Appendix A

In the following table we list the coefficients {ql, bl} of the exponential-sums-
BC having the convolution kernel (3.1) for the cases L = 5, and L = 10 with
the “normalized parameters” ν = 2, ∆x = ∆t = 1, and V = 0:

ql bl
1.0613253 + 0.83506991e-1*I -0.46123493e-1 - 0.35384269e-1*I
0.83506991e-1 + 1.0613253*I 0.57634691e-1 + 0.75937784e-2*I

L=5 1.1653982 + 0.41107342*I -0.95195640e-1 - 0.20683503*I
0.41107342 + 1.1653982*I 0.21356793 - 0.78940966e-1*I
0.95734921 + 0.95734921*I 0.13684972 - 0.33038444*I
1.0204790 + 0.20818849e-1*I -0.81657939e-2 - 0.36037147e-2*I
0.20818849e-1 + 1.0204790*I 0.83222994e-2 + 0.32258771e-2*I
1.0793585 + 0.91985074e-1*I -0.31636868e-1 - 0.19266238e-1*I
0.91985074e-1 + 1.0793585*I 0.35993931e-1 + 0.87473565e-2*I
1.1613828 + 0.24003468*I -0.61222441e-1 - 0.61543495e-1*I

L=10 0.24003468 + 1.1613828*I 0.86808626e-1 - 0.22701935e-3*I
1.2133719 + 0.49825873*I -0.60889615e-1 - 0.14138908*I
0.49825873 + 1.2133719*I 0.14303264 - 0.56921716e-1*I
1.1272018 + 0.84466563*I 0.22117261e-1 - 0.20911201*I
0.84466563 + 1.1272018*I 0.13222525 - 0.16350378*I

The coefficients b∗l , q
∗
l for other parameters ∆x∗,∆t∗, V∗ can then be ob-

tained from the explicit formulas in the Transformation rule 3.1. A Java-
Applet for calculating b?l , q

?
l is available on the authors’ homepages:

www.math.uni-muenster.de/u/arnold/dtbc.html, www.math.tu-berlin.de/
˜ehrhardt/

Appendix B

Here we present the Maple code that was used to calculate the coefficients
ql, bl in the approximation (3.1) including the explicit formulas in Trans-
formation rule 3.1. These codes can also be downloaded from the authors’
homepages.
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1. Parameters:
> restart;
> nu:=2; # initial index of approximation, cf. (3.1)
> L:=20; # number of terms in the sum of exponentials
> nc:=2*L-1; # number of convolution coefficients
> filename:="coe_L20V0";
> filenametrafo:="coetrafo_L20V4500";

Parameters of the scheme:
> hp:=1; # scaled Planck constant
> Vr:=0.0; # potential in exterior domain x>=X
> dx:=1.0; dt:=1.0;
> nco:=nc+nu; Digits1:=nco; Digits:=Digits1;
> rr:=4*dx^2/(dt*hp); # ’R’ cf. (1.8)
> sig:=2*dx^2*Vr/hp^2; # parameters (1.17)
> fij:=arctan(2*rr*(sig+2)/(rr^2-4*sig-sig^2));
> efi:=exp(-I*fij);
> alj:=I/2*root[4]((rr^2+sig^2)*(rr^2+(sig+4)^2))*exp(I*fij/2);

2. Numerical inverse Z-transformation of the given analytical kernel

(hat s)

The function ’hat s’, see (1.11), (1.13), is considered outside the unit circle.
> lcoe:=proc(n,mm)
> # ’n’ is No. of Fourier coef.
> # ’mm’ is the number of grid intervals
> local ss, x, x1, x2, i, hat_s, shift;
> shift:=evalf(1.0); ss:=0;
> for i from 1 to mm do
> x:=2*Pi*I*i/mm; x1:=exp(x+shift);
> # calculation hat_s, cf. (1.11)&(1.13)
> hat_s:=evalf((x1+1)/x1*subs(x2=rr/2*(x1-1)/(x1+1)+
> I*dx^2*Vr,1-I*x2-I*sqrt(x2*(2*I+x2))));
> ss:=ss+evalf(exp(n*x))*hat_s
> od;
> ss/mm*evalf(exp(n*shift)) end; # cf. (2.2)

Calculation of the convolution coefficients:
> mm:=nco+1:
> Digits:=Digits1: a1:=lcoe(nco,mm);
> # Checking the accuracy (last coefficient)
> Digits:=2*Digits1: a2:=lcoe(nco,2*mm):
> Digits:=Digits1: abs(a1-a2);
> mm:=nco+1:
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> # Convolution coefficients:
> for i from 0 to nco do
> coefc[i]:=lcoe(i,mm); # cf. (2.2)
> od;
> coefr[0]:=coefc[0]; coefr[1]:=coefc[1];
> # Extraction of the real part from s n, n>1, cf. (1.18)
> for i from 2 to nco do
> coefr[i]:=coefc[i]/exp(-I*i*fij)/alj;
> coef[i]:=Re(coefr[i]);
> od;

3. Approximation

Calculation of the polynomial ’sp’. Only the coefficients starting with n=nu
are used here; i.e. coef[0], coef[1], . . . , coef[nu-1] are not considered.

> for i from 0 to nco-nu do
> ac[i]:=coef[i+nu]:
> od:
> with(powseries):
> powcreate(e(n4)=ac[n4]):
> s1:=tpsform(e, x, nco-nu+1):
> sp:=sort(convert(s1,polynom));

Calculation of a rational function approximating the polynomial ’sp’. This
is the usual Padé algorithm. The parameter ’npow’ defines the orders of the
numerator and denominator. Important: We have to check that the roots
of the denominator are larger than 1 in absolute value. The value of ’npow’
influences this property: Cycle A automatically chooses smaller and smaller
values of ’npow’ (L-1, L-2, . . . ) to guarantee that all roots have an
absolute value larger than 1.

> nge1:=1; dnpow:=0; npow:=L;
> for ige1 from 1 by 1 while nge1 > 0 do
> # cycle A
> Digits:=8*nco; npow:=npow-dnpow;
> with(numapprox): sr1:=pade(sp,x,[npow-1,npow]);
> Digits:=Digits1: sr:=evalf(normal(sr1)):
> pk:=sort(numer(sr)):
> qk:=sort(denom(sr)):
> roots1:=fsolve(qk,x,complex):
> nrofroots:= 0:
> for r in roots1 do
> nrofroots:=nrofroots+1;
> od:
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> nrofroots;
> nge1:=0:
> for i from 1 to nrofroots do
> if (evalf(abs(roots1[i]))<1) then nge1:=nge1+1 fi:
> dnpow:=nge1:
> appendto(terminal);
> od;
> lprint(nge1);
> # ---> number of roots with abs < 1
> appendto(terminal);
> od:
> # printing of roots
> for i from 1 to nrofroots do
> lprint(evalf(abs(roots1[i])));
> appendto(terminal);
> od;

Writing of the result:
> for i from 1 to nrofroots do
> Digits:=Digits1:
> # Coming back to complex q l (factor exp(I*fij))
> q[i]:=roots1[i]*exp(I*fij);
> # Coming back to complex b l (factor alj/exp(I*(nu-1)*fij))
> be[i]:=-subs(x=roots1[i],pk)/subs(x=roots1[i],diff(qk,x))
> *(alj/exp(I*(nu-1)*fij))*q[i]^(nu-1):
> qRef:=Re(q[i]): qImf:=Im(q[i]):
> bRef:=Re(be[i]): bImf:=Im(be[i]):
> Digits:=14:
> appendto(filename):
> lprint(evalf(qRef),evalf(qImf),evalf(bRef),evalf(bImf)):
> appendto(terminal):
> od:

Checking of our representation:
Digits:=Digits1:
L:=nrofroots:
ap:=proc(n)
local ss, i; ss:=0;
for i from 1 to L do

ss:=ss+be[i]*q[i]^(-n) # cf. (3.1)
od;
ss end;

First nco coefficients:
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appendto(terminal);
for i from nu to nc+nu do apc[i]:= ap(i): od:
for i from nu to nc+nu do i:

coefc[i]; eps:=abs(apc[i]-coefc[i]);
od;

4. Transformation to other grid parameters, see Transformation 3.1
> Vrs:=4500; dxs:=1/160; dts:=0.00002;
> a:=2*dx^2/dt+2*dxs^2/dts+I*(dx^2*Vr-dxs^2*Vrs); # (3.15)
> b:=2*dx^2/dt-2*dxs^2/dts-I*(dx^2*Vr-dxs^2*Vrs); # (3.16)
> for i from 1 to L do
> qs[i]:=(q[i]*conjugate(a)-conjugate(b))/
> (a-q[i]*b): # (3.13)
> od;
> for i from 1 to L do
> bes[i]:=be[i]*q[i]*((a*conjugate(a)-b*conjugate(b))/
> ((a-q[i]*b)*(q[i]*conjugate(a)-conjugate(b))))*
> (1+qs[i])/(1+q[i]): # (3.14)
> qsRef:=Re(qs[i]): qsImf:=Im(qs[i]):
> bsRef:=Re(bes[i]): bsImf:=Im(bes[i]):
> Digits:=14:
> appendto(filenametrafo):
> lprint(evalf(qsRef),evalf(qsImf),evalf(bsRef),evalf(bsImf)):
> appendto(terminal):
> od;
> L:=nrofroots; # (3.1)
> aps:=proc(n)
> local ss, i; ss:=0;
> for i from 1 to L do
> ss:=ss+bes[i]*qs[i]^(-n)
> od;
> ss end;

First nco new convolution coefficients (starting with n=nu):
> appendto(terminal);
> for n from nu to nc+nu do apcs[n]:= aps(n): od:
> for n from nu to nc+nu do coefs[n]:= apcs[n]; od;
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[34] A. Schädle, Numerische Behandlung transparenter Randbedingungen für
die Schrödinger–Gleichung, Masters Thesis, Universität Tübingen, 1998.

[35] A. Schädle, Non–reflecting boundary conditions for the two dimensional
Schrödinger equation, Wave Motion 35 (2002), 181–188.
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