強力超音波音源を用いた コンクリート非破壊検査に関する検討

Study on the Non-destructive Inspection Method for Concrete Structures by using a Strong Ultrasonic Sound Source

杉本 恒美、杉本 和子

桐蔭横浜大学大学院工学研究科

(2015年3月20日 受理)

1. はじめに

コンクリート構造物表面付近に存在するク ラックや劣化の程度を調査する方法としては、 現在でもその簡便さを理由に叩き点検が主に 用いられている。しかしながら、耳で音を聞 いて判断する手法であるために検査者の経験 と勘に左右される。定量的な手法として超音 波や電磁波など様々な手法が開発されてはい るものの、これらの調査方法の多くは検査対 象物に接触もしくは極めて接近して使用する 必要があるために、足場や高所作業車を必要 とするという問題点がある。実際に 5m 以上 の非接触で実施できる非破壊検査法としては 赤外線法とレーザリモートセンシング法1) があげられるが,前者は環境条件に依存する こと、後者は高出力のレーザが必要となり安 全性の面に不安があることが問題となってお り、従来の打音法の代替手法とはならないこ とが指摘されている。

一方、衝撃波²⁾や空中放射音波^{3,4)}を振源 とし、レーザドップラ振動計によりコンクリ ート表面部の振動を計測する手法も検討され てきたが、実際に 5m 以上の遠距離から安定 した計測は実現できていなかった。そこで、 本研究室では高音圧と強い指向性を発生でき る 長 距 離 音 響 放 射 装 置(LRAD:Long Range Acoustic Device)を用いた非接触音 響探査法の検討を行い、実際に 5m 以上の離 隔であっても、安定的に通常の打音検査とほ ぼ同程度の検出精度を有することを、コンク リート供試体および実コンクリート構造物等 を用いて実験的に明らかにしてきている⁵⁻²⁰⁾。

長距離音響放射装置は、通常のラウドスピ ーカと比較して高い指向性を有してはいるも のの(1kHzで±15度)、計測距離が長くな ればそれだけ騒音域も広がってしまうために、 民家の近隣では使用しにくいという問題点が ある。また、平面波を用いた加振では、対象 物の正面から駆動した場合にはきわめて効率 的に欠陥部上でたわみ共振を発生させること が可能であるが、入射角度が大きくなるに従 い、面加振の条件からはずれてしまい、たわ み共振の発生効率が落ちてしまうため、計測 時の入射角度に制約があるという問題点があ る。

Tsuneyoshi SUGIMOTO and Kazuko SUGIMOTO

Graduate school of engineering, Toin University of Yokohama, 1614 Kurogane-cho, Aoba-ku, Yokohama 225-8503, Japan.

Fig. 1 非接触音響探査法の2つの構成構成法 (a) 狭領域精密探査、(b) 広領域走査探査

しかしながら、音源として集束型の強力超 音波音源を用いれば、計測時の周囲環境騒音 と計測時の入射角度制限を同時に改善できる 可能性があると思われる。そこで、今回は、 強力超音波音源を実際に製作してこれらの問 題点が改善するかどうかの検討を行った。

2. 非接触音響探査法の構成法

遠距離でも使用できる非接触音響探査法と しては、Fig.1 に示すような2つの構成法が 考えられる。

2.1. 狭領域精密探查

Fig.1 (a) は長距離音響放射装置である LRAD の音響特性が持つ面的な加振能力と スキャニング振動計 (SLDV: Scanning Laser Doppler Vibrometer) の2次元的なスキ ャン性能を生かして組み合わせた従来の構成 法である。比較的狭い領域を精密に探査する のに適している。

2.2. 広領域走查探查

Fig.1 (b) はシングルポイント用レーザドッ プラ振動計(LDV)と強力超音波音源(集 束音源)を組み合わせて1点のみを計測する 広領域走査探査という新しい構成法である。 この場合には平面加振を加える LRAD に対 して、点加振に近い状況にすることで、計測 時の角度依存性が改善すると同時に、周囲へ の環境騒音も改善することが予想される。

2.3. 強力超音波音源について

本手法は、叩き点検と同じたわみ共振を用 いた欠陥検出手法である。通常、コンクリー ト欠陥部のたわみ共振周波数は、ハンマーで 人が音を聞き分けることができることからわ かるとおり可聴域である。したがって強力な 超音波周波数の音波を送信したとしても、共 振周波数を利用しない強制加振となってしま うため、5m以上の遠距離ではきわめて非効 率である。ところが、空気中の非線形を利用 し送信の超音波を搬送波として用いた変調を 加えることにより、超音波の高い指向性を維 持したまま、遠方に可聴音を発生可能である ことが知られている (パラメトリック・スピ ーカ)。非接触音響探査法の第2の構成法で ある広領域走査探査では、この特性を生かし た強力超音波音源を新たに製作して使用する。

音源の入射角依存性に関する 理論的検討²⁰⁾

3.1 LRAD 音源の場合

従来、音源として使用していた LRAD 音 源は、市販の音源としては指向性が高い方で はあるが、それでも 5m 以上の離隔となれば 1m 以上の広いビーム幅(高音圧領域)とな る。通常、コンクリート表面近くの欠陥部の 大きさ(直径)はそれよりも小さいと仮定す ると、ほぼ一様な平面音波の入射を考えれば 良いことになる。入射音波の励振効果は、対 象面に関する入射音圧の面積分に比例するた め、傾斜入射により対象面上の入射音圧に一 周期の位相差が生じると、平均値が消滅し駆 動されなくなる。Fig.2 (a) に示すように広い ビームによる駆動の場合において、平均値が 消滅し駆動されなくなる入射角をθ_Lとすると、

 $A \sin \theta_{\rm L} = \lambda \tag{1}$

となり、 θ_{L} は欠陥径Aの関数となる。ここ で λ は音波の波長である。(1)式より、欠陥 径Aが大きくなると θ_{L} とが小さくなり、高 周波駆動において、特に入射角の制限が極度 に厳しくなることが予想できる。

3.2. 集束超音波音源の場合

超音波音源の場合は、集束することにより ビーム幅を極端に小さくすることが可能であ る。したがって、Fig.2 (b) に示すようなビー ム幅 Dが欠陥径 A よりも小さい場合を仮定 する。この場合に平均値が消滅し駆動されな くなる入射角を $\theta_{\rm H}$ とすると、

$$D \tan \theta_{\rm H} = \lambda \tag{2}$$

となり、 $\theta_{\rm H}$ は欠陥径Aとは無関係となる。

ここで、(2)式は超音波ビームにより駆動 される径 ($D/cos \theta_{\rm H}$)が欠陥径Aよりも狭 い場合が条件であることから、この条件の成 立するのは、

 $D/\cos \theta_{\rm H} < A$ (3) の条件により制限される。ここで、超音波ビ ームにより駆動される径が欠陥径 A と等し くなる限界条件では A sin $\theta_{\rm H} = \lambda$ であるこ とから、

$$D < A \cos \theta_{\rm H} = (1/\lambda) \cos \theta_{\rm H} / \sin \theta_{\rm H}$$
$$= (1/\lambda) / \tan \theta_{\rm H}$$
(4)

 $D \tan \theta_{\rm H} < \lambda$ (5)

となる。

3.3. 許容入射角の比較

前述の関係をまとめると Fig.3 となる。こ こで、実線が超音波音源の許容入射角であり、 破線が各欠陥径A に対応する平面音波 (LRAD) による許容入射角である。また、 図における網掛け部分は、狭ビーム照射の効 果が存在しない領域であるが、この領域は、 欠陥径A が小さいため、許容入射角が広い 領域であり、元来入射角制限が問題とならな い領域である。一方、超音波音源による狭ビ ーム照射による場合は、図に見られるように、 従来方式において入射角度許容度が低下する、

Fig.3 入射角と送信周波数

欠陥径 A が大きい、もしくは加振周波数が 高い領域において、従来方式と比べて許容入 射角度が大幅に改善することがわかる。

杉本 恒美・杉本 和子

Fig.4 製作した強力超音波音 源。(a)正面図、(b)側面図

4. 強力超音波音源を用いた実験

4.1. 製作した強力超音波音源の概要

実用的な距離(5m)での探査性能を有す る直径 600mm、焦点距離 5m の強力超音波 音源の製作をおこなった(使用した超音波素 子 [共振 40kHz]の総数は約 3200 個)。また、 シングルポイントレーザ(Polytec Corp. OFV-505)と強力超音波音源を用いた点加振 による広領域走査探査を実現するために、中 心軸上にレーザ光を通過させるための穴 (20mm ϕ)を開けて音源の向きを変化させ てもレーザの焦点と音圧の焦点が一致するよ うに工夫した(Fig.4 参照)。

4.2. 可聴音の音圧分布と指向性の比較

強力超音波音源における可聴域帯の音圧分 布特性を 10kHz 以下に感度を持つ計測マイ クロフォン(小野測器、MI-1432)を用いて 計測した。軸方向の計測結果布を Fig.5 (a) に示す。1kHz では 4m 地点、2kHz では 3m 地点とそれぞれ異なった位置で最大ピークが 見られる。また焦点領域である 5m 地点での 方位方向音圧分布を Fig.5 (b)に示す。中心 軸である 0cm の地点のピーク音圧に対し、 ±16cm でおおよそ半値に低下していること がわかる。この計測結果から、最大値約 120dB (SPL re 20 μPa)の所望駆動音圧が 形成され、音響放射圧駆動の特徴である、周 波数に依存しない特性も確認された。

続いて、音源から 5m 離れた距離にコンク リート供試体 (2×1.5×0.3m³) を正対させ た時の音圧分布を精密騒音計 (RION NL-52) により計測した (10 秒間の最大音圧値 を記録)。送信音波としては 1kHz の正弦波

Fig.6 騒音計による音圧分布の計測結果 (a) LRAD、(b) 強力超音波音源

9波(9ms)をインターバル100msでバース ト駆動したものを用いた。Fig.6に音源とし てLRADおよび製作した超音波音源を用い た場合の音源とコンクリート供試体間の音圧 分布の計測結果を示す(どちらもコンクリー ト表面上で100dB程度になるように音圧を 調整)。図より、LRAD音源の場合には音軸 の側面から3m離れても80dB近い音圧が発 生しているが、超音波音源の場合には半分の 1.5mも離れれば70dB以下の騒音値となり、 きわめて静かであることが確認できる。また 音波の指向性の違いもこの図から明確に見て 取ることができる。

4.3. コンクリート供試体での探査実験

製作した強力超音波音源を用いて、実際に 5mの遠隔から探査が行えるかどうか実験を

Fig.7 振動速度スペクトル(a) 欠陥部、(b) 健全部

行った。コンクリート供試体(2×1.5× 0.3m³)に埋設された円形欠陥部(ϕ 300mm、 深さ80mm)と健全部に対して500Hzから 7000Hzのトーンバースト波^{16,17,19)}を使用し て探査実験を行った。欠陥部上および健全部 上の振動速度スペクトルをFig.7に示す。図 より、LRAD 同様に明確な共振ピークが観 測できることがわかる。また同時に、従来用 いていた SLDV のレーザヘッドに内蔵され るガルバノミラーの共振の影響による1kHz 以下の振動速度のピークも出現しなくなり、 1kHz 以下の低周波領域も計測範囲になって いることがわかる。

4.3. 入射角依存性の検討

計測時の角度依存性を検討するために、コ ンクリート供試体(2×1.5×0.3m³)を用い

Fig.8 角度依存性の実験結果(丸:LRAD、四角:超音波音源)

た実験を行った。音源と供試体との距離は 5m とし、供試体を回転させることにより計 測面との角度を変化させた。計測対象の欠陥 部は300 ø、深さ60mmの円形欠陥(25mm厚 の発泡スチロール)である。送信音波として は、LRADでは 500-7100Hz のトーンバース ト波(各周波数の持続時間 3ms、周波数増 分 200Hz、インターバル 100ms) を、超音 波音源では 2100Hz のバースト波 9 波(持続 時間 3ms、インターバル 100ms)を用いた。 実験結果を Fig.8 に示す。縦軸は最大値で規 格化した欠陥中心部での振動速度である。図 より、角度が15度程度と浅い場合には LRAD 音源と超音波音源に大差は無いが、 30 度を超えると明確な差がつき超音波音源 により角度依存性が改善されることが確認で きる。これは Fig.3 に示した入射限界角の理 論値とほぼ同じ傾向を示していると思われる。

5. まとめと今後の課題

製作した強力超音波音源は5mの距離でも、 コンクリートの非破壊探査に必要な音圧を発 生できることが明らかになった。また LRAD音源と比べると、指向性が非常に鋭 いことから、騒音範囲も極めて狭いことが実 証された。さらに計測時の角度依存性も改善 されるほか、LDV 自体の共振の影響も無く なり、従来計測困難であった低周波域も計測 可能な範囲となることが明らかになったこと から、今後、非接触音響探査法の音源として 非常に重要な位置を占めていくことが予想さ れる。

謝辞

本研究は平成22-25年度の国土交通省道路 政策の質の向上に資する技術研究開発の助成 を受けたものである。 【参考文献】

- [1] 島田義則, コチャエフ オレグ, 篠田昌 弘, 御崎哲一, 高橋康将, 瀧浪秀元, "レ ーザを用いたコンクリート欠陥検出の進 展", 非破壊検査 61(10), pp519-524, Oct.2012.
- [2] 森和也、Andrea SPAGNOLI,村上敬宣, 鳥越一平,"コンクリート構造物の圧力波 を用いた新しい非接触非破壊検査法",コ ンクリート工学年次論文集 Vol.24, No.1, pp.1473-1478, 2002.
- [3] 貝戸清之,阿部雅人,藤野陽三,熊坂 和弘, "局所的な振動特性に着目したコン クリート構造物の空隙検出",土木学会論 文集, No.690, pp.121-132, 2001.
- [4] 森和也、鳥越一平,百崎敦彦,岩本達也, "周波数スイープ音波を用いた壁面加振に よるコンクリート構造物の非破壊検査", 日本機械学会論文集,72巻,723号, pp.178-1792,2006.
- [5] T.Sugimoto, R.Akamatsu, N.Utagawa and S.Tusjino, "Study on Non Contact Acoustic Imaging Method for Non Destructive Inspection using SLDV and LRAD", Proc. IEEE International Ultrasonic Symposium, pp.744–747, Oct.2011.
- [6] T.Sugimoto, H.Kawasaki N.Utagawa and S.Tusjino, "Study on the Inspection for Shallow Area under Concrete Surface using Air-coupled Sound Wave", Proc. of the 10th SEGJ International symposium, pp.84–87, Nov.2011.
- [7] T.Sugimoto, R.Akamatsu, N.Utagawa and S.Tusjino : Non Contact Acoustic Exploration Method for Concrete using SLDV and LRAD, Proc. Acoustics 2012 Nantes, pp.835–839, Apr.2012.
- [8] T.Sugimoto, R.Akamatsu, N.Utagawa and S.Tusjino : Non Contact Long Distance Exploration Method for Concrete using SLDV and LRAD, J. Acoust. Soc. Am, 131 (4): p.3462, Mar.2012.

- [9] R.Akamatsu, T.Sugimoto, N.Utagawa and K.Katakura,"Study on Non Contact Acoustic Imaging Method for Concrete Defect Detection, — Study on the Defect Defection using the Realistic Crack Model and the Angle Dependence", IEEE International Ultrasonic Symposium Abstract book, pp94–95, Oct.2012.
- [10] 赤松亮. 杉本恒美, 歌川紀之, 片倉景 義, "SLDV と空中放射音波を用いたコン クリート表層部の欠陥映像化に関する研究 , 一剥離欠陥検出の検討一", 信学技報 US2012-111, No.437, pp.1-6, Feb.2013.
- [11] T.Sugimoto, R.Akamatsu, N.Utagawa and K.Katakura,"Study on non contact acoustic imaging using the realistic crack model", Proc. 2013 International Congress on Ultrasonics (ICU2013), pp.408–413, Mar.2013.
- [12] R.Akamatsu, T.Sugimoto, N.Utagawa and K.Katakura, "Proposal of Non-Contact Inspection Method for Concrete Structures, Using High-Power Directional Sound Source and Scanning Laser Doppler Vibrometer", Jpn. J. Appl. Phys., Vol.52, 07HC12, 2013.
- [13] R.Akamatsu, T.Sugimoto, N.Utagawa and K.Katakura "Study on Non Contact Acoustic Imaging Method for Concrete Structures - Improvement of Signal-tonoise Ratio by using Tone Burst Wave Method", Proc. IEEE International Ultrasonic Symposium, pp1303–1306, Jul.2013.
- [14] 杉本恒美,赤松亮,歌川紀之,片倉景 義,"音響探査法を用いたコンクリート表 層欠陥探査技術の開発—(1)検出可能な欠 陥の大きさおよび深さに関する検討—", 土木学会年次学術講演会講演概要集, Vol.68, pp173-174, Sep.2013.
- [15] K.Katakura, R.Akamatsu, T.Sugimoto and N.Utagawa, "Study on detectable size and depth of defects in noncontact acous-

tic inspection method", Jpn. J. Appl. Phys., Vol.53, 07KC15, Jul.2014.

- [16] 杉本恒美,赤松亮,上地樹,歌川紀之, 片倉景義,"音響探査法を用いたコンクリート表層欠陥探査技術の開発—(2)トーンバースト波とゲート処理を用いた S/N 比の改善—",土木学会年次学術講演会講演概要集, Vol.69, pp959-960, Sep.2014.
- [17] 杉本恒美,赤松亮,歌川紀之,片倉景 義,"コンクリート非破壊検査のための遠 距離非接触音響探査法",コンクリート工 学年次論文集,Vol.36, No.1, pp.2062-2067, Jul.2014.
- [18] 杉本恒美,上地樹,杉本和子,歌川紀 之,片倉景義,"非破壊検査のための非接 触音響探査法に関する研究一強力超音波音 源を用いた欠陥検出についての検討一", 物理探査学会第131回学術講演会講演論文 集 pp.190-191, Oct.2014.
- [19] 杉本恒美,歌川紀之,片倉景義,"コン クリート構造物非破壊検査のための遠距離 非接触音響探査法",建設施工と建設機械 シンポジウム論文集,pp.137-142,Nov.2014.
- [20] T.Sugimoto, R.Akamatsu, I.Uechi, K. Sugimoto, N.Utagawa, and K.Katakura, "Basic Study about the Long Distance Non-Contact Acoustic Inspection Method using a Strong Ultrasonic Sound Source", Proc. of Symposium on Ultrasonic Electronics, Vol.35, pp.253–254, Dec.2014.