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Xavier Antoine1,, Anton Arnold 2, ∗, Christophe Besse3,, Matthias Ehrhardt 4, ∗∗, andAchim Schädle5, ∗∗∗
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In this review we discuss techniques to solve numerically the time–dependent linear Schrödinger equation on unbounded
domains. We present some recent approaches and describe alternative ideas pointing out the relations between these works.
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1 Introduction

The equation under consideration is the 1D Schrödinger equation given on the unbounded domainΩ = {(x, t) ∈ R × R+}:

i∂tu = −∂2
xu+ V (x, t)u, x ∈ R, t > 0,

u(x, 0) = uI(x), lim
|x|→∞

u(x, t) = 0,
(1)

whereV denotes a given real potential. We assume that the initial data is compactly supported, i.e.supp(uI) ⊂ [xl, xr].
Furthermore, we assume thatV is constant outside an interval[xl, xr], i.e.V (x) = Vl for x < xl, V (x) = Vr for x > xr.

Equation (1) is one of the basic equations of quantum mechanics and it arises in many areas of physical and technological
interest, e.g. in quantum semiconductors, in electromagnetic wave propagation, and in seismic migration. The Schrödinger
equation is the lowest order one-way approximation (paraxial wave equation) to the Helmholtz equation and is calledFresnel
equation in optics , orstandard parabolic equation in underwater acoustics.

If one wants to solve such a whole space evolution problem numerically, one has to restrict the computational (interior)
domainΩint = {(x, t) ∈]xl, xr[×R+} by introducing artificial boundary conditions or absorbinglayers. Artificial boundary
conditions are constructed with the objective to approximate the exact solution of the whole–space problem, restricted toΩint.
Such BCs are calledabsorbing boundary conditions (ABCs) if they yield a well–posed initial boundary value problem (IBVP),
where some ‘energy functional’ is absorbed at the boundary.If this approximate solution actually coincides onΩint with the
exact solution of the whole–space problem, one refers to these BCs astransparent boundary conditions (TBCs). While TBCs
for the Schr̈odinger equation are nonlocal in time (and space for multi-dimensional cases), it is often desirable to construct
ABCs that arelocal in space and/or time to allow for an efficient numerical implementation.

2 Transparent boundary conditions for the Schr̈odinger equation

Here we sketch the different ways of deriving transparent boundary conditions (TBCs). We start with the classical derivation
of theanalytic TBC for the IBVP (1). Secondly, we shall mimic this procedurefor the time–discrete Schrödinger equation to
derive temporally discrete TBCs. Note that the Schrödinger equation discretized in time is also the starting point for TBCs
based on theperfectly matched layer method and thepole condition. Finally, we shall considerfully discrete TBCs.

2.1 Analytic TBCs

Analytic TBCs for the Schr̈odinger equation (1) were independently derived by severalauthors from various application fields
They are non–local int and connect∂xv(xl,r, t) with v(xl,r, t). As a Dirichlet-to-Neumann (DtN) map they read

∂nv(x, t) = −e
−π

4
i

√
π
e−iVl,rt d

dt

∫ t

0

v(x, τ)eiVl,rτ

√
t− τ

dτ atx = xl, xr, (2)

wheren denotes the outwardly unit normal vector atxl, xr.
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These TBCs may be derived by the followinggeneral procedure. First, split original problem into coupled equations,
interior and exterior problems. Secondly, apply a Laplace transformation in timet and solve the resulting ordinary differential
equations inx. Allow only ‘outgoing’ waves by selecting the decaying solution asx → ±∞. Finally, match Dirichlet and
Neumann values atx = xl, x = xr. and apply the inverse Laplace transformation to obtain theTBCs (2) .

2.2 Temporally discrete TBCs

We consider the problem (1) discretized uniformly in time with the step size∆t by thetrapezoidal rule

i
un+1 − un

∆t
= −∂2

x

un+1 + un

2
+
V n+1(x)un+1 + V n(x)un

2
, x ∈ R, ∀n ∈ N0,

u0 = uI(x) given forx ∈ R, lim
|x|→∞

un(x) = 0, ∀n ∈ N0,
(3)

Instead of a Laplace transformation w.r.t.t to (1), we apply aZ-transformationZ(un) = û(z) :=
∑∞

n=0 u
n z−n, z ∈ C and

obtain by the above described procedure:

i
vn+1 − vn

∆t
= −∂2

x

vn+1 + vn

2
+
V n+1(x)vn+1 + V n(x)vn

2
, x ∈ Ω, ∀n ∈ N0,

v0(x) = uI(x), x ∈ Ω,

∂nv
n+1 =

n+1
∑

k=0

ψ
(l,r)
k vn+1−k, atx = xl, xr,

(4)

where the weightsψ(l,r)
n are given (in case of a vanishing potential) by

ψk = −e− iπ
4

√
2√

∆t
(−1)kψ̃k, k ∈ N0, (ψ̃0, ψ̃1, ψ̃2, ψ̃3, ψ̃4, ψ̃5, . . . ) =

(

1, 1,
1

2
,
1

2
,
1 · 3
2 · 4 ,

1 · 3
2 · 4 , . . .

)

. (5)

2.3 Fully discrete TBCs

Fully discrete TBCs are obtained if we discretize (3) additionally in space, e.g. using the uniform gridxj = xl + j∆x, j ∈ Z:

i
un+1

j − un
j

∆t
= −D2

x

un+1
j + un

j

2
+
V n+1

j un+1
j + V n

j u
n
j

2
, j ∈ Z, n ∈ N0,

lim
|j|→∞

un
j = 0, n ∈ N0,

u0
j = uI(j∆x), j ∈ Z,

(6)

whereD2
x denotes the standard second order difference quotient. Theright artificial boundary is located atxJ = xl +J∆x =

xr and the left boundary atx0 = xl. The right discrete TBC is obtained analogously and reads (written as DtN map):

un
J − un

J−1 = −
n

∑

k=1

sn−ku
k
J + un−1

J−1, n ∈ N, (7)

with the explicitly calculated convolution weights:

sn = (−iR+ σ) δ0n + (1 + iR + σ) δ1n + γ e−inϕPn(µ) − Pn−2(µ)

2n− 1
, ϕ = arctan

2R(σ + 1)

R2 − 2σ − σ2
,

σ = ∆x2Vr, γ = i 4

√

(R2 + σ2) (R2 + (σ + 2)2) eiϕ/2, µ =
R2 + 2σ + σ2

√

(R2 + σ2) (R2 + (σ + 2)2)
.

(8)

Pn denotes the Legendre polynomials (P−1 ≡ P−2 ≡ 0), δk
n is the Kronecker symbol andR = ∆x2/∆t is the mesh ratio.

3 Further Reading

For a much more detailed description of the previous derivations and a concise discussion of the situation for multidimensional
and nonlinear (cubic) Schrödinger equations, efficient approximations and numericalexamples we refer the reader to [1].
Moreover, there exists supplementary MATLAB software witha graphical user interface to compare the different approaches.
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