
LOW GROUP DELAY INTERPOLATION FILTER FOR DELTA-SIGMA CONVERTERS 

ABSTRACT 

This paper shows how a relaxation of the high frequency 
requirements can help reducing the latency in linear phase 
interpolation filter, with an audio production system 
perspective. The reduced need for attenuation is justified 
when the interpolation filter is followed by a noise-shaping 
Delta-Sigma loop and an analog filtering stage. This is done 
by using a non-constant error weight of the stop-band. In 
order to use the Parks-McClellan method for finite impulse 
response filter design from Matlab, the stop-band is divided 
and weighted logarithmically. Quantitative results are shown 
for different example filter design, limited to situations where 
the Parks-McClellan converges well. It has been found that 
the shorter the filter length needed to respect a given filter 
template, the more relative group delay reduction can be 
achieved by relaxing the high frequency requirement. For 
filter size of the order of 100, reduction of group delay of 30% 
can be expected. For sake of simplicity, the Delta-Sigma loop 
is discussed but not analysed here. The idea is demonstrated 
in the context of Digital-to-Analog converters (DAC) but by 
duality could be applicable also to Analog-to-Digital 
converters (ADC). The main performance metric used is a 
relative reduction of the impulse response group delay. The 
results are also presented as impulse responses and power 
spectrum examples. The presented approach may be 
generalised to complex and non-linear phase filters and does 
not prevent the use of polyphase structures. 

Index Terms— DAC, ADC, Interpolation, Latency 

1. INTRODUCTION

Low latency systems have received particularly high level of 
attention recently in a wide variety of domain, with very 
recent increased needs in communication [1] and sound 
production [2][3]. Among the different sources of latency 
found in sound systems [2], a noise shaped Digital-to-Analog 
(DAC) converter introduces a delay linked to the 
interpolation filter impulse response. In [4], it is even stated 
that “the dominant latency here is the FIR filter within the 
sigma-delta DAC.”  

The research effort in interpolation filter has mainly been 
driven towards the reduction of the overall complexity. Two 
main approaches are 1) polyphase filters [5] and 2) using 
multiple interpolation stages [5][6][7][8]. In both cases, the 
idea is to apply filtering at lower working frequency. The 

polyphase filter method can represent any impulse response 
exactly. It can help reducing the latency by allowing a high 
level of parallelism. However, it does not allow reducing the 
group delay of the impulse response. The multiple stages 
method generally needs a longer equivalent single stage filter 
impulse response for a given filter requirements [2]. 
However, the overall delay in multistage filters can be 
reduced by allowing lower requirements for the later stages 
[9]. This is generally reasonable considering that a Delta-
Sigma noise-shaping loop [10] and low-pass analog filtering 
following the interpolation filter. 

The main idea presented in this paper is to apply to a single-
stage filter a similar filter requirement reduction as in the 
multiple-stage case. To do so, the stop band constant ripple is 
replaced by a logarithmically increasing ripple. Hence, at the 
stop-band frequency, the full attenuation is still obtained. 
Although non-linear phase FIR and IIR filters are frequently 
used in both single and multiple stages interpolation filters 
[6], the discussion is limited to linear FIR filters.  

The Chebyshev criterion is used for the FIR filter weights 
optimization. The Parks-McClellan algorithm [11] remains 
the gold-standard for finding the optimal FIR filters weights 
under Chebyshev criterion. The numerical results will use the 
Matlab® version of the algorithm. The Parks-McClellan 
algorithm is known to have convergence issues when filter 
length becomes high [12]. Hence, the numerical results will 
be shown for filter specifications that allows the Parks-
McClellan algorithm to converge to the optimal solution. 

It will be shown that for given pass-band ripple and 
attenuation at the stop-band frequency, a shorter symmetrical 
filter can be used with increasing stop-band ripple slope. It 
will be explained that fewer degrees of freedom (i.e. fewer 
ripples) will be necessary at high frequencies.  

The most interesting finding is that the lower the delay of the 
filter, the more relative reduction of the delay is to be 
expected. The filters obtained can obtain all the usual benefits 
from polyphase structures. Also, it is expected that such 
results could be generalized to non-linear phase filters [13], 
IIR filters and complex filters, with Chebyshev or other 
optimality criterion. 

By duality [10], the idea can be applied in Analog-to-Digital 
(ADC) if the band of interest is smaller than the Nyquist rate. 
If fact, the group delay reduction should be higher as the 
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oversampling ratio of the ADC is high. It can also used when 
the ADC and DAC are used jointly such as in linearity testing 
[14][15] or background calibration [16][17]. 

The paper is organized as follows: Section 2 presents the 
methodology. Section 3 shows a design example and general 
results are presented and discussed in Section 4. Finally, 
conclusions are drawn in Section 5. 

2. METHODOLOGY TO REDUCE THE LATENCY

This section presents the interpolation filters design methods 
that will be compared throughout this paper. The context of 
Delta-Sigma converter is explained. The performance 
comparison method is also developed. 

2.1. Interpolation Filter Coefficients Optimization 

Let suppose a sampled signal 𝑠଴. In a Delta-Sigma DAC, the 
first step is to upsample the signal by a ratio called 
oversampling ratio (OSR.) This upsampled signal 𝑣଴ is sent 
to an interpolation filter with an impulse response ℎ(𝑛). 

Two interpolation filters design methods for ℎ(𝑛) are 
considered, a classical method and the proposed variation.  

1) Parks-McClellan Algorithm

The Parks-McClellan algorithm [11] is a widely used method 
to optimize FIR filter coefficients. It does so by finding 
iteratively in the frequency domain points which are 
extremums for an interpolation polynomial. Although it is 
done in the frequency domain, it does not require full domain 
transformation. A direct relation between the polynomials 
and the time domain coefficients exists. 

The Parks-McClellan algorithm seeks to minimize the 
maximum error on the filter template. This optimisation 
objective is generally called the Chebyshev criterion. 

Most of programming software including signal processing 
package have the algorithm implemented, sometimes under 
the name of Remez-Exchange algorithm. The Matlab® 
version of the algorithm is found under the function name 
firpm. It is this function that is used here. 

The Matlab’s Parks-McClellan function allows to define 
multiple frequency bands with different targets and different 
weights to the errors. While the targets can be a function of 
the frequency, the weights can only be constant within a 
single frequency band. 

In this paper, the most basic use of Parks-McClellan function 
is used, namely the design of a symmetric (therefore linear 
phase) low-pass filter. It is used for comparison to the 
proposed variation presented next. 

The parameters of the low-pass filter are the pass-band 
frequency 𝑓௣, the stop-band frequency 𝑓௦, the pass-band ripple 
𝛿௣, stop band ripple 𝛿௦. The filter length 𝑁ଵ is determined by 
these four parameters. 

The group delay of such a filter is the half of the filter length 
𝑁ଵ. 

2) Proposed Variation

The proposed variation resides in the stop-band weighting 
function. Instead of using a constant weight, it is proposed to 
decrease the weight as frequency increases, hence reducing 
the overall effective constraint on the filter design. 

Although the weighting function in the stopband could take 
lots of form, a simple linear one is considered. Hence, a new 
parameter is necessary. It is the slope of the relaxation 𝛽. This 
slope is found on the when the interpolation error is measured 
in decibels with respect to the logarithm of the frequency. The 
four slopes considered here will be 20, 40, 60 and 80 
dB/decade.  

Because the Matlab® does not allow continuous weighting 
function, logarithmically spaced multiple bands separated by 
an epsilon (approx. 1e-15 Hz) with decreasing weights are 
used. However, when to much bands are used, convergence 
problem arises. Hence, the number of bands is chosen to be a 
tenth of the filter length. This approach will lead to slightly 
worse performance of the proposed method, especially for 
shorter filter, mostly because the band at the stop-band 
frequency becomes larger. 

The group delay of such the proposed filter is again the half 
of the filter length 𝑁ଶ. 

2.2. Note on the Delta-Sigma Loop 

In a digital-to-analog Delta-Sigma converter [10], the 
interpolation filter is followed by a Delta-Sigma loop. The 
Delta-Sigma loop is defined principally by its Noise-
Transfer-Function (NTF). The NTF is principally defined by 
its order. In the frequency domain, the NTF has a slope 
similar to the inverse of weighting proposed. The slope is 
generally 20dB/decade times the order of the NTF. Hence, by 
choosing reasonable weighting slope for the interpolation 
filter with respect to the NTF order, it is possible to ensure 
that the added noise stays well below the residual noise 
shaped by the NTF. It is expected that the design of the 
interpolation filter will depend strongly on the NTF. This 
aspect is not treated in this paper. 

The Delta-Sigma loop has also a Signal-Transfer-Function 
(STF). It is possible to have STF that are completely 
transparent, i.e. to have 𝑆𝑇𝐹 = 1. This case is supposed. The 
example shown will omit the noise caused by the Delta-
Sigma loop and concentrate on the residual noise of the 
interpolation filter. 

2.3. Analog Filtering 

The digital-to-analog Delta-Sigma converter generally 
finishes by an analog low pass filter. In order to emulate the 
impact of such filter, a Butterworth filter is included. 
Although this filter adds to the overall delay, it is already 
present in the converter. Since it is considered that the 



interpolation filter residual noise is much lower that the 
Delta-Sigma loop noise, it is reasonable to suppose that no 
modification of the analog filtering part is required. 

2.4. Performance Comparison Method 

To quantify the reduction of group delay, a design of filter 
with the classical is done with certain specification, yielding 
a filter ℎଵ, of length 𝑁ଵ. This filter might not exactly match 
the specification, generally because the filter length must be 
an integer number. A second design is done with the proposed 
variation. The filter length is chosen such as to have slightly 
better performances in terms of weighted error than with the 
classical method. The filter obtained is named ℎଶ of length 
𝑁ଶ. The relative group delay reduction is simply: 

 𝐺𝐷𝑅𝑅 =
ேభିேమ

ேభ
, (1) 

Where 𝐺𝐷𝑅𝑅 stands for Group Delay Reduction Ratio.  

It is well known that for large filters, the Parks-McClellan  
algorithm is prone to convergence problem [12]. While, 
approaching the thousand coefficients suboptimal results may 
appear, larger filter may simply not converge. Hence, the  
comparison will be limited to specifications that yields 
reasonable convergence. Also, because too short filters 
reduce the number of frequency bands that can be used, as 
stated before, the analysis is also limited to filters that have 
more than 50 coefficients. 

3. TYPICAL DESIGN EXAMPLE 

This section presents an illustrative example in sound 
production context of designs using the classical method and 
the proposed variation. The simulation conditions are given 
and the graphs of the results explained. 

3.1. Design Example Simulation Conditions 

The simulation condition for the Design example are shown 
in Table 1. 

These conditions chosen are an example of relatively short 
filters in comparison to what is simulated later. The frequency 
of the input sinus was chosen to be exactly periodic relative 
to the input sampling frequency, thus avoiding any 
windowing problem in frequency domain analysis. Also, the 
plots are scale to an amplitude of approximately 1 and with a 
time offset to remove the initial transient phase. 

 

Table 1 Simulation Conditions 

Input Sinus Frequency  8820 Hz 
OSR  32 
Input sampling frequency  44.1 kHz 
Pass-band frequency 𝑓௣ 12 kHz 
Stop-band frequency 𝑓௦ 22.05 kHz 
Pass-band ripple 𝛿௣ 10 dB 
Stop-band ripple 𝛿௦ 40 dB 
Slope of the relaxation 𝛽 40 dB/decade 
Analog filter order  2 
Analog filter Stop-Band Frequency  18 kHz 

 

 

Fig. 2.  Transfer functions of the classical filter H1 (a) and 
proposed filter H2 (b). 
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Fig. 1.  Impulse responses of the classical filter h1 (a) and 
proposed filter h2 (b).  
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3.2. Design Example Results 

The filter length obtained were 𝑁ଵ = 126 for the classical 
metho and 𝑁ଶ = 88 for the proposed variation. This yields a 
GDRR of 30%. In terms of time delay, the proposed filter has 
a group delay of 31µs compare to 45µs for the classic filter a 
reduction 14µs. It worth noting that as the group delay 
reduces, so the complexity and pre-ringing artefact, both by 
the same ratio as the GDRR.  

The Fig. 1 presents the obtained time domain interpolation 
filter impulse response for classical method (ℎଵ) and the 
proposed variation (ℎଶ). It is clear that the proposed filter is 
shorter. 

The Fig. 2 shows the power spectrum of the two filters. The 
staircase weighting function can be easily deducted from the 
proposed filter power spectrum. It is interesting to note that 
at very high frequency, the residual error power is above the 
desired signal power. This noise will however be easily 
removed by the analog filter. Also, the weights of this region 
could be increased with only minor effect on the group delay 
to reduce the signal dynamics if necessary. 

The Fig. 3 shows the interpolated signal of a sinusoidal input 
by the two method along the input signal given as reference. 
The residual noise is clearly much stronger for the proposed 

method, but again, it is mostly at high frequency which can 
be easily removed. 

The Fig. 4 presents the classical filter and the proposed filter 
results after analog filtering in the same graph. To remove 
confusion, the input signal was not shown because the second 
order filter used to emulate the analog part introduces a delay 
of 27 µs. This delay would be present anyway in a complete 
Delta-Sigma converter. 

Fig. 3.  Filtered upsampled signals for the classical filter (a) and 
proposed filter (b). The input is an 8820Hz sinusoidal signal 
showed with “x” points. 
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Fig. 4.  Analog filter output signals for the classical filter (a) and 
proposed filter (b). The input is an 8820Hz sinusoidal signal. 

Fig. 5.  Power spectrum of analog filter output signals for the 
classical filter (a) and proposed filter (b). The input is an 
8820 Hz sinusoidal signal. 
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The Fig. 5 finally shows the frequency domain representation 
of the signals after analog filtering. For the proposed signal, 
the noise level at high frequency is strongly reduced. 
Moreover, in the case of sound production context, this 
residual noise being of high frequency is not audible. 
However, it is useful to keep it under control to avoid 
saturation problem of the speakers. With reasonably good 
design, it is expected that the high frequency residual noise of 
the interpolation filter can be much lower than the Delta-
Sigma loop noise-shaped residual noise after filtering from 
the Delta-Sigma loop (Signal Transfer Function [10]) analog 
filtering by possibly orders of magnitude. 

4. RESULTS AND DISCUSSION 

This section presents the results of the Group Delay 
Reduction Ratio obtained with respect to some parameters 
and discusses their implications. 

It is shown that with everything else being equal, the GDRR 
is higher for lesser quality filters, i.e. with lower stop-band 
attenuation filter in Fig. 6 and with larger distance between 
the pass-band frequency and stop-band frequency in Fig. 7.  

Comparing the Fig. 7 (a) and (b) with pass-band ripple of 
20 dB and 10 dB respectively, when the pass-band frequency 
is high, there is clearly better GDRR for the filter of lesser 
quality in (b). On the other hand, when the pass-band 
frequency is low, the opposite is found. It is expected that the 
reason is that the stairs in in the staircase weighting function 
are much larger for the smaller filter, hence yielding a more 
constrained specification.  

The Fig. 8 reuse the data presented in Fig. 7 (a). It shows the 
number of coefficient reduction with respect to the number of 
filter coefficients for the classical method. It shows clearly 
that the number of coefficients saved becomes greater as the 

 

Fig. 6.  GDRR for different stop band attenuation at relaxation 
slope 𝛽 ranging from 20 to 80 dB/decade. The pass-band ripple 
is limited at 10 dB, the pass-band frequency is 20 kHz and the 
stop-band frequency is 22.05 kHz. 

 

(a) 

 

(b) 

Fig. 7.  GDRR vs stop band frequency at relaxation slope 𝛽 
ranging from 20 to 80 dB/decade. The stop-band attenuation is 
40 dB and the stop-band frequency is 22.05 kHz. In (a), the pass-
band ripple is at 20 dB while it is at 10 dB in (b). 

 

Fig. 8.  Number of filter coefficient reduction vs the classical 
filter length at relaxation slope 𝛽 ranging from 20 to 80 
dB/decade. The stop-band attenuation is 40 dB, the stop-band 
frequency is 22.05 kHz and the pass-band ripple is at 20 dB. The 
data points are taken from the same simulation as in fig. 7 (a). 
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classical filter is longer. The delay is more reduced for longer 
filter. There is therefore still a gain to use the proposed 
method even when the filter length is long. 

With reasonably good design, it is expected that the high 
frequency residual noise of the interpolation filter can be 
much lower than the Delta-Sigma loop noise-shaped residual 
noise after filtering from the Delta-Sigma loop (Signal 
Transfer Function [10]) analog filtering by possibly orders of 
magnitude. However, if the method is pushed to the limit, 
obviously the residual noise will become significative with 
respect to the Delta-Sigma loop noise. In that case, spurious 
effects may appear. While a full study of the interaction 
between the residual interpolation error and the Delta-Sigma 
Loop is out of the scope of this paper, the two main questions 
arising from it should be mentioned:  

1) Does the added high frequency noise can trigger 
instabilities in the Delta-Sigma loop, especially since 
the residual noise, although somewhat random, is not 
identically distributed. From a Surrogate Analysis point 
of view [18], the residual noise has likely non-random 
phase.  

2) Does the added noise may cause saturation, resulting in 
the need of reducing the output amplitude. 

5. CONCLUSION 

The most crucial aspect of the paper was that the relaxation 
of the interpolation filer requirements at high frequency 
should be considered to reduce the group delay when a Delta-
Sigma converter is used. The analysis showed that the relative 
reduction of the group delay was stronger for already filters 
of shorter length. The results could be further improved by 
using a modified version of the Parks-McClellan algorithm 
that would allow a continuous weight function. Similar 
results should be obtainable in Analog-to-Digital converters 
(ACD) as there is duality between the DACs and ADCs [10]. 
Further research should be done to explore the interaction 
between the interpolation stop-band weighting variation, the 
Delta-Sigma loop and the analog filtering. 
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