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ABSTRACT In this paper, we investigate a tradeoff between the secrecy rate (SR) and energy efficiency (EE)
in an underlay cognitive radio network that consists of a cognitive base station (CBS), a cognitive user (CU),
a primary user (PU), and multiple eavesdroppers (EDs). By using a so-called secrecy EE (SEE), which is
defined as the ratio of SR to the total power consumption of CBS, as the design criterion, we formulate
an SEE maximization (SEEM) problem for the CBS-CU transmission under the constraints of the transmit
power of CBS, the SR of CU, and the quality-of-service (QoS) requirement of PU. Since the formulated
optimization problem with a fractional objective function is non-convex and mathematically intractable, we
first convert the original fractional objective function into an equivalent subtractive form, and then develop
a method of combining the penalty function and the difference of two-convex functions (D.C.) approach to
obtain an approximate convex problem. Based on this, an optimal beamforming (OBF) scheme is finally
proposed to obtain the optimal solution. Furthermore, to reduce the computational complexity, we design a
zero-forcing-based beamforming (ZFBF) scheme to achieve a sub-optimal solution to the SEEM problem.
Simulation results are given to illustrate the effectiveness and advantage of the proposed SEE oriented OBF
and ZFBF schemes over conventional SR maximization and EE maximization schemes.

INDEX TERMS Cognitive radio network, physical-layer security, energy efficiency, zero-forcing
beamforming.

I. INTRODUCTION
A cognitive radio network (CRN) is known to be able to
significantly improve the spectrum efficiency [1], as it allows
its cognitive users (CUs) to share the spectrum licensed to
primary users (PUs), such as in cellular network [2] and satel-
lite network [3]. However, the broadcast nature of wireless
transmission makes the confidential information transmitted
over CRN suffer from potential overhearing attacks from
third parties [4], termed as eavesdroppers (EDs). To cope
with this threat, some physical-layer security (PLS) tech-
nologies have been adopted in CRN to guarantee secure
data transmission [5]. Pei et al. [6] studied the secrecy

rate maximization (SRM) problem of multiple-input single-
output (MISO) CRNs by optimizing the transmit covari-
ance matrix under interference temperature and transmit
power constraints. In [7], the authors presented some mul-
tiuser scheduling strategies to improve the PLS of cognitive
radio communications against both coordinated and uncoor-
dinated EDs. With the help of a cooperative jammer, two sub-
optimal algorithms using a complete or partial orthogonal
projection were proposed to maximize the available secrecy
rate (SR) of a CU under an interference power constraint at
a primary user (PU) and a global transmit power constraint
at transmitters [8]. In addition, by exploiting the mutual
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interference, Zhang et al. [9] presented a coalition formation
game model with nontransferable utility, and a merge and
split algorithm to exploit the CU’s interference to enhance
the PU’s SR in CRN. Meanwhile, An et al. [10] employed a
terrestrial base station (BS) as a friendly jammer to enhance
the PLS for cognitive satellite networks.

Apart from the security, energy efficiency (EE) of CRNs
has also been considered as an important issue due to the
increasing growth of data traffic and energy cost [11]. In this
context, the energy efficiency maximization (EEM) prob-
lem constrained by the total transmit power, the interfer-
ence power and the system throughput was transformed
into an equivalent one-dimensional problem and solved by
golden section method [12]. In [13], an EE power allocation
scheme was proposed to improve the data rate for unit-
energy consumption in CRN via the fractional program-
ming. Furthermore, Zhang et al. [14] developed a distributed
algorithm to jointly optimize power allocation and transmit
beamforming (BF) for a cognitive multiple-input multiple-
output (MIMO) channel. To exploit spectrum opportuni-
ties, Zhang and Tsang [15] investigated a cooperative sensing
scheduling problem with the objective of maximizing the EE
of CRN. Additionally, a chance-constrained subcarrier and
power allocation algorithm was proposed in [16] to improve
the EE of multicast cognitive orthogonal frequency division
multiplexing (OFDM) networks.

Different from the aforementioned literature that focuses
only on improving either SR [6]–[10] or EE [12]–[16],
Althunibat et al. [17] investigated the impact of multiple EDs
on the EE of a CRN, while Gabry et al. [18] investigated
a cooperative jamming scheme in CRN to maximize CU’s
EE subject to the secrecy constraint of PU. To achieve a
good trade-off between the SR and EE, secrecy energy effi-
ciency (SEE), defined as the ratio of the SR to the total
power consumption, has been proposed in [19] to evaluate the
number of available secret bits per unit energy. By using SEE
as a design criterion, we have studied the secrecy energy effi-
ciency maximization (SEEM) problem under the constraints
of PU’s quality-of-service (QoS) requirement and total trans-
mit power limit for CRNs [20] and cognitive relay net-
works [21], where only a single ED was taken into account.
Thus, in this paper, we consider a more general scenario of
cognitive radio communications with multiple EDs. Specifi-
cally, we make the following major contributions:
• A framework for SEE transmission in an underlay CRN
with multiple EDs is established. In particular, we for-
mulate a constrained optimization problem to maximize
the SEE, while guaranteeing the CU’s SR requirement
and limiting the interference received at PU below a
predefined threshold. This general framework includes
the system model of [20] as a special case where only a
single ED is assumed.

• Since the formulated SEEM problem is a max-min frac-
tional optimization problem, which is non-convex and
mathematically intractable, we first convert the original
problem into an equivalent subtractive counterpart, and

then propose an approach of combining the penalty
function with the difference of two-convex functions
(D.C.) to obtain a further simplified convex optimization
problem. Next, an optimal beamforming (OBF) scheme
is developed to achieve the optimal solution. Compared
with the previous related works only focusing on the
maximization of either SR [6] or EE [12], the proposed
OBF scheme can achieve a better trade-off between the
security and energy consumption, thus extending the
previous works to a more general scenario.

• A zero-forcing based beamforming (ZFBF) scheme is
also proposed to solve the formulated optimization prob-
lem, giving a sub-optimal solution. Since in this case,
the normalized BF weight vector and power coefficient
are given in analytical expressions, the computational
complexity is significantly reduced. On the other hand, it
is shown by computer simulations that the performance
gap between the optimal and sub-optimal solutions is
very small, when a sufficient number of transmit anten-
nas are employed at the cognitive base station (CBS).

The rest of the paper is organized as follows. In Section II,
we describe the system model for CRN with multiple EDs
and formulate the SEE maximization problem. In Section III,
we propose an OBF scheme to obtain the optimal solution to
the formulated SEEM problem. Section IV presents a sub-
optimal scheme using the ZF-based BF. Simulation results
and discussions are given in Section V, and conclusions are
drawn in Section VI.
Notations: Bold letters denote the vectors or matrices,

(·)H the Hermitian transpose, |·| the absolute value, ‖·‖F the
Frobenius norm of a matrix or Euclidean norm of a vector;
E [·] represents the expectation; IN the N×N identity matrix,
0N the N × 1 vector of all zeros; A � 0 means A is a
Hermitian positive semidefinite matrix, Tr (A) is the trace of
A, Rank(A) is the rank of A; λmax (A) and umax (A) repre-
sent the largest eigenvalue and the corresponding eigenvector
of A; 〈A,B〉 = Tr (AB); [x]+ = max{x, 0}; and CN

(
0, σ 2

)
stands for the complex Gaussian distribution with zero mean
and covariance σ 2.

II. SYSTEM MODEL AND PROBLEM FORMULATION
As illustrated in Fig.1, an underlay CRN consisting of one
CBS, one CU and K EDs utilizes the spectrum assigned to
the PU. Here, we assume that CBS is equipped withNc anten-
nas, while CU, PU and ED each have a single antenna. The
CBS intends to deliver its signal xc(t) with E

[
|xc(t)|2

]
= 1

to CU, thus the signal received at CU can be expressed as

yc =
√
ϑchHc wcxc(t)+ nc(t) (1)

where wc is the downlink BF vector, hc is the fading channel
vector between CBS and CU, ϑc is the corresponding path
loss, and nc(t) is the additive white Gaussian noise (AWGN)
with zero mean and variance σ 2

c . Meanwhile, each ED
attempts to independently overhear the confidential messages
transmitted from CBS to CU. Due to the broadcast nature
of the wireless communication, the signal received by the
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FIGURE 1. System model of the underlay CRN with multiple EDs.

k-th ED can be written as

yk =
√
ϑkhHk wcxc(t)+ nk (t), k ∈ K (2)

where hk and ϑk are the fading channel vector and the path
loss between CBS and EDk , and nk (t) ∼ CN (0, σ 2

k ) is the
AWGN, k ∈ K = {1, 2, · · · ,K }. Hence, the output signal-
to noise ratios (SNRs) at CU and EDk can be, respectively,
expressed as

γc (wc) =
ϑc
∣∣hHc wc

∣∣2
σ 2
c

(3)

γk (wc) =
ϑk
∣∣hHk wc

∣∣2
σ 2
k

, k ∈ K (4)

According to the definition of the PLS [4], the available
worst-case SR for CU is given by

Rsec=
[
log2 (1+ γc (wc))−max

k∈K
log2 (1+ γk (wc))

]+
(5)

In addition, the total power consumption at CBS can be
modelled as [16]

Ptot = ζ ‖wc‖
2
F + NcPA + PB (6)

where ζ ≥ 1 denotes the power amplifier inefficiency coef-
ficient, PA the circuit power consumption of each transmit
antenna at CBS, and PB the basic power consumed by CBS.
To balance the SR and the total power consumption of the
considered CRN, we adopt SEE as the performance metric in
unit bit/Joule/Hz, which is given by [19]

η =
Rsec
Ptot

(7)

Meanwhile, to protect the PU’s QoS, the interference tem-
perature Ip from CBS should be limited below a predefined
threshold I thp , namely,

Ip = ϑp
∣∣∣hHp wc

∣∣∣2 ≤ I thp (8)

where hp denotes the fading channel vector of the CBS-PU
link and ϑp the corresponding path loss.

We now formulate a constrainedmaximization problem for
SEE under three constraints: the secure transmission require-
ment, the transmit power limit of CBS and the interference
control for PU, namely,

max
wc

min
k∈K

log2 (1+ γc (wc))− log2 (1+ γk (wc))

ζ‖wc‖
2
F + NcPA + PB

(9a)

s.t. log2 (1+ γc (wc))− log2 (1+ γk (wc)) ≥ Rmin
sec , k ∈ K

(9b)

ϑp

∣∣∣hHp wc

∣∣∣2 ≤ I thP and ‖wc‖
2
F ≤ P

max
c (9c)

where Rmin
sec ≥ 0 denotes the minimum acceptable SR which

guarantees the secure transmission for CU, andPmax
c themax-

imum allowed transmit power of CBS. Note that there could
be feasibility issue with the above optimization problem due
to the constraints of CU’s SR requirement and transmit power
limit. Throughout this paper, however, we assume that the SR
requirement of CU is feasible and our focus is on solving the
formulated problem (9).

III. PROPOSED OBF SCHEME
In this section, we propose an OBF scheme to obtain the
optimal solution to the problem (9). First of all, we introduce
an auxiliary variable ϕ ≥ 1 and reformulate the SEEM
problem (9) as

max
wc,ϕ≥1

log2 (1+ γc (wc))− log2ϕ

ζ‖wc‖
2
F + NcPA + PB

(10a)

s.t. log2 (1+ γk (wc)) ≤ log2ϕ, k ∈ K (10b)

log2 (1+ γc (wc))− log2ϕ ≥ R
min
sec (10c)

ϑp

∣∣∣hHp wc

∣∣∣2 ≤ I thP and ‖wc‖
2
F ≤ P

max
c (10d)

Obviously, problem (10) is non-convex due to the fractional
form of the objective function (10a). To tackle this difficulty,
we transform problem (10) into an equivalent subtractive one
through the following Proposition.
Proposition 1: Let η∗OBF be the maximum SEE. The opti-

mization problem (10) is equivalent to the following subtrac-
tive form problem,

g(ηOBF ) = max
wc,ϕ≥1

log2 (1+ γc (wc))− log2ϕ

−ηOBF

(
ζ‖wc‖

2
F + NcPA + PB

)
(11a)

s.t. (10b)-(10d) (11b)

if and only if g(η∗OBF ) = 0 holds.
Proof: To show the equivalence of problems (10) and (11),

we need to prove that they have the same optimal solution
when g(η∗OBF ) = 0. Since problems (10) and (11) have the
same constraints (10b)-(10d), we can define R1 as the set of
feasible solutions for both of them. By assuming

(
ŵ∗c , ϕ̂

∗
)
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to be the optimal solution to problem (10), for any feasible
solution

(
ŵc, ϕ̂

)
∈ R1, we have

η∗OBF =
log2

(
1+ γc

(
ŵ∗c
))
− log2ϕ̂

∗

ζ‖ŵ∗c‖
2
F + NcPA + PB

= max
(ŵc,ϕ̂)∈R1

log2
(
1+ γc

(
ŵc
))
− log2ϕ̂

ζ‖ŵc‖
2
F + NcPA + PB

≥
log2

(
1+ γc

(
ŵc
))
− log2ϕ̂

ζ‖ŵc‖
2
F + NcPA + PB

(12)

Due to the fact that ζ‖ŵc‖
2
F+NcPA+PB > 0, we can further

obtain the following equality and inequality,

log2
(
1+ γc

(
ŵ∗c
))
− log2ϕ̂

∗

−η∗OBF

(
ζ‖ŵ∗c‖

2
F + NcPA + PB

)
= 0 (13)

log2
(
1+ γc

(
ŵc
))
− log2ϕ̂

−η∗OBF

(
ζ‖ŵc‖

2
F + NcPA + PB

)
≤ 0 (14)

Combining (13) and (14), we find that the maximum value
of problem (11) equals zero at the optimal solution

(
ŵ∗c , ϕ̂

∗
)
.

Next, let
(
w̌∗c , ϕ̌

∗
)
be the optimal solution of problem (11) and

assume g(η∗OBF ) = 0. Then, we can obtain

log2
(
1+ γc

(
w̌∗c
))
− log2ϕ̌

∗

−η∗OBF

(
ζ‖w̌∗c‖

2
F + NcPA + PB

)
= 0 (15)

For any solution
(
w̌c, ϕ̌

)
∈ R1, we have

log2
(
1+ γc

(
w̌c
))
−log2ϕ̌−η

∗
OBF

(
ζ‖w̌c‖

2
F+NcPA+PB

)
≤ max
(w̌c,ϕ̌)∈R1

log2
(
1+ γc

(
w̌c
))
− log2ϕ̌

− η∗OBF

(
ζ‖w̌c‖

2
F + NcPA + PB

)
= log2

(
1+ γc

(
w̌∗c
))
− log2ϕ̌

∗

− η∗OBF

(
ζ‖w̌∗c‖

2
F + NcPA + PB

)
= 0 (16)

which yields

log2
(
1+ γc

(
w̌c
))
− log2ϕ̌

ζ‖w̌c‖
2
F + NcPA + PB

≤ η∗OBF =
log2

(
1+ γc

(
w̌∗c
))
− log2ϕ̌

∗

ζ‖w̌∗c‖
2
F + NcPA + PB

(17)

From (17), it is obvious that (w̌∗c , ϕ̌
∗) is also the optimal

solution of problem (10). Hence, problems (10) and (11) have
the same optimal solution when g(η∗OBF ) = 0, completing the
proof of Proposition 1. �

In what follows, we focus on the constrained optimization
problem (11). By defining Wc = wcwH

c and Hα = hαhHα

with α = {c, p, k|k ∈ K}, we can rewrite problem (11) as

max
Wc�0,ϕ≥1

log2

(
1+

ϑcTr (HcWc)

σ 2
c

)
− log2ϕ

−ηOBF (ζTr (Wc)+ NcPA + PB) (18a)
s.t. ϑcTr (HkWc) /σ

2
k − ϕ + 1 ≤ 0, k ∈ K (18b)

ϑcTr (HcWc) /σ
2
c − 2R

min
sec ϕ + 1 ≥ 0 (18c)

ϑpTr
(
HpWc

)
≤ I thp (18d)

Tr (Wc) ≤ Pmax
c (18e)

Rank (Wc) = 1 (18f)

In (18f), the non-convex constraint Rank (Wc) = 1 is due to
the fact Wc = wcwH

c , which makes problem (18) difficult
to solve. In many previous works, optimization problems
with rank-one constraint were widely handled by the ran-
domization method [22], which first ignores the rank-one
constraint to simplify the original optimization problem and
then select the best solution from a large number of randomly
generated rank-one candidates as an approximate optimal
solution. As the candidates from the random space do not
ensure a final optimal solution for the original optimization
problem, the chosen rank-one solution may be sub-optimal or
ineffective. To overcome this drawback, the penalty function
approach is adopted in this paper to find the optimal solution
of problem (18).

Motivated by the fact that

Rank (Wc) = 1⇐⇒ Tr (Wc)− λmax (Wc) = 0 (19)

the rank-one constraint (18f) can be replaced by a penalty
term Tr (Wc)−λmax (Wc)with the penalty coefficient ρ ≥ 1.
Then, problem (18) is further reformulated as

max
Wc�0,ϕ≥1

log2

(
1+

ϑcTr (HcWc)

σ 2
c

)
− log2ϕ

−ηOBF (ζTr (Wc)+ NcPA + PB)
−ρ (Tr (Wc)− λmax (Wc)) (20a)

s.t. (18b)-(18e) (20b)

Remark 1: Problem (20) is to maximize the original objec-
tive function (18a) and minimize the value of Tr (Wc) −

λmax (Wc), simultaneously. Once Tr (Wc)− λmax (Wc) ≈ 0,
it means that Wc has only one non-zero eigenvalue, and the
rank-one constraint in problem (18) is satisfied.

By defining

g1 (Wc, ηOBF ) = log2

(
1+

ϑcTr (HcWc)

σ 2
c

)
− ρTr (Wc)

−ηOBF (ζTr (Wc)+ NcPA + PB) (21)

and

g2 (Wc, ϕ) = log2ϕ − ρλmax (Wc) (22)

we can rewrite the optimization problem (20) as

max
Wc�0,ϕ≥1

g1(Wc, ηOBF )− g2(Wc, ϕ) (23a)

s.t. (18b)-(18e) (23b)

Since the logarithmic function is concave and λmax (Wc) is
convex, g2 (Wc, ϕ) is a concave function, which makes the
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objective function (23a) with the subtractive form of two
logarithmic functions non-convex. To tackle it, we apply the
D.C. approach [23] to transform the objective function (23a)
into a convex one. Assuming (Wc, ϕ) is a feasible solution
to problem (23), g2 (Wc, ϕ) can be approximated by its first-
order Taylor series expansion, i.e.,

g2 (Wc, ϕ) ≤ g2(Wc, ϕ)
+〈∇g2(Wc, ϕ), (Wc, ϕ)− (Wc, ϕ)〉 (24)

where ∇g2(Wc, ϕ) is the gradient of g2 (Wc, ϕ) at (Wc, ϕ),
which is given by

∇g2(Wc, ϕ) =
[
−ρumax(Wc)uHmax(Wc)

1/(ϕln2)

]
(25)

Here, we have employed the fact that the sub-gradient of
λmax(Wc) is umax(Wc)uHmax(Wc). Substituting (25) into (24)
yields

g2 (Wc, ϕ) ≤ g2(Wc, ϕ)+
ϕ − ϕ

ϕln2
−ρTr(umax(Wc)uHmax(Wc)(Wc −Wc)) (26)

Finally, by employing (26), the optimal solution to
problem (23) can be obtained through the following iterative
procedure,

(Wi+1
c , ϕi+1)

= max
Wc�0,ϕ≥1

g1(Wc, ηOBF )− g2(Wi
c, ϕ

i)−
ϕ − ϕi

ϕiln2
+ρTr(umax(Wi

c)u
H
max(W

i
c)(Wc −Wi

c))

(27a)
s.t. (18b)-(18e) (27b)

where (Wi+1
c , ϕi+1) and (Wi

c, ϕ
i) are the optimal solutions

at the i-th and (i + 1)-th iterations, respectively. Since the
objective function is concave and all constraints are linear,
problem (27) is convex and can be efficiently solved by
standard optimization packages, such as CVX [24].
Proposition 2: The iterative procedure in (27) generates

a sequence of improved solutions which converge to the
optimal solution of problem (23).

Proof: Following the iterative procedure in (27), one can
obtain

g1(Wi+1
c , ηOBF )− g2(Wi

c, ϕ
i)−

ϕi+1 − ϕi

ϕiln2
+ ρTr(umax(Wi

c)u
H
max(W

i
c)(W

i+1
c −Wi

c))

= max
(Wc,ϕ)∈R2

g1(Wc, ηOBF )− g2(Wi
c, ϕ

i)−
ϕ − ϕi

ϕiln2
+ ρTr(umax(Wi

c)u
H
max(W

i
c)(Wc −Wi

c))
≥ g1(Wi

c, ηOBF )− g2(W
i
c, ϕ

i) (28)

where R2 is the feasible set of problem (27). Furthermore,
with the help of (26), we have

g2(Wi+1
c , ϕi+1) ≤ g2(Wi

c, ϕ
i)+

ϕi+1 − ϕi

ϕiln2

−ρTr(umax(Wi
c)u

H
max(W

i
c)(W

i+1
c −Wi

c))

(29)

By substituting (29) into (28), we can further obtain

g1(Wi+1
c , ηOBF )− g2(Wi+1

c , ϕi+1)

≥ g1(Wi+1
c , ηOBF )− g2(Wi

c, ϕ
i)−

ϕi+1 − ϕi

ϕiln2

+ ρTr(umax(Wi
c)u

H
max(W

i
c)(W

i+1
c −Wi

c))

≥ g1(Wi
c, ηOBF )− g2(W

i
c, ϕ

i) (30)

Now, it can be observed that the proposed iterative proce-
dure (27) constructs a series of non-decreasing solutions to
increase the objective function (27a). In addition, by applying
the Cauchy-Schwarz inequality Tr(AB) ≤ Tr(A)Tr(B) and
the transmit power constraint of CBS, Tr(Wc) ≤ Pmax

c , we
can obtain the upper bound of the objective function as

g1(Wc, ηOBF )− g2(Wc, ϕ)

≤ log2

(
1+

ϑcTr(HcWc)
σ 2
c

)
≤ log2

(
1+

Pmax
c ϑcTr(Hc)

σ 2
c

)
(31)

Combining (30) and (31), the convergence of the iterative
procedure in (27) is guaranteed. �
By combining Proposition 1 with the penalty function

and D.C. approaches, we present an iterative algorithm to
search for the optimal solution (W∗c , ϕ

∗) that satisfies the
rank-one constraint Rank(W∗c ) = 1, and thereby obtain the
corresponding optimal solution w∗c =

√
λmax(W∗c )umax(W∗c )

for problem (9). The overall OBF scheme is described in
Algorithm 1. The outer iteration is to find ηOBF satisfying
g(ηOBF ) = 0 with the Dinkelbach’s method [25], while the
inner iteration is to obtain the rank-one solution for a given
ηOBF at each iteration.
Remark 2: According to the procedure of Algorithm 1,

the overall computational complexity to compute the optimal
solution of problem (9) is determined by the iteration num-
ber, the variable size and the number of constraints at the
outer and inner loops. For a given convergence tolerance ε,
the iterations excluding convex programming can be written
as O(log(ηupOBF/ε)log(g

up
OBF/ε)), where η

up
OBF = log2(1 +

Pmax
c ϑcTr(Hc)/σ 2

c )/(NcPA + PB) and gupOBF = log2(1 +
Pmax
c ϑcTr(Hc)/σ 2

c ). Since problem (27) has one Nc × Nc
matrix variable and one scalar variable, the interior point
method needs at most O((Nc + 1)3.5log(1/ε)) calculations at
each inner iteration [22]. As a result, the overall computa-
tional complexity can be roughly given by

O

(
log

(
1
ε

)
log

(
η
up
OBF

ε

)
log

(
gupOBF
ε

)
(Nc + 1)3.5

)
(32)

IV. PROPOSED ZFBF SCHEME
In the previous section, we have obtained an optimal solution
to maximize SEE for the considered CRN. However, the high
computational complexity makes it difficult to be applied in
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Algorithm 1 The Proposed OBF Scheme to Obtain the
Optimal Solution for Problem (9)

Function Outer_Iteration
1 Initialize i = 0 and η0OBF = 0.
2 repeat

(i) Call Function Inner_Iteration with ηiOBF to
obtain the optimal solution (wi

c, ϕ
i).

(ii) Update ηi+1OBF =
log2(1+γc(w

i
c))−log2ϕ

i

ζ‖wic‖
2
F+NcPA+PB

.
(iii) Set i = i+ 1.

until |ηiOBF − η
i−1
OBF | ≤ ε, where ε is the tolerance;

3 Obtain the maximum SEE η∗OBF = η
i
OBF and the

optimal solution w∗c = wi
c for problem (9).

end
Function Inner_Iteration(ηOBF )

4 Initialize i = 0 and the penalty coefficient ρ.
5 Find a feasible solution (W0

c, ϕ
0) for problem (27)

and calculate g0 = g1(W0
c, ηOBF )− g2(W

0
c, ϕ

0) for
given ηOBF .

6 repeat
(i) Find the optimal solution (Wi+1

c , ϕi+1) of
problem (27) for obtained (Wi

c, ϕ
i) and ηOBF by

using CVX.
(ii) Compute
gi+1 = g1(Wi+1

c , ηOBF )− g2(Wi+1
c , ϕi).

(iii) Set i = i+ 1.
until |gi − gi−1| ≤ ε, where ε is the tolerance;

7 Set the optimal rank-one solution Wc =Wi
c, and

calculate the corresponding optimal beamformer
through eigenvalue decomposition
wc =

√
λmax(Wi

c)umax(Wi
c) and set optimal ϕ = ϕi.

8 return wc and ϕ.
end

real-time scenarios. To overcome this problem, here we pro-
pose a sub-optimal solution via ZF-based BF. By assuming
Nc > K , the beamformer wc of CBS can be designed such
that all confidential signals leaked to EDs are completely
eliminated, namely,

HH
e wc = 0K×1 (33)

where He = [h1, · · · ,hK ]. By denoting wc =
√
Pcvc with

‖vc‖2F = 1, the original SEE maximization problem (9) can
be reformulated as

max
vc,Pc

log2(1+ Pcϑc
∣∣hHc vc∣∣2 /σ 2

c )

ζPc + NcPA + PB
(34a)

s.t. Pcϑc
∣∣∣hHc vc∣∣∣2 /σ 2

c ≥ 2R
min
s − 1 (34b)

Pcϑp
∣∣∣hHp vc∣∣∣2 ≤ I thp (34c)

HH
e vc = 0K×1 (34d)

Pc ≤ Pmax
c and ‖vc‖2F = 1 (34e)

As that the objective function in (34a) monotonously
increases with |hHc vc|

2 and the corresponding constraints
must be satisfied, the normalized BF vector vc can be
designed to maximize |hHc vc|

2 and lie in the null-space ofHe,
as given by [26]

vc =

(
INc −H⊥e

)
hc∥∥(INc −H⊥e

)
hc
∥∥
F

(35)

where H⊥e = He
(
HH
e He

)−1HH
e is the orthogonal projection

matrix ofHe. By employing (35), problem (34) can be further
simplified as the following optimization problem over Pc,

max
Pc

log2(1+ Pcϑc
∣∣hHc vc∣∣2 /σ 2

c )

ζPc + NcPA + PB
(36a)

s.t. Plowc ≤ Pc ≤ P
up
c (36b)

where Plowc = (2R
min
sec − 1)σ 2

c /(ϑc
∣∣hHc vc∣∣2) and Pupc =

min{I thp /(ϑp
∣∣∣hHp vc∣∣∣2),Pmax

c }. Due to the fractional form in
the objective function, it is difficult to directly obtain optimal
Pc in (36). To tackle this problem, we assume η∗ZF to be
the maximum SEE of the problem (36) and consider a non-
fractional form as

g(ηZF ) = max
Pc

log2(1+ Pcϑc
∣∣∣hHc vc∣∣∣2 /σ 2

c )

−ηZF (ζPc + NcPA + PB) (37a)

s.t. (36b) (37b)

Proposition 3: The optimization problem (36) and (37) are
equivalent if and only if g(η∗ZF ) = 0.

Proof: It can be proved in a similar manner as
Proposition 1. �
The above proposition shows that if we can find a value

of ηZF in (37) that satisfies g(ηZF ) = 0, the optimal solution
P∗c is also the optimal solution of (36). In what follows, we
present amethod to obtain the analytical solution for ηZF such
that g(ηZF ) = 0.
By differentiating the objective function in (37) with

respect to Pc, and setting it to zero, the saddle point can be
obtained as

Pc =
1

ηZFζ ln2
−

σ 2
c

ϑc
∣∣hHc vc∣∣2 (38)

Proposition 4: Let ηiZF =
log2(1+P

i−1
c ϑc

∣∣hHc vc∣∣2/σ 2c )
ζPi−1c +NcPA+PB

at the

i-th iteration, Pic calculated by (38) is always non-negative.
Proof: Since log2(1+ x) ≤ x/ln2, for a given P

i−1
c resulting

from the (i− 1)-th iteration, we have

Pic =
1

ηiZFζ ln2
−

σ 2
c

ϑc
∣∣hHc vc∣∣2

≥
ζPi−1c + NcPA + PB

log2(1+ P
i−1
c ϑc

∣∣hHc vc∣∣2 /σ 2
c )

1
ζ ln2
−

σ 2
c

ϑc
∣∣hHc vc∣∣2

≥

(
ζPi−1c + NcPA + PB

ζPi−1c
− 1

)
σ 2
c

ϑc
∣∣hHc vc∣∣2 ≥ 0 (39)
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This completes the proof of Proposition 4. �
By jointly using Proposition 4 and the power constraint (36b),
the optimal transmit power P∗c to problem (37) can be calcu-
lated by the following iterative procedure,

Pic =



Plowc ηiZF >
1

ζ ln2(Plowc + α−1)
1

ηiZFζ ln2
−

1
α

1

ζ ln2(Pupc + α−1)
< ηiZF

≤
1

ζ ln2(Plowc + α−1)
Pupc ηiZF ≤

1
ζ ln2(Pupc +α−1)

(40)

where α = ϑc
∣∣hHc vc∣∣2 /σ 2

c . Finally, we present a ZFBF
scheme to solve the SEE maximization problem (9) as sum-
marized in Algorithm 2. At the i-th iteration, for a given ηiZF ,
we employ (40) to obtain Pic, which is used to update η

i+1
ZF for

the next iteration. The iteration is stopped when g(ηZF ) ≈ 0
is satisfied and the corresponding optimal transmit power
is set to P∗c = Pic. Therefore, the sub-optimal ZF-based
solution of the SEE maximization problem (9) is obtained
as w∗c =

√
P∗cvc with vc given by (35).

Remark 3: The proposed ZFBF scheme consists of only
one loop, which has a linear time complexity only, i.e.
O(log(gupZF/ε)), where g

up
ZF = log2(1 + Pmax

c ϑc‖hc‖2F/σ
2
c ).

Hence, the proposed algorithm is low complexity and suitable
for real-time implementation.

Algorithm 2 The Proposed ZFBF Scheme to Find the
Sub-Optimal Solution for Problem (9)

1 Initialize i = 0 and P0c = Pupc .
2 Calculate vc using (35).
3 repeat

(i) Update ηi+1ZF =
log2(1+P

i
cϑc

∣∣hHc vc∣∣2/σ 2c )
ζPic+NcPA+PB

and compute

Pi+1c through (40).
(ii) Set i = i+ 1.
(iii) Calculate
g(ηiZF ) = log2

(
1+ Picϑc

∣∣hHc vc∣∣2 /σ 2
c

)
−

ηiZF (ζP
i
c + NcPA + PB).

until |g(ηiZF )| ≤ ε, where ε is the tolerance;
4 Obtain the optimal transmit power P∗c = Pic and the
corresponding ZF-based beamformer of problem (9) as
w∗c =

√
P∗cvc.

V. SIMULATION RESULTS
This section provides some simulation results to confirm the
validity of the proposed OBF and ZFBF schemes. Here, we
assume that each fading channel hα (α = {c, p, k|k ∈ K}) fol-
lows Rayleigh distribution and the covariance of AWGN is set
to σ 2

α = 1fN0 with 1f and N0 being the system bandwidth
and the single-sided noise spectral density, respectively. The
distance from CBS to CU and that to PU are set as dc = dp =
500m, and the ratio of the CBS-CU distance to the CBS-EDk

TABLE 1. System parameters.

distance is denoted as δd = dc/dk with δd = 1 except for
Fig.4. Other system parameters are summarized in Table I.
In addition, the convergence tolerance ε for the proposed
algorithms 1 and 2 is set to 10−3. All of the simulation
curves are calculated by averaging over 1000 random channel
realizations.

FIGURE 2. Average SEE versus Pmax
c with Nc = 6, K = 3 and δd = 1.

Fig.2 shows the average SEE of the proposed OBF and
ZFBF schemes versus the maximum transmit power of
CBSPmax

c . The number of transmit antennas at CBS isNc = 6
and the number of EDs is K = 3. It is observed that the OBF
scheme outperforms the ZFBF scheme in all transmit power
regions. This is because the optimal beamformer obtained
by OBF scheme has more intelligent interference manage-
ment than the sub-optimal beamformer calculated by ZFBF
scheme for the legitimate CU. Meanwhile, the gap between
the two proposed schemes is very small, implying that the
ZFBF scheme is effective. Here, the results of the SRM [6]
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and the EEM [12] schemes are also provided for comparison.
It is observed that the proposed OBF scheme achieves
the same performance as that of the SRM scheme when
Pmax
c ≤ 32dBm, since both schemes use full transmit

power Pmax
c to obtain the maximum SEE. After achieving

the maximum SEE, the proposed OBF scheme remains the
same whille the SRM scheme is degraded drastically as Pmax

c
increases. The performance gain of OBF scheme is kept
becasuse it ceases allocating more transmit power to avoid
sacrificing the achieved SEE. However, the SRM scheme
continues to employ full transmit power to obtain higher
SR. Finally, both of the proposed schemes give a significant
improvement in SEE as compared with the EEM scheme,
which focuses only on the EE and ignores the existence of
the multiple EDs.

FIGURE 3. Average SEE versus K with Nc = 6, Pmax
c = 36dBm and δd = 1.

Fig. 3 illustrates the average SEE against the number
of EDs. Here, the CBS has Nc = 6 transmit antennas and
the maximum transmit power is Pmax

c =36dBm. It is seen
that as the number of ED increases, the SEE reduces for both
proposed schemes. The performance degradation is due to the
proposed schemes trying to null out the signals leaked to all
the EDs to satisfy the secrecy rate constraint, leaving little
room to improve the CU’s channel. We can also observe that
the proposedOBF scheme achieves a better SEE performance
than the EEM and SRM schemes. However, the SEE perfor-
mance of ZFBF scheme drops quickly and cannot guarantee
the secrecy of the cognitive transmission when the number
of EDs K > 5, while the OBF scheme can still satisfy the
SEE requirement. This is because for the ZF-based solution
obtained by the ZFBF scheme, there is no degree-of-freedom
(DoF) to generate the null-spaces to all EDs.

Fig. 4 depicts the average SEE versus the number of trans-
mit antennas on the CBS for the values of the distance ratio
of the main channel and the wiretap channel δd = 0.5, 1, 1.5.
Here, we suppose there are K = 3 EDs and the maximum
transmit power is Pmax

c = 36dBm. It can be seen that
increasing the number of transmit antennas from 4 to 8 can

FIGURE 4. Average SEE versus Nc at CBS with K = 3 and Pmax
c = 36dBm.

enhance the SEE for both OBF and ZFBF schemes, owing
to the sufficient number of transmit antennas (Nc > K + 1)
that can completely eliminate the confidential signals leaked
to EDs. Specially, the ZFBF scheme achieves a significant
performance improvement due to the increased DoF which
helps the ZF-based sub-optimal beamformer not only null out
the signals received by all EDs but also allocate more power
to CU, resulting in a reduced gap between two proposed
schemes. Furthermore, we can also observe that the SEE
performance of the considered CRN is enhanced when δd
decreases, which corresponds to the case of CU being closer
to CBS than EDs. In addition, we can also observe that CRN
achieves a higher SEE with transmit antennas Nc = 8 than
Nc > 8. This is because the CBS equippedwithmore transmit
antennas results in increasing circuit power consumption of
CBS and thus degrading the SEE value for CRN. Therefore,
from the EE perspective, the CBS equipped with a large
number of antennas may decrease the SEE of CRN.

VI. CONCLUSION
In this paper, we have studied the SEEM problem in an under-
lay CRN in the presence of multiple EDs. As the originally
formulated optimization problem is in the max-min fractional
form, we have transformed it into an equivalent problem
with an additional rank-one constraint and then simplified the
equivalent problem to a convex one by jointly applying the
penalty function and D.C. approaches. Based on this special
effort, an OBF scheme has then been proposed to find the
optimal solution to the SEEM problem. Furthermore, a ZFBF
scheme has also been proposed, which achieves a sub-optimal
solution with a significantly reduced computational com-
plexity. Simulation results have been provided to show the
effectiveness and advantage of the proposed schemes.
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