Winter CO₂ and CH₄ fluxes through the snowpack Alex Mavrovic¹⁻²⁻³, Juha Lemmetyinen⁴, Carolina Voigt¹⁻⁵⁻⁶, Oliver Sonnentag¹⁻⁵ and Alexandre Roy¹⁻² Contact: alex.mavrovic@uqtr.ca #### Introduction In arctic and boreal regions, the winter carbon exchanges between the soil and the atmosphere in the form of carbon dioxide (CO₂) and methane (CH₄) are highly uncertain. The insulating properties of snow allow the ground to maintain soil temperatures high enough to allow soil respiration (CO₂ emissions) and CH₄ metabolization. The winter contribution to the annual carbon balance for these large environments cannot be neglected in order to determine whether these regions are net carbon sources or sinks. # Study sites Montmorency Forest, Quebec Boreal forest - Momo Trail Valley Creek, Northwest Territories *Arctic tundra - TVC* Cambridge Bay, Nunavut *Arctic tundra - CamBay* ## Data collection # Results The top graph displays CO₂ flux estimates from the three study sites. All TVC and CamBay data were collected in March-April. The blue curve is taken from Natali *et al.* (2019) and represent an exponential fitting of winter CO₂ flux data from a wide variety of sites and flux estimation methods. The embedded graph is a magnification of the TVC arctic tundra CO₂ flux estimates. The bottom right graph display CH₄ flux estimates from the Montmorency boreal forest. The negative CH₄ fluxes indicate uptake from the soil. Gas sample collection was conducted using a thin rod limiting snow disturbance. 5 samples from different snow depths were collected at each site along with snow measurements (density, temperature, grain size and stratigraphy). ### Flux estimates Fluxes ($F_{CO2/CH4}$) were estimated from the concentration gradient (∇) in the snowpack (CO_2 or CH_4 alike): $$F_{CO2} = \varphi t D \nabla C O_2$$ The ∇CO_2 is estimated using a linear regression between $[CO_2]$ and snow depth. Snow tortuosity (t) is estimated from snow porosity (p) which is calculated from snow density (ρ_{snow}) . D represents the diffusion coefficient of CO_2 in air. $$t = 1 - (1 - \varphi)^{2/3}$$ $\varphi = 1 - \rho_{snow}/\rho_{ice}$ The coefficient of determination of the ∇CO_2 is the strongest in the Momo deep snowpack ($R^2 = [0.75\text{-}0.96]$) and a bit lower for the TVC/CamBay arctic tundra ($R^2 = [0.50\text{-}0.96]$) possibly because of the arctic snowpack wind slab/depth hoar stratification and more important wind pumping of the exposed shallower snowpack. # What's next? During the 20-21 winter, the focus was on developing the measurement methodology and surveying the spatial flux variability of our study sites. The 21-22 winter will target monitoring the temporal flux variability of our current study sites with an additional site in the Finnish Arctic. Important [CO₂] peaks the snow/atmosphere interface were observed in 11-20% of the arctic tundra profiles. We will their potential investigate including production from within the snowpack, wind pumping and diffusion constraints.