
  
Abstract— This paper shows how adding a second step of 

windowing after each phase randomization can reduce the False 
Rejection Rate in Fourier based Surrogate Analysis. Windowing 
techniques reduce the discontinuities at the boundaries of the 
periodically extended data sequence in Fourier Series. However, 
they add a time domain non-stationarity which affects the 
Surrogate Analysis. This effect is particularly problematic for 
short low-pass signals. Applying the same window to the 
surrogate data allows having the same non-stationarity. The 
method is tested on order 1 autoregressive process null 
hypothesis by Monte-Carlo simulations. Previous methods were 
not able to yield good performances for left-sided and right-
sided tests at the same time, even less with bilateral tests. It is 
shown that the new method is conservative for unilateral tests as 
well as bilateral tests. In order to show that the proposed 
windowing method can be useful in real context, in this extended 
paper, it was applied for an EEG diagnostic problem. A dataset 
comprising the EEG measurements of 15 subject distributed in 
three groups: attention-deficit disorder primarily hyperactive-
impulsive (ADHD), attention-deficit disorder primarily 
inattentive (ADD); and anxiety with attentional fragility (ANX) 
was used. Both statistical and machine learning (Naïve 
Bayesian) approaches were considered. The Mean Short 
Windowed SA (MSWSA) was used as a signal feature and its 
performances was studied with respect to the windowing 
systems. The main findings were that (i) the MSWSA feature has 
less variability for ADD than for ADHD or ANX, (ii) the 
proposed windowing method reduces bias and non-normality of 
the SA feature, (iii) with the proposed method and a naïve 
Bayesian classifier, a 93% success rate of discriminating ADD 
from ADHD and ANX was achieved with leave-one-out cross-
validation, and (iv) the new feature could not have yielded 
interesting results without the proposed windowing system. 
 

Index Terms—ADD, ADHD, EEG, Fractal Dimension, 
Nonlinear Analysis, Nonlinear Dynamics, Surrogate Data, 
Windowing Techniques. 

I. INTRODUCTION 
URROGATE Analysis (SA), a method initially developed 
for the testing of nonlinearity [1], has been recently 
applied for signal classification [2] on long time series. 

This paper shows how the mean SA over small windows can 
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also be used for classification on Electroencephalogram 
(EEG) signals [3]. 

This paper is an extended version of [4]. In [4], the 
windowing compensation technique useful for short time 
series was described and analyzed on synthetic data 
representing a null hypothesis. In this extended paper, the 
proposed compensation is applied to a real EEG dataset. 
Often, features and algorithms which are interesting for the 
analysis of one type of biosignal can have applications to 
other types [5]. Also, different biosignals frequently have 
relations between them [6]. Hence, although applied on a 
specific problem, the proposed feature could have 
applications on multiple biosignal measurements such as 
EEG [7, 8], surface Electromyography (EMG) [9, 10], or 
Electrocardiography (ECG) [11, 12]. 

The SA is a hypothesis test aimed at assessing the 
nonlinear nature of a signal [1]. It has been applied to a wide 
variety of domains [13], notably in the study of brain activity 
[14, 15]. More recently, it has been used as a feature for Low-
Back-Pain diagnostic with electromyogram (EMG) sensors 
[2] and to study the non-randomness of the phase spectrum in 
the Fourier domain [11]. It has also been extended for 
distinguishing between non-linear and non-stationary data 
[16]. 

Multiple versions of the SA have been developed but can 
generally be categorized in two groups: Fourier based and 
auto-regressive moving-average process (ARMA) based. 
Both approaches were well described [17]. By far, the Fourier 
method has been the most popular, including its derivative 
such as the amplitude adjusted Fourier transform (AAFT) and 
its iterative version [18]. It is a preferred approach because of 
its simplicity since it does not require any model selection 
step. However, the Fourier based SA is well known for its 
sensitivity to signals artifacts. An important example of such 
artefacts is the impact of limited amount of data. One solution 
to this artefact is the method of matching ends. It was 
analysed in [19] that matching the ends gave reasonable 
performances for reducing the effect of the “periodicity 
mismatch” (difference between the first and last data point) 
when the number of data points available is high. Another 
solution is to apply windowing techniques [20] which have 
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the advantage of not requiring a variable data length or initial 
point selection. This makes it easier to implement or to 
compare results between different time series, especially 
when the data length is small. Also, non-linear methods can 
be biased by the data length [21]. The windowing techniques 
effect can be described in the frequency domain as well as in 
the time domain. When analyzed in the frequency domain, 
the main interest of the windowing methods is to allow a 
trade-off between the main lobe’s size and the sidelobes’ 
amplitude, i.e. between resolution and dynamic range. With 
respect to the SA, the frequency domain effect of the 
windowing has simply been described as “additional bias” 
[18]. From a time domain perspective, they reduce the 
discontinuities at the boundaries of the periodically extended 
data sequence in Fourier Series, i.e. the periodicity mismatch. 
In [1, 22], the windowing is applied in the generation of the 
surrogate data. However, these surrogates are compared to 
the unwindowed original series. This leads to time domain 
non-stationarity of the surrogate signal which is not present 
in the original signal. This non-stationarity can produce a bias 
on the nonlinear feature of the surrogate series. The results 
showed the trade-off between reducing the periodicity 
mismatch (called “sampling gap in [22]) and avoiding the 
spectral leakage. Indeed, it indicated that using the 
windowing techniques is useful up to a certain data length. 
Above, the windowing worsens the bias. Moreover, even in 
the best cases, it remained largely optimistic, yielding 
between 10 and 25% of False Rejection Rate (FRR) when a 
5% rate would be expected. Nonetheless, the application of 
windowing techniques is important: without it, the FRR were 
shown to be over 30%. 

A different approach would be to compare the surrogate to 
the windowed version of the original signal. However, the 
windowing process adds time domain non-stationarity. The 
windowing of a stationary ARMA process makes its variance 
changing from sample to sample. It has been shown that the 
SA may be very sensitive to non-stationarity [16, 23]. This 
effect has even been exploited notably in [24]. The non-
stationarity caused by the windowing in the original data will 
not be present in the surrogate series. Clearly, the windowing 
adds a bias. The biases in SA make either the left or right 
sided test over-optimistic. Also, it makes the bilateral tests 
always over-optimistic. The bilateral tests are important when 
the type of nonlinearity that might be present is unknown. 

Until now, windowing methods for short time series has 
been evaluated on synthetic data representing a null 
hypothesis and has yet to be applied on real measurements.  

This paper presents a method for compensating the non-
stationarity caused by the windowing in SA. The method 
consists of keeping the window on the original series and 
applying the same window on every surrogate data series. 
This adds the same non-stationarity to the surrogate series as 
in the original series. The analysis is conducted by Monte-
Carlo simulations on an order 1 autoregressive process 
(AR(1)) as in [22], but considering the unilateral and bilateral 
tests. Although the added windowing replaces the periodicity 
mismatch artifact by a frequency smoothing artifact, it will be 
shown that the overall effect is conservative. 

A feature including the described windowing scheme was 
developed and tested on real data. The dataset was composed 

EEG measurements of three groups of five subjects (15 in 
total). The classes were (i) attention-deficit disorder primarily 
hyperactive-impulsive (ADHD), (ii) attention-deficit 
disorder primarily inattentive (ADD), and (iii) anxiety with 
attentional fragility (ANX). Let’s note that no control group 
was present. 

EEG signals have been an interesting kind of signal for the 
study of nonlinear signal processing. For the SA, they have 
been an application example from the first proposition of the 
method in [1]. Arguably, the EEG signals are where the SA 
has been used the most [25-31]. EEG signals are therefore 
relevant signals to test the proposed windowing method. 

To our knowledge, there are no studies for EEG 
classification that attempts to address these three conditions 
together. However, the ADHD vs control classification has 
an extensive literature. In [3], it is reported that the state-of-
the-art methods can achieve between 90 and 98% of 
classification success. Although some of the studies reported 
made use of data augmentation methods [3] or multiple trials 
[32] which can overestimate the performances, there were
clearly achieving a clinically useful level of classification.
Even if near perfect classification is attained, it is for
relatively simple classification problems compared to, let’s
say, automatically detect any condition reported in the DSM-
5 [33]. There is therefore still a lot of room for research of
interesting EEG features.

Although linear methods have been used to classify EEG 
signals, the best results are obtained by nonlinear analysis 
[34]. However, it is well known that linear aspects of the 
signal have strong or even dominant effect on nonlinear 
features. It is with this fact in mind that SA was developed. 
Since the publication of the SA method, continuous research 
has been made toward understanding the nonlinear aspect of 
EEG [35-38]. However, the SA was only used in order to 
justify the use of nonlinear feature (e.g. [39]) or interpreting 
the results (e.g. [37]). In the study of depression, [39] used 
both linear and nonlinear features, having better results with 
the nonlinear ones. SA scores based on FD and the Largest 
Lyapunov Exponent were obtained separately for a patient 
group and a normal group. However, the analysis ended with 
the confirmation that the signals were nonlinear. In [40], the 
Sample Entropy (SampEn), a nonlinear feature, along with its 
SA counterpart was tested for EEG based Alzheimer’s 
Disease (AD) detection. The SA score used was equivalent to 
the absolute value of the score considered in this paper. The 
results showed that there was a clear difference between the 
Sampled Entropy of the AD group and the control group, but 
there was no difference found for the SA score. However, 
only long time series were used. The SA with Katz’ FD has 
been successfully applied in [2] in the context of Low-Back-
Pain diagnostic with surface Electromyography (EMG) 
sensor array. It applied the SA on very large data series. In 
summary, there is no use of the SA as a signal feature in EEG 
literature and there is no short window SA application on real 
data. 

The experimental validation of the proposed method is 
carried with the analysis of an EEG dataset. A new feature is 
proposed: The Mean Short-Windowed SA (MSWSA) based 
on Higuchi’s FD. Since the dataset is small, Naïve Bayesian 
classifier will be used to reduce the number of meta-
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parameters. The new feature will be examined from both a 
statistical and a machine learning point-of-view. 

The main findings were that (i) the MSWSA feature has 
less variability for ADD than for ADHD or ANX, (ii) the 
proposed windowing method reduces bias and non-normality 
of the SA feature, (iii) with the proposed method and a naïve 
Bayesian classifier, a 93% success rate of discriminating 
ADD from ADHD and ANX was achieved with leave-one-
out cross-validation, and (iv) the new feature could not have 
yielded interesting results without the proposed windowing 
system. 

The paper is organized as follows: Section 2 describes the 
basic numerical methods testing methodology. Section 3 
reviews the classical windowing method for the SA found in 
the literature and presents the proposed approach. Section 4 
describes the EEG experimental data and the presentation of 
the new MSWSA feature. The results of the simulations are 
reported in Section 5 while those of the EEG experimentation 
are found in Section 6. The discussion of both the numerical 
simulation and the EEG experimentation are regrouped in 
Section 7. Finally, the conclusions are drawn in Section 8. 

II. NUMERICAL METHODS 
This section describes the conditions and results of the 

numerical experiments done by Monte-Carlo simulations. 

2.1. Nonlinear Method: Higuchi’s Fractal Dimension 
The nonlinear method used in this paper is the FD 

calculated by the Higuchi’s method [41]. A similar use of FD 
in the context of SA was notably used in [42] for 
magnetoencephalography (MEG) signals. The FD is easily 
calculated, even with a low number of data points. The 
Higuchi’s method for obtaining the FD is based on the 
calculation of the signal’s absolute length L with a 
subsampling factor k:  

𝐿𝑚(𝑘) = ∑ |𝑥(𝑖𝑘 +𝑚) − 𝑥((𝑖 − 1) ∙ 𝑘 + 𝑚)|
𝑁

𝑘
−1

𝑖=1
𝑘⁄ (1) 

These is averaged for m, the starting point: 

𝐿(𝑘) = ∑ 𝐿𝑚(𝑘)

𝑘

𝑚=1

/𝑘 (2) 

The Higuchi’s FD is the slope of the logarithm of L with 
respect to the logarithm of k. 

The method necessitates the selection of the time intervals 
(k). For speed, we only used k from 1 to 5.  

2.2. Window Method 
In [22], different windows were tested. In this paper 

different systems are tested. Hence, the best window 
proposed in [22], the Welch Window [43], is used for the 
numerical experiment. (Another window is used for the 
experimental section). The Welch Window is a parabola 
centered at N/2, as shown in Fig. 1 (b): 

𝑤𝑊𝑒𝑙𝑐ℎ(𝑛) = 1 − (
2𝑛 − (𝑁 + 1)

𝑁 − 1
)

2

(3) 

The 𝑤(𝑛) are the window’s tap coefficients.  
 

2.3. Test Signal 
The AR(1) process is used for the tests. It follows the 

relation: 
𝑥(𝑛) = 𝛼1𝑥(𝑛 − 1) + 𝑒(𝑛) (4) 

 
where x is the signal, α1 is the process parameter controlling 
the cut-off frequency and e is an independent identically 
distributed random variable called process noise. In this 
paper, the noise has a normal distribution. This process was 
used in [22] with α1 = 0.995. This choice was appropriate to 
highlight the windowing effect. The periodicity mismatch in 
FFT is much more obvious in low pass signals. We used the 
same α1 in most of this paper analysis. However, we also 
show results with α1 =0.9, which clearly reduce the 
periodicity mismatch problem and give an advantage to the 
System 1, with no windowing. An AR(1) process with α1 =0.9 
is shown in Fig. 2 (d). As in [22], the first data point were 
removed in order to attain the steady state regime. The 
transient regime can be seen as non-stationary, which can 
affect the SA. We used an extra 2000 data points in order to 
have a relative impact of 5x10-5 in the case where α1 = 0.995. 

2.4. Performance Measure: The False Rejection Rate 
The FRR is used to compare the performances of the 

different systems. It is often called “Type 1 error.” A 
perfectly fair, or balanced test should give a FRR of exactly 

 
Fig. 1.  Time domain representation of an example of 256 data 
points of an AR(1) signal with α1 = 0.9 and its processed versions 
by the proposed system. The signal variables are given with respect 
to the proposed system shown in Fig. 2 (d). The original signal x (a), 
the Welch window (b), the original windowed signal xw (c), a 
surrogate of the windowed signal s (d) and the windowed surrogate 
signal sw (e) are presented. 
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5%. When the FRR is lower, the test is considered 
conservative while if it is higher, the test is said to be 
optimistic. 

III. SURROGATE ANALYSIS AND WINDOWING 
The SA compares a nonlinear feature of a signal to the 

distribution of the same feature obtained on random signals 
with identical power spectrum. To do this, surrogate signals 
respecting the null hypothesis with the same power spectrum 
as the originals signals must be generated. The most common 
approach, which is considered here, is the phase 
randomization in the frequency domain. First, the Fast 
Fourier Transform (FFT) is applied. The phase is set to a 
uniform distribution between 0 and 2π, with conjugate 
symmetry in order to preserve real values. Then, the signal is 
set back in the time domain by inverse Fourier transform 
(IFFT). The number of surrogate series that must be 
generated depends on the desired FRR [19]. For a unilateral 

test with an aimed 5% FRR, 19 surrogate series are generated. 
As previously stated, in this paper, the FD is the nonlinear 
feature considered. When the SA is computed with the FD as 
its nonlinear feature, the FD is calculated for the original 
series and every surrogate series. The final stage is a 
comparison of the FD of the original series to those of the 
surrogates. A positive result to the test is given if the original 
series FD is higher than the surrogate series FD when the test 
is right sided and lower when the test is left sided. For a 
bilateral test again with an aimed 5% FRR, the number of 
surrogate series must be increased to 39 and the test will be 
positive if the original FD is higher of lower than all the 
surrogate series FD. 

The null hypothesis is that the signal can be produced by a 
stationary linearly filtered white Gaussian noise. If the data 
processing produces some artifacts that are not of an ARMA 
type, these may influence the results. 

When windowing is applied on a signal, two effects must 
be considered: 

1) The spectral leakage, explained by the convolution 
theorem, 

2) A non-stationarity in the sample-to-sample variance of 
the resulting signal. 

The non-stationarity is the result of the time-domain 
multiplication between the original signal, which can be 
stationary, and the fixed window. The resulting signal will 
have a variance which will vary from sample-to-sample, with 
a variance scaling factor of 𝑤2(𝑛). 

These two effects can affect the nonlinear feature of the 
signal. It is important to note that non-stationarity is removed 
by phase randomization. If some windowing artifacts are 
present in the original signal but not in the surrogate (or the 
reverse), a bias is created. 

The four systems presented in Fig. 2 show different 
approaches for applying windowing in SA. The systems are 
shown for right-sided tests with FRR set at 0.05 (if the test 
was unbiased). The rest of the present section describes the 
first three systems used as a basis of comparison and the 
proposed system. 

3.1. System 1: Windowless Surrogate Analysis 
The basic SA without windowing is presented in Fig. 2 (a). 

It is the system mostly used throughout the literature 
proposed in [1]. It can be interpreted as using a rectangular 
window. For a data series that respects the null hypothesis, 
the differences between the original signal and its surrogates 
include both the spectral leakage and the periodicity 
mismatch. 

3.2. System 2: Method of Suzuki [22] 
In Fig. 2 (b), the windowing in applied before the FFT. 

However, the FD of the original series is calculated on the 
unwindowed version. Although the periodicity mismatch 
effect is strongly reduced, the power spectrum differs 
between the original and surrogate series. Moreover, this 
difference is identical throughout the surrogate series. On the 
other hand, all the signals are stationary. The method was 
possibly first briefly mentioned in the original SA paper [1] 

 

 
System 1: No Windowing 

(a) 
 

 
System 2: Windowing Applied as the Method of Suzuki 

(b) 
 

 
System 3: Same Spectrum 

(c) 
 

 
System 4: Proposed System 

(d) 
 

Fig. 2.  Windowing in the surrogate analysis system for right-sided 
tests. The system with no windowing is presented in (a). The method 
used in [12] is shown in (b), with the only difference being that the FD 
is used instead of Local Linear Prediction. The system in (c) is a 
variation of the previous one in which the FD of the original series is 
obtained from the windowed original series. 
 
 
 
 

 

 

 

 



Extended version of I2MTC2021 paper #4390 "Windowing Compensation in Fourier Based Surrogate Analysis" 
 

5 

but was really analyzed in [22]. 

3.3. System 3: Same Spectrum 
A final reference method is given in Fig. 2 (c). The system 

is similar to the method in (b), but the FD of the original series 
is calculated on the windowed version. Therefore, the original 
and surrogate series have the same power spectrum. 

However, while the surrogate series are stationary, the 
windowed original signal is not. This method has not been 
found clearly explained in the literature. Although System 3 
is not part of the literature, it is included in the numerical tests 
for the sake of completion, because it shows a situation where 
the only artifact is the non-stationarity.  

3.4. System 4: Proposed Windowing Method for 
Surrogate Analysis 

The proposed system is reported in Fig. 2 (d). The 
difference with (c) is that a second windowing stage is added 
to the surrogate series before calculating the FD. The three 
main aspects of the original and surrogate series are: 

1) The spectral leakage is different between the surrogates, 
2) The spectral leakage is different between the surrogates 

and the windowed original series, 
3) The non-stationarities are similar. 
The stationarity aspect ensures that the bias in the 

nonlinear method caused by the window are similar. The 
spectral leakage between the surrogates adds variability in the 
surrogate series power spectrum. For this reason, it is 
expected that the test will be more conservative. Examples of 
the different signals obtained in the System 4 are shown in 
Fig. 1 (a) (c-e) along with the window used (b). The 
windowed signal is non-stationary. 

IV. EXPERIMENTAL DATA AND FEATURE EXTRACTION 
In this section, the experimental methods are explained. 

The description of the measurements and dataset are given, 
as well as the feature extraction method. 
 
1) EEG Measurements and Dataset 

A dataset comprising the EEG measurements of 15 
subjects distributed equally in three groups: attention-deficit 
disorder primarily hyperactive-impulsive (ADHD), attention-
deficit disorder primarily inattentive (ADD); and anxiety 
with attentional fragility (ANX) was used.  

In each session, about 8 min of EEG data (International 10-
20 system, 19 channels) was collected, with 5 minutes while 
resting state with the eyes open, followed by 3 minutes resting 
with the eyes closed. The EEG measurement system had an 
analog bandpass filter from 0.3 Hz to 70 Hz (4th order 
Butterworth zero-phase band-pass filter) and a sampling rate 
of 250 Hz. An Anterior-Posterior Bipolar Montage was 
obtained by offline calculation, leading to 18 channels. For 
each channel, 20000 data points with closed eyes were kept. 
2) Preprocessing 

The preprocessing stage was kept to a minimum in order 
to leave the nonlinearity as much as possible unaffected. Only 
a simple notch filter was applied in the frequency domain at 
60 and 120 Hz. The use of the frequency domain notch filter 

allows to keep the phase spectrum intact, an important aspect 
in nonlinear analysis. There was no separation between the 
different brain waves.  
3) Windowing 

The window method used was the Hann window [44], also 
called Raised-Cosine. It is simply composed of a cosine 
signal raised to have only positive numbers.  

𝑤𝐻𝑎𝑛𝑛(𝑛) =
1

2
(1 − cos (2𝜋

𝑛

𝑁
)) (5) 

 
The choice of this window was made to eliminate as much 

as possible periodicity mismatch, including at the multiple 
derivative levels. The length of the windows was 30 data 
points (equivalent to 120 ms), with overlaps of 50%, applied 
over 80 seconds of data. This is applied to every EEG 
channel. For comparison, the data were also treated with a 
single window. 
4) SA Score 

A score-based representation of the SA is used to produce 
continuous features. The score 𝑍 is obtained as follows: 

𝑍 =
𝐷 − 𝐷𝑆̅̅ ̅

std(𝐷𝑆)
(6) 

 
where D is the FD of the original series, DS is the FD of the 
surrogate series, and std is the standard deviation. It must be 
emphasized that a similar score was proposed in [1] but 
included an absolute value. In [2],the score without the 
absolute value was proposed. While for the nonlinearity 
detection problem in the simulations, as said earlier, only 19 
surrogate series are required for the unilateral test and 39 for 
the bilateral test for a 95% confidence interval, much more 
are needed for this continuous version of the SA. Both the 
mean and standard deviation of the surrogate data series 
nonlinear feature must be estimated reasonably precisely. For 
this soft version of the SA, 200 surrogate series were used. 
5) Proposed Mean Short-Windowed SA Feature 
The MSWSA is proposed as the estimated mean SA score Z 
evaluated on all the data windows: 

𝑀𝑆𝑊𝑆𝐴 =
1

𝑁𝑊
∑𝑍𝑤
𝑛𝑤

(7) 

 
Here, NW is the number of data windows and Zw is the SA 
score of the w-th data window. The MSWSA is proposed as 
a signal feature, useful for classification purpose. The rational 
behind the MSWSA has two main components:  

- Using short data windows makes the score principally 
influenced by short duration phenomenon. 

- Using many of these short windows is useful to reduce 
the variability of the score. 

The interesting aspect of the MSWSA with respect to EEG 
is that it could target phenomena of durations of the same 
order of magnitude as short Event-Related Potentials (ERP) 
[45-47]. Hence, it is expected that there would be a certain 
match between the dynamic of the EEG and the MSWSA. 
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V. SIMULATION RESULTS 
Monte-Carlo simulations were conducted to obtain the 

FRR of the different systems. The number of tests per point 
in these graphs was 20000. All the simulations were made for 
windows of size N ranging from 16 to 8192. The same signals 
were tested for every method. This gives a maximum error of 
1% at 3 standard deviations when the FRR is of 50% and 
0.2% when FRR is at 5%. In the first simulation, α1 was set 
to 0.995. 

The results of the theoretical Monte-Carlo simulations are 
shown in Fig. 3 (a-c). The right-sided (a), left-sided (b) and 
bilateral tests results are shown. In (d), the results for the 
bilateral test are given for α1 = 0.9. 

A bias in the FD of the surrogate will reduce the FRR of 
one of the one-sided tests while increasing the FRR of the 
other. For example, the System 3 shows a very low FRR for 
the right-sided test in Fig. 3 (a) but very high for the left-sided 
test. The effect of the bias for bilateral test is harder to predict. 
When a normal distribution is considered, the bias simply 
increases the FRR. However, when the distribution is 
skewed, the FRR can be either lowered or raised (or in some 
particular cases stayed unaffected.) Adding some Kurtosis 
effects, it becomes necessary to simply rely on simulations to 
assess the impact of the different biases. In Fig. 3 (a-c), the 

System 2 bilateral test has some FRRs higher than for both 
one-sided tests while the System 3 does not. The relation 
between the standard deviation of the offsets and standard 
deviation of the surrogates FDs will impact both one-sided 
tests, as well as the bilateral test. 

The results show that the proposed system is generally very 
conservative. Since the right-sided tests FRR is higher than 
for the left-sided tests, there is still a weak bias. The bilateral 
test FRR is almost always at 1%. The proposed system is the 
only one which can give conservative results in bilateral tests.  

As expected, when α1 = 0.9 (d), the impact of not using 
windowing (System 1) is much weaker. Also, as the number 
of data points increase, the windowing problem disappear. 
The number of data points necessary to remove the need of 
windowing depends on the bandpass of the signal, controlled 
by α1 in this case. The System 2 has the same kind of 
behaviour with FD that it had with Local Linear Prediction as 
used in [22]. It has better performances than System 1 (no 
window) when the number of data points is small, but worse 
when the number is higher. Although the System 3 performs 
better than System 2 when the number of data points is high, 
it almost never performs better than the System 1 and 
System 2 simultaneously. 

 
(a) (b) 

 
(c) (d) 

 
Fig. 3.  False Rejection Rates vs the number of data points (window size) of all systems for an AR(1) process with α1 = 0.995 for (a-c). Right-
sided (a), left-sided (b) and bilateral (c) tests are shown. In (d), the process has α1 = 0.9 and the test is bilateral. The number of tests was 
20000 per points. The x axis title N stands for number of data point in a window. 
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VI. EXPERIMENTAL RESULTS 
The results obtained from the EEG dataset are shown in 

this section. Both statistical and machine learning approaches 
were considered. 

A. Statistical Analysis Results 
The statistical analysis of the MSWSA features is caried to 

verify if there are statistical differences between the different 
groups and to observe possible biases intervening in the 
different windowing systems. The statistical analysis is 
reported for the windowing System 3 and System 4.  

A first analysis is done by plotting in Fig. 4 the MSWSA 
of all channels together, separated by classes. Each boxplot is 
obtained from 5 subjects with 18 channels, hence 90 MSWSA 
values. System 3 and System 4 results are shown in (a) and 
(b) respectively. The main difference is clearly an offset 
difference of the MSWSA. However, this offset difference is 
similar for all classes. Also, there are no obvious observable 
variability variation with the methods. 

An example of the boxplot of the MSWSA for a single 
channel (Fp1-F7) is given in Fig. 5. Again, there is an offset 
gap. Also, there is reduced variability for the ADD group 
comparatively to ADHD and ANX groups. The effect was not 
found to be statistically significant. A similar conclusion 
could be made on the other channels. 

In Fig. 6, the variance of the MSWSA for each channel and 
for the three groups are presented. The unbiased estimation 
of the variance was used. It can be seen that the variance of 
the ADD group is always smaller than that of the ADHD and 
ANX groups. The lines representation is used not to indicate 
any particular relation between the points but rather to 
highlight the fact that the ADD group is different for the 
variability, i.e., its line is always lower. Such clear results 
were not found for the mean MSWSA. Also, for System 2 
and System 3, the results were less obvious. 

With the caveat that the individual channels are not 
independent and that the hypothesis has been made à 

 
(a) (b) 

Fig. 4.  Boxplot of the MSWSA of all channels together separated by classes. 
System 3 and System 4 results are shown in (a) and (b) respectively.  

 
(a) (b) 

Fig. 5.  Example of the boxplot of the MSWSA for a single channel (Fp1-F7) 
separated by classes. System 3 and System 4 results are shown in (a) and (b) 
respectively. 

 TABLE I 
PROPORTION OF POSITIVE NORMALITY TEST RESULTS 

N Groups 3 3 2 2 

Win System 3 4 3 4 

KS 0 0 0 0 

SW 0.5 0.06 0.61 0.06 
 

TABLE II 
NUMBER OF CHANNELS WITH POSITIVE VARIANCE TEST RESULTS AND 

P-VALUES 

System 3 3 4 4 

 N Chan p N Chan p 

Bartlett 5 0.00155 5 0.00155 

Levene Quadratic 0 1.00000 5 0.00155 

Levene Absolute 3 0.05813 7 0.00002 

Brown Forsythe 2 0.22648 5 0.00155 

O’Brien 0 1.00000 5 0.00155 

F-Test 5 0.00155 4 0.01087 
 

 
Fig. 6.  Variance of the MSWSA for each channel and for the three groups. 
The System 4 windowing method is used.  
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posteriori, considering that the probability of having 
randomly 18 points all lower than two other series is 2.5x10-9 
is still convincing that the results would not likely have 
occurred by chance only.  

It is desired to confirm the variability relation by different 
method. Hence, hypothesis testing on the difference of 
variance was used. Normality was first verified. Non-normal 
data can produce spurious rejection of the null hypothesis. 

The normality of the MSWA score was assessed. Results 
are shown in Table I for System 3 and System 4. Both 
Kolmogorov-Smirnov (KS) and Shapiro-Wilks (SW) 
Normality tests were used with α=0.05. The tests are applied 
for every channel and the proportion of positive results are 
given. The KS test is never sensitive enough to detect non-
normality. However, the proportion of channels which are 
detected as non-normal is much lower for System 4 than 
System 3. Similar results are obtained whether the ADHD 
and ANX are regrouped (2 groups) or not (3 groups). The null 
hypothesis was much more rejected for System 3 than 
System 4. Hence, variance variability results of System 3 will 
be more biased. This does not change the conclusion drawn. 

The statistical significance of the difference of variance of 
the MSWA was tested on the 2 classes problem. Six tests for 
the difference of variance have been used: Bartlett, Levene 
Quadratic and Absolute, Brown Forsythe, O’Brien and the F-
test. The number of channels where the result was positive 
are reported in Table II for each test. The p-values associated 
were obtained by considering the probability of obtaining the 
number of channels with positive test or higher randomly 
given a probability of 0.05. Similar results are obtained when 
3 groups are considered, but the F-test is not applicable in this 
case. 
 

B. Classification Results 
A single long window SA Z score is compared to the 

proposed MSWA. For both the single long window SA and 
the MSWSA, the windowing Systems 2, 3 and 4 are tested. 
The System 1, without windowing, is not tested, for reasons 
explained in the discussion. 

A Naive Bayesian classifier [48] was used for every 
system. No meta-parameter was necessary to adjust, beside 
those already mentioned (number of windows, choice of 
windowing, Fractal Dimension’s parameter which was 
constant for all tests.) Moreover, it is a method well-known 
for its robustness [49]. The function fitcnb of MATLAB 
2020b was used to perform the training of the Naive Bayesian 
classifier. This method is well suited for small data sample 
sizes. 

The classification was performed using only the MSWSA 
feature. The MSWSA of all the differential channels were 
used. Hence, 18 features were included. 

The performances were obtained by a Leave-One-Out 
Cross-Validation approach. The results are reported in Table 
III. Training group performances are not shown because, 
although useful, they are generally misleading. Only the 
proposed System 4 using the MSWSA (mean SA over 1332 
size 30 windows) showed statistically significant results. The 
p-value of this result is p = 0.00049. 

A comparison of the distribution of the SA score Z for a 
single long window and the MSWSA is shown in Fig. 7 for 
all channels together. There is no significant difference 
between the groups. Also, the SA score Z are extremely 
strong. 

VII. DISCUSSION 
The simulation results shown in this paper were based on 

a certain nonlinear method (FD), a particular window 
(Welch) and a specific type of signal, the AR(1) process with 
very low pass characteristics. It must be emphasized that 
every time the SA is used, a careful examination of the null 
hypothesis should be carried out with the selected nonlinear 
method and window on signals with similar power spectrum 
as the data. In other words, the analysis carried out in this 
paper should be done for any new combination of nonlinear 
function, window, and signal. The SA should never be used 
blindly [50]. 

The notion of nonlinearity in a signal is perhaps vague in 
the literature. A direct definition of a “nonlinear signal” was 
found in [51] “Nonlinear Signal: A nonlinear signal is 
generally defined as the signal generated by the system that 
does not obey superposition and scaling properties.” Another 

 TABLE III 
CROSS-VALIDATION CLASSIFICATION RESULTS 

 

Total Data 
Window 
Length 

Number 
Windows Sys 2 Sys 3 Sys 4 

20000 20000 1 53% 60% 53% 

19995 30 1332 60% 40% 93% 
 

 
(a) (b) 

Fig. 7.  Comparison of the distribution of the SA score Z for a single long 
window (a) and the MSWSA (b). The windowing is done by System 4 in both 
situations. All channels are included. Although an offset is observed, the main 
difference is the variability of the SA score Z for a single long window which 
is 50 times greater than the MSWSA.  
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way to understand it can be “a signal for which a sample has 
nonlinear dependence with respect to past values.” 

As it should be reminded in every paper about the SA, the 
interpretation of the results must be limited to rejecting or not 
that “a linear, Gaussian, stationary, stochastic dynamical 
process underlies the data” [52]. 

The Welch’s window was used to obtain the simulation 
results because it was the recommended window in [22] while 
the Hann window was selected for the experimental study in 
order to completely remove the periodicity mismatch while 
avoiding the need to adjust window parameters. However, 
these choices may be improved. Obviously, the optimal 
window depends strongly on the nonlinear method used and 
the type of signal analysed. Multiple testing with different 
windows can be performed if a sufficient number of subjects 
is available. 

As for the choice of the window’s type, multiple trials 
should be made with more data to optimize the method with 
respect to the window’s size. Also, multiple window sizes 
could be used simultaneously to give multiple MSWSA. 
Also, more fundamentally, well-controlled experiments 
should be conducted to allow a better understanding of the 
MSWSA relationship with the EEG signal. 

The SA has variants in which the null hypothesis includes 
a static (memoryless) monotonic nonlinear transform such as 
Amplitude Adjusted Fourier Transform (AAFT) [1] or 
Iterated AAFT (IAAFT) [18]. Another approach that 
considers a data-generating process is linear and Gaussian as 
null hypothesis was also proposed in [53]. The proposition of 
this paper can be extended to these variants with the same 
expected benefits. 

The System 1 was not considered in the classification 
trials. The total absence of windowing leaves artifacts which 
are themselves influenced by the power spectrum. For 
example, a discontinuity in a high frequency signal has 
generally less impact than in a low frequency signal. Among 
the tried windowing approach, only the proposed System 4 
was able to achieve good classification results. Hence, the use 
of this windowing system was necessary to show that the 
MSWSA can extract useful information in EEGs. Also, the 
reduced variability of the ADD group was possible to observe 
because of the System 4 windowing method. Although it was 
possible to observe this behavior with the other systems, it 
was less evident. Moreover, the single large window 
approach was not able to classify the EEG. The very large 
variability of the large window score is probably linked to the 
detection of signals artifacts. The small window approach 
was therefore an improved step. 

The success rate obtained (93%) with the proposed scheme 
was comparable to the performances reported in the literature 
(up to 98%) [3]. The method did not require data 
augmentation technique. In some studies, the data 
augmentation is made before the separation of the data for 
cross-validation purpose, and this can lead to biased 
performances estimation. The number of trials was kept low, 
with the prior hypothesis that the proposed method would 
perform better and with the use of the Naïve Bayesian method 
which does not needs meta-parameters. However, two main 

weakness can be identified. First, the number of subjects was 
low. Although the success rate obtained is statistically 
significant (as stated earlier, p =0.00049), it has a large 
interval of confidence. With an “add two successes and two 
failures” correction for the proportion estimation with small 
number of data, a lower bound of the bilateral 95% 
confidence interval of the success rate is 60%. Second, the 
regrouping of ADHD and ANX was decided after observing 
the variability of the scores of the three groups. This is a 
multiple comparison problem which arises commonly in data 
mining. However, compensating the threshold value with a 
Bonferroni correction with 4 possible class regroupings 
(including leaving the three classes separated), the success 
rate reported would still pass a significance test at α= 0.002. 

The results shown in Fig. 7 can be interpreted as the single 
long window SA is extremely sensitive to all kinds of 
artifacts. Such behavior did not seem to be present when the 
MSWSA was used. 

The stationarity is often tested before using the SA, as was 
done in [54]. As it is one of the main aspects of the present 
paper, non-stationarity can strongly affect the result of the 
SA. However, for really short time series, it is hard to 
distinguish between nonlinearity and non-stationarity. 
Moreover, while the goal of understanding the relation 
between the EEG nonlinear signal characteristic and the 
physiology (or even a patient’s condition) is desirable, there 
is still lot of research to be done to achieve this with studies 
similar to [55]. 

Meanwhile, algorithms that can do automatic diagnostics 
are probably much closer. Although the approach presented 
in this paper could lead to better understanding of the 
physiology, it was more geared toward giving a new feature 
useful for EEG classification. In that sense, there is no 
important difference if the reason for classification 
performance is caused by nonlinearity or non-stationarity. 
However, perhaps the separation of nonlinearity and non-
stationarity could lead to better classification.  

The effect of non-normal distribution on the SA should 
also be mentioned. It is well-known that the distribution of 
the signal affects the results of the SA [1]. For this reason, an 
Amplitude-Adjusted Fourier-Transform (AAFT) and its 
iterative form (IAAFT) methods are commonly used, 
compensating for a static nonlinearity (memoryless). Is has 
also been used for EEG SA testing [39] and synchronization 
evaluation [55]. Again, in a classification-oriented approach, 
separating the effect of the distribution with the nonlinearity 
or non-stationarity is not necessary. Moreover, for very small 
windows, the relation between the windowing method and 
the amplitude adjustment is complex and could lead to 
unexpected results. It should be remembered that to reduce 
the multiple testing problem, a limited number of features and 
parameters must be tested. 

While [54] draws the attention toward low frequency 
components (Delta, Theta, Alpha, Beta waves), the use of 
very short windows could reduce their importance in FD 
analysis. In fact, the windowing effect transfers a part of the 
low frequency signal’s energy toward the mean and the FD is 
not affected by the signal’s mean. Hence, it is possible that 
the high frequency Gamma waves are emphasized by this 
approach. Further studies need to be done to confirm the 
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importance of Gamma waves for the presented classification 
problem. 

Larger tests should be performed, not only to increase the 
confidence in method and allow meta parameter 
optimization, but also to test the performances of other 
nonlinear features in the MSWSA method. The selection of 
the nonlinear feature should include those commonly studied 
for ADHD [56-58], ADD [59] and ANX [60]. Also, only the 
MSWSA was used for classification to show that the featured 
contained information useful for classification purpose. 
However, in a full EEG classification system, there is no 
reason to use a single kind of feature. Hence, the proposed 
feature should be joined to other linear and nonlinear features. 
Also, in such a larger test, attention should be given to the 
gender and the age distributions of the subjects. Perhaps this 
information could explain in part the results presented in this 
paper. However, these subject characteristics could be used 
as à priori information for the classification problem and the 
subject age and gender distribution are clearly insufficient to 
produce the kind of results obtained. 

The classification problem tackled in this paper did not 
include a control group. Although this is a limitation of the 
study, it is not as severe as in treatment studies. There is no 
placebo effect involved. Also, the problem of distinguishing 
the three classes is very relevant [61]. Although the 
classification ended with the regrouping of two classes, the 
results showed a good step forward in EEG signal 
classification. Perhaps an even more relevant but challenging 
future research question would be to have subjects with 
comorbidities between attention deficit and anxiety [61]. 

The interpretation of the SA results can include 
nonlinearity, non-stationarity and particular distribution of 
the data, as generally reported, but could also include Inter-
Frequency-Synchronization as presented in [11].  

Finally, the windowing approach was shown successful in 
an EEG classification context. However, it must be reminded 
that the method should be adapted to the targeted application 
signal. Notably, the nonlinear feature and the window type 
and size must be carefully chosen in every application. 

VIII. CONCLUSION 
The aim of this paper was to show that small data length 

can be used in Surrogate analysis if a windowing method is 
applied both on the original data series as well as on the 
surrogate data series. The method proposed, although very 
conservative, allows to rule out the effect of windowing of 
the already complicated interpretation of the surrogate 
analysis. The experimental validation showed that the 
proposed windowing structured could be used in realistic 
context. The windowing was shown to be effective when very 
small windows are used. Therefore, it allowed to create a new 
feature, the MSWSA, that would otherwise be ineffective. 
This new feature was tested successfully on an EEG dataset. 
It showed interesting statistical properties and discrimination 
capabilities. However, without the new windowing method, 
the new feature would not have produced significant 
experimental results. 
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