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Summary. The proper orthogonal decomposition(POD) is an approach to capture
a reduced order basis functions for a dynamical system. Utilizing the order reduc-
tion property of POD basis for minimizing computational cost to unsteady fluid
flow control problem, we present a POD-based framework of the unsteady Dirichlet
boundary control problem for Navier-Stokes equations. An extra basis function can
be therefor constructed and appended into the general POD subspace, which as a
key step enables the POD approach to the Dirichlet boundary control and results
in the control problem merely in time scale. In the paper the excellent quality and
flexibility of the POD approach to Dirichlet boundary flow control are confirmed
numerically in several flow matching control examples.
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1 Introduction

Numerical flow simulation is computationally expensive for the purpose of
unsteady fluid flow control. Recent development in computational methods
for the control problems is therefore the design of model reduction to carry
out the flow control problems with less effort. The proper orthogonal decom-
position is one of the most widely applied methods for this purpose.

In the paper, we study the Dirichlet boundary flow control by using
Galerkin POD, for which the fluid motion can be controlled by injection along
a piece of boundary. The cost functional for flow matching is expressed as a
measure of the distance between the controlled velocity and a given target
flow. The control problem is subject to the unsteady Navier-Stokes equations
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for viscous, incompressible fluid. This subject has been studied by many au-
thors, e.g., [2–4,7, 8].

The POD was first proposed by Lumley [11] in 1967, as a mathemati-
cal technique to extract a typical structure from turbulence flows. Numerous
literature in the past two decades signifies the great progress in theoreti-
cal, numerical analysis and computational aspects especially for optimization,
e.g. [1, 10,13,14,18–20].

The Galerkin proper orthogonal decomposition provides possibility for de-
riving reduced order models of dynamical systems, which is in general de-
scribed by PDEs. It is based on projecting the governing PDEs onto a proper
subspace of snapshots ensemble, which is composed of the solutions for this
dynamical system at pre-specified time distances or even experimental mea-
surements. However, the snapshots are not suitable as the basis for the en-
semble spanned by themselves due to the possible linear dependence. The
global optimal orthogonal basis for the ensemble can be identified by solving
an eigenvalue problem, and these basis will be denoted as POD basis. The
number of these POD basis can be very small in comparison with the number
of snapshots, which nevertheless carry the most dynamic energy of the system.
The POD basis spanned subspace is the subspace onto which the dynamical
system will be projected.

With Galerkin POD method we aim at not only reducing the computa-
tional cost of solving the nonlinear flow dynamics, but also achieving optimal
Dirichlet boundary control for the Navier-Stokes equations. An access to the
subject is firstly to make a new ansatz for the solution of the Navier-Stokes
equations containing an extra basis function which is extracted from the spa-
tial boundary behavior along the time, subsequently summarize the control
action merely in a time dependent function. To guarantee its smoothness in
the Dirichlet boundary condition, the explicit control parameter coupled in
the control problem description would be its first time derivative. We ap-
ply Galerkin POD method to qualify this layout for the Dirichlet boundary
control. This approach results in a new control problem in time scale, which
facilitates computation during the numerical optimization.

The paper is organized as follows. In section 2, we define the Dirichlet
boundary control problem subjects to the Navier-Stokes equations and quote
the well-posedness of the state equations. The optimality system based on a
Lagrangian technique including adjoint equation and variational inequality is
derived in section 3. Section 4 is devoted briefly to theory of Galerkin POD,
which associates the Dirichlet boundary control problem with the modified
one into an optimal control problem in time scale. We illustrate the feature of
the POD subspace, comparison full and reduced order simulations and provide
numerical results of the optimization with Galerkin POD in section 5.

2 The Dirichlet Boundary Flow Control Problem

The incompressible fluid flow described by the Navier-Stokes equations in a
Ω ⊆ R2 throughout [0, T ] is characterized by the following quantities:

u : Q := Ω × [0, T ] → R2 velocity field,
p : Q := Ω × [0, T ] → R pressure.

The boundaries of the spatial domain Ω consist of the inflow boundary Γi,
outflow boundary Γo and solid wall Γs := Γ\(Γi ∪ Γo). A controllable design
parameter will be set on the inflow boundary Γi. For the solid wall Γs and
outflow Γo, we apply the nonslip boundary and open boundary condition, the
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latter was detailed in [15].
We intend to find an optimal control z for the following Dirichlet boundary

control problem

min J(u, z) =
1
2

T∫

0

‖u(t, ·)− Ud‖2Hdt +
σ1

2

T∫

0

z2(t)dt

subject to

ut − 1
Re

∆u + (u · ∇)u +∇p = 0 in Q

∇ · u = 0 in Q

u(x, t) = z(t)g(x) on Σi := Γi × [0, T ]

pν − 1
Re

∂u
∂ν

= (0, 0) on Σo := Γo × [0, T ]

u(x, t) = (0, 0) on Σs := Γs × [0, T ]
u(x, 0) = u0(x) in Ω

in the set of admissible controls

Uad = {z ∈ L2(0, T ) : za(t) ≤ z(t) ≤ zb(t) a.e. on (0, T )} .

2.1 Preliminary results

First of all, we present the existence and uniqueness of weak solution for the
inhomogeneous Navier-Stokes equations. Let H, V and V0 be solenoidal spaces

H := {v ∈ L2(Ω)2 : ∇ · v = 0}, V : = {v ∈ H1(Ω)2 : ∇ · v = 0} and

V0 : = {v ∈ H1
0 (Ω)2 : ∇ · v = 0} .

The constraint ∇ · v = 0 is equivalent to 〈v,∇p〉 = 0 for all p ∈ H1(Ω). By
identifying H and its dual H ′, we obtain the well-defined Gelfand triple

V ↪→ H = H ′ ↪→ V ′,

each embedding being continuous and dense.
The inner product in V0 is given by a symmetric bounded, coercive bilinear

form a : V0 × V0 → R:

a(u,v) = 〈∇u,∇v〉L2(Ω)2 =
∫

Ω

2∑

i=1

∇ui · ∇vi dx . (1)

Moreover, we introduce trilinear form b : H1(Ω)2 × H1(Ω)2 ×H1(Ω)2 → R
as the weak formulation of the Navier-Stokes nonlinearity (u · ∇)u by

b(u,v,w) = 〈(u · ∇)v,w〉 =
∫

Ω

2∑

i,j=1

ui(Divj)wj dx , (2)

and b satisfies b(u,v,w) = −b(u,w,v) for all u ∈ V0 and v,w ∈ H1(Ω)2.
To deal with the time derivative in the Navier-Stokes equations, we turn to

the space of functions u, whose time derivative ut exists as abstract function
in

W (0, T ) := W 2(0, T ; V0) = {u ∈ L2(0, T ; V0) : ut ∈ L2(0, T ; V ′
0)}
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endowed with norm

‖u‖W (0,T ) = ‖u‖L2(0,T ;V0) + ‖ut‖L2(0,T ;V ′0 ) .

W (0, T ) is Hilbert space and continuous embedded in C([0, T ], V0), for the
detail we refer to [17]. Since the state equation (1) due to boundary control
must not pose homogeneous Dirichlet boundary all the time, the further space
definition is therefore necessary to be initiated by following [8]

W 2(0, T ;V ) := {u ∈ L2(0, T ; V ) : ut ∈ L2(0, T ;V ′
0)},

endowed with norm

‖u‖W 2(0,T ;V ) = ‖u‖L2(0,T ;V ) + ‖ut‖L2(0,T ;V ′0 ) .

To describe all solutions of the unsteady Navier-Stokes equations with the
admissible inhomogeneous Dirichlet boundary conditions, we specify

WΣi
:= {g = τ ĝ : ĝ ∈ W 2(0, T ; V )} (3)

endowed with norm

‖g‖WΣi
= inf{‖ĝ‖W 2(0,T ;V ) : τ ĝ = g, ĝ ∈ W 2(0, T ; V )}. (4)

Here τ : W 2(0, T ; V ) → L2(H1/2(Γi)2) is the trace operator given by

(τg)(t) = g(t, ·)
∣∣
Γi

for almost every t ∈ [0, T ]. (5)

Lemma 1. For every ui = z(t)g(x) ∈ WΣi , there exists ũ ∈ W 2(0, T ;V )
which achieves the infimum in (4).

For the proof of Lemma 1 and the detailed properties of the space WΣi , we
refer the reader to [8].

Theorem 1. For every ui ∈ WΣi with ũ ∈ W 2(0, T ; V ) (see Lemma 1) and
every divergence free u0 ∈ H with u0 − ũ(0) ∈ V0, there exists a unique weak
solution u ∈ W 2(0, T ; V ) for inhomogeneous Navier-Stokes equations, namely

〈ut,v〉L2(V ′0 ),L2(V0) +
1

Re
〈∇u,∇v〉+ 〈(u · ∇)u,v〉 = 0 for all v ∈ L2(V0),

τu = ui in WΣi ,

u(0, ·) = u0 in H,

where L2(V0) denotes the L2(0, T ; V0) and L2(V ′
0) = L2(0, T ;V ′

0).

For the existence and uniqueness of solution for the inhomogeneous Navier-
Stokes equations and the corresponding proof, we refer to [8, Theorem 1.2].
Here we do not repeat the relevant context from [8] for the existence and
uniqueness of optimal solution for the Dirichlet boundary control problem.

3 The Equivalently Modified Dirichlet Boundary
Control Problem

Differing from the Dirichlet boundary control problem given above, we pro-
ceed equivalently a modified one such that the high smoothness of the design
parameter z can be obtained. We can achieve this goal by restricting the time
dependent function z(t) on Σi of the Navier-Stokes flow (1) as follows
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z(t) =

t∫

0

v(s)ds + z0 , (6)

which implies z(t) to satisfy
{

z′(t) = v(t) on [0, T ],
z(0) = z0 .

(7)

Modification of the Dirichlet boundary control problem is to permit v(t) as
the design parameter instead of z(t). It seems to obtain a more complicated
control problem, which consists of one cost functional and two state equations,
namely

min J(u, z, v) =
1
2

T∫

0

‖u(t, ·)− Ud‖2Hdt +
σ1

2

T∫

0

z2(t)dt +
σ

2

T∫

0

v2(t)dt (8)

subject to

ut − 1
Re

∆u + (u · ∇)u +∇p = 0 in Q,

∇ · u = 0 in Q,
u(x, t) = z(t)g(x) on Σi,

pν − 1
Re

∂u
∂ν

= (0, 0) on Σo,

u(x, t) = (0, 0) on Σs,
u(x, 0) = u0(x) in Ω,

z′(t) = v(t) on [0, T ],
z(0) = z0 .

With an assumption σ1 = 0 throughout the paper, the set of admissible
controls should be altered as

Uad = {v ∈ L2(0, T ) : va(t) ≤ v(t) ≤ vb(t) a.e. on (0, T )} .

We devote to derive the necessary optimality condition with help of the
formal Lagrangian Multiplier. The Lagrangian technique is known to deliver in
general the correct first order optimality conditions. For that a mathematically
rigorous proof is not presented.

Define the Lagrangian function

L(u, p, z, v, {ηi}3i=1, π, ζ)

:= J(u, v)−
∫∫

Q

[
ut − 1

Re
∆u + (u · ∇)u +∇p

] · η1 dx dt

−
∫∫

Q

π
[ −∇ · u ]

dx dt−
∫∫

Σi

[
z(t)g(x)− u

] · η2 ds(x) dt (9)

−
∫∫

Σo

[ 1
Re

∂u
∂ν

− pν
] · η3 ds(x) dt−

∫

Ω

[
u(0,x)− u0(x)

] · η1(0,x)dx

−
T∫

0

[
z′(t)− v(t)

]
ζ(t)dt− (

z(0)− z0

)
ζ(0)
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with the Lagrangian multipliers {ηi}3i=1, π and ζ respectively to the three
states u, p and z. According to the Lagrangian principle, we expect the fol-
lowing equations and variation inequality to be valid at the local minimal
denoted by (u∗, p∗, z∗, v∗, {ηi}3i=1, π, ζ)





DuL(u∗, p∗, z∗, v∗, {ηi}3i=1, π, ζ) · u = 0, ∀u,
DpL(u∗, p∗, z∗, v∗, {ηi}3i=1, π, ζ) p = 0, ∀ p,
DzL(u∗, p∗, z∗, v∗, {ηi}3i=1, π, ζ) z = 0, ∀ z,
DvL(u∗, p∗, z∗, v∗, {ηi}3i=1, π, ζ) (v∗ − v) ≥ 0, ∀ v.

(10)

A similar calculation can be found in [21]. Here we give the adjoint equation
which is derived by summarizing η

∣∣
Σo

= η3 and otherwise η = η1

−ηt − 1
Re

∆η + (∇u∗)η − (u∗ · ∇)η +∇π = u∗ − Ud in Q (11)

∇ · η = 0 in Q (12)

πν − 1
Re

∂η

∂ν
= 0 on Σo (13)

η = 0 on Σ\Σo (14)
η(·, T ) = 0 in Ω (15)

η2 =
1

Re

∂η

∂ν
− πν on Σi (16)

ζ ′(t) = g(x) · η2 on [0, T ] (17)
ζ(T ) = 0 (18)

and the variation inequality

T∫

0

[
σv(t)− ζ(t)

]
(v∗(t)− v(t))dt ≥ 0, ∀v ∈ Uad .

It is quite expensive to solve such an optimization system iteratively.
For each iteration one must deal with the parabolic nonlinear PDE (1), the
parabolic linearized PDE (11-15) and the ODE (17-18). Insisting on the opti-
mal solution for this modified control problem without so much computational
cost, we could however still employ an order reduction approach, e.g., Galerkin
POD method.

4 The Proper Orthogonal Decomposition

Briefly a general aspect of the POD subspace is introduced, which contains
understanding, finding and using the POD basis functions. The principle be-
hind the proper orthogonal decomposition is to capture the POD basis as an
orthogonal basis system in a certain finite space by minimizing a least-square
error formula. To find them numerically, one may utilize the singular value de-
composition theorem to facilitate the computation. At end of this section we
introduce the way to validate the modified Dirichlet boundary control prob-
lem merely in time scale.
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4.1 The discrete POD

Given n ∈ N and 0 = t1 ≤ t2 ≤, ...,≤ tn ≤ T , for convenience suppose
equivalent time difference. Then the solution of the Navier-Stokes equation
{u(tj)}n

j=1, which are also called snapshots, can be either obtained numerically
or experimentally with reference to this time discretization {tj}n

j=1. Let us
denote the snapshots ensemble by Vn = span{u(t1), ...,u(tn)} ⊂ V , and 1 ≤
dimVn ≤ n, i.e., at least one of the snapshots is nonzero.

Let {φk}n
k=1 denote the orthonormal basis for Vn. Then each member of

the ensemble can be expressed as follows

u(tj) =
n∑

k=1

〈u(tj), φk〉V φk for j = 1, ..., n .

It is expected that a few of the orthonormal basis {φk}n
k=1 can represent a

typical structure of the ensemble. One way to solve the problem is with M
orthonormal basis of {φk}n

k=1 to yield the maximal projection of the snap-
shots, i.e., {φk}n

k=1 spanned subspace. In mathematical language, the task is
to find M ≤ n, such that the orthonormal system {φk}M

k=1 of Vn minimizes
the following least-square error:





min
{φk}M

k=1

n∑
j=1

αj ‖u(tj)−
M∑

k=1

〈u(tj), φk〉φk‖2V ,

subject to 〈φi, φj〉V = δij , 1 ≤ i, j ≤ M ,

(19)

where {αk}n
k=1 are positive weights chosen for the purpose of integration, e.g.,

α1 =
∆t

2
, αj = ∆t, j = 2, ..., n− 1, αn =

∆t

2
.

Then we define a linear mapping Yn ∈ L(Rn,Vn) with Yn(ek) = uk =
u(tk), where {ek}n

k=1 denote the canonical basis in Rn. For all u ∈ Rn

Yn(u) =
n∑

j=1

αj〈u, ej〉Rnuj (20)

where the inner scalar product in Rn is defined as

〈v, w〉Rn =
n∑

k=1

αkvkwk .

Assume that Y∗n : Vn → Rn is the adjoint of Yn, then it follows for all φ ∈ Vn

Y∗nφ =
[ 〈u1, φ〉V · · · 〈un, φ〉V

]T
. (21)

Define Rn := YnY∗n ∈ L(Vn) and Kn := Y∗nYn ∈ L(Rn). Summarizing (20)
for Yn and (21) for Y∗n yields

Rn =
n∑

k=1

αk〈uk, ·〉V uk (22)

Kn =
[ 〈u1,Yn(·)〉V · · · 〈un,Yn(·)〉V

]T (23)

where
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〈uk,Yn(·)〉V = 〈



〈uk,u1〉

...
〈uk,un〉


 , ·〉Rn .

Using a Lagrangian framework, the first order optimality condition for the
least-square problem (19) is

Rnφi = λiφi λ1 ≥ λ2 ≥ · · · ≥ λn . (24)

For a fuller treatment we refer the reader to [20]. By solving (24) we can
capture the orthonormal basis {φk}n

k=1 that satisfies the first order optimality
condition and is thus the local minimum for the least-square problem (19).
However, by following [20] it can be proved that there is no orthogonal system
with M basis in the snapshots ensemble which solves the least square problem
better than the POD basis does and {φk}M

k=1 is thus global optimum with
respect to a fixed M . By choosing M , the least-square error formula (19) can
be evaluated as in the following theorem.

Theorem 2. Let λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 denote the non-negative eigenval-
ues of Rn with the associated orthonormal eigenvectors {φk}n

k=1 in Vn. Let
M ¿ n, then {φk}M

k=1 is orthonormal with rank M, and the least-square error
formula (19) satisfies:

n∑

j=1

αj ‖u(tj)−
M∑

k=1

〈u(tj), φk〉φk‖2V =
n∑

j=M+1

λj .

The proof is straightforward by utilizing the definitions of Rn and its property
(24). In the following we give an example of the snapshots ensemble to examine
the above mentioned properties of the operators Rn and Kn.

Example 1. Let n ∈ N and n < N , where N is the number of spatial grids.
The snapshots ensemble is

Vn = span{u(t1), ...,u(tn)}.
The operators Rn and Kn are obtained by the definitions (22) and (23)

Rnφ =
n∑

k=1

αk〈uk, φ〉V uk =
n∑

k=1

αkukuT
k

︸ ︷︷ ︸
:=R

φ

Knu =



〈u1,u1〉 · · · 〈u1,un〉

...
. . .

...
〈un,u1〉 · · · 〈un,un〉




︸ ︷︷ ︸
:=K

u

One captures the POD basis system {φk}n
k=1 to minimize the least-square

error formula (19) by solving (24), which is for this example equivalent to
solve eigenvalue problem of the new defined R, namely

Rφi = λiφi λ1 ≥ λ2 ≥ · · · ≥ λn > 0, λn+1 = · · · = λN = 0 .

Note that this by n snapshots generated N × N matrix R has n nonzero
eigenvalues and N orthonormal eigenvectors {φi}N

i=1. For M ¿ n < N , the
M POD basis system {φk}M

k=1 can minimize the least-square error (19), which
can be also evaluated according to Theorem 2.
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Actually we would rather possibly solve eigenvalue problem for the matrix K
with dimension n than for R with N , since R possesses only n non-zero eigen-
values in total and the number of time distances n is usually much smaller
than the number of spatial grids N . By the theorem of singular value decom-
position, the eigenvector of R can be also captured implicitly, i.e., with aid of
the eigenvector of K and a linear mapping from L(Rn,Vn). For that we find
firstly an orthonormal basis {uk}n

k=1 in Rn such that for k = 1, ..., n

Kn(uk) = λkuk .

The solution for the least-square problem (19) should be an orthonormal basis
{φk}M

k=1 in Vn. It is not difficult to utilize the linear mapping Yn such that

Yn(uk) =
√

λkφk i.e., φk =
1√
λk

Yn(uk) (25)

for a fixed M and k = 1, ....,M .
For an exactly mathematical discussion of the continuous POD, which is

essential for error estimates of Galerkin POD approximation, we refer to [10]
and [18].

4.2 Construction of the POD basis functions

To capture the POD basis with the given snapshots, we discuss the practi-
cal algorithm based on the finite-dimensional POD. It is comparable to the
snapshots method, which has been used by Ravindran in [13]. Note that from
now on the POD basis will be written as {Φi}n

i=1 and {Φi}M
i=1 in order to

emphasize POD basis function as vector field.
We begin by making an ansatz for the solution of the Navier-Stokes equa-

tion

u(x, t) = um(x) +
M∑

i=1

βi(t)Φi(x) + z(t)uz(x), (26)

where

um =
1
n

n∑

j=1

u(x, tj) , (27)

v(x, t) =
M∑

i=1

βi(t)Φi(x) . (28)

It is noticed the steady flow uz(x) remains unspecified. In view of qual-
ifying the POD models for Dirichlet boundary fluid flow control, z(t)uz(x)
in the ansatz (26) is designed such that all spatial behaviors in the time in-
terval [0, T ] are extracted into the steady flow uz(x) and the scalar z(t) is
then assigned as time dependent control for accommodating z(t)uz(x) to the
Navier-Stokes solution with certain specified Dirichlet boundary condition.
Therefore, in such a way the time dependent boundary control z(t) is sepa-
rated from the unsteady solution of the Navier-Stokes equations.

According to the definition (3) of WΣi and Lemma 1, for every on Σi

well-defined Dirichlet boundary ui ∈ WΣi there exist at least one solution
ũ ∈ W 2(0, T ; V ) for the Navier-Stokes system (1), which satisfies the inflow
Dirichlet boundary condition ui on Σi, i.e.,

ũ(x, t)
∣∣
Σi

= ui(x, t) = z(t)g(x) .
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Let us make the next important assumption

ũ(x, t) = z(t)uz(x) in Q .

Obviously if one captures a steady flow ug ∈ V which satisfies the pre-specified
inflow Dirilchlet boundary g(x), then equality holds in (29)

uz = ug , (29)

where g(x) is defined in L2(H1/2(Γi)2) according to the definition (5) of trace
operator τ . In the following we give another construction of uz, and assume
the time dependent function z(t) is given as a linear profile.

Example 2. Let

z(t) = zst + z0, t ∈ [0, T ] and zs, z0 ∈ R . (30)

The inflow boundary condition of the Navier-Stokes equations is defined for
instance

z(t)g(x) = z(t)
(

sin( y−y0
y1−y0

π)
0

)
on Σi,

where y0 and y1 are the inflow bounds in y-axis. The other settings for the
Navier-Stokes equations remain unchanged as in the Dirichlet boundary con-
trol problem. For this system one can also construct the steady flow solution
uz by

uz(x) =
uz1(x)− uz0(x)

z1 − z0
, (31)

where z1 = zsT + z0 and z0 is given as above. Note that uz1 is the solution
of the steady Navier-Stokes equation regarding the inflow boundary condition
z1g(x) on Γi and uz0 is the ones with z0g(x) on Γi as the inflow boundary
condition.

It is also known that uz1 has the same inflow boundary condition z1g(x)
on Γi as the steady flow z1ug, where ug is the steady flow regarding the inflow
boundary condition g(x) on Γi. It is allowed to substitute the steady flow uz1

with the steady flow z1ug and uz0 with z0ug in (31), since both compatible
pairs (uz1 , z1ug) and (uz0 , z0ug) have the same inflow boundary conditions
on Γi respectively. Then one yields

uz(x) =
uz1(x)− uz0(x)

z1 − z0
=

z1ug(x)− z0ug(x)
z1 − z0

= ug(x) ,

which shows no conflict to (29).

Another advantage of using the above construction (31) lies in the fact
that the graph of z(t) for t ∈ (0, T ) can be skipped without breaking (29)
and thus z(t) must not constrained to be a linear function for t ∈ (0, T ). We
will fix up a suitable numerical example to confirm the independence between
z(t) for t ∈ (0, T ) or for t ∈ [t0, t1] ⊂ (0, T ) and uz in Ω, although they
are expected by multiplying with each other to match the Dirichlet boundary
condition z(t)g(x) on Σi.

Definition 1. Let us define a modified ensemble set

V0 = span{vi}n
i=1 ,

where vi is vector field

v(x, t) = u(x, t)− um(x)− z(t)uz(x) defined at t = ti.
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For the numerical algorithm one assumes that every POD basis Φ has the
form

Φi =
n∑

j=1

w
(i)
j vj (32)

in terms of {vj}n
j=1, where w(i) is to be determined such that Φ minimizes

the least square formula (19). By (20) and (25) in the finite-dimensional case,
the eigenfunctions {Φi}n

i=1 of Rn have the form

Φi =
1√
λi

Yn(u(i)) =
1√
λi

n∑

j=1

u
(i)
j vj , (33)

where u
(i)
j is the j-th component of the i-th eigenvector of Kn. To coincide

(32) with (33), we let

w
(i)
k =

1√
λi

u
(i)
k , for k = 1, ..., n.

To determine the orthonormal basis {uk}n
k=1 for Kn, one can solve the

following eigenvalue problem,

1
n
Kn

︸ ︷︷ ︸
C

u(i) =
λi

n︸︷︷︸
Λi

u(i)

Cu(i) = Λiu
(i) i = 1, ..., n, (34)

where C is the correlation matrix according to the Kn’s definition (23) and
Example 1 with components

[
C

]
ij

=
1
n
〈vi,vj〉V , for i, j = 1, ..., n.

It follows from the fact that C is a positive semi-definite symmetric matrix,
which has a complete set of orthogonal eigenvectors {u(i)}n

i=1 along with a set
of non-negative eigenvalues {λi}n

i=1.
By Theorem 2 it is known that the least-square error can be evaluated as

the sum of eigenvalues, i.e.,
∑n

i=M+1 λi. It should be thus as small as possible.
From that one can specify an energy level 0 < e < 1 to be captured, and then
seek M ¿ n such that

M∑
i=1

λi

n∑
i=1

λi

> e and 0 ≤

n∑
i=M+1

λi

n∑
i=1

λi

< 1− e

Obviously e = 1 implies the full order models. We choose e to be close to 1
in the numerical computation such that the expected energy level e can be
reached with M . The Algorithm 1 for construction of POD basis is given on
page 12.

Utilizing the Galerkin projection of the Navier-Stokes equations onto the
modified ensemble V0 (see Definition 1) yields a nonlinear ODE, which will
be summarized in the following.

Lemma 2. Let Vn denote the snapshots ensemble, all snapshots of which are
determined by solving the Navier-Stokes equations (1) in a time interval [0, T ]
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with the pre-specified inflow boundary condition. V0 is the modified ensem-
ble defined in Definition 1. The POD basis {Φi}M

i=1 spans the POD subspace
Vpod ⊂ V0. Then the POD reduced order models for the Navier-Stokes equa-
tions (1) is obtained for all t ∈ (0, T ]

Ẋ(t) =




1′

β′(t)
z′(t)


 =




0
− 1

ReAX(t)−K(X(t))
0


 + v(t)




0
B̃
1


 (35)

X(0) = (1 β(0) z0)T

where for i = 1, ..., M and j = 0, ..., M + 1

F(X) =




0
− 1

ReAX(t)−K(X(t))
0


 ,

[
A

]
i,j

= 〈∇Φi,∇Φj〉L2(Ω)2 ,

Ki(X(t)) = X(t)T PiX(t) ,
[
Pi

]
k,l

= 〈(Φk · ∇)Φl,Φi〉L2(Ω)2 ,

B =




0
B̃
1


 ,

[
B̃

]
i
= −〈ΦM+1,Φi〉L2(Ω)2 ,

[
β0

]
i
= 〈u0 − um − z0 uz,Φi〉L2(Ω)2

and z′(t) = v(t) with z(0) = z0, where z(t) is the time dependent term of the
inflow boundary condition for the Navier-Stokes equations (1).

The explicit proof we rely on [21]. In fact, the POD reduced order models
consist of the POD weak solution of the Navier-Stokes equations, namely

Algorithm 1: Construction of POD basis
begin

• Define for i = 1, ..., n

vi(x) = v(x, ti) = u(x, ti)− um(x)− z(ti)uz(x),

where um(x) is defined as (27) and uz(x) constructed as (31).
• Compute the symmetric correlative matrix C. Its entries are given

[
C

]
i,j

=
1

n

∫

Ω

vi(x)vj(x) dx, i, j = 1, ..., n.

• Solve the eigenvalue problem C U = Λ U .
• Prescribe an energy level e in percentage and find minimal

M ¿ n, such that
M∑

i=1

λi

n∑
i=1

λi

> e ,

where λi = nΛi and λ1 ≥ ... ≥ λM ≥ λM+1 ≥ ... ≥ λn ≥ 0 .
• Obtain the POD basis with the expression

Φi =
1√
λi

n∑
j=1

u
(i)
j vj , i = 1, ..., M.

end
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β′(t) = − 1
Re

AX(t)−K(X(t)) + z′(t)B̃ ,

which is derivable by restricting the Navier-Stokes equation’s POD ansatz (26)
to the POD subspace Vpod with L2(Ω2) scalar product. It is not complete as
a solvable differential equation, since there are M + 1 unknowns but only M
equations. Therefore the POD weak solution is extended as in (35) by utilizing
the second state equation of the modified Dirichlet boundary control problem

z′(t) = v(t) with z(0) = z0.

For generating the snapshots we must pre-specify a Dirichlet boundary
condition on Σi for the Navier-Stokes equations, which is included by the
time dependent function z(t) on [0, T ]. Once z(t) is specified, then z′(t), i.e.,
v(t) is also fixed. While solving the POD reduced order models (35), we have
thus known which function as v(t) on [0, T ] should be taken for the POD basis
set.

The numerical recast of fluid flow is completed by solving the nonlinear
ODE system (35) for X(t) and subsequently applying the POD ansatz (26)
with X(t) and POD basis.

4.3 The POD Boundary Flow Control

It is convenient now to search a suboptimal triple {v(t),u(x, t), z(t)} in the
admissible set, the snapshots ensemble and L2([0, T ]) respectively, since both
state equations of the modified Dirichlet boundary control problem can be
substituted with the POD reduced order models (35). To find equivalently a
optimal pair (v(t),X(t)), we also need to revise the cost functional J(u, z, v)
by projecting it onto the snapshots ensemble.

The new cost functional J should be with respect to a control parameter v
and its associated state X by assuming σ1 = 0 in (8). Except for substituting
u(·, t) in the cost functional (8) by the POD ansatz (26), Xd must be captured
for a given expected flow pattern in the POD subspace. Let Ud the target flow,
then induces

Ud(x) = Φ0(x) +
M∑

i=1

〈Ud(x)−Φ0(x)− CdΦM+1(x),Φi(x)〉︸ ︷︷ ︸
:=βd,i

Φi(x)

+ CdΦM+1(x), (36)

where {βd,i}M
i=1 and Cd are summarized in a vector as

Xd := [1, βd,1, ... , βd,M , Cd]T .

It is not difficult to calculate {βd,i}M
i=1 numerically, e.g., with QR decompo-

sition. For a unsteady target flow, Xd(t) can be generated analogously with
(36) for every t ∈ [0, T ].

The new cost functional is now derived as

J(X(t), v(t)) =

T∫

0

1
2
(X(t)−Xd)T · Ψ · (X(t)−Xd) +

σ

2
v2(t)dt , (37)

where
[
Ψ

]
i,j

=
∫

Ω

〈Φi,Φj〉 dx for i, j = 0, ..., M + 1 . (38)
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The modified Dirichlet boundary control problem given in section 3 with
the two state equations can be converted into the POD reduced order flow
control problem, namely:

min J(X(t), v(t))

subject to: (PM )

X′(t) = F(X) + v(t)B ,

X(0) = X0 .

The set of admissible controls Uad remains

Uad = {v ∈ L2(0, T ) : va(t) ≤ v(t) ≤ vb(t) a.e. on (0, T )} .

We devote to investigate the existence of the optimal solution for (PM ) as
well as the assumptions, for a detailed representative standard sample refer
to [17].

Definition 2. The Sobolev space is defined as

H1(0, T )M+2 := {X(t) ∈ L2(0, T )M+2 : ∃X′(t) ∈ L2(0, T )M+2} .

Remark 1. H1(0, T ) is compactly embedded in C(0, T ). This proof can be
found in [6, Satz 3.2.4].

Theorem 3. Let [0, T ] be a fixed interval and σ > 0, the admissible control
set Uad be non-empty. Let f0 be convex and continuous in v. Assume that all
successful states on [0, T ] satisfy an apriori bound

|X(t;X0, v)| ≤ C for all v ∈ Uad, almost everywhere on [0, T ] . (39)

Then the POD optimal control problem (PM ) has optimal solution v∗ ∈ Uad

with associated state X∗ ∈ H1(0, T )M+2.

Proof. The non-empty set of admissible controls is bounded in L2(0, T ). For
every v ∈ Uad and suitable X0, there exists a unique solution of the state
equation. Since J is bounded from below, J(X(t), v(t)) ≥ 0 and J has an
infimum

0 ≤ j := inf J(X, v) ≤ ∞ .

There is a minimizing sequence (Xn, vn) of admissible pairs such that

J(Xn, vn) → j as n →∞ .

Since the set of admissible controls Uad is bounded, and all states with respect
to the admissible controls are bounded, i.e., the apriori bound (39) (see apriori
estimates in [10, Theorem 4.2, Theorem 4.7, Theorem 5.1, Theorem 5.2]), there
exists a subsequence

(Xnk
, vnk

) ⇀ (X∗, v∗) ∈ H1(0, T )M+2 × L2(0, T ) . (40)

Uad is convex and closed in L2(0, T ). It follows that Uad is weakly sequence
closed and consequently v∗ ∈ Uad. It remains to prove that the state limit X∗

is the solution of the state equation with respect to v∗. Since

Xnk
⇀ X∗ ∈ H1(0, T )M+2

and H1(0, T ) is compactly embedded in C(0, T ), there exists a subsequence
{Xnkl

}∞l=1 of the subsequence {Xnk
}∞k=1 such that as l →∞
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Xnkl
→ X∗ in C(0, T )M+2 and X′

nkl
⇀ (X∗)′ in L2(0, T )M+2. (41)

Since F is continuous in X and Xnkl
→ X∗ in C(0, T )M+2, it follows as l →∞

F(Xnkl
) → F(X∗) in C(0, T )M+2.

It is known that C(0, T )M+2 ↪→ L2(0, T )M+2, then

F(Xnkl
) ⇀ F(X∗) in L2(0, T )M+2. (42)

Without loss of generality, we substitute the circumstantial index nkl
with n

such that

(Xn, vn) ⇀ (X∗, v∗) ∈ H1(0, T )M+2 × L2(0, T ), as n →∞ . (43)

Summarizing (40), (41) and (42) in the state equation of (PM ) and combining
the notation of (43) yields

X′
n︸︷︷︸

⇀(X∗)′ in L2(0, T )M+2

= F(Xn)︸ ︷︷ ︸
⇀F(X∗) in L2(0, T )M+2

+ Bvn︸︷︷︸
⇀Bv∗ in L2(0, T )M+2

.

Note that B ∈ RM+2 is a constant vector with respect to the POD basis
system {Φi}M

i=1. Then as n →∞, we obtain that

(X∗)′ = F(X∗) + Bv∗ in L2(0, T )M+2.

That is to say, the state limit X∗ in L2(0, T )M+2 is the solution of the state
equation with respect to the optimal control v∗ with an initial condition X0.

It is also known that f0 is convex and continuous in v, then J is weakly
lower-semicontinuous (see [5, Theorem 1.1]) and

j = lim
k→∞

inf J(Xnk
, vnk

) ≥ J(X∗, v∗) .

Since j is the infimum, i.e., j 6> J(X∗, v∗), it follows that j = J(X∗, v∗).

Next we need the first order necessary condition that enables us to distinguish
the optimal control from the other controls in the set of admissible controls
Uad. We remark that the formal Lagrangian technique can be employed again
for the first order optimality condition, however the Pontryagin maximum
principle is well-known as a standard result, which was proved by L.S. Pon-
tryagin in 1956 and can be applied for the task.

We define the Hamiltonian by

H := p0f0 +
M+2∑

i=1

pifi .

The integrand of the (PM ) cost functional (37) is accordingly notated due to
convenience as follows

f0,1 :=
1
2
(X(t)−Xd)T · Ψ · (X(t)−Xd) , f0,2 :=

σ

2
v2(t) , f0 := f0,1 + f0,2 .

The right hand side of the (PM ) state equation, i.e., F(X) + v(t)B can be
rewritten as the scalar fields {fi}M+2

i=1 respectively. In general p0 = −1, and
we derive the adjoint equation,

ṗ0 = − ∂H

∂X0
= 0,
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ṗi = − ∂H

∂Xi
=

∂f0,1

∂Xi
−

M+2∑

j=1

pj
∂fj

∂Xi
, for i = 1, ..., M + 2.

Note that the transversality condition becomes

(p1(T ), ..., pM+2(T ))T = 0,

if the state X(t) at t = T is completely unspecified. The adjoint equation can
be composed in vectorial notation style and due to numerical execution of the
backward system set −w(t) = p(t)

(AD)

{
−ẇ =

[
f0,1

]
X

+
[
F

]T

X
w ,

w(T ) = 0 .

Let v∗ be optimal, it is necessary that H attains its maximum at v∗ for
almost every t ∈ [0, T ].

sup
v∈Uad

H(X, v, p) ⇔ sup
v∈Uad

(
− σ

2
v2(t) + BT p · v(t)

)

= sup
v∈Uad

(
− σ

2
v2(t)−BT w · v(t)

)

= min
v∈Uad

(σ

2
v2(t) + BT w · v(t)

)
, if σ > 0.

It is known that v∗ solves the above minimizing problems, i.e., v∗ ∈ L2(0, T )
solves the following optimization problem for σ > 0

min
v∈Uad

T∫

0

(σ

2
v2(t) + v(t)BT w

)
dt .

Then the variation inequality holds for σ > 0:

T∫

0

(σv∗ + BT w)(v − v∗)dt ≥ 0 ∀ v ∈ Uad .

Summarizing the optimality system for the POD boundary control problem
(PM ) yields

state equation ⇒
{

Ẋ(t) = F(X) + v(t)B
X(t0) = X0

adjoint equation ⇒




−ẇ = Ψ · (X(t)−Xd

)
+

[
F

]T

X
· w

w(T ) = 0

variation inequality ⇒
{

T∫
0

(σv∗ + BT w)(v − v∗)dt ≥ 0 ∀ v ∈ Uad ,

Briefly we give here the algorithm, which provides the optimal Dirichlet
boundary for the Navier-Stokes equations equivalently by solving the above
optimal control system.

Algorithm 2

1. Solve the Navier-Stokes equation (1) at n different time steps for the
snapshots {uj}n

j=1 with z(t) and the associated steady flow u0 as initial
condition.
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2. Use Algorithm 1 to calculate the M POD Basis.
3. Define Φ0 = um(x) and ΦM+1(x) = uz(x), which are given in (27) and

(31).
4. Project the Navier-Stokes equation onto POD subspace and construct

a) the correlative POD basis matrix Ψ as (38),
b) B̃ = −

[
Ψ

]
i,M+1

, for i = 1, ...., M ,

c) the stiffness matrix A of POD projection system,
d) the nonlinearity matrix Pi, for i = 1, ...,M and
e) the initial condition X0.

5. Capture Xd or Xd(t) by (36) with QR decomposition.
6. Execute an optimization algorithm

a) initialize k := 0 and v(0) = z′(t) for t ∈ [0, T ]
b) solve the POD state equation forward for X(t) with respect to v(k)

c) solve the adjoint equation backward for w(t) with respect to X(t)
d) set the search direction, e.g., anti-gradient direction

dk = −(σv(k) + BT · w)

e) determine sn with Armijo step size control
f) v(k+1) = v(k) + sn× dk
g) r = ‖v(k+1) − v(k)‖
h) repeat (a)-(h) and set k = k +1, if r is not sufficient small. Otherwise

stop the optimization, v∗ = v(k+1)

7. Solve z′(t) = v(k+1) and z(0) = z0 for z∗(t) as the optimal controlled
boundary condition in (1),

8. Calculate the Navier-Stokes equations (1) with respect to the optimal
Dirichlet boundary condition z∗(t) to yield the optimal fluid flow.

5 Computational Result

To illustrate the result of the POD approach in solving the Dirichlet boundary
flow control problem, several numerical examples are carried out in the same
geometry. First of all, the geometry in which the numerical tests are to be
calculated is a rectangle Ω ⊆ R2 containing as in Figure 1 the inflow boundary
Γi, outflow boundary Γo and wall Γ\(Γi ∪ Γo).

The Navier-Stokes system (1) is solved in the time interval [1, 10] for

0

y

x

Γi

Γo

Fig. 1: Domain Ω with inflow boundary Γi and outflow boundary Γout

generating snapshots ensemble. The sinusoidal function as one choice of the
spatially dependent velocity field on inflow boundary is given
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g(x) =
(

sin( y−y0
y1−y0

π)
0

)
and x =

(
x
y

)
.

The linear profile z(t) = z0t for t ∈ [1, 10] is taken to complete the boundary
setting. Two hundreds snapshots are recorded at Re = 10000 with equivalent
time distance ∆t = T−1

200−1 .
The entries of correlative matrix C can be computed by trapezoidal inte-

gration schema. Its eigenvalue range in logarithmic scale is shown in Figure 2,
which is solved by using matlab routine eig. As shown the eigenvalues drop
quickly and thus very few models are able to carry the essential dynamic en-
ergy of the snapshots.
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Fig. 2: Eigenvalues of the correlative matrix C

Table 1 displays percentage of the full order models energy captured by
the POD reduced order models, e.g., 99.9999 percent of the full order models
energy captured by only six basis functions. These six POD basis are chosen
to represent the modified ensemble for carrying out the further numerical flow
simulation and control experiments.

M 1 2 3 4 5 6

Energy in % 97.9758 99.7095 99.9452 99.9956 99.9998 99.9999

l1 Error 0.005370 0.005305 0.005305 0.005305 0.005300 0.005300

Table 1: Percentage of full order model energy and l1-norm difference between full
order and POD reduced order models captured with M = 1, ..., 6

To complete the flow simulation with the POD basis, one should recast
solution of the Navier-Stokes equations with the POD ansatz (26), where
the coefficient function {βi(t)}M

i=1 are gained by decoupling (35) with Crank-
Nicolson and 4th order Runge-Kutta schema. We compare the profiles of the
flow computed with full order models and the POD reduced order models in
Figure 3, which is recorded at t = 9 for various cross-sections of the spatial
domain. Both simulations show quantitatively satisfactory agreement.
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Fig. 3: Profile comparison of full order model(solid line) and POD reduced order
models solution(dash-dot line); velocities u(red) and v(blue) at t = 9.

Before we start Galerkin POD control stage, the streamlines of the eight
POD basis are shown in Figure 4 and Figure 5. Φ0 displays the averaged
flow, and the other POD basis are barely identified with any ordinary steady
flow except for the last two POD basis Φ6 and Φ7. However, we remark
they are quantitatively different, though they show very similar in streamline.
Therefore, we compare the Φ6 to Φ1−5 and to Φ7 respectively in horizonal
velocity through various cross section in Figure 6 and Figure 7.
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Fig. 4: The POD basis Φ0(x, y),Φ1(x, y),Φ2(x, y),Φ3(x, y)
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Fig. 5: The POD basis Φ4(x, y),Φ5(x, y),Φ6(x, y),Φ7(x, y)
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Fig. 7: The profile comparison between Φ6 and Φ7

5.1 Control Test I

It remains to allocate the expected flow samples to appraise the control qual-
ity with the Galerkin POD method. As the first test we set a steady flow
Ud shown in Figure 8, which can be capture by solving steady Navier-Stokes
equations with the inflow boundary u(x)

∣∣∣
Γi

= zd g(x) = 0.025g(x) and the

other boundary conditions prescribed by (1).
A start guess control v(0) is next required for the optimization. We start
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Fig. 8: The steady target flow with zd = 0.025.

to control with v(0)(t) = z′(t) ≡ z0 for t ∈ [1, 10], which is well-related to the
current POD basis with respect to the snapshots ensemble generated by the
inflow boundary condition z(t) = z0t in [1, 10].

In Figure 9, the optimal control v∗(t) in POD system and the correspond-
ing z∗(t) are displayed at different σ values. The parameter σ is found to
regularize the effort in the controller design. Figure 9 presents the relatively
smaller value of σ could achieve the expected flow more quickly due to the
light weighted control-effort term v2(t) in the cost functional J .
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Fig. 9: Optimal controls of the Navier-Stokes equations and POD-based system for
different values of σ: 10(dotted line), 1/10(solid line), 1/20(dashed line),
1/100(dash-dot line) and expected boundary profile (grey dashed line) re-
spectively.

At different σ values the integrands f0(X∗(t), v∗(t)) in the cost functional
are evaluated with respect to the by CG method solved optimal controls v∗

and the associated states X∗. Figure 10 presents straightforwardly the optimal
steady flow is reached rapidly as σ is set to be 0.05 or smaller.
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Fig. 10: The evaluated integrand f0(X
∗(t), v∗(t)) for t ∈ [1, 10] at different σ



The POD Dirichlet Boundary Control of the Navier-Stokes Equations 23

For a clear sight of the POD captured boundary control effect, Figures
11-12 demonstrate streamlines of the snapshots as uncontrolled flow and the
POD controlled flow, from which we confirm that the POD controlled flow had
no vortex in the left upper corner during all time steps. We refer reader to note
that streamline of the expected steady flow in Figure 8 exhibits also no vortex
there, which is set in the objective function as the pattern flow and should
be imitated by controlling with the optimal Dirichlet boundary condition z∗.
Finally, Figure 12 at t = 10 shows a good effect of the POD boundary control,
meanwhile an extra vortex has grown up there in the uncontrolled flow.
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Fig. 11: POD Controlled and uncontrolled flow streamlines comparison at t = 1
and t = 4.
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Fig. 12: POD Controlled and uncontrolled flow streamlines comparison at t = 7
and t = 10.
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5.2 Control Test II

In the unsteady flow matching case we could devise an analytical design pa-
rameter zd(t) in [0, 10] and capture the unsteady target flow pattern Ud(x, t)
by solving (1) with zd(t) on the inflow Σi. By utilizing the eight POD basis
system, the second control test can be performed, in which the unsteady tar-
get flow Ud(x, t) described above is set in the cost functional.

Firstly we give the inflow boundary condition on Σi, for t ∈ [0, 10]

Ud(x, t)
∣∣∣
Σi

:= zd(t)g(x) =
[ 1
10

(
1− t

)2(
1− cos

( 5
6 + 5t

))
+

86
5000

]
g(x)

where g(x) remain unchanged. Analogously as (36) for every t ∈ [0, 10], Xd(t)
can be figured out with zd(t).

The optimization with the Galerkin POD induces the optimal solutions for
the second control example as in Figure 13, which shows excellent agreement
between the POD optimal solution at σ = 0.001 and analytical target. Note
that these optimal solutions are solved with the known initial condition of
target flow, i.e., steady flow with inflow zd(0)g(x). However it is not always
self-evident to possess the same initial condition as the target flow Ud(0,x).
Next we explore control flexibility of Galerkin POD approach without being
revealed the initial condition of target flow. From Figure 14 we can confirm
the optimal control with a different initial condition succeeds. All POD con-
trolled z∗(t) regarding σ start with z∗(0) = z0 at t = 0, which is originally
for generating snapshots. Obviously the optimal trajectories z∗(t) for almost
everywhere in [0, 10] accommodates the target zd(t).

In both numerical experiments, eight POD basis functions calculated
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Fig. 13: POD optimal solutions for different values of σ: 1(dotted line), 1/10(solid
line), 1/100(dashed line), 1/1000(dash-dot line) compared with analytical
function zd(t)(grey thick solid line) and its derivative vd(t) = z′d(t) (grey
thick solid line).
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Fig. 14: POD optimal solutions for different values of σ: 1(dotted line), 1/10(solid
line), 1/100(dashed line), 1/1000(dash-dot line) compared with analytical
function zd(t)(grey thick solid line) and its derivative vd(t) = z′d(t) (grey
thick solid line).

with respect to the snapshot ensemble have been used for the optimiza-
tion (see. Algorithm II). All control candidates v(t) ∈ L2(0, T ) are not cer-
tainly well related to these eight POD basis functions during the optimiza-
tion. However, these POD basis functions enable us to capture the optimal
control v∗ ∈ L2(0, T ). If the POD basis functions and control candidates
v(t) ∈ L2(0, T ) are not well related to each other, i.e., the POD basis func-
tions can not simulate the behavior of the current v(t) related flow, then the
so-called adaptive POD control should be applied, on which the standard
work [14] is for boundary control problems and [1] for the distributed control
problems.

5.3 Control Test III

For the third control example, we attempt to replace the original snapshots
ensemble, which is generated by linear function z(t) on the inflow boundary.
Setting another inflow profile, for instance zd(t) used as target inflow condition
in the second control test, namely

z(t) =
1
10

(1− t)2
(
1− cos

( 5
6 + 5t

))
+

86
5000

,

yields the new snapshots ensemble.
As usual we make firstly the POD ansatz, in which uz can be constructed

by following (31). However, in this case one may capture

uz(x) =
uz1 − uz0

z1 − z0
=

uz1 − uz0

z(10)− z(0)︸ ︷︷ ︸
≈0

. (44)
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This singularity can be removed by dividing z(t) with respect to t into different
parts according to its monotone. For t ∈ [0, 1], z(t) is monotonously decreasing
and for t ∈ [1, 10] monotonously increasing. Each monotonous part of z(t) is
suitable for generating uz, and we choose the latter

uz(x) =
uz(10) − uz(1)

z(10)− z(1)
.

A new target flow Ud(x, t) should subject to the following analytical inflow
boundary condition

Ud(x, t)
∣∣∣
Σi

=
[( 1

10
(
1− cos(

5
5t + 6

)
)
(1− t)2 +

1
100

)
cos(

t + 5
10

) +
3

250

]
g(x) .

The technique given above does not ruin the result, see Figure 15. As men-
tioned the last POD basis can be built successfully for the purpose of optimal
control, if one gains the snapshots ensemble established by such a nonlinear
inflow time profile.
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Fig. 15: POD optimal solutions for different values of σ: 1(dotted line), 1/10(solid
line), 1/100(dashed line), 1/1000(dash-dot line) compared with analytical
configuration (grey thick solid line).
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