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Abstract: This paper examines the critical decision process of reducing the dimensionality of a dataset
before applying a clustering algorithm. It is always a challenge to choose between extracting or
selecting features. It is not obvious to evaluate the importance of the features since the most popular
methods to do it are usually intended for a supervised learning technique process. This paper
proposes a novel method called “Decision Process for Dimensionality Reduction before Clustering”
(DPDRCQ). It chooses the best dimensionality reduction method (selection or extraction) according
to the data scientist’s parameters and the profile of the data, aiming to apply a clustering process at
the end. It uses a Feature Ranking Process Based on Silhouette Decomposition (FRSD) algorithm,
a Principal Component Analysis (PCA) algorithm, and a K-means algorithm along with its metric, the
Silhouette Index (SI). This paper presents five scenarios based on different parameters. This research
also aims to discuss the impacts, advantages, and disadvantages of each choice that can be made in
this unsupervised learning process.

Keywords: DPDRC algorithm; feature extraction; feature selection; FRSD algorithm; PCA algorithm;
k-mean algorithm; silhouette index

1. Introduction

For decades, the “curse of dimensionality”, as defined in 1957 by mathematician
R. Bellman in [1], has been an issue in machine learning [2]. This problem is caused by
having too many dimensions in a dataset. Having more dimensions also means having a
higher error rate and an exponential running time. Theoretically, having more dimensions
(or features) implies having more information, which may seem to be a good thing. Practi-
cally, there is also more noise and, since several features are often covariants, the covariance
of features leads to information redundancy. Hence, in some circumstances, there are
benefits to gain by reducing the dimensionality of a dataset, namely, to reduce the error
rate and processing time. There are several ways to address this “curse of dimensionality”
problem. Both feature selection and feature extraction algorithms are commonly used to
reduce dimensionality.

Even if dimensionality reduction algorithms are easy to use, it is still a challenge to
select the best method based on requirements and the distribution of the data in the dataset.
This paper addresses the difficulty in selecting an optimal method for dimensionality
reduction in an unsupervised learning context. Basically, the objective of this paper is to
discuss feature selection or feature extraction after having evaluated the feature importance.
There are several combinations of algorithms that can be used to prepare the features.
The choice of the right combination is not obvious, since each one has its pros and cons.
There are different schools of thought on when extracting or selecting the features is
required, as well as the option of leaving the totality of the features intact [3].
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This research paper proposes a novel method, “Decision Process for Dimensionality
Reduction before Clustering” (DPDRC). It has its own input, output, and metrics to make
the optimal choice between feature extraction and feature selection. According to the input
parameters, the right combination of algorithms is used in the dimensionality reduction,
followed by a clustering process. This paper presents the clusters as both text and graphics
(radar and stacked radar. It is based on the machine learning methods FRSD, PCA, k-means
combined with its SI metric.

Principal Component Analysis (PCA) is a useful algorithm to extract features and
reduce the dimensionality of a dataset [4]. It has been also used in a smart city context [5].
It consists of linear transformations that convert a set of correlated variables into a set of
linearly uncorrelated variables. Wong [6] shows that a PCA algorithm can help determine
indicators, such as local economic development (LED). He defines a framework of 11 fea-
tures, based on an initial total of 29 features. He uses regression models to find relative
strengths of the relationships between the LED indicator and performance variables. Others
like [7] use a PCA algorithm combined with cluster analysis (CA) to study social-economic
indexes (e.g., non-agriculture population, gross industry output value, business volume of
post and telecommunications, and local government revenue). The analysis is applied to
17 counties and cities. In this example, a PCA algorithm is used to retrieve the first and
second principal components (PC1 and PC2). According to PC1 and PC2, the CA classifies
the cities into four classes of growth poles. Research like [8,9] also uses a PCA algorithm to
extract features in the field of big data and smart cities.

There are several methods to select features after having analyzed the importance
of each one in both supervised and unsupervised contexts. Important literature reviews
on this subject include [10-12]. Some papers focus on feature selection in large-scale
datasets [13], while others discuss feature selection in a clustering process [14,15].

One very recent technique [16] is particularly interesting when it is time to select
features before performing a clustering process. To evaluate the importance of the features
in an unsupervised learning context, it generates the label according to one criterion: cluster
consistency. This method is called the Feature Ranking Process Based on Silhouette Decom-
position (FRSD) algorithm. It aims to solve the evaluation of features for clustering using a
Silhouette Index (SI) metric. It consists of generating an SI for every possible combination
of features, for each value of k (the number of clusters) in a k-means clustering algorithm.

For the reduction of dimensionality, clustering is an important part of the unsupervised
learning process. Different algorithms can be used, like k-means for standard crispy
clustering [17], or c-mean for fuzzy clustering [18,19]. There are several techniques to
evaluate the consistency of the generated clusters [20]. One of them is the Silhouette Index
(SI) [21,22]. It is particularly useful when combined with a k-means algorithm.

This novel method can be used in different contexts. In this paper, the features used for
the method’s validation are from smart city data. In this age of smart cities and intelligent
urbanism, there is a need to analyze the data and understand its features [23,24]. In this
specific context, an important part of the challenge comes from the fact that the data
comes from multiple sources, including censuses, local health organizations, local dwelling
organizations, the economic sector, and so on. Some research like [19,25] in smart urbanism
has already shown the importance of having a good understanding of the data. Clustering
methods have also been widely used over the years to regroup similar parts of a territory
together [26].

The dataset used in this research comes from the London Datastore. It defines a
deprivation index of each ward of the London area. In Great Britain, a ward is known to be
a geolocational unit. This novel method uses a smart city dataset because the reduction
of the dimensionality decision process is particularly important in this context. There are
often many available features in a smart city dataset, and there is often a need to cluster the
data. For instance, urbanists may want to regroup similar districts of a city and compare
them according to some characteristics. Since there are several open city datasets like the
one of the City of London, it is a good choice for validating this novel method. Data is
available in both quantity and quality. The features are numeric and there is no categorical
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feature. Each one contains a score (IMD, income, employment, health, education, barriers,
crime, and living) as described in Section 2.1.

The next sections of this paper are organized as follows: Section 2 describes the
proposed methodology. Section 3 presents the results. Section 4 analyses the results,
and Section 5 concludes this research.

2. Methodology
2.1. Selected Features

As previously mentioned, the dataset used in this research comes from the London
Datastore and is called “Indices of Deprivation from the Ministry of Housing, Communities
& Local Government (MHCLG)”. There are 4766 records in this dataset. Eight features
have been kept for this research (see Table 1 [27]. There is also the ward code, which is the
unique identification of a geographical sector in the United Kingdom. The ranking features
of the wards have been dropped. The final feature list is as follows:

1. IMD score is the Index of Multiple Deprivation. It is a combined index of other fea-
tures. 2. The income deprivation score aims to give the proportion of people in an area who
are living on low incomes. 3. The employment deprivation score is a simple proportion of
working-age people who are involuntarily out of work-including those unable to work due
to incapacity or disability. 4. The health deprivation score takes into account a wide range of
aspects, including premature death and mental health issues as well as measures of morbid-
ity and disability. 5. The education, skills, and training deprivation scores are formed from
two subdomains combined with equal weights. The first includes measures for children
and young people, using achievement and participation data at various educational stages.
The second subdomain is a measure for working-age adults. 6. The barriers to housing
and service score have two equally weighted subdomains—geographical barriers and wider
barriers to suitable housing (household overcrowding, homelessness, etc.). 7. The crime
score uses data on 33 types of recorded crime under four broad categories-burglary, theft,
criminal damage, and violence. 8. The living environment deprivation score includes issues
in terms of the standard of housing as the “indoor” living environment (central heating,
poor conditions, etc.).

The London dataset is a good choice because it is available as open city data, there
is no missing data or outliers, and is available in sufficient quantity. Although this novel
method can be applied to any dataset, validating it on a smart city dataset is a good idea
because its features are very intuitive and do not require special knowledge.

Table 1 shows the list of all the features that are processed by the machine learning
methods.

Table 1. List of the features of the wards in the Greater London area.

Rank Features

IMD Score

Income Score
Employment Score
Health Score
Education Score
Barriers Score
Crime Score
Living Score

PN T L=

There are 630 wards in the Greater London area. Section 3.1 gives additional informa-
tion about the City of London and the ward system.

To visually represent the features, a radar graphic of a typical ward (00ADGM) is
shown in Figure 1. It shows the values of the eight features on eight different axes. The val-
ues are normalized using a MinMax function to fit the graph scale from 0 to 1. The higher
the values, the better the score is for each feature.
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Figure 1. Radar graphic representing every MinMax normalized feature.

2.2. Proposed Model Design

This novel method includes several parts that lead to a complete parametrized process.
Figure 2 presents the methodology’s architecture. The first part is a three-step method to
evaluate the importance of each feature in a clustering process using an FRSD algorithm.
Step 1 is a loop that generates an SI from every feature combination. Step 2 aggregates
the results. Step 3 normalizes the importance of the features using a MinMax algorithm.
The second part evaluates feature importance according to a PCA algorithm. It converts
the features into principal components (PCs), allowing the evaluation of the explained
variance contribution of each feature. After having calculated the feature importance in
an unsupervised machine learning context using both FRSD and PCA, the method has to
choose between a feature selection (FS) or a feature extraction (FE) according to parameters
defined by the user. It calculates two scores. Both scores are calculated according to the
input parameters of the algorithm. These scores and their equations will be defined in
Section 2.5. The user preference parameters allow the algorithm to orient the results toward
either interpretability or integrity.

Having two scores, the process has to select the best option, knowing the data and the
user’s preferences for interpretability and integrity. A higher score in interpretability leads
to a feature selection. A higher score in integrity leads to a feature extraction using PCA.
After having made a reduction of dimensionality (using FS or FE), clustering is applied
using a K-means algorithm and returns the output to the user. The method also includes a
normalization (using a MinMax algorithm) of the output and the production of stacked
radar graphics (a stacking of several graphs presented in Figure 1) to better illustrate the
results of the clustering process.

The features used to test this model are presented in Table 1. The following section
describes each part of the process and its machine learning algorithms.

2.3. Evaluation of Features Using FRSD

It is more complicated to analyze the importance of the features in an unsupervised
context than in a supervised context (the latter requires not only the data but also the label
of each data). In an unsupervised context, the problem must be considered differently for
two reasons: One, the feature number can be variable. For the City of London, the number
of features can be between two and eight features. Two, in the case of a clustering algorithm
like K-means, there is no label since it is an unsupervised technique.



Al2022,3

Interpretability/

FS or FE decision process for clustering Integrity ax
Target
FRSD Choice resolution
Loop generating Sl for FE/FS
k-means clustering with
every combination of Dimensionality reduction
features
v v
Aggregates the results Feature Feature
T extraction selection
(PCA)
Normalizes the results
using MinMax
l PCs Features
Clustering
Normalized feature K-M )
importance for Sl and k- (K- Ieans Clusters
means clustering !

Normalize
(MinMax)

Feature importance Graphics

(PCA) (Stacked radar) !
Data
Stacked radar graphics scientist

Figure 2. Architecture of the methodology.

Since there is no labeled data, it must be generated. The SI metric is used to evaluate the
consistency of the clustering. In this method, it is also used to label the unlabeled features.

The FRSD algorithm calculates the importance of each feature by decomposing the
average silhouette widths of the random subspaces. The goal is to solve the evaluation of
the feature’s importance for clustering using an SI metric.

Before going further with the FRSD algorithm, let’s define the SI metric. There are
several metrics to measure clustering performance. Each metric is not necessarily compati-
ble with every clustering algorithm. Since the K-means algorithm is used, the clustering
performance has been measured by the SI metrics. This metric is documented in [21]
and [28]. The Sl is defined by three equations. First, the distance between each point and
the center of its cluster is defined by (1). The distance between the center of each cluster
is shown in (2). Finally, (3) uses the result of (1) and (2) to calculate the final SI score that
indicates the quality (consistency) of the clustering process. SI ranges from —1 to +1. Values
from —1 to 0 indicate bad classification. SI values from 0 to 1 indicate the points associated
with a good cluster. The higher the value, the better the cluster consistency [21].

a(i) = Y d(i)) ey
|Cl | JECii#]
b mm— da(i, )
) ki |ck| ]ezck /)
bi) —ali) G| > 1 3)

) = ax(a@®), b1’

The FRSD process uses the SI metric and is described in three steps [16]:

SI generation:

This step aims to generate the SI values for each combination of features and each
evaluated cluster number k in a determined range. To determine it, a loop from a minimum
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number of possible clusters to a maximum number of possible clusters must be executed. A range
of 3 to 15 has been used in this method to generate the SI. Inside this loop, a second loop
generates an SI from every combination of the features. In the case of the City of London,
a minimum of two and a maximum of eight features are needed. In this particular case,
this means 248 results (possible combinations between 2 and 8 features), i times from i in
range ki, and Kpax. Since kyqx and ki, = 12, a total of 148 x 12 = 1776 SI indexes will be
created. Table 2 shows a partial example of the output generated for k = 10.

Table 2. Generation of silhouette index for each combination of the features.

Partial List of Features SI

1,2 0.6084
1,3 0.6085
1,4 0.6066
1,5 0.5037
1,6 0.4658
1,7 0.6069
1,8 0.4783
2,3 0.5803
1,3,4,5,6,7,8 0.2833
2,3,4,5,6,7,8 0.2837
1,2,3,4,5,6,7,8 0.2873

~
~
~
~
~

SI aggregation:

The algorithm aggregates the total of the SI for every feature. It sums the SI value if
the feature 7 is in the feature’s list used to compute this SI. The result is a vector of the same
size as the number of features. For each index, the sum of the SI for this feature index is
divided by the sum of all the features.

Weighting feature:

The final ratio representing the feature importance is available in the final vector.
Applying a MinMax function to the final vector will help to discriminate the values and
improve the presentation. Equation (4) shows the MinMax normalization formula. It
simply normalizes a number within a 0 to 1 range, associating the smallest value to 0 and
the highest to 1. In (4), x is the input value to normalize.

Lo X min(x) )

max(x) — min(x)

The result is the importance of each feature in the clustering process. It can be
summarized in (5) and (6).

Kmax max(sub)

Rsupsi= Y, Y. kmeans(sub,k) (5)
k=kyi, sub=0

where R is the resulting matrix, sub are the possible subsets of features, SI is the silhouette
index, k is the number of clusters. The function kmeans(sub,k) applies a clustering process
for the subset sub that must be divided into k clusters.

max(R) feat.inR

NFI= Y. ) SI (6)

i=0 feat=0

where NFI is the normalized feature importance, SI is the silhouette index, R is the resulting
matrix of (5). feat and i are used to iterate the features and on the resulting matrices of (5).
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The final result NFI, a list of features and their importance that will be used in the decision
process documented in Section 2.5.

2.4. Evaluation of Features Using PCA

This part simply runs a PCA algorithm on all the features. The number of principal
components (PCs) specified is the same as the number of features in the input. Among other
results, it provides a result in terms of explained variance for each feature. Aggregating
this variable for each feature of each PC, and dividing by the total amount of explained
variance provides the importance of each feature in the data extraction process.

This list of features and their importance will be important in the decision process
documented in Section 2.5.

2.5. Choice between Feature Extraction and Feature Selection

This part of the algorithm uses parameters defined by users according to their feature
requirements. Before defining the parameters, let’s define a key axis regarding dimen-
sionality reduction — the “Interpretability / Integrity” axis. When choosing the method of
dimensionality reduction, we have to choose between optimizing the interpretability of
the features, or the integrity of the features. To optimize the interpretability of the features,
a feature selection method must be used. Using this method, every feature will keep its
name and significance but some features are completely dropped, causing a reduction in the
resolution of the data. Contrarily, to optimize the integrity of the features, a feature extrac-
tion method (like PCA) must be used. With this method, every feature is used to generate
a new set of normalized data. Since every feature is used in this process, the integrity of
the data is better than with a feature selection that drops some of them. The counterpart of
this method is that the names of the features are lost, being replaced by PCs. Consequently,
there is a loss of feature interpretability.

In this method, two key parameters define the Interpretability / Integrity axis: interpretability-
oriented and integrity-oriented. Both domains are a normalized number between 0 and
1, representing a percentage of importance. The sum of those numbers must equal 1. It
simply describes the importance; a value of 0.1 means not very important and a value of
0.9 means very important.

Another parameter is the target resolution (target-resolution). This is used by the
algorithm to select the correct amount of features in the reduction of the dimensionality
process. Just enough features are kept to reach this resolution target. A high value means
more features and a low value means fewer features.

There are two other important parameters: the minimum and the maximum k param-
eter of the K-means algorithm (k-min and k-max). It defines the domain of the possible
number of clusters.

Now that we have defined the parameters, let’s define the decision part of the algo-
rithm. First, the algorithm selects only the best features that reach the minimum resolution,
based on the FRSD process. Then, the algorithm tries every possible value of k (number of
clusters) between the range k-min and k-max. It keeps the value of k, resulting in the higher
value of the SI. Using the interpretability-oriented parameter and the best-found value of
SI (the “best SI” variable) in the clustering process, it computes the “interpretability score”
as defined in (7)

interpret.score = interpret.oriented * bestSI (7)

The next part consists of finding the “integrity score”. It uses the PCA feature ex-
traction algorithm. The algorithm uses only the required number of features to reach a
minimum resolution, according to the PCA importance feature process. Then, it loops on
every possible value of k in the k-min and k-max range. Containing the best consistency
result in the clustering process, the best value of SI (“best SI” variable) is kept and the
“integrity score” is computed as defined in (8).

integrity.score = integrity.oriented * bestSI ®)
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The algorithm compares the two scores and selects the one having the greater value as
an orientation for the dimensionality reduction. There are two possible cases. One, the in-
terpretability score is higher than the integrity score and a feature selection is done. This
process consists in keeping just enough features to reach the data resolution parameter.
The others are dropped and lost. Two, the integrity score is higher than the interpretability
score. In this case, a feature extraction must be done. This process is more complex than
the simple feature selection. This process is explained in Section 2.6.

The results of this decision are displayed to the user to justify the algorithm choice.
These values are 1. Normalized synthesis of features after the FRSD process. 2. Normalized
synthesis of features after the PCA process. 3. Best SI for feature selection. 4. Best SI for
feature extraction. 5. Interpretability score. 6. Integrity score. 7. Chosen method (selection
of extraction). 8. Number of selected features to obtain the target resolution (if feature
selection is used). 9. Number of principal components to obtain the target resolution
(if feature extraction is used). 10. Best number of clusters (k).

2.6. Dimensionality Reduction Using PCA

A PCA algorithm aims to reduce the dimensionality of the dataset by extracting some
features. It creates a new dataset having equal or less dimensionality than the original.
The newly created features are named “principal components” (PCs). The first principal
component (PC1) has the highest possible variance compared to the other principal compo-
nents. The second principal component (PC2) has the second-highest possible variance,
and so on. A PCA algorithm uses the concept of Eigen Vector and Eigen Value. It compares
every possible combination of two features. For every pair of features, it calculates the
direction of the data distribution (the Eigen Vector) and the magnitude of this vector (the
Eigen Value). A projection of the data is made using the axis of the strongest Eigen Value.
At the end of this process, a descending ordered list of features is produced, based on
the Eigen Value criterion. The PCA algorithm extracts the most n significant components,
where 7 is a received parameter.

2.7. Clustering with k-Means

The goal of this process is to create clusters after having reduced the dimensionality,
based on the data and specified parameters. After having reduced the dimensionality using
a feature selection or a feature extraction, a clustering algorithm must be used. To create the
clusters from the data, it is necessary to use an unsupervised learning technique as there is
no label for each input data. This algorithm will assign to each ward a reference cluster,
according to the similarity level of their features.

Equation (9) defined the k-means clustering equation where | is a clustering function, k

is the number of clusters, n is the number of features, xi(] ) is the input (feature i in cluster j)
and c¢; is the centroid for cluster j. Centroids are obtained by randomly trying values and
selecting the best according to the returned inertia value. This inertia value is the basic
non-normalized metric used to evaluate cluster consistency.

=Y E [ o ©

j=1i=1

The evaluation of the clusters’ consistencies using SI are defined earlier in Section 2.3.

As shown in Figure 2, there are two processes (Normalize and Graphics) added after
the clustering. Both are required for visualizing the clustering process. A good way to
visually represent the consistency of the clusters is by stacking the radar graphics repre-
senting their features. A MinMax algorithm (4) must precede this type of graphic. Using
this type of graphic, the different profiles of the clusters are notable. This representation
will be useful in Section 3.4.
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3. Results
3.1. City of London

The City of London is the capital of England and the United Kingdom. The largest city
in the country, it is located on the River Thames and has existed since the Roman era. In the
London metropolitan area, there were 14,040,163 inhabitants in 2016. The United Kingdom
territory is divided into wards and electoral divisions. The ward is the primary unit of
English electoral geography for civil parishes as well as borough and district councils. Each
ward/division has an average electorate of about 5500 people, but ward-population counts
can vary substantially. At the end of 2014, there were 9,456 electoral wards/divisions in the
United Kingdom [29].

Figure 3 displays a map of the wards in the Greater London area.

Figure 3. Map of the ward divisions of the Greater London area [30].

Sections 3.2-3.4 present the results of the methodology presented in Section 2 applied
to the wards of the Greater London area.

3.2. Feature Importance According to FRSD

No matter what the parameters are, this part is used to calculate the importance of the
features for selection regarding the consistency of the clustering. The results of this part
is useful in the dimensionality reduction process to decide between feature selection and
feature extraction. As defined in the methodology, an unsupervised approach is different
from a supervised approach in the evaluation of the importance of the features. To find
it on unlabeled data, we must find a way to generate labels. One state-of-the-art way is
to use an FRSD algorithm. The SI metric is generated for each of the data, so it becomes
possible to evaluate the features in a supervised learning way.

Table 3 shows a list of all the features ordered by their importance according to the
FRSD evaluation.

Table 3. Feature importance According to FRSD.

# Features Norm. Weights
1 3. Employment Score 0.1319
2 2. Income Score 0.1315
3 7. Crime Score 0.1298
4 4. Health Score 0.1294
5 1. IMD Score 0.1217
6 5. Education Score 0.1205
7 8. Living Score 0.1178
8 6. Barriers Score 0.1172

3.3. Feature Importance according to PCA

This part is independent of the parameters and calculates feature importance in a
feature extraction process. This is important to choose between a feature selection and
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a feature extraction. The PCA algorithm, as documented in the methodology, has been
applied to the eight features in the London dataset.

Table 4 shows a list of all the features ordered by importance according to the PCA
evaluation.

Table 4. Feature importance according to the PCA algorithm.

# Features Norm. Weights
1 PC1 0.1366
2 PC2 0.1365
3 PC3 0.1357
4 PC4 0.1329
5 PC5 0.1286
6 PC6 0.1222
7 PC7 0.1139
8 PC8 0.0931

3.4. Scenarios Using Different Parameters

This section describes five scenarios or test cases using different parameters values
to test the novel method. The common parameters for all scenarios are k-min = 3 and
k-max = 10. It is the same for all the cases since it is useful to specify the number of possible
clusters, but useless in the decision made by the algorithm. The following scenarios show
how the parameters affect the decision made by the algorithm.

Case 1: Interpretability oriented and high resolution of data

For this first scenario, let’s assume that it is more important to keep the feature names
(interpretability) than it is to optimize feature integrity. Also, let’s assume that a good fea-
ture resolution is needed. For values, interpretability-oriented = 0.9, integrity-oriented = 0.1
and target-resolution = 85%. Table 5 shows the results using this configuration.

Table 5. Algorithm results using interpretability-oriented = 0.9, integrity-oriented = 0.1 and target-
resolution = 85%.

Metrics Values
Best FS silhouette index 0.3905
Best FE silhouette index 0.3530
Interpretability score 0.3514
Integrity score 0.0353
Chosen method SELECTION
Number of selected features

to obtain target resolution 7
Resolution 88.3%
Best number of clusters (k) 3

In this table, we can see that the value of the best feature selection (FS) silhouette
index (0.3905) is greater than the value of the best feature extraction (FE) silhouette index
(0.3530). Note that the consistency of the clustering process has nothing to do with the
resolution of data. Often, better consistency comes with less dimensionality. It can be very
hard to have a good consistency with a high number of features. That is why when using
this method, orienting a process toward integrity (by using feature extraction instead of
feature selection) does not result in a better consistency while clustering. Often, lowering
the resolution results in an SI shows a better consistency.

In this scenario, the parameter interpretability-oriented (0.9) has a higher value than
the integrity-oriented value (0.1). When (7) and (8) are applied, the interpretability score
(0.3514) is higher than the integrity score (0.0353). To reach 85% of the resolution, we must
use the best seven features. These features have a resolution of 88.3%. Doing the clustering
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process, the optimal number of clusters is three. Figure 4 shows the distribution of each
element according to its silhouette index.

clusters

C
1
1
1
T T II T T
-0.1 0.0 0.2 0.4 0.6 0.8 1.0
Silhouette value (Mean: 0.3905)

Figure 4. Silhouette graphic for case 1 showing the consistency for clusters A, B, and C.

This figure shows the three different clusters, in three different colors. The larger the
horizontal bar, the more data the cluster contains. The longer the bar, the more consistent
the data is according to its cluster. This graphic shows very few misplaced values (negative
values). It also shows an average of 0.3905 (red dotted line).

Figure 5 shows the representation of cluster A using a stacked radar graphic. It is
easy to visualize the consistency of the normalized value. It shows that the feature names
have been kept. It is the most important criterion (interpretability) for this case since the
parameter interpretability-oriented is equal to 0.9.

5.Education

Figure 5. Stacked radar graphics showing cluster A of normalized values for case 1.
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Case 2: Integrity-oriented and high resolution of data

In this second scenario, integrity is more important than keeping the signification
of the features (interpretability). A good feature resolution is also needed. For values,
interpretability-oriented = 0.1, integrity-oriented = 0.9 and target-resolution = 85%. Table 6
shows the results for this configuration.

Table 6. Algorithm results using interpretability-oriented = 0.1, integrity-oriented = 0.9 and target-
resolution = 85%.

Metrics Values
Best FS silhouette index 0.3905
Best FE silhouette index 0.3530
Interpretability score 0.0390
Integrity score 0.3177
Chosen method EXTRACTION
Number of PCs 7
Resolution 90.7%
Best number of clusters (k) 3

We can observe that the value of the best FE silhouette index (0.3530) is lower than
the value of the best FS silhouette index (0.3905). Having an integrity parameter with
a high value (0.9), the integrity score (0.3177) is higher than the interpretability score
(0.0390). The feature extraction strategy is selected. Seven PCs are required to reach 85% of
resolution. The optimal number of clusters is three. Figure 6 shows the distribution of the
SI for this case.

This figure displays the three clusters. There are a few misplaced values (between —1
and 0). The average of the Sl is 0.353. Even if the consistency of the clustering is lower,
the integrity of the data is better since every feature has been used to downsize to the seven
PCs. The loss is kept at a minimum. Remember that the SI often becomes lower when
reducing dimensionality. For instance, having only two PCs or features tends to provide
the best SI results.

o
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Silhouette value (Mean: 0.353)

Figure 6. Silhouette graphic for case 2 showing the consistency for clusters A, B, and C.

Table 7 shows cluster A using a stacked radar graphic.

Keep in mind that when a feature extraction is made, all the feature’s labels are lost.
In this particular case, for instance, it becomes impossible to refer to feature 5 “Education
Score”, since this value, like all the others, has been extracted to generate the new features
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called “principal components” (PCs). Original features can no longer be addressed. This
may be an important drawback, depending on what has to be done next. For instance,
if a clustering process is made (like in Figure 7), the clustering graphs would be repre-
sented having “PC1”, “PC2”, “PC3”, and so on, on its axis. Having fewer dimensions
is an advantage; losing the identity of the features is a disadvantage and the opposite
of “interpretability”.

Cluster: A
3

PC

Figure 7. Stacked radar graphics showing cluster A of normalized values for case 2.

Case 3: Equally integrity and interpretability oriented and high resolution of data

For this third scenario, we assume that it is equally important to keep feature sig-
nification in addition to optimizing the integrity of the features. We also assume that a
good feature resolution is also needed. For values, interpretability-oriented is 0.5, integrity-
oriented is 0.5 and target-resolution is 85%. Table 7 shows the results for this configuration.

Table 7. Algorithm results using interpretability-oriented = 0.5, integrity-oriented = 0.5 and target-
resolution = 85%.

Metrics Values
Best FS silhouette index 0.3905
Best FE silhouette index 0.3530
Interpretability score 0.1952
Integrity score 0.1765
Chosen method SELECTION
Number of selected features

to obtain target resolution 7
Resolution 88.3%
Best number of clusters (k) 3

The best FS silhouette index (0.3905) is greater than the value of the best FE silhouette
index (0.3530). After applying the Equations (7) and (8) using the interpretability-oriented
and integrity-oriented parameters, the interpretability score (0.1952) is higher than the
integrity score (0.1765), so the selection process is used.
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If interpretability and integrity are equally important, the nature of the data will
determine which process is the best at generating a good SI (good clustering consistency).
This plays a role in Equations (7) and (8).

To reach 85% of the resolution, we must use seven features, having a resolution of
88.3%. In the clustering process, the optimal number of clusters is three. The SI figure and
the stacked radar graphic are the same as in scenario 1 (Figures 5 and 7).

Case 4: Interpretability-oriented and low resolution of data

This case is oriented toward interpretability. Compared to case 1, the resolution value
has been lowered. For values, interpretability-oriented = 0.9, integrity-oriented = 0.1 and
target-resolution = 50%. The results are shown in Table 8.

Table 8. Algorithm results using interpretability-oriented = 0.9, integrity-oriented = 0.1 and target-
resolution = 50%.

Metrics Values
Best FS silhouette index 0.4393
Best FE silhouette index 0.3775
Interpretability score 0.3953
Integrity score 0.0377
Chosen method SELECTION
Number of selected features

to obtain target resolution 4
Resolution 52.3%
Best number of clusters (k) 3

The value of the best FS silhouette index (0.4393) is greater than the value of the best FE
silhouette index (0.3775). Same as in case 1, the chosen method is feature selection because
the parameter interpretability-oriented (0.9) has a higher value than the integrity-oriented
value (0.1) and the interpretability score (0.3953) is higher than the integrity score (0.0377).
To reach 50% of the resolution, we must use the best four features. Those features have a
resolution of 52.3%. Doing the clustering process, the optimal number of clusters is three.
Figure 8 shows the distribution of each element according to its silhouette index.

clusters
(wy)

-0.1 0.0 0:2 0.|4 0.|6 0.8 1.0
Silhouette value (Mean: 0.4393)

Figure 8. Silhouette graphic for case 4 showing the consistency for clusters A, B, and C.

This figure shows the three different clusters. The graphic shows no misplaced values
(negative values) and also shows an average of 0.4393 (red dotted line).
Figure 9 shows the representation of the clustering using a stacked radar graphic.
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Figure 9. Stacked radar graphics showing cluster A of normalized values for case 3.

The feature names have been kept as this scenario is oriented toward interpretability.
Compared to case 1, which has a good resolution of data (seven features), this graphic
shows only four features since the resolution value has been lowered to 50%. At a glance,
we can see that there is a good consistency. It has an even better consistency than in case 1
(SI=0.4392 for case 4 and SI = 0.3905 for case 1). Recall that a better consistency is often
linked to fewer dimensions in the data.

Case 5: Integrity oriented and low resolution of data

For this last scenario, integrity is more important than keeping feature signification,
but a lower feature resolution than in case 2 is defined. For values, interpretability-oriented
= 0.1, integrity-oriented = 0.9 and target-resolution = 50%. Table 9 shows the results using
this configuration.

Table 9. Algorithm results using interpretability-oriented = 0.1, integrity-oriented = 0.9 and target-
resolution = 50%.

Metrics Values
Best FS silhouette index 0.4393
Best FE silhouette index 0.3775
Interpretability score 0.0439
Integrity score 0.3397
Chosen method EXTRACTION
Number of PCs 4
Resolution 54.2%
Best number of clusters (k) 3

The best FS silhouette index (0.4393) is greater than the value of the best FE silhouette
index (0.3775). The interpretability score is low (0.0439) and the integrity score (0.3397) is
high. A feature extraction process is selected. Four PCs are required to reach 50% of the
resolution. The optimal number of clusters is three. Figure 10 shows the distribution of the
SI for this case.
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Figure 10. Silhouette graphic for case 5 showing the consistency for clusters A, B, and C.

This figure shows three clusters and one misplaced value (located between —1 and 0).
The average of the Sl is 0.3775, which shows a significantly better SI than in case 2 (0.353),
which has more dimensions.

Figure 11 presents a stacked radar graphic of cluster A.
The consistency is quite good. Although, like all the clusters whose features were

kept during the feature extraction process, the feature names are lost and replaced by PCs,

resulting in reduced interpretability.

Cluster: A
PC2

Figure 11. Stacked radar graphics showing cluster A of normalized values for case 5.

3.5. Method Validation
The last part of the analysis is the validation of the method. This paper presents a

novel approach with no other comparable published methods. It has no pretension of
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improving PCA or FRSD. It uses these algorithms but has different inputs and outputs as
well as having distinct parameters. The improvement of the proposed approach is that it
makes correct decisions about the reduction of dimensionality method and the number
of features /PCs to keep. This novel method is a whole decision process that includes the
evaluation of feature importance, a decision process based on parameters and data profiles,
clustering, and the presentation of clusters. There is no known or documented method that
can be used to compare the present method.

That being said, it is crucial to validate the algorithm. To ensure that the algorithm
makes the correct decisions, 250 realistic random cases have been generated. Each of
the random cases includes a random SI index (after a hypothetical feature selection),
a random Sl index (after a hypothetical feature extraction), and a random interpretability
importance parameter. An integrity importance parameter has also been computed using
1-(the interpretability importance) parameter. Using this data, the decision algorithm is
applied. For each case, an interpretability score and an integrity score have been calculated.
A decision is then taken between feature selection or feature extraction. Figure 12 shows
the classification of the points according to the interpretability scores and the integrity
scores. The red points use a feature extraction process and the blue points use a feature
selection process. The black line divides the interpretability (feature selection) and the
integrity (feature extraction) domains.
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Figure 12. Decision distribution classified into two groups: interpretability and integrity.

The points cannot have a high value on both axes because interpretability importance
parameters are the inverse of the integrity importance parameters (alpha and 1 — alpha).
These are used in (7) and (8), which are the axis. If one value is very high, the other must
be very low. Both can have an average value. This graphic shows that the algorithm
always makes a good decision, even when a human may have difficulty choosing. Since
the algorithm uses a threshold, the classification is always correct. Hence, 250 points is
sufficient to show the distribution of the results. This graphic is simple, but it validates the
results of the complex previous parts of the process that uses FRSD and PCA.

Figure 13 shows the bar pairs of the number of features (blue) and the principal
components (red), according to the target resolution of data (as specified in the parameters).
As in the previously described scenario test cases, the London dataset has been used.

As expected, we can see that a perfect resolution of 100% requires all of the eight avail-
able features. This number slowly declines when subtracting each step of 10%. To validate
the integrity advantage of the feature extraction over the feature selection, we subtract
their respective resolutions. It can be compared only when they have the same number
of features and principal components. Figure 14 displays the difference percentage for
all the target resolutions having the same amount of features/PCs. For instance, reading
the Figure 13 we can see that resolutions of 20%, 30%, 50%, 60%, 70%, 80% and 100%



Al2022,3

18

have the same number of features/PCs. This is where the values of Figure 14 are defined.
Blue bars represent the resolution percentage differences between feature extraction and
feature selection.

Number of features/PCs

10 20 30 40 50 60 70 80 QO 100
Resolution target of data (%)

Figure 13. Number of features/PCs according to the target resolution of data.
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Figure 14. Differences of resolution in percentage between feature extraction and feature selection.

We can see that there is a resolution advantage when using feature extraction. This
validates the integrity-oriented parameter.

As for the interpretability-oriented parameter, the best way to validate it is simply
to compare graphs after a feature selection and a feature extraction. For instance, let’s
compare Figure 5 to Figure 7. It is easier to interpret real features names as in Figure 5 than
it is to interpret abstract principal components (PC1, PC2...) (as in Figure 7). This validates
the interpretability-oriented parameter.

4. Discussion

Deciding when to reduce dimensionality has always been a critical decision. Using
the right technique to reduce the dimensionality of a set of features is also important,
especially in an unsupervised learning context where data labels are not available. The main
contribution of this paper is to define a novel, complete method that makes the right
decision of dimensionality reduction according to the data scientist’s preferences and then
completes the process by clustering the data.
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Two different algorithms have been used to evaluate feature importance: FRSD and
PCA. The first evaluates feature importance for use in feature selection and the second
is used for feature extraction. In Tables 3 and 4, it is notable that both methods provide
similar results in terms of feature importance. The principal difference is the loss of feature
names when using PCA.

The decision process uses two equations, (7) and (8). Both are based on the data
scientist’s preferences regarding interpretability and integrity. The decision equations are
also based on the best SI (a metric of cluster consistency) and the previously calculated
feature’s importance. Comparing the best SI for feature selection and feature extraction in
Table 5, we note that feature extraction does not mean a better consistency of clustering.
Reading Table 7, where the values of the parameters (oriented-interpretability and oriented-
integrity) are equal, we can see that using a method that keeps better integrity of data
(like PCA) does not guarantee a better consistency of clustering. Better consistency of
clustering is shown in cases 4 and 5 (due to the lower data resolution). Both feature
selection and feature extraction allow a better cluster consistency when the dimension is
reduced. A higher resolution of data (more features) implies that it is harder to maintain a
good cluster consistency.

PCA is a useful tool to extract features and reduce dataset dimensionality. Conse-
quentially, it helps to speed up the learning process and to simplify the presentation of
the features. Before extracting some features, it is very important to evaluate the impact
of such an operation. In some cases, features can be extracted without losing significant
precision in the data. In other cases, significant resolution of the data will be lost. Feature
extraction has the disadvantage of losing feature names. Consequently, a clustering process
after a feature extraction can provide good results, but it becomes less significant when
represented on figures as in Figure 7, since the feature names are lost. Having axis named
PC1, PC2, PC3... PCn makes it harder to interpret.

Using a feature selection enables the keeping of the feature names, as shown in Figure 5,
but at the price of losing some information. The trade-off must be carefully evaluated (and
is precisely evaluated using this proposed method).

The final result is clustering. For each case from 1 to 5, two types of graphics are
presented to represent the clustering process. One, the SI figures (Figures 4, 6, 8, and 10)
show the distribution of the data in each cluster. It shows the SI average, the number of
clusters, the number of elements in each cluster, and the consistency of each cluster. Two,
the stacked radar graphics (Figures 5, 7, 9, and 11) display the normalized values of each
feature or PC. Reading these graphics, it is possible to determine cluster consistency at a
glance. Only one cluster per scenario is displayed (cluster A), as an example.

The validation of the method is shown in Figures 12-14. Figure 12 shows that the
algorithm makes the correct decision of feature selection or feature extraction using a set
of 250 generated data and parameters. Figure 13 shows a good link between the target
resolution parameters and the number of selected features and PCs. Finally, Figure 14
shows the advantage of using feature extraction, in terms of the integrity of data.

This research is a complement to the recent FRSD method presented in [16]. This
methodology proposes a method to evaluate features in an unsupervised learning clustering
context. Based on this work, we can compare the added value of the present paper. This
paper takes this method and brings to it a more global and integrated context where
FRSD and PCA are used to evaluate the importance of the features. From this evaluation
along with interpretability and integrity parameters, a score is calculated and used to
decide if feature selection or feature extraction is the best. In most cases, the utility of
calculating the importance of the features with FRSD is to reduce dimensionality and to
apply a clustering process. The reason is that FRSD aims to determine the importance of the
feature relative to the consistency of the clustering process (the SI). FRSD and a clustering
algorithm like K-means are linked. This method adds FRSD to the entire process, from the
evaluation of features to the final clustering and the representation of the data (SI and
stacked radar graphs).
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5. Conclusions

The contribution of this paper is a novel method called Decision Process for Dimen-
sionality Reduction before Clustering (DPDRC). It does the following: One, evaluates the
importance of each feature regarding the consistency of the clustering process. Two, selects
the correct technique of dimensionality reduction. Three, applies the selected technique and
proceeds to the clustering and its representations. The decision of the correct dimensional-
ity reduction technique is made according to user preferences (interpretability, integrity,
and needed resolution of the data) and according to the profile of the data. It uses PCA and
FRSD algorithms to evaluate the importance of the features, and to reduce dimensionality
according to the parameters and data profile.

This method has the advantage of being the first decision algorithm to solve the deci-
sion problem of dimensionality reduction according to the preference of the user. For this
reason, this method cannot be directly compared with other methods. This method also
presents some limitations. For instance, there may be issues to solve regarding exponential
feature combinations using FRSD. Indeed, to evaluate the importance of each feature,
the FRSD algorithm needs to combine every possible combination of features, to apply
clustering, and to evaluate its corresponding consistency with an SI metric. This process
will typically be exponential. Past a certain amount of features, the processing time will
become too long.

Future work will focus on using more datasets from different sizes to test the scalability
of the propose method. The algorithm needs to be tested in terms of time consumed,
especially with large datasets. Different presentations of the data and decision process can
also be developed and some specific applications and use cases can be tested as well.

Finally, a similar method could be developed to automate the choice of dimensionality
reduction in a supervised learning context. A Random Forest algorithm would replace the
FRSD algorithm since the label of the data is already known in a supervised learning context
and there would be no need to apply clustering afterward. Another classic supervised
learning method like a classification or a non-linear regression could be applied to validate
the method.
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