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Abstract: In this article, a new hybrid model named linear Diophantine fuzzy rough set (LDFRS)
is proposed to magnify the notion of rough set (RS) and linear Diophantine fuzzy set (LDFS).
Concerning the proposed model of LDFRS, it is more efficient to discuss the fuzziness and roughness
in terms of linear Diophantine fuzzy approximation spaces (LDFA spaces); it plays a vital role in
information analysis, data analysis, and computational intelligence. The concept of (<p, p′>, <q, q′>)-
indiscernibility of a linear Diophantine fuzzy relation (LDF relation) is used for the construction
of an LDFRS. Certain properties of LDFA spaces are explored and related results are developed.
Moreover, a decision-making technique is developed for modeling uncertainties in decision-making
(DM) problems and a practical application of fuzziness and roughness of the proposed model is
established for medical diagnosis.

Keywords: linear Diophantine fuzzy sets; linear Diophantine fuzzy relations; level cut relations of
linear Diophantine fuzzy relations; symmetry of optimal decision; rough approximations

1. Introduction

Due to the growing interest in the development of computational intelligence tech-
niques, classical set theory has been generalized to many beneficial theories and models.
Some of the worthwhile set theoretic models are fuzzy sets (FSs) [1], intuitionistic fuzzy
sets (IFSs) [2,3], bipolar fuzzy sets (BFSs) [4], rough sets (RSs) [5,6], soft sets (SSs) [7], etc.
In 1965, Zadeh [1] introduced the conceptualization of FSs, one of the most successful
extensions among the above-mentioned theories. FSs assign grades to all objects of the
universal set which lie in the unit interval [0, 1] on the basis of their characteristics, instead
of only {0, 1} as in classical set theory. In other words, the elements may have the property
of belonging partially to the universal set. For example, we cannot segregate all the patients
into two specific classes, i.e., either somebody is ill or not, because an individual’s illness
may not be at its earliest or extreme level. In FS theory, an individual who is nauseated
could have a degree of illness near to 0.889. In contrast, if somebody has a degree of illness
0.124, this intimates that he has nearly recovered from poor health. Since 1965, FSs have
been studied extensively by various authors and innovative mathematical extensions have
been developed such as m-polar fuzzy set (mFS) [8], Pythagorean fuzzy set (PFS) [9,10],
orthopair fuzzy set (OFS) [11], q-rung orthopair fuzzy set (q-ROFS) [12], and Pythagorean
m-polar fuzzy set (PmFS) [13,14].

One of the most recent and an important generalization of FS is LDFS, originated by
Riaz and Hashmi [15] in 2019. LDFS is the most convenient mathematical model concerning
modeling vagueness in real-life complications. LDFS removes all the restrictions related to

Symmetry 2022, 14, 525. https://doi.org/10.3390/sym14030525 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14030525
https://doi.org/10.3390/sym14030525
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0001-8115-9168
https://orcid.org/0000-0002-3583-9434
https://doi.org/10.3390/sym14030525
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14030525?type=check_update&version=1


Symmetry 2022, 14, 525 2 of 23

the association and non-alignment grades of the prevailing concepts as mentioned above,
by the adoption of corresponding control parameters. For DM, multi-attribute decision-
making (MADM), engineering, artificial intelligence (AI) and the medical sort, LDFS is the
most suitable mathematical structure, where the decision makers have freedom to assign
membership grades (MGs) and non-membership grades (NMGs) [15]. Nowadays, LDFSs
involve a massive number of vibrant researchers and the study of this paradigm is growing
rapidly. Some of the remarkable applications of LDFSs concerning algebraic structures, soft
rough sets model, binary relations, and q-linear Diophantine fuzzy are found in [16–18].

The binary relation performance is quite influential in distinctive fields of pure and
applied sciences. In 1971, Zadeh [19] established the conception of a fuzzy relation (F
relation). F relations are very useful for modeling situations, where interactions among
various objects are more or less strong. FSs and F relations have voluminous applications
in pure and applied sciences. A particular study on FSs and F relations is presented by
Wang et al. in [20]. In 1983, Atanassov [21] proposed the idea of intuitionistic fuzzy relation
(IF relation) by promulgating the constraint that the sum of association and disassociation
grades should not be greater than 1. Recently, Ayub et al. [22], proposed a beautiful
extension of the IF relation, named linear Diophantine fuzzy relation (LDF relation), with
a robust application in decision-making, by the influence of the novel concepts of LDFSs.
Hashmi et al. [23] suggested the conceptualization of m-polar neutrosophic topology with
applications to MADM.

Pawlak in 1982 put forward an approach of rough set (RS) in order to cope with the
vagueness and incompleteness in information systems. RS theory is also a development
of classical set theory, where the objects are analyzed by means of lower and upper ap-
proximation spaces. These approximation spaces revealed the obscured awareness in the
information system. In RS theory, it is assumed that we have some additional enlighten-
ment about the features of a set. Let us clarify this notion with an example. In the current
pandemic situation, we consider a group of some patients of corona virus. In order to
investigate corona, one must see its disparate symptoms, for instance, fever, dry cough,
tiredness, sore throat, loss of taste or smell, difficulty breathing. Patients exhibiting similar
symptoms are equivalent with respect to the available knowledge and form elementary
granules of data. RS theory has successful applications to computer sciences, cognitive
sciences, artificial intelligence, machine learning, conflict analysis and data analysis.

Since RS theory has been developed, many robust generalizations of RS have been es-
tablished in various directions. For instance, binary relations [24,25], tolerance relations [26],
similarity relations [27], soft binary relations [28,29], soft equivalence relations [30], set
valued maps [31], two equivalence relations [32], normal soft group [33], etc. Recently,
Shiekh et al. [34] proposed the solution of matrix games with rough interval pay-offs and its
application in the telecom market share problem. Shiekh et al. [35] suggested an alternative
approach for solving fuzzy matrix games. Ruidas et al. [36] developed a production-
repairing inventory model considering demand and the proportion of defective items as
rough intervals. They developed two independent models by using the rough interval.
The first model concerned demand of the product and the second model concerned both
the demand and the defective rate. In the information systems, where attribute values are
not numerical, an excessive number of vibrant mathematicians investigated hybridization
of FSs and RSs. Cock et al. [37] proposed an innovative model of fuzzy rough sets and
developed some forgotten step of roughness. Maji and Garai [38] introduced the notion of
IT2 fuzzy rough sets and max-relevance significance criterion with application to attribute
selection. Mahmood et al. [39] proposed the lower and upper approximations in quo-
tient groups and homomorphisms between lower and upper approximations. Mahmood
et al. [40] studied group homomorphism-based comparison between lower and upper
approximations. Tsang et al. [41] developed a new attribute reduction approach based on
fuzzy rough sets. Yao et al. [42] introduced a novel variable precision (θ, σ)-fuzzy rough set
approach towards fuzzy granules and granular computing. Dubois and H. Prade et al. [43]
introduced novel concepts of fuzzy rough sets and rough fuzzy sets. They unveiled a
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constructive approach, where the approximations are constructed by means of an F relation
to be more useful, from an application point of view. Akram et al. [44] suggested a novel
hybrid decision-making approach based on intuitionistic fuzzy N-soft rough sets. Shabir
and Shaheen [45] explored a new technique to fuzzify a RS when the objects are discernible
up to a certain degree α. To deal with uncertainty and bipolarity as well in many situa-
tions, Malik and Shabir [46] produced fuzzy bipolar soft sets (FBSSs) with utilization in
DM. In [47], Gul and Shabir introduced a new idea of roughness of a crisp set based on
(α, β)-indiscernibilty of a bipolar fuzzy relation (BF relation).

Shabir et al. [48] proposed a new approach to discuss roughness and soft rough sets.
Ayub et al. [49] developed some applications of roughness in soft-intersection groups and
their approximation spaces. Chen et al. [50] suggested a study of roughness in modules of
fractions. Zhang et al. [51] introduced novel classes of fuzzy soft β-covering-based fuzzy
rough sets with applications to MCDM. They developed some results for two different fuzzy
soft β-coverings having the same upper (lower) approximation operators. Ouyang et al. [52]
developed tolerance relations for fuzzy rough sets and developed certain interesting results.
Sun and Ma [53] suggested a model for fuzzy rough set with applications towards two
different universes. Yang and Li [54] introduced the bipolar fuzzy rough set model with
applications to two different universes.

Feng et al. [55,56] proposed novel concepts of soft rough set, soft set, and rough sets
to analyze certain characteristics of information systems. Zhang et al. [57,58] introduced
the notion of the IFS-rough set and interval-valued hesitant fuzzy rough approximation
operators. Zhou and Wu [59] developed certain properties of rough set approximations
in Atanassov IFS theory. Zhan and Alcantud [60] proposed an algorithm survey of pa-
rameter reduction of soft sets. Hussain et al. [61,62] proposed Pythagorean fuzzy soft
rough sets, q-Rung orthopair fuzzy soft average aggregation operators and their appli-
cations in decision-making. Pamucar [63] proposed a normalized weighted geometric
Dombi Bonferroni mean operator with interval grey numbers with application in MCDM.
Ali et al. [64] developed Einstein geometric aggregation operators using a novel complex
interval-valued Pythagorean fuzzy setting with application in green supplier chain manage-
ment. Božanic [65] discussed a hybrid LBWA-IR-MAIRCA multi-criteria decision-making
model for determination of constructive elements of weapons. Agarwal et al.’s [66] study
involved a parametric analysis of a grinding process using the rough sets theory.

Let z be the universe of discourse. Let µ, ν : z→ [0, 1] be the membership function
(MF) and non-membership function (NMF). Then for any } ∈ z, the terms µ(}) and ν(})
represent the membership grade (MG) and non-membership grade (NMG). The following
three different representations of a linear Diophantine fuzzy number (LDFN) were used
in [15,16,22,67]

N =
(
(µ(}), ν(})), (α(}), β(}))

)
=

(
< µ(}), ν(}) >,< α(}), β(}) >

)
=

〈
(µ(}), ν(})), (α(}), β(}))

〉
where µ(}), ν(}), α(}), β(}) ∈ [0, 1] and

0 ≤ α(})µ(}) + β(})ν(})) ≤ 1

This involves one ordered pair (µ(}), ν(})) containing a pair of MGs and NMGs and
a second ordered pair (α(}), β(})) containing reference parameters. A LDFN provides
freedom to the decision makers in the selection of MGs and NMGs. Figure 1 and Table 1
demonstrates that the space for LDFNs is broader than the space for IFNs, PFNs and
q-ROFNs.
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Figure 1. Comparison of LDFNs with IFNs, PFNs and q-ROFNs.

Table 1. Comparison between LDFS with some existing fuzzy sets.

Models Limitations and Delimitations

Fuzzy sets [1] A FS assigns MGs but can not deal with NMGs.

IFSs [2,3] An IFS assigns both MGs and NMGs with µ(}) + ν(}) ≤ 1 but it
can not deal with µ(}) + ν(}) > 1 } ∈ z.

PFSs [9,10] A PFS assigns both MGs and NMGs with (µ(}))2 + (ν(}))2 ≤ 1
but it can not deal with (µ(}))2 + (ν(}))2 > 1 } ∈ z.

FFSs [68] A FFS assigns both MGs and NMGs with (µ(}))3 + (ν(}))3 ≤ 1 it
but can not deal with (µ(}))3 + (ν(}))3 > 1 } ∈ z.

q-ROFSs [12] A q-ROFS assigns both MGs and NMGs with (µ(}))q + (ν(}))q ≤
1, q ≥ 1 but it can not deal with (µ(}))q + (ν(}))q > 1 or if µ(}) =
ν(}) = 1.

LDFSs [15] A LDFS assign MGs and NMGs as well as the reference/control pa-
rameters. It relax the limitations of IFSs, PFSs, FFSs, and q-ROFSs. It
provides freedom to decision makers for assigning MGs and NMGs.

Motivated by robust features of RS and LDFS, this work is mainly concerned with the
hybridization of these models. Main objectives of this paper are as follows.

1. The main objective of this article is to magnify the notion of LDFS and RS for intelligent
information processing. The proposed model of LDFRS provides a broader space
for the selection of membership and non-membership grades than existing models
(FS, IFS, BFS, q-ROFS), to discuss fuzziness and roughness in terms of LDFA spaces.
LDFRSs provide freedom to decision makers for assigning membership grades (MGs)
and non-membership grades (NMGs).

2. The idea of the LDF relation with the addition of control parameters is more efficient
for roughness approximation than the existing F relation, IF relation, and BF relation.

3. In this paper, we aim to produce an advanced technique for approximation of rough-
ness of a crisp set by using an LDF relation from a universe to another universe
based on (< p, p′ >,< q, q′ >)-indiscernible objects, that is, the components which
do not have completely the same attributes. However, they are similar up to certain
degrees p, q, p′ and q′ (say) and involve the fuzziness of the information system if the
attribute values are linguistic. Using the above concepts, approximation spaces are
then formalized, for approximating the subsets of two universes.

4. The abstractions of linear Diophantine fuzzy approximation spaces (LDFA spaces) are
defined and related results are explored. Concerning the proposed model of LDFRS,
it is more efficient to discuss the fuzziness and roughness in terms of LDFA spaces; it
plays a vital role in information analysis and decision analysis.



Symmetry 2022, 14, 525 5 of 23

5. Moreover, a decision-making technique is developed for modeling uncertainties in
decision-making (DM) problems and a practical application of fuzziness and rough-
ness of proposed model is established for medical diagnosis.

For smooth study of this article, the remainder has the following pattern: In Section 2,
a reflection of preliminary abstractions of the RS, LDFS and LDF relation are presented.
In Section 3, the concept of Linear diophantine fuzzified rough set (LDFRS) is proposed
by employing (< p, p′ >,< q, q′ >)-indiscernibility. Some remarkable results related to
LDFRS are proved with useful examples. Section 4 presents the intuitions of accuracy
measure and roughness measure for (< p, p′ >,< q, q′ > LDFRS. Section 5 presents a
utilization of LDFRSs in medical diagnosis with a comparison of Yang et al.’s [54] method.
Finally, Section 6 consists of the culmination of this article.

2. Preliminaries

In this subdivision, the ground rules of LDFS, LDF relation and RS are recalled, which
are indispensable for the construction of a new hybrid model called Linear Diophantine
fuzzy rough set (LDFRS). Throughout this article, z, z1 and z2 will be signified as the
universes, unless expressed as something else.

Definition 1 ([6]). Let E be an equivalence relation on z. Then, the pair (z, E) is known as an
approximation space (A space). For any subset W of z, the lower approximation WE and the upper
approximation WE are described as follows:

WE = {} ∈ z : [}]E ⊆W} and WE
= {} ∈ z : [}]E ∩W 6= ∅}

where [}]E represents the equivalence class of } ∈ z determined by E. The boundary region is
represented and expressed as below:

BR(W) = WE −WE

If BR(W) 6= ∅, then W is called a rough set; otherwise it is crisp or definable. Note that:

? WE is known as a positive region of W, which contains the definite members;

? z−WE is known as a negative region of W, which contains the definite non-members;
? BR(W) contains doubtful members of W, which may or may not contain the members of W.

Definition 2 ([15]). An LDFS on z is an object specified as bellow:

ΩD = {(},< µ(}), ν(}) >,< α(}), β(}) >) : } ∈ z}

where
µ, ν : z→ [0, 1]

are membership and non-membership functions and α(}), β(}) ∈ [0, 1] are the reference/control pa-
rameters of µ(}), ν(}), respectively, with 0 ≤ α(})µ(}) + β(})ν(}) ≤ 1 and 0 ≤ α(}) + β(}) ≤
1 for all } ∈ z. The dubiety part is prescribed as ΨD(})ΛD(}) = 1− (α(})µ(}) + β(})ν(})),
where ΨD(}) is known to be the degree of indeterminacy of } to ΩD and ΛD(}) is the refer-
ence parameter related to the degree of indeterminacy. A number of the form (<µ(}), ν(})>,<
α(}), β(})>) is called linear Diophantine fuzzy number (LDFN).

Recently, Ayub et al. [22] extended the notion of IF relation [21] to LDF relation by mak-
ing use of reference parameters corresponding to the membership and non-membership
grades in the stimulation of Riaz and Hashmi [15].

Definition 3 ([22]). An LDF relation R from z1 to z2 is an expression of the following form:

R = {((h̄1, h̄2),< µR(h̄1, h̄2), νR(h̄1, h̄2) >,< α(h̄1, h̄2), β(h̄1, h̄2) >) : h̄1 ∈ z1, h̄2 ∈ z2}
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where the mappings
µR, νR : z1 ×z2 → [0, 1]

denote the affiliation and non-membership F relations from z1 to z2, respectively, and
α(h̄1, h̄2), β(h̄1, h̄2) ∈ [0, 1] are the reference parameters corresponding to µR(h̄1, h̄2) and νR(h̄1, h̄2),
respectively. These affiliation and non-membership F relations obey the constraint
0 ≤ α(h̄1, h̄2)µR(h̄1, h̄2) + β(h̄1, h̄2)νR(h̄1, h̄2) ≤ 1, for all (h̄1, h̄2) ∈ z1 × z2 with 0 ≤
α(h̄1, h̄2) + β(h̄1, h̄2) ≤ 1. The hesitation part is described as follows:

f(h̄1, h̄2) ᵀ (h̄1, h̄2) = 1− (α(h̄1, h̄2)µR(h̄1, h̄2) + β(h̄1, h̄2)νR(h̄1, h̄2))

where ᵀ(h̄1, h̄2) is an index (a degree) of hesitation whether h̄1 and h̄2 are in the relation R or
not and f(h̄1, h̄2) is the reference parameter of degree of hesitation. For simplicity, we shall use
R = (< µR(h̄1, h̄2), νR(h̄1, h̄2) >,< α(h̄1, h̄2), β(h̄1, h̄2) >) for an LDF relation from z1 to z2.
We shall represent the set of all LDF relations from z1 to z2 by LDFR(z1 ×z2).

In the case of finite universes z1 and z2, the matrix notation of an LDF relation is
described below.

Definition 4 ([22]). Let R = (< µR(`i, h̄j), νR(`i, h̄j) >,< α(`i, h̄j), β(`i, h̄j) >) be an LDF
relation from z1 to z2, where z1 = {`1, `2, ..., `m} and z2 = {h̄1, h̄2, ..., h̄n}. Consider
µR(`i, h̄j) = (ðij)m×n, νR(`i, h̄j) = (ð′ij)m×n and α(`i, h̄j) = ([ij)m×n, β(`i, h̄j) = ([′ij)m×n,
with 0 ≤ [ij + [′ij ≤ 1 and 0 ≤ [ijðij + [′ijð

′
ij ≤ 1 for all i, j, where 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Then, an LDF relation R can be symbolized in the following four matrices:

µR = (ðij)m×n =


ð11 ð12 ... ð1n
ð21 ð22 ... ð2n

. . ... .

. . ... .

. . ... .
ðm1 ðm2 ... ðmn

, νR = (ð′ij)m×n =


ð′11 ð′12 ... ð′1n
ð′21 ð′22 ... ð′2n

. . ... .

. . ... .

. . ... .
ð′m1 ð′m2 ... ð′mn


and

α = ([ij)m×n =



[11 [12 ... [1n
[21 [22 ... [2n
. . ... .
. . ... .
. . ... .

[m1 [m2 ... [mn

, β = ([′ij)m×n =



[′11 [′12 ... [′1n
[′21 [′22 ... [′2n
. . ... .
. . ... .
. . ... .

[′m1 [′m2 ... [′mn


Some fundamental operations on LDF relations are described as follows.

Definition 5 ([22]). Let R1 = (< ϑMR1
(h̄1, h̄2), ϑNR1

(h̄1, h̄2) >,< α1(h̄1, h̄2), β1(h̄1, h̄2) >) and
R2 = (< ϑMR2

(h̄1, h̄2), ϑNR2
(h̄1, h̄2) >,< α2(h̄1, h̄2), β2(h̄1, h̄2) >) be two LDF relations from z1

to z2. Then,

(1) R1 ⊆ R2 if and only if

µR1(h̄1, h̄2) ≤ µR2(h̄1, h̄2) and ϑNR1
(h̄1, h̄2) ≥ ϑNR2

(h̄1, h̄2),

α1(h̄1, h̄2) ≤ α2(h̄1, h̄2) and β1(h̄1, h̄2) ≥ β2(h̄1, h̄2)

for all (h̄1, h̄2) ∈ z1 ×z2.
(2) R1 ∪ R2 = (< (µR1 ∪ µR2)(h̄1, h̄2), (ϑNR1

∩ ϑNR2
)(h̄1, h̄2) >,

< α1(h̄1, h̄2) ∨ α2(h̄1, h̄2), β1(h̄1, h̄2) ∧ β2(h̄1, h̄2) >), where

(µR1 ∪ µR2)(h̄1, h̄2) = µR1(h̄1, h̄2) ∨ µR2(h̄1, h̄2) and

(ϑNR1
∩ ϑNR2

)(h̄1, h̄2) = ϑNR1
(h̄1, h̄2) ∧ ϑNR2

(h̄1, h̄2)
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for all (h̄1, h̄2) ∈ z1 ×z2.
(3) R1 ∩ R2 = (< (µR1 ∩ µR2)(h̄1, h̄2), (ϑNR1

∪ ϑNR2
)(h̄1, h̄2) >,

< α1(h̄1, h̄2) ∧ α2(h̄1, h̄2), β1(h̄1, h̄2) ∨ β2(h̄1, h̄2) >), where

(µR1 ∩ µR2)(h̄1, h̄2) = µR1(h̄1, h̄2) ∧ µR2(h̄1, h̄2) and

(ϑNR1
∪ ϑNR2

)(h̄1, h̄2) = ϑNR1
(h̄1, h̄2) ∨ ϑNR2

(h̄1, h̄2)

for all (h̄1, h̄2) ∈ z1 ×z2.
(4) Rc

1 = (< ϑNR1
(h̄1, h̄2), µR1(h̄1, h̄2) >,< β1(h̄1, h̄2), α1(h̄1, h̄2) >).

Definition 6 ([22]). Let R be an LDF relation on z. Then, R is known as a reflexive LDF
relation, if:

µR(h̄, h̄) = 1, νR(h̄, h̄) = 0 and α(h̄, h̄) = 1, β(h̄, h̄) = 0

for all h̄ ∈ z.

In the case of finite z, R = (< (ðij)n×n, (ð′ij)n×n >,< ([ij)n×n, ([′ij)n×n >). Then, R is
reflexive, if

[ii = ðii = 1, and [′ii = ð
′
ii = 0, where i, j = 1, 2, ..., n.

Now, we shall define the (< p, p′ >,< q, q′ >)-level cut relation of R according to the
encouragement of Riaz et al. [16].

Definition 7. Let R = {((h̄1, h̄2),< µR(h̄1, h̄2), νR(h̄1, h̄2) >,< α(h̄1, h̄2), β(h̄1, h̄2) >) : h̄1 ∈
z1, h̄2 ∈ z2} be an LDF relation from z1 to z2. For any constants p, q, p′, q′ ∈ [0, 1] such that
0 ≤ pq+ p′q′ ≤ 1 with 0 ≤ p′ + q′ ≤ 1, define the (< p, p′ >,< q, q′ >)-level cut relation of R
as follows:

R<q,q′>
<p,p′>

= {(h̄1, h̄2) ∈ z1 ×z2 : µR(h̄1, h̄2) ≥ p, α(h̄1, h̄2) ≥ p′, νR(h̄1, h̄2) ≤ q, β(h̄1, h̄2) ≤ q′}

where,
R<p,p′> = {(h̄1, h̄2) ∈ z1 ×z2 : µR(h̄1, h̄2) ≥ p, α(h̄1, h̄2) ≥ p′}

is said to be the < p, p′ >-level cut relation of R, and

R<q,q′> = {(h̄1, h̄2) ∈ z1 ×z2 : νR(h̄1, h̄2) ≤ q, β(h̄1, h̄2) ≤ q′}

is called the < q, q′ >-level cut relation of R.

Next, we define the indiscernibility criteria of the objects in the case of the LDF relation.

Definition 8. Let R = (< µR(h̄1, h̄2), νR(h̄1, h̄2) >,< α(h̄1, h̄2), β(h̄1, h̄2) >) be an LDF
relation fromz1 toz2 and p, p′ ∈ (0, 1], q, q′ ∈ [0, 1). Then, the objects h̄1 ∈ z1 and h̄2 ∈ z2 are
said to be (< p, p′ >,< q, q′ >)-indiscernible, if:

µR(h̄1, h̄2) ≥ p, α(h̄1, h̄2) ≥ p′ and νR(h̄1, h̄2) ≤ q, β(h̄1, h̄2) ≤ q′.

which means that the objects h̄1 ∈ z1 and h̄2 ∈ z2 are related up to a relational degree p and
its parametric degree p′ and non-relational degree q and the corresponding parametric degree q′,
respectively.

If R ∈ LDF (z1 ×z2), then the triplet z = (z1,z2, R) is called a linear diophantine
fuzzified approximation space (LDFA space).
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3. Linear Diophantine Rough Approximations for
(< p, p′ >,< q, q′ >)-Indiscernible Objects

In [45], Shabir and Shaheen initiated the conception of rough approximations of a
set based on the α-indiscernibility of a compatible (reflexive and symmetric) F relation.
More recent, this notion was extended by Gul and Shabir in [47] by using a compatible BF
relation on a universe. In this section, we extend these models to a more general concept of
LDFRS with the help of an LDF relation [22] without any extra condition on two variant
universes. For this objective, the notions of linear Diophantine fuzzified approximation
spaces (LDFA spaces) for any subsets W of z1 and J of z2 are defined by employing an
LDF relation R from z1 to z2. Some structural properties related to these LDFA spaces are
studied in detail; however, some of the properties are not satisfied in the absence of these
extra conditions. We shall discuss all these with illustrative examples.

Definition 9. Let z = (z1,z2, R) be LDFA space. For p, p′ ∈ (0, 1] and q, q′ ∈ [0, 1), define
the < p, p′ >-lower, -upper and < q, q′ >-lower, -upper LDFA spaces of any subset J ⊆ z2
as follows:

R(J )
<p,p′>

= {h̄1 ∈ z1 : ϑMR (h̄1, h̄2) < p, α(h̄1, h̄2) < p′, for all h̄2 ∈ J c}

R(J )
<p,p′>

= {h̄1 ∈ z1 : ϑMR (h̄1, h̄2) ≥ p, α(h̄1, h̄2) ≥ p′, for some h̄2 ∈ J }

R(J )
<q,q′>

= {h̄1 ∈ z1 : ϑNR (h̄1, h̄2) ≤ q, β(h̄1, h̄2) ≤ q′, for some h̄2 ∈ J }

R(J )
<q,q′>

= {h̄1 ∈ z1 : ϑNR (h̄1, h̄2) > q, β(h̄1, h̄2) > q′, for all h̄2 ∈ J c}

Further, for any subset W ⊆ z1, define < p, p′ >-lower, -upper and < p, q′ >-lower, -upper
LDFA spaces as follows:

(W)R
<p,p′>

= {h̄2 ∈ z2 : ϑMR (h̄1, h̄2) < p, α(h̄1, h̄2) < p′, for all h̄1 ∈Wc}

(W)R
<p,p′>

= {h̄2 ∈ z2 : ϑMR (h̄1, h̄2) ≥ p, α(h̄1, h̄2) ≥ p′, for some h̄1 ∈W}

(W)R
<q,q′>

= {h̄2 ∈ z2 : ϑNR (h̄1, h̄2) ≤ q, β(h̄1, h̄2) ≤ q′, for some h̄1 ∈W}

(W)R
<q,q′>

= {h̄2 ∈ z2 : ϑNR (h̄1, h̄2) > q, β(h̄1, h̄2) > q′, for all h̄1 ∈Wc}

Note that all the LDFA spaces defined above for J ⊆ z2 are the crisp subsets of z1
and for W ⊆ z1 the LDFA spaces are the crisp subsets of z2. Moreover, in Definition 9, for
any subset W ⊆ z1,

(W)R
<p,p′>

= {h̄2 ∈ z2 : ϑMR (h̄1, h̄2) < p, α(h̄1, h̄2) < p′, for all h̄1 ∈Wc}

= {h̄2 ∈ z2 : (ϑMR )T(h̄2, h̄1) < p, (α)T(h̄2, h̄1) < p′, for all h̄1 ∈Wc}

where T denotes the transpose of the matrices µR and α. Similarly, we can calculate

(W)R
<q,q′>

, (W)R
<q,q′>

and (W)R
<q,q′>

.
In the sequel of this manuscript, z = (z1,z2, R) is supposed to be an LDFA space.

Definition 10. With the same notion as in Definition 9, suppose J ⊆ z2 and W ⊆ z1. Then, we
define the following four pairs:

LDFz(J ) = (R(J )
<p,p′>

, R(J )
<q,q′>

)

LDFz
(J ) = (R(J )

<p,p′>
, R(J )

<q,q′>
)
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(W)LDFz = ((W)R
<p,p′>

, (W)R
<q,q′>

),

(W)LDFz
= ((W)R

<p,p′>
, (W)R

<q,q′>
)

are known as (< p, p′ >,< q, q′ >)-LDF approximations of J and W, respectively, with respect to
z. Moreover, the following sets are then defined:

(1) LDFPz(J ) = (R(J )
<p,p′>

, R(J )
<q,q′>

),

(2) LDFNz(J ) = z2 − LDFz
(J ) = ((R(J )

<p,p′>
)c, (R(J )

<q,q′>
)c),

(3) LDFBz(J ) = LDFz
(J )− LDFz(J ) = (R(J )

<p,p′> − R(J )
<p,p′>

, R(J )
<q,q′>

−

R(J )
<q,q′>

).

These are known as positive, negative and boundary parts of J ⊆ z2. Similar notions can be
defined for W ⊆ z1.

From Definition 9, we deduce the following result.

Lemma 1. With the same notations as in Definition 9, assume that W ⊆ z1 and J ⊆ z2. Then,

(1) R(J )
<p,p′>

= R(J )
p
∩ R(J )

p′
.

(2) R(J )
<p,p′>

= R(J )
p ∩ R(J )

p′
.

(3) R(J )
<q,q′>

= R(J )
q
∩ R(J )

q′
.

(4) R(J )
<q,q′>

= R(J )
q ∩ R(J )

q′
.

(5) (W)R
<p,p′>

= (W)R
p
∩ (W)R

p′
.

(6) (W)R
<p,p′>

= (W)R
p ∩ (W)R

p′
.

(7) (W)R
<q,q′>

= (W)R
q
∩ (W)R

q′
.

(8) (W)R
<q,q′>

= (W)R
q ∩ (W)R

q′
.

Proof. We shall prove only (1). First, we shall define R(J )
p

and R(J )
p′

.

R(J )
p
= {h̄1 ∈ z1 : ϑMR (h̄1, h̄2) < p, for all h̄2 ∈ J c}

R(J )
p′
= {h̄1 ∈ z1 : α(h̄1, h̄2) < p′, for all h̄2 ∈ J c}

Now, by Definition 9,

R(J )
<p,p′>

= {h̄1 ∈ z1 : ϑMR (h̄1, h̄2) < p, α(h̄1, h̄2) < p′, for all h̄2 ∈ J c}

= {h̄1 ∈ z1 : ϑMR (h̄1, h̄2) < p, for all h̄2 ∈ J c}
∩ {h̄1 ∈ z1 : α(h̄1, h̄2) < p′, for all h̄2 ∈ J c}
= R(J )

p
∩ R(J )

p′
.

The remaining parts can be proved in a similar way.

To explain our new concept given in Definition 9, an example is under consideration.

Example 1. Let z1 = {c1, c2, c3, c4} and z2 = {c′1, c′2, c′3}. Construct an LDF relation R from
z1 to z2 in the form of the following matrices:

µR =


0.75 0.58 0.65
0.56 0.42 0.46
0.68 0.35 0.43
0.41 0.45 0.44

, νR =


0.70 0.42 0.55
0.88 0.75 0.45
0.54 0.32 0.21
0.46 0.45 0.25

, and
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α =


0.50 0.50 0.60
0.45 0.38 0.30
0.54 0.39 0.38
0.50 0.44 0.45

, β =


0.50 0.45 0.40
0.54 0.60 0.56
0.46 0.58 0.54
0.49 0.32 0.35

.

Let J = {c′1, c′3} ⊆ z2. Then, for p = 0.58, p′ = 0.50 and q = 0.42, q′ = 0.45,
(<0.58, 0.50>,<0.42, 0.45>)-LDF approximations are given as below:

R(J )
<0.58,0.50>

= {c2, c3, c4}, R(J )
<0.58,0.50>

= {c1, c3}

R(J )
<0.42,0.45>

= {c4}, R(J )
<0.42,0.45>

= {c2}

Hence, R(J )
<0.58,0.50>

* R(J )
<0.58,0.50>

and R(J )
<0.42,0.45> * R(J )

<0.42,0.45>
. Now, for a

subset W of z1, we take first the transpose of the above matrices:

(µR)
T =

 0.75 0.56 0.68 0.41
0.58 0.42 0.35 0.45
0.65 0.46 0.43 0.44

, (νR)
T =

 0.70 0.88 0.54 0.46
0.42 0.75 0.32 0.45
0.55 0.45 0.21 0.25

, and,

(α)T =

 0.50 0.45 0.54 0.50
0.50 0.38 0.39 0.44
0.60 0.30 0.38 0.45

, (β)T =

 0.50 0.54 0.46 0.50
0.45 0.60 0.58 0.32
0.40 0.56 0.54 0.35

.

Suppose that W = {c2, c3, c4}. Then, for p = 0.65, p′ = 0.50 and q = 0.55, q′ = 0.40, the
(< 0.65, 0.50 >,< 0.55, 0.40 >)-LDF approximations are:

(W)R
<0.65,0.50>

= {c′2}, (W)R
<0.65,0.50>

= {c′1}

(W)R
<0.55,0.40>

= {c′2, c′3}, (W)R
<0.55,0.40>

= {c′1}

Thus, (W)R
<0.65,0.50>

* (W)R
<0.65,0.50>

and (W)R
<0.55,0.40> * (W)R

<0.55,0.40>
.

Further, for ∅ ⊆ z2 and z2, assume that p = 0.58, p′ = 0.50, q = 0.42, q′ = 0.45; then, the
(< 0.58, 0.50 >,< 0.42, 0.45 >)-LDF approximations are as below:

R(∅)
<0.58,0.50>

= {c4}, R(∅)
<0.58,0.50>

= {c2},

R(∅)
<0.42,0.45>

= {c2}, R(∅)
<0.42,0.45>

= {c4},

R(z2)<0.58,0.50>
= {c1, c3}, R(z2)

<0.58,0.50>
= {c1, c3},

R(z2)<0.42,0.45>
= {c1, c4}, R(z2)

<0.42,0.45>
= {c3, c3}.

Now, for ∅ ⊆ z1 and z1, the (< 0.58, 0.50 >,< 0.42, 0.45 >)-LDF lower and upper
approximations are calculated as follows:

(∅)R
<0.58,0.50>

= z2, (∅)R
<0.58,0.50>

= ∅,

(∅)R
<0.42,0.45>

= {c′1}, (∅)R
<0.42,0.45>

= {c′1},

(z2)R
<0.58,0.50>

= ∅, (z2)R
<0.58,0.50>

= z2,

(z2)R
<0.42,0.45>

= {c′2, c′3}, (z2)R
<0.42,0.45>

= {c′2, c′3}.
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We note that R(∅)
<p,p′>

6= ∅ 6= R(∅)
<q,q′>

, R(z2)<p,p′>
6= z1 6= R(z2)

<q,q′>
,

(∅)R
<p,p′>

6= ∅ 6= (∅)R
<q,q′>

and (z1)R
<q,q′>

6= z2 6= (z1)R
<q,q′>

for all p, p′ ∈ (0, 1],
q, q′ ∈ [0, 1) (see the following Proposition 1).

Proposition 1. Let R be a reflexive LDF relation on z1 and p, p′ ∈ (0, 1], q, q′ ∈ [0, 1). Then,

(1) R(J1)<p,p′>
⊆ J1 ⊆ R(J1)

<p,p′>
.

(2) R(J1)<q,q′>
⊇ J1 ⊇ R(J1)

<q,q′>
.

(3) R(∅)
<p,p′>

= ∅ = R(∅)
<q,q′>

.

(4) R(∅)
<q,q′>

= ∅ = R(∅)
<q,q′>

.

(5) R(z1)<p,p′>
= z1 = R(z1)

<q,q′>
.

(6) R(z1)<q,q′>
= z1 = R(z1)

<q,q′>
.

Proof. We shall prove only (1). Others can be proved in a similar manners. First of all,
from Definition 9 it is straightforward that:

R(J1)<p,p′>
⊆ J1

Now, let h̄ ∈ J1. Then, µR(h̄, h̄) = 1 ≥ p and α(h̄, h̄) = 1 ≥ p since R is reflexive. This

yields that h̄ ∈ R(J1)
<p,p′>

. Thus, J1 ⊆ R(J1)
<p,p′>

.

Proposition 2. Suppose that p1, p2, p′1, p′2 ∈ (0, 1] and q1, q2, q′1, q′2 ∈ [0, 1) such that p1 ≤ p2,
p′1 ≤ p′2 and q1 ≤ q2, q′1 ≤ q′2. For any subset J ⊆ z2, the following assertions hold:

(1) R(J )
<p1,p′1>

⊆ R(J )
<p2,p′2>

,

(2) R(J )
<p2,p′2> ⊆ R(J )

<p1,p′1>,
(3) R(J )

<q1,q′1>
⊆ R(J )

<q2,q′2>
,

(4) R(J )
<q2,q′2> ⊆ R(J )

<q1,q′1>,

Proof. (1) Let h̄1 ∈ R(J )
<p1,p′1>

. By Definition 9, µR(h̄1, h̄2) < p1 and α(h̄1, h̄2) < p′1, for

all h̄2 ∈ J c. Since p1 ≤ p2 and p′1 ≤ p′2, therefore µR(h̄1, h̄2) < p2 and hM(h̄1, h̄2) < p2,
for all h̄2 ∈ J c. This proves that h̄1 ∈ R(J )

<p2,p′2>
.

(2) Let h̄1 ∈ R(J )
<p2,p′2>. Then, µR(h̄1, h̄2) ≥ p2 and α(h̄1, h̄2) ≥ p′2, for some h̄2 ∈ J

(using Definition 9). However, p1 ≤ p2 and p′1 ≤ p′2. It follows that µR(h̄1, h̄2) ≥ p′2 ≥
p′1 and α(h̄1, h̄2) ≥ p′2 ≥ p′1. Thus, µR(h̄1, h̄2) ≥ p1 and α(h̄1, h̄2) ≥ p′1 for some h̄2 ∈ J .

Hence, h̄1 ∈ R(J )
<p1,p′1>. (3) and (4) can be proved by using the same methodology as (1)

and (2).

Proposition 3. With the same assumptions as in Proposition 2, let W ⊆ z1. Then,

(1) (W)R
<p1,p′1>

⊆ (W)R
<p2,p′2>

,

(2) (W)R
<p2,p′2> ⊆ (W)R

<p1,p′1>,
(3) (W)R

<q1,q′1>
⊆ (W)R

<q2,q′2>
,

(4) (W)R
<q2,q′2> ⊆ (W)R

<q1,q′1>,

Proof. The proof is analogous to the proof of Proposition 2.
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In the following example, it is shown that the inclusions in Proposition 2 may not be
replaced with equality.

Example 2. Let us visit Example 1, wherez1 = {c1, c2, c3, c4} andz2 = {c′1, c′2, c′3}. Considering
p1 = 0.58, p′1 = 0.50, q1 = 0.42, q′1 = 0.45, then for J = {c′1, c′3}, the (< 0.58, 0.50 >,<
0.42, 0.45 >)-LDF lower and upper approximations are:

R(J )
<0.58,0.50>

= {c2, c3, c4}, R(J )
<0.58,0.50>

= {c1, c3}

R(J )
<0.42,0.45>

= {c4}, R(J )
<0.42,0.45>

= {c2}

If p2 = 0.68, p′2 = 0.54 and q2 = 0.54, q′2 = 0.46, then by using Definition 9, we have:

R(J )
<0.68,0.54>

= z1, R(J )
<0.54,0.46>

= {c3, c4}

If p2 = 0.56, p′2 = 0.45 and q2 = 0.88, q′2 = 0.54, then

R(J )<0.56,0.45> = {c1, c2, c3}, R(J )
<0.88,0.54>

= ∅

It is clear that p1 = 0.58< p2 = 0.68 and p′1 = 0.50< p′2 = 0.54; then R(J )
<0.68,0.54>

*

R(J )
<0.58,0.50>

and p1 = 0.58 > p2 = 0.56 and p′1 = 0.50 > p′2 = 0.45; then R(J )
<0.58,0.50> *

R(J )
<0.56,0.45>

. Moreover, q1 = 0.42 < q2 = 0.54, q′1 = 0.45 < q′2 = 0.46;
then R(J )

<0.42,0.45>
+ R(J )

<0.54,0.46>
and q1 = 0.42 < q2 = 0.88, q′1 = 0.45 < q′2 = 0.54;

then R(J )
<0.42,0.45> + R(J )

<0.88,0.54>
.

Proposition 4. Let J1,J2 ⊆ z2 be such that J1 ⊆ J2. For p, p′ ∈ (0, 1] and q, q′ ∈ [0, 1), the
following assertions hold:

(1) R(J1)<p,p′>
⊆ R(J2)<p,p′>

,

(2) R(J1)
<p,p′> ⊆ R(J2)

<p,p′>
,

(3) R(J1)<q,q′>
⊆ R(J2)<q,q′>

,

(4) R(J1)
<q,q′> ⊆ R(J2)

<q,q′>
.

Proof. We shall prove only (1) and (2); (3) and (4) can be proved in a similar manner.
(1) Let h̄1 ∈ R(J1)<p,p′>

. Then, µR(h̄1, h̄2) < p and α(h̄1, h̄2) < p′ for all h̄2 ∈ J c
1

(see Definition 9). Since J1 ⊆ J2, we have J c
1 ⊇ J c

2 . So, particularly, µR(h̄1, h̄2) < p and
α(h̄1, h̄2) < p′ for all h̄2 ∈ J c

2 . Thus, h̄1 ∈ R(J2)<p,p′>
.

(2) Let h̄1 ∈ R(J1)
<p,p′>

. By Definition 9, µR(h̄1, h̄2) ≥ p and α(h̄1, h̄2) ≥ p′ for some
h̄2 ∈ J1. However, J1 ⊆ J2, so µR(h̄1, h̄2) ≥ p and α(h̄1, h̄2) ≥ p′ for some h̄2 ∈ J2.

Consequently, h̄1 ∈ R(J )
<p,p′>

.

Proposition 5. Assume the same notations as in Proposition 4; let W1, W2 ⊆ z1 be such that
W1 ⊆W2. Then,

(1) (W1)R
<p,p′>

⊆ (W2)R
<p,p′>

,

(2) (W1)R
<p,p′> ⊆ (W2)R

<p,p′>
,

(3) (W1)R
<q,q′>

⊆ (W2)R
<q,q′>

,

(4) (W1)R
<q,q′> ⊆ (W2)R

<q,q′>
.

Proof. The proof is analogous to the proof of Proposition 4.
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The sign of equality in Proposition 5 may not hold (see Example 3).

Example 3. Considering Example 1, assume that J1 = {c′2} and J2 = {c′1, c′2}. So, J1 ⊆ J2.
For p = 0.58, p′ = 0.50 and q = 0.42 and q′ = 0.45, we have

R(J1)<0.58,0.50>
= {c2}, R(J2)<0.58,0.50>

= {c2, c3, c4}

R(J1)
<0.58,0.50>

= {c2}, R(J2)
<0.58,0.50>

= {c1, c3}

R(J1)<0.42,0.45>
= {c1}, R(J2)<0.42,0.45>

= {c1, c3}

It is clear that R(J2)<0.58,0.50>
* R(J1)<0.58,0.50>

, R(J2)
<0.58,0.50> * R(J1)

<0.58,0.50>

and R(J2)<0.42,0.45>
* R(J1)<0.42,0.45>

.

Proposition 6. Let R1, R2 ∈ LDFR(z1 ×z2) such that R1 ⊆ R2, p, p′ ∈ (0, 1] and q, q′ ∈
[0, 1). Then, for any J ⊆ z2, the following properties hold:

(1) R2(J )
<p,p′>

⊆ R1(J )
<p,p′>

,

(2) R1(J )
<p,p′> ⊆ R2(J )

<p,p′>
,

(3) R1(J )
<q,q′>

⊆ R2(J )
<q,q′>

,

(4) R2(J )
<q,q′> ⊆ R1(J )

<q,q′>
.

Proof. (1) Let h̄1 ∈ R2(J )
<p,p′>

. Then, by Definition 9, µR2(h̄1, h̄2) < p and α2(h̄1, h̄2) <

p′ for all h̄2 ∈ J c. Since R1 ⊆ R2, we have µR1(h̄1, h̄2) ≤ ϑM
R2
(h̄1, h̄2) < p and α1(h̄1, h̄2) ≤

α2(h̄1, h̄2) < p′ for all h̄2 ∈ J c. Thus, µR1(h̄1, h̄2) < p and α1(h̄1, h̄2) < p′ for all h̄2 ∈ J c.
Hence, h̄1 ∈ R1(J )

<p,p′>
.

(2) Suppose h̄1 ∈ R1(J )
<p,p′>

. From Definition 9, µR1(h̄1, h̄2) ≥ p and α1(h̄1, h̄2) ≥
p′ for some h̄2 ∈ J . However, R1 ⊆ R2, so we have

p ≤ µR1(h̄1, h̄2) ≤ µR2(h̄1, h̄2) and p′ ≤ α1(h̄1, h̄2) ≤ α2(h̄1, h̄2) for some h̄2 ∈ J .

Thus, p ≤ µR2(h̄1, h̄2) and p′ ≤ α1(h̄1, h̄2) for some h̄2 ∈ J . Hence, h̄1 ∈ R2(J )
<p,p′>

. The
proof of (3) and (4) is analogous to (1) and (2).

Proposition 7. Assuming the same hypothesis as in Proposition 6, for any W ⊆ z1, we have:

(1) (W)R2<p,p′>
⊆ (W)R1<p,p′>

,

(2) (W)R1
<p,p′> ⊆ (W)R2

<p,p′>
,

(3) (W)R1<q,q′>
⊆ (W)R2<q,q′>

,

(4) (W)R2
<q,q′> ⊆ (W)R1

<q,q′>
.

Proof. It can be proved analogously as Proposition 6.

Theorem 1. Let J1,J2 ⊆ z2 and p, p′ ∈ (0, 1]. Then, the following assertions hold:

(1) R(J c
1 )<p,p′>

= (R(J1)
<p,p′>

)c;

(2) R(J c
1 )

<p,p′>
= (R(J1)<p,p′>

)c.

(3) R(J1 ∩ J2)<p,p′>
= R(J1)<p,p′>

∩ R(J2)<p,p′>
;

(4) R(J1 ∪ J2)<p,p′>
⊇ R(J1)<p,p′>

∪ R(J2)<p,p′>
;

(5) R(J1 ∪ J2)
<p,p′>

= R(J1)
<p,p′> ∪ R(J2)

<p,p′>
;

(6) R(J1 ∩ J2)
<p,p′> ⊆ R(J1)

<p,p′> ∩ R(J2)
<p,p′>

.
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Proof. (1) Let h̄1 ∈ R(J c
1 )<p,p′>

. Then, µR(h̄1, h̄2) < p and α(h̄1, h̄2) < p′ for all h̄2 ∈
(J c

1 )
c = J1. Thus, µR(h̄1, h̄2) � p and α(h̄1, h̄2) � p′ for all h̄2 ∈ J1. This implies that

h̄1 /∈ R(J1)
<p,p′>

. Therefore, h̄1 ∈ (R(J1)
<p,p′>

)c. Hence, R(J c
1 )<p,p′>

⊆ (R(J1)
<p,p′>

)c.

The reverse inclusion can be proved by following similar lines.
(2) This proof is analogous to the proof of (1).
Now, to prove (3)–(6), we know that J1 ∩ J2 ⊆ J1 and J1 ∩ J2 ⊆ J2; then

R(J1 ∩ J2)<p,p′>
⊆ R(J1)<p,p′>

∩ R(J2)<p,p′>
. (1)

R(J1 ∩ J2)
<p,p′> ⊆ R(J1)

<p,p′> ∩ R(J2)
<p,p′>

(2)

(see Proposition 4 (1) and (2), respectively). Further, J1 ⊆ J1 ∪ J2 and J2 ⊆ J1 ∪ J2; then
by using Proposition 4 (3) and (4), respectively, we get:

R(J1 ∪ J2)<p,p′>
⊇ R(J1)<p,p′>

∪ R(J2)<p,p′>
(3)

R(J1 ∪ J2)
<p,p′> ⊇ R(J1)

<p,p′> ∪ R(J2)
<p,p′>

(4)

To prove the converse of the inclusion 1, assume that h̄1 ∈ R(J1)<p,p′>
∩R(J2)<p,p′>

. Then,

h̄1 ∈ R(J1)<p,p′>
and h̄1 ∈ R(J2)<p,p′>

. Using Definition 9, µR(h̄1, h̄2) < p, α(h̄1, h̄2) < p′

for all h̄2 ∈ J c
1 and µR(h̄1, h̄3) < p, α(h̄1, h̄3) < p′ for all h̄3 ∈ J c

2 , respectively. Since
h̄2 ∈ J c

1 and h̄3 ∈ J c
2 ; then h̄2, h̄3 ∈ J c

1 ∪ J c
2 = (J1 ∩ J2)

c. This yields that µR(h̄1, h̄′) < p

and α(h̄1, h̄′) < p′ for all h̄′ ∈ (J1 ∩ J2)
c. Thus, h̄1 ∈ R(J1 ∩ J2)<p,p′>

. Hence,

R(J1)<p,p′>
∩ R(J2)<p,p′>

⊆ R(J1 ∩ J2)<p,p′>

Now, to prove the reverse containment of (4), consider h̄1 ∈ R(J1 ∪ J2)
<p,p′>

. By
Definition 9, there exists h̄2 ∈ J1 ∪ J2 such that µR(h̄1, h̄2) ≥ p, α(h̄1, h̄2) ≥ p′. Thus
µR(h̄1, h̄2) ≥ p, α(h̄1, h̄2) ≥ p′ for some h̄2 ∈ W or µR(h̄1, h̄2) ≥ p, α(h̄1, h̄2) ≥ p′ for some

h̄2 ∈W2. This proves that h̄1 ∈ R(J1)
<p,p′> ∪ R(J2)

<p,p′>
. Hence,

R(J1 ∪ J2)
<p,p′> ⊆ R(J1)

<p,p′> ∪ R(J2)
<p,p′>

.

This completes the proof.

Theorem 2. Suppose that W1, W2 ⊆ z2 and p, p′ ∈ (0, 1]. Then,

(1) (Wc
1)R

<p,p′>
= ((W1)R

<p,p′>
)c;

(2) (Wc
1)R

<p,p′>
= ((W1)R

<p,p′>
)c.

(3) (W1 ∩W2)R
<p,p′>

= (W1)R
<p,p′>

∩ (W2)R
<p,p′>

;

(4) (W1 ∪W2)R
<p,p′>

⊇ (W1)R
<p,p′>

∪ (W2)R
<p,p′>

;

(5) (W1 ∪W2)R
<p,p′>

= (W1)R
<p,p′> ∪ (W2)R

<p,p′>
;

(6) (W1 ∩W2)R
<p,p′> ⊆ (W1)R

<p,p′> ∩ (W2)R
<p,p′>

.

Proof. This can be proved by following the same methodology as Theorem 1.

Theorem 3. With the same notations as in Theorem 1, let q, q′ ∈ [0, 1). Then,

(1) R(J c
1 )<q,q′>

= (R(J1)
<q,q′>

)c;

(2) R(J c
1 )

<q,q′>
= (R(J1)<q,q′>

)c;
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(3) R(J1 ∩ J2)<q,q′>
⊆ R(J1)<q,q′>

∩ R(J2)<q,q′>
;

(4) R(J1 ∪ J2)<q,q′>
= R(J1)<q,q′>

∪ R(J2)<q,q′>
;

(5) R(J1 ∪ J2)
<q,q′> ⊇ R(J1)

<q,q′> ∪ R(J2)
<q,q′>

;

(6) R(J1 ∩ J2)
<q,q′>

= R(J1)
<q,q′> ∩ R(J2)

<q,q′>
.

Proof. This can be proved by using similar arguments as in Theorem 1.

Theorem 4. Assume the same notations as in Theorem 2, let q, q′ ∈ [0, 1). Then,

(1) (Wc
1)R

<q,q′>
= ((W1)R

<q,q′>
)c;

(2) (Wc
1)R

<q,q′>
= ((W1)R

<q,q′>
)c;

(3) (W1 ∩W2)R
<q,q′>

⊆ (W1)R
<q,q′>

∩ (W2)R
<q,q′>

;

(4) (W1 ∪W2)R
<q,q′>

= (W1)R
<q,q′>

∪ (W2)R
<q,q′>

;

(5) (W1 ∪W2)R
<q,q′> ⊇ (W1)R

<q,q′> ∪ (W2)R
<q,q′>

;

(6) (W1 ∩W2)R
<q,q′>

= (W1)R
<q,q′> ∩ (W2)R

<q,q′>
.

Proof. This proof is similar to the proof of Theorem 3.

4. Accuracy and Roughness Measure for (< p, p′ >,< q, q′ >)-Linear Diophantine
Rough Sets

In 1982, Pawlak gave the idea of accuracy measure (AM) and roughness measure (RM)
to characterize the impreciseness of RS. These numerical measures give us a perception
concerning the accuracy of the data related with some equivalence relation for a particular
classification. In this Section, we formalize the notion of AM and RM for (< p, p′ >,<
q, q′ >)-LDFRSs.

Given a Pawlak approximation space P = (z, E), where E is an equivalence relation
on z, the AM and RM of a subset W of z are described as below:

γE(W) =
E(W)

E(W)
and πE(W) = 1− γE(W).

By following the same pattern, we define the following notions.

Definition 11. Let z = (z1,z2, R) be an LDFA space. For non-empty subsets J of z2 and W
of z1, define the MA for (< p, p′ >,< q, q′ >)-LDFRS with respect to J and W by the following
two pairs, respectively:

AM(J ) = (τ<p,p′>
J , τ<q,q′>

J ) and AM(W) = (τ<p,p′>
W , τ<q,q′>

W )

where

τ<p,p′>
J =

|R(J )
<p,p′>

|

|R(J )
<p,p′>|

and τ<q,q′>
J =

|R(J )
<q,q′>|

|R(J )
<q,q′>

| .

τ<p,p′>
W =

|(W)R
<p,q′>

|

|(W)R
<q,q′>|

and τ<q,q′>
W =

|(W)R
<q,q′>|

|(W)R
<q,q′>

| .

Here, |.| denotes the number of elements in the sets. Next, we define the MR for (< p, p′ >,<
q, q′ >)-LDFRS with respect to J and W, respectively, as follows:

RM(J ) = (1, 1)−AM(J ) = (1, 1)− (τ<p,p′>
J , τ<q,q′>

J )
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RM(W) = (1, 1)−AM(W) = (1, 1)− (τ<p,p′>
W , τ<q,q′>

W )

Remark 1. From the above Definition 11, we infer the following points:

(1) τ<p,p′>
J , τ<q,q′>

J , τ<p,p′>
W , τ<q,q′>

W ∈ R since R is not reflexive (see Example 1).
(2) If R ∈ LDFR(z1 ×z1) is reflexive, then:

(i) τ<p,p′>
J , τ<q,q′>

J , τ<p,p′>
W , τ<q,q′>

W ∈ [0, 1].
(ii) AM(∅) = (1, 1) and MR(∅) = (0, 0).

(iii) AM(J ) = (1, 1) if and only if J = z1, since R(z1)<p,p′>
= z1 = R(z1)

<p,p′>

and R(z1)
<q,q′>

= z1 = R(z1)<q,q′>
.

(iv) If p = p′ = 1 and q = q′ = 0, then AM(J ) = (1, 1) and RM(J ) = (0, 0).

In the sequel, an example is given for the clarification of Definition 11.

Example 4. Let us consider Example 2, where z1 = {c1, c2, c3, c4} and z2 = {c′1, c′2, c′3}. Let
J = {c′1, c′2} ⊆ z1 and p = 0.58, p′ = 0.50, q = 0.42 and q′ = 0.45. By simple calculations in
view of Definition 9, we have:

R(J )
<0.58,0.50>

= {c2, c3, c4}, R(J )
<0.58,0.50>

= {c1, c3}

R(J )
<0.42,0.45>

= {c1, c3}, R(J )<0.42,0.45> = {c2}

Then the MA and MR for (< 0.58, 0.50 >,< 0.42, 0.45 >)-LDFRS with respect to J are
given below:

AM(J ) = (3/2, 1/2) and RM(J ) = (1, 1)− (1.5, 0.5) = (−0.5, 0.5).

Hence, the membership function µR and its parameter p of R describe the objects ofz2 accurate
up to grade −0.5 and the non-membership function νR and its parameter q′ of R describe the objects
of z2 accurate up to grade 0.5.

Moreover, for the computations of MA and MR with respect to W ⊆ z1, considering Exam-
ple 1, where z1 and z2 are the same as above and W = {c2, c3, c4}, for p = 0.65, p′ = 0.50 and
q = 0.55, q′ = 0.40, we have:

(W)R
<0.65,0.50>

= {c′2}, (W)R
<0.65,0.50>

= {c′1},

(W)R
<0.55,0.40>

= {c′2, c′3}, (W)R
<0.55,0.40>

= {c′1}

Then the MA and MR for (< 0.68, 0.55 >,< 0.68, 0.55 >)-LDFRS with respect to W are
given below:

AM(W) = (1, 1/2) and RM(W) = (1, 1)− (1, 0.5) = (0, 0.5).

Hence, the membership function µR and its parameter α of R describes the objects of z1
accurate up to grade 1 and the non-membership function νR and its parameter β of R describes the
objects of z2 accurate up to grade 0.5.

Note that, if R ∈ LDFR(z1 ×z1) is reflexive, then there is no chance of any negative
value of ` (see Proposition 1).

5. The Application of (< p, p′ >,< q, q′ >)-LDFRS on Two Universes

In clinical diagnosis systems, an appliance of the FRS model on two variant universes
was presented by Sun and Ma in [53]. Due to insufficient knowledge in the case of FRS,
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Yang et al. [54] applied the BFRS model on two distinct universes to make a decision.
However, they all have some limitations regarding affiliation and non-membership grades.
Thus, we need to apply our more general model of the (< p, p′ >,< q, q′ >)-LDFRS model
on two different universes to make a decision.

Assume that z1 denotes the set of patients and z2 denotes the set of symptoms. For
all h̄ ∈ z1 and h̄2 ∈ z2, if

µR(h̄1, h̄2) ≥ p, α(h̄1, h̄2) ≥ p′ and νR(h̄1, h̄2) ≤ q, β(h̄1, h̄2) ≤ q′.

then we say that the degree of the sufferer h̄1 has the symptom h̄2 not less than p and
the degree of its corresponding parameter is not less than p′. Further, the degree of the
sufferer h̄1 who does not have the symptom h̄2 is no more than q and the degree of its
corresponding parameter is also no more than q′. We know that a particular disease has
different symptoms. For any J ⊆ z2, we denote J = {κi ∈ z2 : i ∈ I} a certain disease.
We make interpretations on the basis of the positive, negative and boundary regions as
defined in Definition 10:

(1) The objects h̄1 ∈ LDFPz(J) and R(J)
<p,p′>

6= R(J)
<q,q′> 6= ∅; that is, h̄1 ∈ R(J)

<p,p′>
means that h̄1 must suffer disease J; thus, he definitely needs treatment, while

h̄1 ∈ R(J)
<q,q′>

means that h̄1 must not suffer disease J; thus, he definitely does
not need any treatment.

(2) h̄1 ∈ LDFBz(J), that is, h̄1 ∈ R(J)
<p,p′>−R(J)

<p,p′>
and h̄1 ∈ R(J)

<q,q′>
−R(J)

<q,q′>

means that we do not assure, concerning the sufferer h̄1, that he may or may not suffer
disease J and thus they will be on the second choice by the doctor since he is not
diagnosed according to these symptoms.

(3) h̄1 ∈ LDFNz(J); that is, h̄ ∈ (R(J)
<p,p′>

)c and h̄ ∈ (R(J)
<q,q′>

)c; then, h̄ does not
suffer the disease and he does not need the treatment.

Let us illustrate this with a particular example.

Example 5. Let z1 = {f1, f2, f3, f4} be the set of some patients and z2 = {d1, d2, d3, d4} be the
set of some symptoms. Construct an LDF relation R fromz1 toz2 which describes the membership
and non-membership grades together with their parameter’s grades, for each patient fi, with respect
to the symptom dj in the following matrices:

µR =


0.25 0.55 0.59 0.65
0.59 0.43 0.47 0.25
0.66 0.36 0.44 0.75
0.42 0.45 0.44 0.66

, νR =


0.25 0.42 0.55 0.95
0.48 0.88 0.47 0.45
0.55 0.32 0.21 0.34
0.32 0.47 0.36 0.65

, and,

α =


0.50 0.52 0.60 0.56
0.41 0.35 0.32 0.18
0.55 0.33 0.36 0.60
0.35 0.30 0.45 0.52

, β =


0.20 0.39 0.40 0.42
0.38 0.60 0.56 0.37
0.40 0.12 0.54 0.22
0.25 0.32 0.28 0.40

.

Let J = {d1, d2} signify a certain disease and this disease have two symptoms in clinic.
Case-1: For p = 0.55, p′ = 0.52 and q = 0.42, q′ = 0.39, we have:

R(J)
<0.55,0.52>

= {f2}, R(J)
<0.55,0.52>

= {f1, f3}

R(J)
<0.42,0.39>

= {f1, f3, f4}, R(J)
<0.42,0.39>

= {f1}

So, LDFPz = ({f2}, {f1}), LDFBz = (∅, {f3, f4}) and LDFNz = ({f2, f4}, {f2}).
Thus, based on these regions we conclude that:

? Patient f2 must suffer disease J and thus he needs the treatment and patient f1 must not suffer
disease J, so he does not need any treatment.
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? We do not assure, concerning patient f3, that he may or may not suffer disease J according to
the symptoms. For him, the decision of the doctor will be on the second choice.

? Patient f4 does not suffer disease J.

Case-2: For p = 0.75, p′ = 0.60 and q = 0.34, q′ = 0.22, we have:

R(J)
<0.75,0.60>

= {f2, f4}, R(J)
<0.75,0.60>

= ∅

R(J)
<0.34,0.22>

= {f1, f3}, R(J)
<0.34,0.22>

= {f1, f2, f4}

So, LDFPz = ({f2, f4}, {f1, f2, f4}), LDFBz = (z1, {f2, f4}) and LDFNz = (∅, {f2, f4}).
Thus, based on these regions we conclude that:

? Patient f2 must suffer disease J and thus he needs treatment and patient f1 must not suffer
disease J, so he does not need any treatment.

? We do not assure, concerning patient f3, that he may or may not suffer disease J according to
the symptoms. For him, the decision of the doctor will be on the second choice.

? Patient f4 does not suffer disease J.

Example 6. Since each IF relation (or BF relation) is an LDF relation [22], if we consider an IF
relation given in Table 1 of [54], i.e.,

µR =


0.74 0.25 0.17 1
0.62 0.45 0.87 0.45
0.53 1 0.24 0.18
0.12 0.77 0.43 0.69

, νR =


0.10 0.43 0.64 0
0.20 0.32 0.05 0.45
0.34 0 0.23 0.25
0.71 0.10 0.51 0

, from z1 =

{f1, f2, f3, f4} to z2 = {d1, d2, d3, d4} as in Example 5. In this case our Definition 9 reduces to
the following:

R(J)
p
= {h̄1 ∈ z1 : ϑMR (h̄1, h̄2) < p, for all h̄2 ∈ Jc}

R(J)
p
= {h̄1 ∈ z1 : ϑMR (h̄1, h̄2) ≥ p, for some h̄2 ∈ J}

R(J)
q>

= {h̄1 ∈ z1 : ϑNR (h̄1, h̄2) ≤ q, for some h̄2 ∈ J}

R(J)
q
= {h̄1 ∈ z1 : ϑNR (h̄1, h̄2) > q, for all h̄2 ∈ Jc}

According to this definition, let J = {d1, d2} denote a certain disease having symptoms d1
and d2.

Case-1: For p = 0.5, q = 0.2, the lower and upper A spaces are computed as below:

R(J)
0.5

= {f3}, R(J)
0.5

= z1

R(J)
0.2

= z1, R(J)
0.5

= ∅

Thus, POS = ({f3}, ∅), BND = ({f1, f2, f4},z1) and NEG = (∅, ∅). Thus, based on
these regions we conclude that:

? Patient f3 must suffer disease J and thus he needs treatment.
? We do not assure, concerning patient f1, f2, f4, that they may or may not suffer disease J

according to the symptoms. For them, the decision of the doctor will be on the second choice.
? None of the patients’ diagnosis is healthy.

Case-2: For p = 0.7, q = 0.1, the lower and upper A spaces are computed as below:

R(J)
0.7

= {f3, f4}, R(J)
0.7

= {f1, f3, f4}

R(J)
0.1

= {f1, f3, f4}, R(J)
0.1

= {f3}

Thus, POS = ({f3, f4}, {f3}), BND = ({f1}, {f1, f4}) and NEG = ({f2}, {f2}). Thus,
based on these regions we conclude that:
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? Patient f3, f4 must suffer disease J and thus they needs treatment.
? We do not assure, patient f1, that they may or may not suffer disease J according to the

symptoms. For them, the decision of the doctor will be on the second choice.
? Patient f2 does not suffer disease J.

Sensitivity Analysis and Comparative Analysis

In this subsection, we discuss the validity of the proposed method, sensitivity analysis,
and the comparison of the proposed approach with existing approaches. Table 2 shows
representations of different fuzzy numbers, Table 3 gives the comparison analysis of LDFS
with existing fuzzy set models, and Table 4 gives the comparison analysis of LDFRS with
existing rough set models.

From Examples 5 and 6, it can be easily observed that the results obtained by using
our LDFRSs is closer to the given membership matrices than the results obtained by
employing the BF relation. Hence, our proposed technique of LDFRSs is a more efficient
and robust model. The idea of reference parameters in linear Diophantine fuzzy rough
sets provides more accuracy in decision-making and medical diagnosis. Since LDFRS is
a more generalized hybrid model, the optimal decision for medical diagnosis computed
by the proposed approach is more accurate as compared with some existing methods
of [57,59,61,62].

Table 2. Representations of fuzzy numbers.

Fuzzy Numbers Constraints Broader Space

IFN (µ(}), ν(})) [2,3] 0 ≤ µ(}) + ν(}) ≤ 1 ×
PFN (µ(}), ν(})) [67] 0 ≤ (µ(}))2 + (ν(}))2 ≤ 1 ×
FFN (µ(}), ν(})) [68] 0 ≤ (µ(}))3 + (ν(}))3 ≤ 1 ×
q-ROFN (µ(}), ν(})) [69] 0 ≤ (µ(}))q + (ν(}))q ≤ 1, q ≥ 1 ×
LDFN

(
(µ(}), ν(})), (α(}), β(}))

)
0 ≤ α(})µ(}) + β(})ν(})) ≤ 1 X

[15,16,22]

Table 3. Comparison analysis of LDFS with existing fuzzy set models.

Models Membership Grade Non-Membership Grade Reference Parameters

Crisp set × × ×
Fuzzy set [1] X × ×

IFS [2,3] X X ×
PFS [9,10] X X ×
FFS [68] X X ×

q-ROFS [12] X X ×
LDFS [15,16,22] X X X
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Table 4. Comparison analysis of LDFRS with existing rough set models.

Models Upper and Lower Boundary (< p,p′ >,< q,q′ >)-
Approximations Region Indiscernibility Relations

Crisp set × × ×
Rough set [6] X X ×

IFSRS [70] X X ×
PFSRS [61,71] X X ×

q-ROFSRS [72,73] X X ×
LDFRS X X X

Proposed

6. Conclusions

The notions of rough set (RS) and linear Diophantine fuzzy set (LDFS) are robust
models for computational intelligence and decision-making problems. The main objective
of this article is to magnify the notion of LDFS and RS for intelligent information processing.
For this purpose, the novel concept of the linear Diophantine fuzzy rough set (LDFRS)
based on (< p, p′ >,< q, q′ >)-indiscernibilty is proposed. The proposed model is a robust
extension of the existing models for roughness approximation of a crisp set by using certain
binary relations. The idea of an LDF relation with the addition of control parameters is
more efficient for roughness approximation than existing F relation, IF relation, and BF
relation. Thus the proposed model of LDFRS provides a broader space for the selection of
membership and non-membership grades than existing models (FS, IFS, BFS, q-ROFS) to
discuss fuzziness and roughness in terms of LDFA spaces. Some significant results of LDFA
spaces are established with supportive examples. Moreover, a practical application with
the help of numerical examples is presented in medical diagnosis. The proposed model can
be further extended towards multi-granulation rough set theory and covering based rough
set theory with applications in information analysis, computational intelligence, medical
diagnosis and decision-making problems.
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