非接触音響探査法を用いたアンカーボルトの 接着剤の充填率を検出する方法の検討

上地 樹、杉本 和子、杉本 恒美

桐蔭横浜大学大学院工学研究科

(2015年3月20日 受理)

1. 背景

日本列島は、ユーラシアプレート、北アメ リカプレート、太平洋プレート、フィリピン 海プレートの四つから形成された弧状列島で ある。そのため山岳地帯が多くトンネルや橋 梁などのコンクリート構造物が存在している。 それらの多くが高度経済成長期に建造された ものである。しかし、この時期に建造された コンクリート構造物の耐用年数を迎えつつあ り、その事が問題となっている。コンクリー トの劣化に伴い、剥離・剥落が発生し重大な 事故に結びつく可能性が存在しているのであ る。この事から、コンクリート構造物に対す る維持管理を目的とした、欠陥検査技術の重 要性が叫ばれている。

現在のコンクリート構造物内部の欠陥を把 握する検査方法として、ハンマ等を用いて人 が直接打撃して発生した音から、欠陥か健全 かを判断する打音法が多く用いられている。 しかしこの方法では直接打撃が困難な場所で は、高所作業車が必要であるなど検査の難易 度が高くなる。また検査者の耳で判断を行う ため、検査の判定結果が検査者の技量に依存 する等の問題点が存在している。

そこで我々は、高出力の音源である長距離 音響発生装置(LRAD:Long Range Acoustic Device)とスキャニング振動計(SLDV: Scanning Laser Doppler Vibrometer)を用 いた、非接触による非破壊探査法を提案して いる^[1-10]。LRAD は高出力が可能な音源で あり、高い指向性を持っている。これらを用 いることで、遠距離からの検査や深い位置の 欠陥検出が可能になる。

2012年12月2日、山梨県大月市笹子町に ある笹子トンネル(中央自動車道上り)で約 130mに渡り天井板の崩落事故が発生した。 崩落の原因として、老朽化による接着剤の経 年劣化や接着剤の量が不十分であること等が 挙げられている。定期的な点検は行われてい たが、アンカーボルトまでの距離が離れてお り、打音検査は容易では無く目視での点検が 主であった。この事故に伴い、現在ではアン カーボルトに対する非破壊検査技術が注目さ れている^[11,12]。本研究では、遠距離からの 検査計測が可能である非接触音響探査法を用 いて、アンカーボルトにおける接着剤の充填 率の検出が可能であるかを検証した。この手

Itsuki UECHI, Kazuko SUGIMOTO and Tsuneyoshi SUGIMOTO

Graduate school of engineering, Toin University of Yokohama, 1614 Kurogane-cho, Aoba-ku, Yokohama 225-8503, Japan

法が適用可能であれば、遠距離からのアンカ ーボルトの検査が容易に検出可能になり、安 全のための維持管理検査に大きく貢献出来る と考えられる。

2. 目的

接着系あと施工アンカーボルトモデルを用 いた接着剤の充填率による変化を非接触音響 探査法で検出可能であるか検証を行う。比較 対象としてハンマ加振を行い SLDV で計測 したデータも同様に取得し、比較検討を行う。

Fig.3 接着剤の充填率による振動変化 (a)充填率:高い(b)充填率:低い

比較を行う項目として、今回は振動速度スペ クトルの最大値、振動エネルギーに着目した。

3. 非接触音響探查法

3.1. 原理

Fig.1 にアンカーボルトの接着剤の充填率 を測定する概念図を示す。空中放射音波がコ ンクリート壁を振動させ伝搬する様子を Fig.2 に示す。今回我々が行った実験では、 Fig.2 の様にコンクリート壁を励振させ、そ の振動がアンカーボルトへ伝搬していくと考 えられる。アンカーボルトとコンクリートは 接着剤により接続されている。そのためコン クリートからアンカーボルトへ振動が伝搬さ れる場合、接着剤を振動が伝わっていく。こ の事から、伝播される振動のエネルギーは接 着剤の量により変化すると考えられる。 Fig.3 のように充填率が低いと伝搬エネルギ ーも小さくなり、アンカーボルトの振動も小 さくなると考えられる。

3.2. 利点

本手法の利点として、以下の点が挙げられ る。LRADによる音響加振とSLDVによる レーザスキャン機構を用いることにより、非 接触による定量的な検査が可能である。

4. 振動エネルギーの定義

実際の現場では欠陥部の共振周波数は不明 であり、また複数の共振周波数ピークが存在 する場合がある。そのため、データ解析を行 う際に共振周波数を絞る事が困難である。そ こで本研究では対象周波数帯域を網羅した、 振動エネルギー(VE: Vibrational energy) を用いて解析を行う。振動エネルギーを(1) 式で定義する。PSD_{vib}は振動速度のパワース ペクトル密度、f₁、f₂はそれぞれ下限周波数 と上限周波数を示す。

$$[VE](m/s)^2 = \int_{f1}^{f2} (PSD_{vib}) df \qquad (1)$$

振動エネルギーの概念図を Fig.4 に示す。 1200 Hz 以下のピークは、SLDV のレーザへ

Fig.4 振動エネルギーの概念図

ッドの共振によるピークである。これは空中 放射音波により検査対象面を励振するだけで なく、SLDV レーザヘッド内のミラーを揺ら してしまい発生するものである。

この場合 f_I を 1200 Hz に設定することで、 SLDV の共振周波数の帯域を除いて処理を行 う事が可能である。但し SLDV の共振周波 数に近い共振周波数を持った欠陥の場合、 SLDV の共振に重なり判別することは難しい。

5. アンカーボルトモデル

Fig.5 に実験の対象としたアンカーボルト モデルの概要図を示す。今回の実験では、径 16 mm、長さ 370 mm、削孔径 19 mm、削 孔長 130 mmのアンカーボルトを対象にした。 更に、笹子トンネルの事故ではアンカーボル トの接着剤不足により事故が発生したことか ら、アンカーボルトを固定するための接着剤 の充填率を 100 %・78 %・55 % と変化させ、 疑似的な充填率不足を作成して計測を行った。

6. 実験方法

6.1. 実験セットアップ

Fig.6 に実験セットアップ図を示す。加振 用音源である LRAD はアンカーボルトから 3 m の位置に設置した。振動速度の計測を行 う SLDV は 15°角度を付けて 3.3 m の位置に 設置した。LRAD から空中音波を放射しコ ンクリート壁面を励振させ、SLDV のレーザ によりアンカーボルトの先端面の振動速度の 計測を行った。なお、打音法との比較のため にハンマ加振を用いた実験も同様に行った。 ハンマ加振の場合ではコンクリート面を打撃 して、非接触音響探査法と同様にアンカーボ

6.2. 放射音波データ

Fig.7 に放射音波の波形を示す。計測には 周波数 500-7100 Hz、変調周波数 200 Hz、 インターバル 50 ms、パルス幅 3 ms のトー ンバースト波を用いた。音圧は計測対象面で あるアンカーボルト先端で 100 dB 出力され るように設定した。

7. 実験結果

- 7.1. 振動速度スペクトル
- 7.1.1. ハンマ加振+ SLDV

ハンマ加振を用いた計測結果を Fig.8 に示

(c)充填率:55%

す。(a) は接着剤の充填率が 100% の結果で あり、(b)、(c) はそれぞれ 78%、55% の結果 となっている。個々の最大値は (a) が 3.68E-04、(b) が 4.13E-04、(c) が 2.50E-04 となる。 この結果から 55% で最も低下していること が確認出来る。

7.1.2. 非接触音響探查法

非接触音響探査法の計測結果を Fig.9 に示 す。(a) は接着剤の充填率が 100%、(b)、(c) はそれぞれ 78%、55% の結果となっている。 個々の最大値は (a) が 2.15E-07、(b) が 2.20E-07、(c) が 1.25E-07 となる。非接触音響探査 法においても同様に 55% で低下している事 が確認出来る。

7.2. 振動エネルギー

7.2.1. ハンマ加振+ SLDV

Fig.10 にハンマ加振の場合の、接着剤の充 填率に対する振動エネルギーを示した。この 結果から 55% まで充填率が低下すると振動 エネルギーが明確に低下している事が確認出 来る。比例関係にない原因として、ハンマで は人の手で力を調整するため、一定の加振力 で加振出来ていないことが挙げられる。これ は検査者の技術力が影響してしまうことが問 題であると考えられる。

7.2.2. 非接触音響探查法

Fig.11 は非接触音響探査法の場合の、接着 座の充填率に対する振動エネルギーをグラフ 化したものである。この結果から、接着剤の 充填率が低下すると振動エネルギーも同様に 低下していることが確認出来る。これは接着 剤の充填率が下がることにより、アンカーボ ルトに伝わる振動が低下したと考えられる。 ハンマ加振とは異なり値が規則的な結果とな った。要因として音響装置による加振を行っ たため、一定の加振力が得られた結果、規則 的な値になったと考えられる。

8. まとめ

非接触音響探査法により、アンカーボルト における接着剤の充填率の差異を検出できる 可能性が示された。しかし現時点では計測デ ータ数が少なく、再現性の確認を含め検証を 重ねていく必要がある。

Fig.11 振動エネルギー:非接触音響探査法

【参考文献】

- R. Akamatsu and T. Sugimoto: Acoust. Soc. Jpn. Spring. Meet. 3-8-7 (2011) p. 1569 [in Japanese].
- N. Utagawa, R. Akamatsu and T. Sugimoto: Jpn. Soc. Civil. Eng. 66 (2011) p. 1569 [in Japanese].
- N. Utagawa, R. Akamatsu and T. Sugimoto: Proc. of the 10th Int. Symp. on New Tech. for USMCA (2011) p. 104.
- T. Sugimoto, R. Akamatsu, N. Utagawa and S. Tsujino: IEEE Int. Ultrasonics Symp., (2011), p. 744.
- R. Akamatsu, T. Sugimoto, H. Kawasaki, N. Utagawa and S. Tsujino: Proc. of the 10th SEGJ Int. Symp. (2011) p. 84.
- R.Akamatsu, T.Sugimoto, N.Utagawa, and K.Katakura, Jpn. J. Appl. Phys., Vol.52, (2013) 07HC12
- R. Akamatsu, T. Sugimoto, N. Utagawa and K. Katakura: IEEE Int. Ultrasonics Symp., (2012), p.94.
- R. Akamatsu, T. Sugimoto, N. Utagawa and K. Katakura: IEEE Int. Ultrasonics Symp., (2013), p.1303.
- R.Akamatsu, T.Sugimoto, N.Utagawa, and K.Katakura: Jpn. J. Appl. Phys. 52 (2013) 07HC12.
- K.Katakura, R.Akamatsu, T.Sugimoto, and N.Utagawa: Jpn. J. Appl. Phys. 53

(2014) 07KC15.

- 11) 宮田弘和,内田慎哉,鎌田敏郎,長岡 康之,三輪秀雄,高鍋雅則,木村貴圭, 西上康平,劉軒,田中克則:電磁パルス 法に基づくアンカーボルト固着部の健全度 評価に関する実験的検討,日本非破壊検 査協会 平成25年度秋季講演大会講演概要 集,(2013),pp.33-36
- 12) 内田慎,鎌田敏郎,宮田弘和:解析を 援用した弾性波法による接着系あと施工ア ンカー固着部の接着剤充填状況の非破壊評 価手法,建設施工と建設機械シンポジウ ム 論文集・概要集,(2014),pp.157-162