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ABSTRACT In this work, we propose a novel denoising technique, the icosahedral mesh denoising network
(IMD-Net) for closed genus-0 meshes. IMD-Net is a deep neural network that produces a denoised mesh in
a single end-to-end pass, preserving and emphasizing natural object features in the process. A preprocessing
step, exploiting the homeomorphism between genus-O mesh and sphere, remeshes an irregular mesh
using the regular mesh structure of a frequency subdivided icosahedron. Enabled by gauge equivariant
convolutional layers arranged in a residual U-net, IMD-Net denoises the remeshing invariant to global
mesh transformations as well as local feature constellations and orientations, doing so with a computational
complexity of traditional conv2D kernel. The network is equipped with carefully crafted loss function
that leverages differences between positional, normal and curvature fields of target and noisy mesh in a
numerically stable fashion. In a first, two large shape datasets commonly used in related fields, ABC and
ShapeNetCore, are introduced to evaluate mesh denoising. IMD-Net’s competitiveness with existing state-
of-the-art techniques is established using both metric evaluations and visual inspection of denoised models.
Our code is publicly available at https://github.com/jjabo/IMD-Net.

INDEX TERMS 3D surface mesh, deep learning, icosahedral CNN, mesh denoising network, noise filtering,

spherical parametrization, U-net.

I. INTRODUCTION

The demand on fidelity and quality of 3D surface mesh
models is steadily on the rise. Mesh models are becom-
ing omnipresent in a variety of application domains, from
archaeological preservation and reconstruction, over retail
and reverse engineering, to various biomedical fields like
neurology and orthodontics. 3D surface meshes can either be
crafted by hand, which allows fine-grained control of their
quality at the cost of significant time and resources, or they
can be acquired using 3D scanning technologies, whose
intrinsic physical imperfections inevitably introduce noise to
the reconstruction process. The noise originates in the scan-
ning process and indirectly affects the recovery of individual
3D points on the model surface which are then connected to
generate a 3D mesh. The mesh denoising process is inherently
constrained by the quality of the preceding mesh generation
stage, but it can take advantage of geometric, topological and
connectivity information of the mesh structure to produce
high-fidelity mesh models.
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A mesh vertex (or a face normal) can be denoised in a local
fashion, using primarily information from a local neighbor-
hood around a vertex (or face). With progressing research,
it is found that increasing the field of view by including larger
neighborhoods around a vertex or face of interest can have a
beneficial impact on denoising results. However, there seems
to be little work aiming at including information from beyond
2- or 3-ring neighborhoods in the denoising process. This is
surprising, as the consideration of wider neighborhoods holds
promise for denoising larger features more accurately. Also,
an integration of increasingly global information about object
shape, symmetries and surface structure in the denoising
process could provide vital information to avoid introduc-
ing self-intersections and other anomalies that harm object
fidelity and visual appeal.

Existing mesh denoising approaches generally have one
thing in common, that they come with a set of model specific
parameters, which require specific knowledge and careful
tuning by a user [e.g., 1, 2, 3]. Often authors supply well
working parameter defaults, but the fact remains that for each
individual model user interaction might be required. This is
a remnant from the recent past when denoising 3D mesh
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FIGURE 1. Three pairs of noisy meshes and their denoised version created by IMD-Net. IMD-Net is able to preserve fine details, avoid
self-intersections in thin parts and accurately denoise smooth regions and sharp features.

models still was a rare task performed by specialists. But in
today’s digital landscape, where every mobile phone can be a
3D scanner and large datasets of 3D models need denoising,
requiring user interaction is a deployment inhibitor and ought
to be avoided.

Methods based on machine learning could provide
parameter-free denoising at inference time. With an increas-
ing number of noisy mesh models readily available, it also
has become possible to incorporate information from numer-
ous mesh models in the denoising process. Yet, the appli-
cation of machine learning methods to mesh denoising has
been lagging behind other fields such as image and natural
language processing. This is primarily due to the irregular
structure of mesh data. Approaches have been devised to
overcome this irregular mesh structure, e.g., by voxelating
meshes into 3D grids and applying 3D convolutions [4].
This, however, is undesirable: Surface meshes represent
2D-manifolds in 3D-space, hence an approach that oper-
ates in 3D-space and not exclusively on the manifold lacks
efficiency.

Summarizing the above, a parameter-free, deep learning-
based method that consumes a noisy input mesh and produces
in one pass a denoised output mesh is sorely missing from
the field. Ideally, such a method would integrate suitable
amounts of local and global mesh information in the denois-
ing process. Also, the method would optimally feature a
computational complexity akin to neural networks used on
other 2D-manifolds like images.

The contribution of this work includes (i) exploiting the
homeomorphism between genus-0 meshes and spheres to
regularize the surface on an icosahedral grid, (ii) the icosahe-
dral mesh denoising network (IMD-Net), a novel denoising
technique based on equivariant conv2D-layers allowing effi-
cient and high-quality denoising of closed genus-0 meshes
(iii) introducing two large CAD model datasets as
benchmarks to mesh denoising, the ABC [5] and the
ShapeNetCore [6] dataset, (iv) experiments that demonstrate
the competitiveness of IMD-Net with state-of-the-art meth-
ods at various noise levels. Figure 1 shows denoising on three
different meshes using the proposed IMD-Net, illustrating
how well the our network preserves sharp features and fine
details.
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Il. RELATED WORK

Mesh denoising has a history of more than three decades and
numerous approaches have been put forward. Early attempts
transfer ideas from related fields, most notably iterative
Laplacian smoothing from mesh smoothing [10], [11] and
various low-, band- and high-pass filters from signal pro-
cessing [12]-[15]. These isotropic methods lack the means to
preserve features and were quickly superseded by anisotropic
techniques such as diffusion process-based methods
[16]-[18] and the bilateral filter [19], [20]. Another success-
ful line of anisotropic methods splits mesh denoising into face
normal filtering and vertex position updating by numerically
integrating the denoised face normal field.

A considerable work has gone into finding suitable fil-
ters, yielding Laplacian smoothing [21], mean, median and
alpha-trimming filters [22]-[24] as well as fuzzy median [25],
[26] and random walk filters [27]. These filters, however,
do not consider the regularity of a mesh. Zheng et al. [1]
devised a joint bilateral normal filter (BNF) which uses
a Gaussian weighted average of distances and orientation
differences to surrounding faces in order to denoise face
normals. Zhang et al. [3] used patches around each face to
compute a guidance normal and incorporate deviations from
the guidance normal in the joint bilateral normal filter (GNF).
This produces impressive results if the patch is chosen well,
triggering suggestions to select patches that adapt to corners
and edges [28] or minimize the angular difference within each
patch [29]. Throughout normal filtering methods the patches
tend to be small and strictly local. This prevents the denois-
ing process from integrating potentially beneficial informa-
tion from non-local features and global shape. Further, most
methods require selecting parameters for individual models
inhibiting their application to larger datasets.

Several methods reframe mesh denoising as sparse opti-
mization problems: [30]-[33]. He and Schaefer [2] proposed
a Lop-minimization combined with an edge-based feature-
preserving shape operator to yield piece-wise flat surface
regions that intersect at the preserved features. In [34], [35]
the total variation of face normals is minimized to smooth
the surface while minimizing distortion of volume and shape.
Others devise two-stage algorithms that first compute a
base mesh using a smoothing scheme [36] or a regularizer
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FIGURE 2. Spherical parametrizations of (a) airplane model. (b) A conformal parametrization produced with [7]. Extrusive features like the wings
and the tail are all mapped to one dense cluster. (c) An authalic parametrization produced with [8]. Clusters are less dense, but thin, long-stretched
triangles introduce large distortions. (d) A quasi-isometric parametrization produced with [9]. Few and sparse clusters with no thin, long-stretched

triangles.

[37], [38] and then recover features from the residual between
noisy and base mesh. The success of optimization-based
methods often depends on prior assumptions on the noise
distribution, and they require adjustment of (optimization)
parameters to individual models, limiting their adaption to
larger datasets.

As the focus on feature preservation increased, multi-
ple schemes were proposed that classify vertices into fea-
tures and non-features using tensor voting in combination
with k-means clustering [39], eigenanalysis [40] or feature
descriptors [41], [42] before applying a filtering technique.
Arvanitis et al. [43] proposed a coarse-to-fine mesh denois-
ing approach that uses graph spectral processing to preserve
feature normals in the denoising process. Other techniques
add feature detection to existing normal filtering methods:
Yadav et al. [44] replaced the Gaussian similarity function
of the bilateral normal filter [1] with Tukey’s bi-weight
function, which reduces the diffusion of sharp features; and
Zhao et al. [45] deployed a graph-based feature detection to
select optimal patches for computing guidance normals of
Zhang et al. [3]; in [46] a base mesh and a feature-detecting
saliency measure are employed to the same end. The results of
feature-detection based methods are sensitive to their ability
of correctly classifying features, which sometimes leads to
misclassified features or introducing artificial ones.

A recent development in mesh denoising are methods
that involve machine learning. Denoising autoencoders have
been used in various applications of 1D noise filtering [47]
as well as 2D image filtering. Wang et al. [48] transfer the
bilateral normal filter from image filtering and apply it
repeatedly to each face to compose geometric descriptors
which are subsequently clustered. In a cascaded normal
regression (CNR), a regression function is fitted to each
cluster using a radial basis function network. In [49] this
method is complemented by a reverse descriptor that aims
to recover geometric features which were previously lost
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in the regression. Nousias ef al. [50] pursued a geometric
deep learning approach that employs a conditional varia-
tional autoencoder consisting of a Gaussian encoder and a
Bernoulli decoder, followed by one step of bilateral filter-
ing to remove small artifacts. In a work extending GNF,
Zhao et al. [4] proposed NormalNet, a cascaded deep 3D-
CNN that processes voxelated patches to estimate a guidance
normal. The reported results look promising but are dimmed
by the high computational complexity of a 3D-CNN. Using
a graph convolutional network, [51] proposed an elegant and
well performing two stage approach for mesh denoising. The
deep normal filtering network (DNF-Net) [52] denoises a
mesh split into patches by extracting local geometric features.
It employs a multi-scale feature embedding unit that extracts
features representing local geometric context and two resid-
ual learning units that aim to progressively attenuate noise.
DNF-Net reports state-of-the-art denoising performance, but
the patch creation and denoising are time-consuming which
limits the number of patches (and meshes) that can reasonably
be used for training, restricting the generalization potential of
the network.

Method Components: The proposed IMD-Net is designed
to efficiently and accurately denoise closed genus-0 meshes.
It exploits the genus-0 property, which guarantees the exis-
tence of a bijective mapping between a mesh surface and
the unit sphere. A spherical parametrization algorithm is
employed to construct such a mapping. Parametrization algo-
rithms can be distinguished by how well they preserve or
minimize the distortion of intrinsic geometric metrics such
as face angles: conformal mappings (Fig. 2b) [7], [53], face
areas: authalic mappings (Fig. 2c¢) [8], [54] or both: iso-
metric mappings. Unfortunately, isometric mappings gen-
erally do not exist between arbitrary genus-0 surfaces and
spheres. In the context of this work, an algorithm is desired
which is authalic but also does not create mapped triangles
that are unnaturally stretched over large parts of the sphere
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FIGURE 3. The high-level pipeline of the IMD-Net: A noisy genus-0 mesh is spherically parametrized using the AHSP [9]. Employing the
parametrization, the noisy and ground truth (GT) meshes are remeshed as regular meshes. The noisy remeshing is denoised with IMD-Net. For network

training, the ground truth remeshing is used in the loss function.

surface. Recently, Hu er al. [9] developed a quasi-isometric
parametrization method based on progressive meshes, which
exhibits such characteristics (Fig. 2d). Advanced hierarchical
spherical parametrizations [9] has also been recently used
as a remeshing tool in generative learning of icosahedral
meshes [55]. The method has a low computational complexity
and achieves state-of-the-art performance and is therefore our
choice of parametrization.

IMD-Net denoises data mapped onto the unit sphere. In the
context of mesh denoising, the most desirable properties
of deep neural networks are translation, scale, and rotation
equivariance. In [56] and [57] networks were suggested that
are translation and scale equivariant on spherical data. Spher-
ical CNNs [58] define a spherical cross-correlation that is
rotation-equivariant. The correlation is designed to satisfy
the generalized Fourier theorem and can be efficiently com-
puted using a generalized Fast Fourier Transform (FFT) algo-
rithm. Signal and filters, both defined on a spherical-polar
grid, are Fourier transformed, cross-correlated, inherently
rotated to achieve equivariance, and finally inverse trans-
formed. The authors report improved results on spherical
images and for 3D-object detection. However, the number
and angle of filter rotations is coupled to the grid size, and
the spherical-polar grid causes oversampling near the sphere
poles. More importantly, a spherical CNN layer has minimal
complexity of O(B®) with B being the bandwidth of the
grid, making the overall network computationally expensive.
Cohen et al. [59] presented Icosahedral CNN, a network oper-
ating in the spherical domain by discretizing it as a subdivided
icosahedron. The discretized surface is planarized into five
padded, rectangular maps and arranged in an atlas. Hexago-
nal convolution filters are defined and kernel expansion in

38638

combination with weight sharing are applied to make the
convolution gauge (and hence translation, scale and rotation)
equivariant. Two layers are distinguished: A layer which takes
non-gauge equivariant input features (singular) and outputs
gauge-equivariant features (regular) is referred to as a S2R-
layer; and a layer which has regular input and outputs fea-
tures is referred to as a R2R layer. The low computational
complexity as well as the guarantee of gauge equivariance
convinced us to use the S2R and R2R building blocks from
Icosahedral CNN to construct IMD-Net.

ill. METHOD

The promise of this work is a novel deep learning-based
denoising technique that efficiently processes and denoises
closed genus-0 meshes. This task is made particularly chal-
lenging by the inherent irregularity of the mesh data structure,
which is overcome in two stages, by spherically parametriz-
ing meshes and remeshing them as regular, subdivided icosa-
hedrons. The preprocessed meshes are fed to the denoising
network. In the training phase, the network also receives
preprocessed ground truth mesh which are used in the loss
function. The high-level pipeline of the IMD-Net framework
is presented in Fig. 3. Details of each aspect of the framework
are explained in this section.

A. REMESHING

A closed genus-0 mesh B (e.g., Fig. 4a) possess the spe-
cial property that its irregular mesh data can be mapped
onto the regular domain of a unit sphere. This spherical
parametrization M is used to create a remeshing of B as a
subdivided icosahedron Z, = {v,f}, where the number of
vertices N, depends on a selectable subdivision level r with
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FIGURE 4. lllustration of remeshing of an airplane mesh at subdivision r = 4.
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FIGURE 5. The compressed U-net architecture of the proposed IMD-Net.

N, = 5 x 2%+l 4+ 2 To create a remeshing, first Z, is
superimposed on M and the vertices of Z, are radially pro-
jected onto the sphere (Fig. 4b). M’s surface is divided into
non-overlapping mapping cells of near-equal size, one around
each vertex of the superimposed icosahedron (Fig. 4c). The
mapping cells are computed by using the faces of Z,’s dual,
i.e. the subdivided dodecahedron. Subsequently, the mapping
cells are transferred from M to 5 and sorted into three mutu-
ally exclusive cell categories based on how many vertices
of B are contained in a cell, namely into one-vertex, zero-
vertex and multi-vertex cells. A position is sampled from the
contained surface of each cell and assigned to the respective
vertex of Z,. One-vertex cells take the single vertex of B
that is within the cell as sample. Zero-vertex cells contain
no vertices, only faces and/or parts of faces, hence the cen-
troid of the contained face(s) is used as sample. In multi-
vertex cells the average of all contained vertices is taken
as sample. In this case, relevant information might be lost,
and therefore multi-vertex cells ought to be avoided, e.g.,
by using a sufficiently high subdivision. The output of the
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remeshing stage is the icosahedron Z, of which each vertex
was repositioned to a sample location on B (Fig. 4e).

As shown in Fig. 3, a separate remeshing is created for the
noisy B and the ground truth 53 mesh, but both depend on
the spherical parametrization of the noisy mesh, M. Using
a shared parametrization ensures that the vertices and faces
in both remeshings represent exactly corresponding surface
positions and patches in the original meshes.

B. ICOSAHEDRAL MESH DENOISING NETWORK

IMD-Net can be assembled using the gauge equivariant S2R
and R2R layers from IcosahedralCNN. The network con-
sumes a remeshed noisy mesh, Z, = {f/, f } and outputs
a denoised (or estimated) mesh, Z, = {, f}. Specifically,
the vertex positions of a subdivided icosahedron arranged
as planarized atlases are the input (¥) and output (V) of
the network. A modified U-net, referred to as compressed
U-net and shown in Fig. 5, is chosen as architecture for IMD-
Net. The architecture is based on the original U-net [60], but
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the concatenation operations in the decoder, which concate-
nate feature maps coming from the upsampling and skip-
connection paths, are removed. Instead, feature maps from
the encoder are directly added to the respective decoder level
via skip connections. The modification follows mathemati-
cally sound and empirically successful concept of residual
neural networks [61]. In the context of mesh denoising, the
number of learnable parameters are reduced by about 33%
while maintaining the denoising performance.

The three-channel input is transformed to regular equiv-
ariant feature maps by a S2R block, composed of a 3 x 3
S2R-layer, a batch normalization layer [62] and ReL.U. The
batch normalization averages over groups of six feature maps
to preserve equivariance [59]. The ReLU function operates
pointwise and is therefore equivariant. In the encoder, the
S2R-block is followed by multiple levels of R2R-blocks and
pooling layers. In the decoder, the flow is reversed with
corresponding R2R-Blocks and unpooling layers. A standard
1 x 1 conv-2D (bottleneck) layer produces the three channels
of the displacement vectors which are added pointwise to the
input vertices to yield denoised vertices.

C. LOSS FUNCTION
In the training phase, the network is provided a ground

truth (or target) mesh Z, alongside the noisy mesh fr. The
faces f are identical and the vertices have the same order-
ing in a one-to-one correspondence. For any i € [0, N,),
V; is the noisy counterpart of the target vertex v; and V;
is the network’s estimate for the respective denoised ver-
tex. As shown in Fig~. 5, the network is trained to learn
displacement vectors d; and computes denoised vertices as
Vi=V;, + &,-, which is faster than directly learning denoised
vertices V;.

The loss function penalizes errors in the positions of
denoised vertices (Lpos) as well as errors in first and second
order properties of the surface (L, ). Lpos guides the network
to move vertices as close as possible to their target position
(Eq. 1), denoising them in the process. Squaring the differ-
ences places greater significance on vertices that are far away
from their target.

Ny—1

Lpos (¥, v) = % Yoy @ -V (1)

i=0 jix,y,z

Leyr 1s designed to minimize deviations of the surface’s
curvature (and the surface normals), thereby avoiding self-
intersections. Normally, the second order discrete mean cur-
vature is approximated at vertices using the Laplace-Beltrami
cotangent operator. If, however, any triangle in the 1-ring
around a vertex is close to degeneration and has corner
angles approaching zero, the derivative of cotangent heads
towards minus infinity, derailing the learning process. Fortu-
nately, the mean curvature can be reformulated as an edge-
based operator, outlined in Hildebrandt and Polthier [17].
The mean curvature computed for an edge e; as K(e;) =
2 |e;| cos (0,,/2)n,,, where |e;| is the edge length, 6,, is the
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dihedral angle between the two faces k£ and [ that form
the edge and n,, is the edge normal computed as n,, =
(mg +1ny) / |Img + ny||. Using the edge-based mean curvature
(which also depends on face normals), a mean square error
can be constructed by Eq. 2, where N, is the number of edges
and K/ the j-th component of the edge-based mean curvature
vector. This loss guides the network to produce denoised
surfaces that approximate second-order properties, namely
edge-based mean curvatures, of the target surfaces.

No—1
D> K@) -Kien) (@

i=0 j:x,y,z

Leyr(e, e) =

3N,

Ly accelerates the network’s learning process and helps
to create denoised surfaces that approximate well the local
smoothness and global shape of the target surfaces. The com-
bined loss function can then be formulated as Ltot(fr, 7)) =
Lpos(V, v) 4+ o - Ly (e, e), where « allows adjusting the influ-
ence of the curvature loss.

IV. EXPERIMENTS AND DISCUSSIONS
A. DATASETS
Traditionally, a small selection of individual models has
been used to evaluate and compare algorithms for mesh
denoising [50]-[52]. To the best of the authors’ knowledge
there is no established dataset to evaluate mesh denois-
ing algorithms. In this work, two independent benchmark
datasets are selected for the experiments, the ABC [5] and the
ShapeNetCore [6] dataset. While both datasets are composed
of Computer-Aided-Design (CAD) models, they focus on
vastly different classes and shapes. The ABC dataset is a
collection of one million CAD models featuring mostly basic
geometric shapes used in manufacturing, including screws,
plates, rods and blocks. For this work, 10.5k models are
selected at random, which contain on average 14.6k vertices
and 29.2k faces with a standard deviation of 7.7k vertices
and 15.3k faces. ShapeNetCore is a subset of the ShapeNet
dataset and includes about 51.3k models in 55 common object
categories such as airplanes, cars and tables. For the experi-
ments, 25k models are selected with 9.7k vertices and 19.5k
faces on average and a standard deviation of 1.4k vertices and
2.8 faces. When models are not genus-0, they are transformed
into genus-0 meshes using the technique previously described
in [63]. As is common practice, the model vertices are sub-
jected to artificial Gaussian white noise along their normals
ny,. The amplitude of the perturbation is chosen as a fraction
of a model’s mean edge length [, yielding V; = vi + x - ny,,
x ~ N(0, b - 1,), where the factor b determines the level of
noise and is used to generate low, medium and high noise by
selecting b as 0.1, 0.2 and 0.5, respectively. Figure 6 shows
the influence of different noise-levels on an example model.
After noise application, the noisy models and their respec-
tive ground truths are remeshed as subdivided icosahedrons
with 6 subdivisions (Zg) using the preprocessing scheme
discussed in section III-A.
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FIGURE 6. A model from ABC dataset in its original shape (a), subjected
to low (b), medium (c) and high noise (d).

B. EVALUATION METRICS

The quality of denoising results is evaluated using two error
metrics commonly deployed in mesh denoising. The mean
angular difference, Eg (Eq. 3) measures the average differ-
ence between denoised and ground truth face normals. Where
Ny denotes the number of faces in the mesh, n; and n; are
the unit length normals of denoised and ground truth faces,
respectively. A low error indicates a good recovery of the
ground truth’s shape and first-order surface properties.

Ny

180°
= N7 ; arccos (n; - n;) 3)

Eg

The mean distance error, Ep (Eq. 4) measures the average
distance between two sets of vertices. Where N, denotes the
number of vertices in the mesh, V; and v; refer to the denoised
and the ground truth vertices, respectively. A low Ep indicates
volume and scale are well preserved in the denoising process.

N,
1 .

Ep = — E Ivi — vill2 4
Ny i=0

C. IMPLEMENTATION DETAILS

The icosahedral mesh denoising network, IMD-Net shown
in Fig. 5 is implemented in python using PyTorch [64]. The
implementation follows the outline of [59] to achieve convo-
lution layers that produce equivariant feature maps on the sur-
face of subdivided icosahedrons. The encoder path consists of
one initial S2R-block producing 28 regular features, followed
by three downsampling R2R-blocks outputting (44, 71, 114)
regular features. The decoder block is arranged in reverse
using three upsampling R2R-blocks outputting regular fea-
tures and a final bottleneck layer that produces the output.
IMD-Net is trained for 48 epochs with « = 10 in Ly at a
learning rate of 4.5¢~* with Adam optimizer and a batch size
of 8. The datasets are randomly split into training and test sets
in an 80/20 ratio. The networks are trained for 48 epochs on
the training set.

D. MESH DENOISING RESULTS

1) NON-LEARNING BASED METHODS

IMD-Net is compared against several state-of-the-art mesh
denoising methods, namely with bilateral normal filtering
(BNF) [1], guided normal filtering (GNF) [3], cascaded nor-
mal regression (CNR) [48] and non-local low-rank normal
filtering (NLLR) [65]. The error metrics are computed for the
test sets of ABC and ShapeNetCore datasets and are shown
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TABLE 1. Residual errors from different denoising methods for three
noise levels on ABC and ShapeNetCore datasets.

Method | ABC [5]
Noise — Low Medium High
Eror— | Eol[] Ep[107%] | Eel] Ep[107*] | Ee[] Ep[10™*]
BNF[1] 2.76° 2.80 4.24° 5.26 9.31° 11.70
GNF [3] 3.04° 3.26 4.28° 5.50 10.66° 15.87
CNR [48] 4.16° 3.34 6.89° 6.16 22.72° 21.79
NLLR [65] | 3.89° 3.78 5.72° 6.33 11.22° 14.07
IMD-Net 2.14° 1.87 3.19° 3.34 5.79° 6.89
Method | ShapeNetCore [6]
Noise — Low Medium High
Emor— | Be[’] Ep[107] | Ee[] Ep[107*] | Ee[’] Ep[107"]
BNF [1] 5.59° 8.68 9.23° 17.26 27.57° 38.81
GNF [3] 5.53° 8.54 8.73° 16.37 22.32° 38.43
CNR [48] 5.4° 8.61 8.5° 15.79 28.36° 37.66
NLLR [65] | 5.42° 8.92 9.07° 17.40 26.91° 38.52
IMD-Net 3.97° 7.55 6.82° 14.26 11.91° 26.53

in Table 1. At first sight it becomes clear that IMD-Net
outperforms its competitors in both metrics, independent of
the noise level and dataset.

For low and medium noise levels, IMD-Net outperforms its
closest competitor regarding Eg by 22.4-24.7% on ABC and
by 19.7-26.5% on ShapeNetCore. This highlights IMD-Net’s
improved capability to recover the denoised normal field and
its induced shape from noisy meshes. At high noise levels
IMD-Net shows an even larger improvement of 37.8% and
46.6%, respectively. In addition, the network also achieves
significantly lower values of Ep, e.g., a reduction of 41.2%
and 29.5% for high noise levels. This implies that vertex
positions denoised by IMD-Net are closer to the ground
truth positions than with other algorithms and yield a more
accurate volume recovery. The improved error metrics of
IMD-Net indicates that the signal-to-noise ratio (SNR) at
which it fails to distinguish true and noise-induced features
is significantly higher than those of the competing algo-
rithms. This can be credited to IMD-Net’s design as a cU-net,
which allows it to derive denoising filters combining various
amounts of local and global information.

Most modern works, including the algorithms compared
here ( [1], [3], [48], [65]), first denoise the face normal field
and then reposition the vertices to best fit the denoised normal
field. When computed in sequence, a particular denoised
normal field constrains the positions of the denoised vertices
and defines a lower bound for Ep. This can contribute to an
algorithm producing a lower Eg but a higher Ep than another
one. IMD-Net, in contrast, is trained to denoise the vertex
positions directly, taking into account derived quantities such
as the face normal field and curvature in the loss function.
This allows the network to optimize the output in regard to
both error metrics, explaining the consistently low deviations
from the ground truth.

With IMD-Net’s quantitative progress and improved abil-
ity to generalize over large datasets evident, it is revealing
to look at individual models in order to assess its impact on
visual appearance, quality and fidelity of denoised models.
Fig. 7 shows a qualitative comparison of denoising results at
different noise levels. The magnified part of the object helps
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FIGURE 7. lllustration of denoising results on ABC dataset produced by competing denoising methods at different noise levels. Top to bottom: low,

medium and high noise.

to understand how the algorithms under investigation handle
flat areas, smooth transitions and sharp edges within a model.
Most methods produce visually appealing results on parts of
the surfaces. But some fail to accurately denoise smooth tran-
sitions and introduce artificial sharp edges of varying quality
(Fig. 7c-d, top model). Others capture the transition well, but
keep noisy oscillations in flat parts of the model (Fig. 7e-f,
top model; Fig. 7c and f, bottom model). Again, others cause
self-intersections in fine details of the mesh (Fig. 7c and f,
middle model) or distort the volume noticeably (compare
the size of the chicken’s comb in Fig. 7, middle model).
IMD-Net manages to recover flat surface, smooth transition
as well as sharp edges with high fidelity. The proposed
network conveniently avoids self-intersections, attributed to
the use of second order properties Ly, in the loss function.
Figure 8 shows some example models from ShapeNetCore [6]
that were denoised by the competing denoising algorithms
and IMD-Net at three different noise levels.

2) LEARNING BASED METHODS

Additionally, IMD-Net is compared to several learning-based
methods, specifically to the data driven filtering using autoen-
coders (DFA) [50], denoising with facet graph convolutions
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(FGC) [51] and Deep Normal Filtering Network (DNF) [52].
FGC and DNF are pre-trained on 21 models from synthetic
dataset of [48]. These methods require enormous computa-
tional resources and include time consuming pre- and post-
processing stages, which restricts us from training them on
large datasets (containing thousands of models) like the ones
used in this work. Unlike, other learning based methods
[50]-[52] which generate multiple patches from the shape
and train the network using these patches, our proposed
IMD-Net treats the complete mesh as an input. For all
competing works the pre-trained networks published by the
respective authors are used and for IMD-Net the network
trained on the ABC dataset is used.

Fig. 10 presents denoising output of learning based meth-
ods on two shapes from ABC dataset and two shapes from
test set of [48] synthetic dataset. DFA is pre-trained on eight
CAD models and fails to accurately denoise the shapes from
both the datasets. FGC and DNF perform quite well on test
set of [48] (Fig. 10d-e, bottom two models) but fails to gen-
eralize on ABC dataset shapes (Fig. 10d-e, top two models)
leaving traces of noisy oscillations in flat regions. IMD-Net,
despite being trained on CAD models, performs well and
rivals the performance of DNF and FGC on [48] test set
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FIGURE 8. Denoised examples from ShapeNetCore produced by the competing denoising methods. From top to bottom: A car at low, a mug at medium

and a sofa at high noise.

(Fig. 10f, bottom two models). We attribute this to the fact
that IMD-Net is trained on large datasets of meshes (and not
patches) hence generalizable to a wide variety of flat, curved
or sharp features within a shape.

Also, IMD-Net produces result for a single model in few
minutes (including pre-processing), whereas the other meth-
ods need between many minutes and hours. For e.g. the DNF
required more than 100GB of intermediate storage, more
than 80GB of RAM and a couple of hours for preprocessing,
inference and postprocessing of the Armadillo model (Fig. 10
last row).

V. ABLATION STUDIES

The base configuration for IMD-Net, particularly the choices
for the subdivison level, parametrization method, network
architecture and the network depth, require both validation
and justification. Therefore, three ablation studies are con-
ducted, which explore the impact of these parameters on the
performance.

A. SUBDIVISION LEVEL
To observe the influence of subdivision level r on the shape
detail, models from ABC dataset [5] are subjected to medium
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FIGURE 9. The normalized Hausdorff distance and mesh size of the
remeshed ABC dataset at different subdivision level. r = 6 shows good
agreement between Hausdorff distance and model size.

noise and preprocessed using icosahedral meshes with sub-
divisions five (S5), six (S6) and seven (S7). The mean Haus-
dorff distance of remeshed ABC models at three subdivisions
is shown in Fig. 9a accompanied by statistics on mesh sizes
in Fig. 9b. In both figures a log scale is used and on this scale
the curves are quasi-linear. This suggests that, in the given
range of subdivisions, an increase of the subdivision level by
one reduces the Hausdorff distance exponentially by a factor
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FIGURE 11. Mean and standard deviation of the normalized Hausdorff
distance between the remeshed ABC dataset models at r = 6 and the
ground truth for three different spherical parameterization methods:
conformal [7], authalic [8] and quasi-isometric [9].

in the range of [0.2, 0.25]. It follows that the expected gain in
accuracy shrinks exponentially with increasing subdivision.
In absolute values, an increase from S5 to S6 reduces the
Hausdorff distance by 7.01 x 107> and a further increase
from S6 to S7 by 1.56 x 107, This renders the increase from
S5 to S6 about 4.5 times more efficient than the subsequent
increase to S7.

At the same time, the vertex and face count in a remeshed
model grow exponentially by a factor of about 4 with each
increase of the subdivision level (Fig. 9b). This has severe
speed and memory implications for any algorithm denoising
the model as the size of the input data grows by the same fac-
tor. The implication for IMD-Net is that the required model
size and memory resources grow exponentially with the sub-
division. Together, the reciprocal nature of an exponentially
slowing reduction in the Hausdorff distance and an exponen-
tial growing number of vertices and faces impose strict limits
on feasible subdivisions. If the subdivision is too small, the
accuracy of the remeshed model might be insufficient; if it
is too big, the mesh size might make processing infeasible.
In the given context, S6 is selected for denoising experiments,
as it guarantees a good tradeoff between a small Hausdorff
distance and a reasonable model size.

B. PARAMETRIZATION ALGORITHM

In computer graphics, different parametrization methods are
compared with respect to the distortion the algorithms intro-
duce in either the area or angles of faces. However, in this
work, the parametrization is used as a preprocessing tool
to remesh an input mesh onto a semi-regular grid. This
approach, like any other remeshing technique, may result in
the loss of shape details. Therefore, the different parametriza-
tion algorithms are compared with respect to the loss of 3D
shape information caused by the parametrization and remesh-
ing of an input mesh.

To observe the impact of different parametrization algo-
rithms, models from the ABC dataset [S] were parametrized
using three different parametrization schemes (conformal,
authalic, quasi-isometric) and remeshed at subdivision level
r = 6. The remeshed output shapes were then quantitatively
compared to the input ground truth in terms of normalized
Hausdorff distance, shown in Fig. 11.
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The AHSP algorithm [9] applied in this work yields the
smallest Hausdorff distance after remeshing. The other two
methods, exemplifying conformal and authalic approaches,
have approximately a 16.2 and 5.0 times higher Haus-
dorff distance when compared to the quasi-isometric AHSP
approach. Further, a qualitative visualization of some models
parametrized and remeshed using the three different methods
is shown in Fig. 12. The clustering of extrusive shape features
in conformal parametrizations results in incomplete shape
preservation after remeshing. The authalic parametrization
fares better, but it suffers from stretched triangles in the
parametrization, and, as a consequence, the remeshed output
misses shape details in regions of high Gaussian curvature.
In contrast to both, AHSP consistently outputs detail and
shape preserving remeshings and is therefore our choice of
parametrization.

C. NETWORK ARCHITECTURE

In this ablation study, the cU-net is compared against the orig-
inal U-net, and two other conceivable network architectures,
derived from the base configuration. A ConvNet, which keeps
the feature map size constant throughout the network (no
pooling and unpooling) and drops the skip connections; and
an autoencoder (AE), which shares the cU-net architecture in
all but the missing skip connections. The four architectures
are trained and tested in an identical setup using ABC dataset
at medium noise level. Fig. 13 compares from left to right the
denoising performance measured by Eg, the average GPU
memory footprint and the model size in terms of trainable
parameters.

The comparison of Eg in the leftmost chart reveals that
the AE fails to learn to denoise meshes, reducing the error
to only 18.36° where the other architectures achieve around
4°. This can be explained by the missing skip connections,
which are essential for the given task. The other three archi-
tectures make local information directly available for vertex
denoising, either through skip connections or by avoiding
down- and up-sampling. These three architectures perform
well, with cU-Net slightly outperforming the other two. How-
ever, it becomes obvious that Conv-Net is not a suitable
choice when looking at the GPU memory usage, presented in
Fig. 13b. With a batch size of only 4 it occupies a staggering
78.2% of the GPU memory, where cU-Net only requires
about 50%. Since there is no pooling and unpooling in the
network, the deeper blocks with many feature layers consume
an enormous amount of memory. As it does not perform
better than cU-Net or U-net, it can be argued that Conv-Net
produces internally a lot of features that do not carry relevant
information for denoising, rendering the other architectures
more efficient.

Finally, the size of the different models, presented in
Fig. 13c, explains why cU-Net is to be preferred as archi-
tecture over a vanilla U-net. By replacing the concatenation
with an addition operation, the model size is reduced by about
one third (927K vs 1.4M parameters) and performance is kept
steady, clearly making cU-Net the architecture of choice.
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architecture of choice, as AE fails to reduce Eg, ConvNet consumes an infeasible amount of GPU memory and U-net has a larger model size at similar
performance.
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D. NETWORK DEPTH
Another ablation study is conducted to observe the influence

thereby influencing the amount of global information avail-
able for denoising. In order to allow a fair comparison, the

of network depth on IMD-Net’s denoising performance. The
depth refers to the number of R2R-Blocks in encoder and
decoder. The network depth is a crucial hyperparameter,
determining the maximum receptive field of features and
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four networks are normalized with respect to the model size,
so that each model has about one million trainable parame-
ters. The performance over 48 training epochs, measured by
Eg and Ep, is plotted in Fig. 14. At the end of the training, Eg
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FIGURE 14. The validation error metrics of four cU-nets ranging from
depth-1 to depth-4. Depth-3 performs consistently better than others on
the two metrics.

is least on depth-3 network. With respect to the Ep, depth-3
and depth-4 networks have the lowest positional distance.
Depth-4 network’s slight decrease in performance indicates
that additional blocks add model complexity but little useful
information. This encourages using a depth-3 network, as it
yields the best tradeoff between denoising performance and
model complexity.

VI. CONCLUSION

This paper proposed a novel mesh denoising technique, the
icosahedral mesh denoising network (IMD-Net), which is
a deep neural network especially suited to denoise closed
genus-0 meshes with high quality and fidelity in a single pass.
IMD-Net consumes a noisy mesh, computes a remeshing
and predicts denoised vertex positions while preserving and
enhancing features of the original mesh. Beyond vertices
and faces of a noisy mesh, no other explicit information
about noise distribution or surface characteristics is needed.
Training and inference of IMD-Net are exceptionally fast,
as it is based on standard conv2D-layers. The nature of the
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proposed deep learning approach ensures that no parameters
need tuning at inference. IMD-Net was trained and tested
on two large-scale model datasets, ABC and ShapeNetCore,
and compared to state-of-the-art learning and non-learning
based algorithms. To the best of our knowledge, it is the first
time mesh denoising algorithms are evaluated on such large
datasets. The experiments showed that IMD-Net consistently
outperforms other algorithms, both in terms of objective eval-
uation metrics and subjective visual inspections. Training on
large dataset had the merit of being generalizable on shapes
from different dataset, unlike other learning based methods.
IMD-Net also illustrates that using the complete mesh as
network input benefits the denoising process by utilizing
global shape information. IMD-Net’s performance advantage
grows with increasing noise levels, standing proof of the
positive impact that integrating local, non-local and global
mesh information into the denoising process can have.

Future work includes exploring to mark a consistent seam
on non genus-0 surfaces to parametrize them. This way, the
remeshing approach proposed in this work can be utilized
to remesh the surfaces and IMD-Net can be used to denoise
meshes of higher genus.
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