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Abstract

Deep learning (DL) is attracting considerable attention in the design of communication
systems. This paper derives a deep unfolded conjugate gradient (CG) architecture for
large-scale multiple-input multiple-output detection. The proposed technique combines
the advantages of a model-driven approach in readily incorporating domain knowledge
and deep learning in effective parameters learning. The parameters are trained via back-
propagation over a data flow graph inspired from the iterative conjugate gradient method.
We derive the closed-form expressions for the gradients for parameters training and dis-
cuss early results on the performance in a statistically identical and independent distributed
channel where the training overhead is considerably low. It is worth noting that the loss
function is based on the residual error that is not an explicit function of the desired signal,
which makes the proposed algorithm blind. As an initial framework, we will point to the
inherent issues and future directions.

1 INTRODUCTION

Propagation channel modelling, hardware imperfections and
design of optimal signalling and detection schemes to ensure
reliable communication links are becoming mature subjects
in communication system design. In order to provide tan-
gible benefits, any machine learning (ML)- or deep learning
(DL)-based approach must pass a high bar of performance
[1]. Zappone et al. [2] have provided a thorough discussion on
ML-based approaches for wireless communication networks’
design and operation, whereas Björnson et al. [3] have envi-
sioned to use ML as an instrumental tool to enable a truly
intelligent massive multiple-input multiple-output (MIMO).
Both works agreed on the fact that the grand question is not
whether ML will be integrated but rather how and when this
integration will be implemented. Large-scale MIMO detection
is one of the main disruptive technology directions for 5G [3,
4]. In fact, massive MIMO has now made its way to 5G as one
of the means to substantially improve both spectral and energy
efficiencies [3]. As a matter of fact, base stations (BSs) with 64
fully digital transceiver chains are commercially deployed and
the key component of massive MIMO has made its way into the
5G standard [4, 5]. Nevertheless, Qu et al. [6] have pointed out
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that massive MIMO implementation continues to be at least as
exciting as massive MIMO theory. Massive MIMO is a form
of multiuser MIMO where the number of serving antennas at
the base transceiver station (BS) is an order of magnitude larger
than the number of user terminals served within each radio
resource element. Given a large number of antennas, reliance on
time division duplex (TDD) channel reciprocity is essential [3].
Because of its advantages in terms of very high spectral effi-

ciency (sum rates), increased reliability and power efficiency,
massive MIMO has been the subject of a large number of
research activities [7]. Under favourable channel conditions
and/or as the number of antennas increases, the users’ channels
are mutually orthogonal which makes linear processing based
on maximum ratio combining (MRC), zero-forcing (ZF) detec-
tion or minimummean squared error (MMSE) detection, a suit-
able and optimal choice [7–9]. Many works on linear and low
complexity processing are proposed in [9–12], which raise the
performance bar to pass even higher. The detection/precoding
problem based on ZF or MMSE technique is an arithmetic
operation with cubic computational complexity in the order of
the matrix dimension. To reduce the implementation complex-
ity, matrix inversion approximations such as Neumann series
expansion (NSE) is proposed [9]. A technique based on Gauss-
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Seidel (GS) was shown to outperform NSE due to its fast con-
vergence at considerably low computational complexity [10].
However, this comes at the expense of higher latency and lower
throughput [10]. It has actually been shown that the NSE per-
formance degrades as the number of UTs increases [11]. To
counter the load increase effect, GS can still afford using more
iterations while maintaining lower computational complexity,
albeit at the expense of reduced throughput [10]. It has, there-
fore, been argued to resort to exact matrix inversion [12]. On
the other hand, it has also been argued that these centralized
processing techniques still impose stringent constraints on the
interconnects’ bandwidth between the massive MIMO radio
heads and the central processing unit. Distributed, or decentral-
ized, massive MIMO processing has been introduced to over-
come such limitations [13, 14]. On the other hand, to sup-
port ultra-reliable low-latency communications, low latency and
high throughput processing is required. As such, we introduce
a recursive Gram matrix inversion update method wherein the
inversion of the Gram matrix is performed by exploiting matrix
inversion update of a matrix in the form ofH HH when a new
column is added/updated to a complex-valued matrixH [12].
It is worth mentioning that these signal detection schemes

can be readily used for downlink precoding in a single cell sce-
nario. In a multi-cell scenario, the reader is referred to [15–18].
In [18], Kazemi et al. considered a multi-cell scenario with noisy
CSI where a fully cooperative cellular structure is presented first,
and then, to mitigate the overhead, a limited cooperation set-
ting, where the amount of the exchanged CSI among the cells
is significantly decreased, is proposed. On the other hand, a low
overhead centralized construction for constant envelop precod-
ing (CEP), which employs limited cooperation among the cells
while providing higher system throughput, is discussed in [15].
To achieve the minimum feedback overhead, a distributed real-
ization of CEP is proposed. Furthermore, a new optimization
problem is solved to compensate for the effects of pilot con-
tamination [15, 16].
Recent contributions seem to advocate for the potentials of

using DL for communication system design [1, 19–21]. Even
if most signal processing algorithms have solid well-established
roots in statistics and information theory for tractable math-
ematical models, it remains that a practical system has many
impairments and non-linearities, which can be roughly captured
by such models [22]. For this reason, a DL-based communica-
tions system, which is tailored for a specific hardware config-
uration and channel, might be able to better optimize in the
presence of such impairments. It has been shown that neu-
ral networks (NNs) are universal function approximators and
has shown a notable ability for algorithmic learning [23]. As
such, some initial insights and findings, using state-of-the-art
DL tools, on signal compression [20] and channel decoding [21]
are revealed. On the other hand, massively parallel processing
architectures, such as graphic processing units, have shown to
be very energy efficient with remarkable computational capabil-
ities when fully exploited by concurrent algorithms [24].
So far, the goal in introducing DL is to either improve parts of

existing algorithms or to completely replace them with an end-
to-end approach [25, 26]. As an example, O’Shea and Hoydis

[1] have discussed several promising new applications of DL to
the physical layer. They have introduced a new way of address-
ing a communication system as an end-to-end reconstruction
optimization task using autoencoders. On the other hand, two
different deep architectures for point-to-point MIMO detection
are introduced in [19] wherein the promising architecture relies
on unfolding the iterations of a projected gradient descent algo-
rithm into a network.
Despite the historical context and related works (refer to the

introduction section of [1] and [19]), our primary approach is
relying on the deep unfolding of existing iterative algorithms by
mainly interpreting every iteration as a set of layers. The deep
unfolding of existing iterative algorithms is discussed in [27]. It
has been recently applied in the context of MIMO detection and
channel decoding in [19] and [28], respectively.

There is a general consensus that ultra-large-scale MIMO,
at the infrastructure level, and machine-learning aided physi-
cal layer algorithms, at the protocol/algorithmic level, are key
enablers for the next generation of communication systems [7]
and [32]. There is also a common interest to investigate differ-
ent ML and DL architectures (such as deep NNs-DNN, deep
unfolding, etc.) and framework (such as reinforcement learn-
ing, transfer learning, etc.) for the sole purpose to gain more
insights on the potential of leveraging these tools and frame-
works to outperform the baseline models [29, 33]. As a major
contribution, we propose a basic deep unfolded (model-driven
approach) conjugate gradient (CG) architecture wherein the
parameters are learned via backpropagation. We first unfold the
iterative CGmethod to infer the data flow graph over which the
gradient is computed. We then adopted a loss function based on
the residual error which is not an explicit function of the training
data. As such, the architecture exhibits following key features.

1. The parameters are trained rather than being explicitly com-
puted using the data flow graph based on unfolding the iter-
ative CG algorithm. The closed-form expressions of the gra-
dients of the loss function with respect to the parameters are
derived. This enables (for future works) the use of state-of-
the-art methods mainly used in transparent ML for interpret-
ing and understanding such networks [35].

2. The loss function is set to be the squared norm of the resid-
ual error term, which is not an explicit function of the training data.
Therefore, the approach is blind so that no explicit and ded-
icated training data is required. Nevertheless, the appendix
addresses another approach where the loss function is an
explicit function of the training data.

3. The architecture can be readily incorporated as part of an
end-to-end communication system learning process where
the propagation of the gradient is seamlessly supported (see
our work [34]). This is in line with the visionary statement
in [2] wherein it is argued that the optimal design of smart
radio environments needs to be tackled by taking the benefits
of both model-based and data-driven (or simulation-driven)
approaches and by leveraging the concept of transfer learn-
ing [34]. In addition, the regularity of the network lends itself
to transfer learning to update the last stages only to enable
on-line training [33].
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4. The deep unfolding can be seen as a means of incorporat-
ing domain knowledge experts in order to aid in speeding up the
training phase. For instance, Nachmani et al. [29] used radio
transformer network (RTN) as domain knowledge experts
to compensate for the carrier frequency offset. It is argued
that the benefit of such an arrangement may be a reduced
complexity and more flexibility regarding imprecise knowl-
edge about the channel [29].

Notations: This paper adopts the following notations: (·)H

represents the Hermitian transpose operator while (·)T and
(·)−1 represent the transpose and the matrix inverse operators,
respectively. Matrices and column-vectors are denoted by bold-
face capital and boldface small letters, respectively. We convert
a K × K complex-valued matrix Ā ∈ ℂK×K to a 2K × 2K real-
valued one A ∈ ℜ2K×2K using the following transformation

A = [
Re(Ā) −Im(Ā)
Im(Ā) Re(Ā)

] ∈ ℜ2K×2K . Similarly, we convert a K × 1

complex-valued vector s̄ ∈ ℂK×1 to a 2K × 1 real-valued vector

s ∈ ℜ2K×1 using the following transformation s = [
Re(s̄)
Im(s̄)

] ∈

ℜ2K×1, where Re(∙) and Im(∙) denote the element-wise real
and imaginary parts, respectively. These transformations are
used in Section 2.2.
The paper is organized as follows: Section 2 presents the

uplink signal model and the CG-based detection technique. Sec-
tion 3 details the proposed deep unfolded CG method. Early
performance results are discussed in Section 4. Finally, the con-
clusions are drawn and some future research directions are out-
lined in Section 5.

2 SIGNALMODEL AND CG-BASED
DETECTION

2.1 Signal model

We consider an uplink transmission where K single antenna
users are communicating with a BS equipped with M antennas
(whereM ≫ K ) in TDD duplex mode using the OFDM mod-
ulation scheme. For the sake of simplicity, we consider a base-
band equivalent channel and expressions per subcarrier where
the subcarrier index is suppressed. The data signal of the kth
user is denoted by s̄k ∈ ℂ and is normalized to unit power. The
vector h̄k ∈ ℂM×1 represents the corresponding channel which
is modelled, for simulation purposes, as a flat Rayleigh fading
channel vector whose entries are assumed to be independent
and identically distributed (i.i.d.) with zero mean and unit vari-
ance. We model the received signal at the BS as

ȳ = H̄s̄ + n̄ (1)

where ȳ ∈ ℂM×1, H̄ = [ h̄1 h̄2 ⋯ h̄K ] is the channel matrix
and s̄ = [ s̄1 s̄2 ⋯ s̄K ]T . n̄ ∈ ℂM×1 represents the additive
receiver noise vector whose entries have a zero mean and a vari-
ance equal to 𝜎2.

TABLE 1 CG-based detection applied to Equation (3)

1. Inputs: yMF and A

2. Initialization:
2.1 r(0) = yMF

2.2 s(0) = [ 0 ⋯ 0 ]T ∈ ℜ2K×1

2.3 p(0) = s(0)

2.4 q(0) = Ap(0)

2.5 x(0) = Ar(0)

2.6 𝛾(0) = ‖x(0)‖22
2.7 𝛼(0) = 𝛾(0)∕‖q(0)‖22

3. For 𝓁 = 1, 2,… , LMAX3.1 q(𝓁) = Ap(𝓁−1)

3.2 𝛼(𝓁) = 𝛾(𝓁−1)∕‖q(𝓁)‖22
3.3 s(𝓁) = s(𝓁−1) + 𝛼(𝓁)p(𝓁−1)

3.4 r(𝓁) = r(𝓁−1) − 𝛼(𝓁)q(𝓁)

3.5 x(𝓁) = Ar(𝓁)

3.6 𝛾(𝓁) = ‖x(𝓁)‖22
3.7 p(𝓁) = x(𝓁) + (𝛾(𝓁)∕𝛾(𝓁−1) )p(𝓁−1)

End for

4. Output: ‚s = s(LMAX )

The ZF detection technique applies W̄ = (H̄H H̄)−1H̄H =

[ w̄1, … , w̄K ] ∈ ℂM×K to the received signal ȳ to estimate the
users’ transmitted signal s̄ as

s̄ = W̄ȳ =
(
H̄H H̄

)−1
H̄H ȳ =

(
H̄H H̄

)−1
ȳMF = Ā−1ȳMF

(2)

where ȳMF

Δ
= H̄H ȳ.1 Notice that the MRC technique considers

this approximationĀ−1 ≅ (diag(H̄H H̄))−1.

2.2 CG technique

Equation (2) can be readily solved iteratively using CG tech-
niques (refer to page 214 of [30]). For convenience, we first con-
vert the baseband complex-valued problem to a real-valued one
where we reformulate Equation (2) as

yMF =

[
Re

(
ȳMF

)
Im

(
ȳMF

)] =

[
Re

(
Ā
)

−Im
(
Ā
)

Im
(
Ā
)

Re
(
Ā
) ][

Re (s̄)

Im (s̄)

]

+

[
Re

(
H̄H n̄

)
Im

(
H̄H n̄

)]
= As + z

(3)

where A = [
Re(Ā) −Im(Ā)
Im(Ā) Re(Ā)

] ∈ ℜ2K×2K , s = [
Re(s̄)
Im(s̄)

] ∈

ℜ2K×1 and z = [
Re(H̄H n̄)
Im(H̄H n̄)

] ∈ ℜ2K×1. The CG technique is,

therefore, summarized in Table 1.

1 Subscripts MRC (maximum ratio combining) and MF (matched filter) are interchangeably
used through this paper.
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FIGURE 1 (a) CG-based data flow graph for 5 stages (layers) LMAX = 5 and b) the 𝓁th stage

3 DEEP UNFOLDING CG

3.1 Data flow graph for the CG algorithm

Prior to the deep unfolding transformation, Equation (3.7)
in Table 1 is written as p(𝓁) = x(𝓁) + 𝛽(𝓁)p(𝓁−1) while Equa-
tion (3.2) is skipped so that the problem has 2LMAXtuning
parameters to train, namely𝛼(𝓁) and 𝛽(𝓁) for 𝓁 = 1, 2,… , LMAX.
In addition, the matrix A can be replaced with B(𝓁) = A +

𝜌(𝓁)I2K to consider additional LMAXtuning parameters 𝜌(𝓁) for
𝓁 = 1, 2,… , LMAX. The parameters 𝛼(𝓁) and 𝛽(𝓁) preserve
the CG algorithm structure while 𝜌(𝓁) can be viewed as a
parameter that learns the inherent noise variance (as in the
MMSE, problem formulation). For the sake of simplicity in
introducing a simple canonical framework for deep unfolded
CG-based detection method, we limit the current structure
to these 3LMAX parameters. The algorithm structure can be
enhanced to include more parameters and non-linear activation
functions.
Deep unfolding the CG algorithm entails unfolding the

LMAX iterations into LMAX stages (layers) as shown in Figure 1.
Figure 1(a) depicts LMAX = 5 data flow graph which comprises
nodes corresponding to the different operations in the iterative
CG algorithm, and the directed edges corresponding to the data

flow between the operations. In this case, the 𝓁th iteration of
the CG algorithm corresponds to the 𝓁th stage of the data flow
graph. In each stage of the graph, there are five steps as shown
in Figure 1(b).

3.2 Network training and gradient
computation

The loss function is based on the L2 norm applied on
r(LMAX)which represents the mean squared error so that

Loss
(
Θ;A,yMF

)
=
‖‖‖r(LMAX)‖‖‖22 (4)

where Θ = {𝛼(𝓁), 𝛽(𝓁), 𝜌(𝓁)}
LMAX
𝓁=1 . The loss function Loss

(Θ;A,yMF) is minimized over Θ = {𝛼(𝓁), 𝛽(𝓁), 𝜌(𝓁)}
LMAX
𝓁=1 param-

eters. The gradient of the loss function is computed with respect
to every parameter using backpropagation over the deep net-
work of Figure 1. In the forward pass, we process the data in
the 𝓁thstage as shown in Figure 1(b) while the gradients are
computed in the reverse direction (the backward pass). For the
sake of simplicity, we compute the gradient for LMAX = 5 and
then generalize for any 𝓁thstage.



OUAMEUR AND MASSICOTTE 439

The gradient of the loss function Loss(Θ;A,yMF)w.r.t 𝛼
(5) is

𝜕Loss(Θ;A,yMF)
𝜕𝛼(5)

=
𝜕
‖‖‖r(5)‖‖‖22
𝜕𝛼(5)

=
𝜕
‖‖‖r(5)‖‖‖22
𝜕r(5)

𝜕r(5)

𝜕𝛼(5)
.

=
(
r(5)

)T (
−q(5)

) (5)

Applying the chain rule one can compute the gradient w.r.t
𝛼(𝓁) as

𝜕Loss
(
Θ;A,yMF

)
𝜕𝛼(𝓁)

= −
(
r(LMAX ))T q(𝓁). (6)

Similarly, the gradient w.r.t 𝛽(4) is computed as follows2

𝜕Loss(Θ;A,yMF)
𝜕𝛽(4)

=
𝜕
‖‖‖r(5)‖‖‖22
𝜕𝛽(4)

=
𝜕
‖‖‖r(5)‖‖‖22
𝜕r(5)

𝜕r(5)

𝜕𝛽(4)

=
𝜕
‖‖‖r(5)‖‖‖22
𝜕r(5)

(
𝜕r(5)

𝜕q(5)

𝜕q(5)

𝜕p(4)

𝜕p(4)

𝜕𝛽(4)

)
=
(
r(5)

)T (
−𝛼(5)

)
B(4)p(3)

= (r(LMAX ) )T (−𝛼(LMAX))B(LMAX−1)p(LMAX−1−1).

(7)

Applying the chain rule one can compute gradient w.r.t 𝛽(𝓁),
for 𝓁 < LMAX − 1, as

𝜕Loss
(
Θ;A,yMF

)
𝜕𝛽(𝓁)

= −𝛼(LMAX)
(
r(LMAX)

)T
B(𝓁)p(𝓁−1)

𝓁+1∏
n=LMAX−1

𝛽(n). (8)

Finally, the gradient w.r.t. 𝜌(𝓁) is computed as

𝜕Loss
(
Θ;A,yMF

)
𝜕𝜌(𝓁)

= −𝛼(𝓁)
(
r(LMAX)

)T
p(𝓁−1). (9)

Note that the loss function (Equation (4)) is not an explicit

function of the desired signal s = [
Re(s̄)
Im(s̄)

] ∈ ℜ2K×1 which

makes the proposed architecture blind. It would not be the
case if the loss function is defined as Loss(Θ;A,yMF, s) =‖s(LMAX) − s‖22, which is an explicit function of the desired sig-
nal. In fact, our first attempts were based on computing the gra-
dients ofLoss(Θ;A,yMF, s). It ended up having a similar perfor-
mance using the loss function in Equation (4). The computa-
tion of the gradients Loss(Θ;A,yMF, s) is straightforward using
the data flow graph in Figure 1(a) and (b) and reported in the
appendix.
The initialization of the parameters is based on the first for-

ward pass using steps 2.5 and 2.6 in Table 1.

2 The gradient w.r.t 𝛽(5) is not required for the final stage.

Many works have addressed the matrix inversion issue inher-
ent in the MMSE or ZF based detection [10–12]. It is also well
known that the CG technique [31, p. 214] is a low complex-
ity iterative method compared to a direct matrix inversion using
Cholesky decomposition. Wu et al. [11] and [12] have studied
this matter in detail, this is the reason why we did not consider it
in this paper. Note that the algorithm in Table 1 does not involve
any matrix–matrix multiplications. The matrix–vector multipli-
cations in (3.1) and (3.5) are equivalent to the detection phase in
MMSE and ZF after an implicit matrix inversion.

3.3 Discussion and potential future

Even though the proposed architecture might seem simple but
it paves the way towards exploring the features outlined at the
end of the introduction section. Prior to outlining the future
works, let’s infer a few key points from the closed forms solution
of the gradient.
Looking at Equations (3.3) s(𝓁) = s(𝓁−1) + 𝛼(𝓁)p(𝓁−1) and

(3.4) r(𝓁) = r(𝓁−1) − 𝛼(𝓁)q(𝓁), it is clear that the data signal
update is in the opposite direction compared to the residual
error update. The proportion of the update is given by Equa-
tion (5) for the last layer and by Equation (6) for the subse-
quent layers. Substituting q(𝓁) = Ap(𝓁−1) into Equation (6), the
parameter update for 𝛼(𝓁) can be expressed as

𝜕Loss
(
Θ;A,yMF

)
𝜕𝛼(𝓁)

= −
(
r(LMAX)

)T
Ap(𝓁−1). (10)

For interpretation purposes, let’s assume that 𝛽(𝓁) = 0.
Therefore Equation (10) can be reduced to

𝜕Loss(Θ;A,yMF)
𝜕𝛼(𝓁)

= −
(
r(LMAX)

)T
Ax(𝓁−1)

=
(
r(LMAX)

)T
A
(
Ar(𝓁−1)

)
=
(
Ar(LMAX)

)T (
Ar(𝓁−1)

)
.

(11)

The second line of Equation (11) follows from Equation
(3.1) and the last line follows from the fact that A is a sym-
metrical matrix. This shows that the parameter update for 𝛼(𝓁)

is the per-layer modified norm of the projected residual error.
The plot of the residual error will be depicted in Figure 5 in
Section 4.4.
For a non-zero value of 𝛽(𝓁), the second term in p(𝓁) =

x(𝓁) + 𝛽(𝓁)p(𝓁−1) plays the role of a smoothing/averaging term.
Similarly, the update term for 𝛽(𝓁) in Equation (8) depends

on the per-layer modified norm of the projected residual error
which is, in turn, weighted by the product of the past layers’

parameters
∏𝓁+1

n=LMAX−1
𝛽(n). One can perceive this term as a

factor that controls the trade-off between stability and the con-
vergence speed. This is an intuitive interpretation of the inter-
action between the parameters’ update (gradients), the data sig-
nal and the residual errors updates. As future works, we envis-
age adopting an in-depth look at the deep CG architecture via
adopting state-of-the-art method and tools mainly used in trans-
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parent ML [35] for interpreting and understanding such net-
works.
It shall be noted that the proposed deep unfolded architec-

ture is simple enough as only a few parameters are trained but it
can be augmented by considering these points for future works.

1. Adding extra parameters such as replacing a single-
parameter equation p(𝓁) = x(𝓁) + 𝛽(𝓁)p(𝓁−1) by p(𝓁) =

V(𝓁)[ x(𝓁)

p(𝓁−1)
] where V(𝓁) ∈ ℜ2K×4K is a higher dimension

weight matrix operating on a stacked real-valued 4K × 1 vec-
tor made by concatenating x(𝓁−1) and p(𝓁−1). Such a pro-
posal will increase the algorithm learning degree of freedom
close to what the current DL architecture (such as deep NN-
DNN) is using.

2. Adding non-linear activation functions to enable the algo-
rithm structure to capture the channel and the hardware non-
linearities.

3. Now that the deep unfolded architecture exposes the values
of the gradients at every layer, one can adopt state-of-the-art
method and tools mainly used in transparent ML framework
[35] for interpreting and understanding such networks. To
the authors best knowledge, no work has been conducted
to infer the optimal size of deep unfolded networks, to dis-
cuss analysis frameworks such as activation maximization
and sensitivity to identify the most important input features
via the relevance scores [35] or even consider other backward
propagation techniques such as layer-wise relevance propa-
gation which incorporate filtering to form a separate expla-
nation for (1) what is specifically relevant to a given task
(think of learning the modulation and radio resources assign-
ment as a learning task) and (2) what is commonly relevant
to all tasks.

4 PERFORMANCE RESULTS AND
ANALYSIS

This section discusses the performance of the proposed deep
unfolded CG technique under i.i.d. channel with zero mean
and unit variance. The simulation results cover (i) the number
of the required training symbols overhead (where an explicit
knowledge of the symbols themselves are not needed) and (ii)
the performance in terms of error vector magnitude (EVM)
as a function of the number of users (K) and SNR. We adopt
EVM instead of bit error rate (BER) as a performance metric
as the initial simulation platform is designed to evaluate trans-
mit precoding. However, there is a direct link between EVM
and BER [31]. The system is operating in a massive MIMO
regime where the BS is equipped with 128 antennas while the
number of served single-antenna users is an order of magni-
tude lower than the number of the antennas at the BS. Any
QAM based modulation can be used.3 Herein 64-QAM mod-
ulation (i.e., MQAM = 64) is used unless otherwise stated. The

3 So far only QAM-based modulation is tested.

FIGURE 2 RMS EVM as a function of the number of the training symbols
with K = 20 users and SNR = 20 dB

frame length isNFrame = 1200 × 14 symbols, whereas the num-
ber of the training symbols is set toNTrain = 100 per frame (see
the simulation results in Section 4.1). Note that such a choice
can be interpreted as follows:NFrame = 1200 × 14 symbols rep-
resent the number of effective subcarriers in a 20 MHz LTE
signal frame while NTrain = 100 is roughly equivalent to one
resource block (RB) in the first OFDM symbol only. Themodel-
based CG (regular CG) and the basic deep unfolded CG (Deep
CG) techniques use the same LMAX = log2(MQAM)K iterations
and stages, respectively. This choice of the number of itera-
tions/stages, as a function of the modulation depth MQAM and
the number of users K, is discussed in Section 4.3

4.1 How many training symbols are
needed?

Based on the simulation parameters stated above, the SNR
and the number of users are fixed to 20 dB and 20
users, respectively. By varying NTrain ∈ {10, 50, 100, 500, 1000},
Figure 2 shows that the optimal training size is as low as 100
symbols in such i.i.d. (favourable) channel conditions. This is
quite encouraging and enables effective training of the basic
structure’s parameters using one RB in the first OFDM sym-
bol only. Depending on the channel coherence time, this repre-
sents a sub 1% training overhead in slow time varying chan-
nel scenarios. Therefore, it is worth noting that the overall
computation complexity, due to backpropagation processing,
of the basic deep-unfolded CG is not substantial. This, in
fact, supports the expectation in [29] wherein incorporating
domain knowledge experts is a key in reducing the training over-
head. We attribute the high EVM at the higher number of the
training symbols to the overfitting and a potential numerical
divergence.
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FIGURE 3 (a) RMS EVM as a function of SNR for model-based CG in
comparison with ZF (using direct matrix inversion), NSE, GS and MRC. (b)
RMS EVM as a function of SNR for model-based CG (Regular CG) and basic
deep unfolded CG (Deep CG) with K = 20 users andMQAM = 64. The training
is done at SNR = 20 dB and a fixed channel realization

4.2 Model-based CG versus basic
deep-unfolded CG

As one would expect, the model-based CG detection is almost
optimal in i.i.d. channel conditions. In the model-based CG, the
parameters are explicitly computed for every symbol overLMAX
iterations. These parameters differ from one symbol to another.
Whereas in deep-unfolded CG these parameters are computed
during the training phase and kept constant over the rest of the
transmission frame. Figure 3(a) compares the model-based CG
with state-of-the-art methods such as NSE [9] and GS [10] and
other reference methods such as ZF with direct matrix inversion
and MRC.

FIGURE 4 RMS EVM as a function of the number of users with the
network dimensions scaled as function of the number of users and modu-
lation depth (i.e. asLMAX = log2(MQAM)K ). Training is performed at a fixed
SNR = 20 dB and a fixed channel realization for a given number of users while
the simulations are performed at different channel realizations

Figure 3(b) shows that the basic deep-unfolded CG is a good
implementation alternative to the iterative model-based CG.
The simulation results depict the RMS EVM for 20 users trans-
mitting 64 QAM symbols. Both the model-based CG and deep-
unfolded CG are performing equally well in such favourable
i.i.d. channel conditions. It is worth noting that the training is
done at a fixed SNR of 20 dB and one i.i.d channel realization
per training symbol whereas the simulations run over a wide
range of SNR values and channel realizations.

4.3 Does the basic deep-unfolded CG
depend on the number of antennas as the
system load increases?

Figure 4 depicts the EVM as a function of the number of users
where LMAX = log2(MQAM)K for both deep CG and regular
CG algorithms. The extensive simulations revealed that dimen-
sioning the architecture as a function of the modulation depth
and the number of users preserve the performance within a cer-
tain EVM threshold. The reason why Figure 4 shows an almost
flat EVM performance (RMS EVM within +/- 0.5%) as far as
LMAX = log2(MQAM)K . One can, therefore, state that to pre-
serve the system performance as the system load (K) increases,
only the number of iterations/layers need to be scaled according
to LMAX = log2(MQAM)K while the number of serving anten-
nas at the BS is kept unchanged.

4.4 Convergence behaviour through
residual error

To complement our discussion in Section 3.3, Figure 5 depicts
the residual error plot as a function of the number of layers
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FIGURE 5 Residual error plot as a function of the number of layers
LMAXfor 16, 64 and 256 QAM modulation at 25 dB SNR

LMAX for 16, 64 and 256 QAM modulation at 25 dB SNR. The
fast decaying residual error curves demonstrate the fast conver-
gence behaviour of the learning process which depends, among
other system parameters, on the modulation type. The arrows
point to the iteration number that achieves a given RMS EVM
so that the system engineer can infer the optimal number of lay-
ers for a give RMS EVM value.

4.5 A note on the computational complexity

The regular CG method implements Equations (3.1)–(3.7) iter-
atively over LMAX iterations. However, the proposed method
does not compute (3.2), (3.6) and the division in (3.7), which
amount to 4K multiplications/additions and 2 divisions per
iteration, respectively. This is a total of 4KNFrame multiplica-
tions/additions and 2NFrame divisions per iteration over a frame
of NFrame symbols. On the other hand, the proposed method
computes Equations (6) and (8) to determine the fixed param-
eters per layer. This amounts to 4K multiplications/additions
for (6) and (8). Note that the matrix-vector multiplication
B(𝓁)p(𝓁−1) in (8) is explicitly computed in (3.1). We, there-
fore, expect a total of 8KNTrain multiplications/additions per
layer. This results in a computational reduction by a factor of
NFrame∕(8NTrain). Using our simulation parameters NFrame =

1200 × 14 and NTrain = 100, the complexity reduction factor
is 21.

5 CONCLUSION

This paper has proposed a basic deep unfolded implemen-
tation of the iterative model-based CG wherein the parame-
ters are trained via backpropagation. We derived the closed-
form expressions of the gradients of the loss function w.r.t. the
parameters. The loss function is based on the squared norm of

the residual error which is not an explicit function of the desired
transmitted symbols. The simulation results reveal interesting
insights; (i) the training overhead is very low which makes the
deep unfolded CG a good implementation alternative to iter-
ative model-based CG and (ii) the basic deep unfolded struc-
ture does not depend on the number of antennas as the load
(the number of users) increases as far as the network structure
is dimensioned based on the number of users and modulation
depth. We do not attempt to outperform the iterative model-
based CG in favourable i.i.d. channel. However, the following
insights can be deduced: (i) the deep unfolded CG structure
can be incorporated in an end-to-end communication system
learning process [2-ZAP19] as the structure readily backprop-
agates the gradient for the parameters’ optimization. The algo-
rithm structure is preserved by the deep unfolded structure as
domain knowledge expert which, in turn, explains the low num-
ber of training samples (fast training phase). This is in line with
what the literature expects from incorporating domain knowl-
edge and RTNs [30-DOR18].
As future work, one can envisage extending the architecture

to consider more realistic time-varying channels and hardware
impairments (and non-linearities). As in many DL approaches,
the performance is sensitive to the initial values of the param-
eters (which we noted through extensive simulations), which
seems to depend on the system parameters such as SNR,
number of users and stages. It, therefore, needs an in-depth
investigation.
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APPENDIX

Another alternative for the loss function is

Loss
(
Θ;A,yMF, s

)
=
‖‖‖s(LMAX) − s

‖‖‖22 . (A.1)

Based on the structure in Figure 1 (a) and (b) where we
assume that𝜌(𝓁) = 0, the gradient w.r.t 𝛼(5) is

𝜕Loss
(
Θ;A,yMF, s

)
𝜕𝛼(5)

=
𝜕
‖‖‖s(5) − s

‖‖‖22
𝜕𝛼(5)

=
𝜕
‖‖‖s(5) − s

‖‖‖22
𝜕s(5)

𝜕s(5)

𝜕𝛼(5)

= 2
(
s(5) − s

)T (
p(4)

)
.

(A.2)
Applying the chain rule one can compute the gradient w.r.t

𝛼(𝓁) as

𝜕Loss
(
Θ;A,yMF, s

)
𝜕𝛼(𝓁)

= 2
(
s(LMAX) − s

)T
p(𝓁−1). (A.3)

Similarly, the gradient w.r.t 𝛽(4) is computed as follow4

𝜕Loss
(
Θ;A,yMF, s

)
𝜕𝛽(4)

=
𝜕
‖‖‖s(5) − s

‖‖‖22
𝜕𝛽(4)

=
𝜕
‖‖‖s(5) − s

‖‖‖22
𝜕s(5)

𝜕s(5)

𝜕𝛽(4)

=
𝜕
‖‖‖s(5) − s

‖‖‖22
𝜕r(5)

(
𝜕s(5)

𝜕p(4)
𝜕p(4)

𝜕𝛽(4)

)
= 2

(
s(5) − s

)T
𝛼(5)p(3)

= 2
(
s(LMAX ) − s

)T
𝛼(LMAX)p(LMAX−1−1).

(A.4)

4 The gradient w.r.t 𝛽(5) is not required for the final stage.
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Applying the chain rule on can compute gradient w.r.t 𝛽(𝓁),
for 𝓁 < LMAX − 1, as

𝜕Loss
(
Θ;A,yMF, s

)
𝜕𝛽(𝓁)

= −2
(
s(LMAX) − s

)T
𝛼(LMAX)p(𝓁−1)

𝓁+1∏
n=LMAX−1

𝛽(n). (A.5)

Note that the gradient w.r.t 𝛽(𝓁) in (A.5) does not involve
any matrix-vector multiplication compared to Equation (8),
which may seem to reduce the computational complexity at
the expense of an explicit knowledge of the training symbolss.
However, the term B(𝓁)p(𝓁−1) in Equation (8) is already explic-
itly computed in Equation (3.1).
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