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Abstract

Background: Loneliness and social isolation are associated with multiple health problems, including depression, functional
impairment, and death. Mobile sensing using smartphones and wearable devices, such as fitness trackers or smartwatches, as
well as ambient sensors, can be used to acquire data remotely on individuals and their daily routines and behaviors in real time.
This has opened new possibilities for the early detection of health and social problems, including loneliness and social isolation.

Objective: This scoping review aimed to identify and synthesize recent scientific studies that used passive sensing techniques,
such as the use of in-home ambient sensors, smartphones, and wearable device sensors, to collect data on device users’ daily
routines and behaviors to detect loneliness or social isolation. This review also aimed to examine various aspects of these studies,
especially target populations, privacy, and validation issues.

Methods: A scoping review was undertaken, following the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews
and Meta-Analyses extension for Scoping Reviews). Studies on the topic under investigation were identified through 6 databases
(IEEE Xplore, Scopus, ACM, PubMed, Web of Science, and Embase). The identified studies were screened for the type of passive
sensing detection methods for loneliness and social isolation, targeted population, reliability of the detection systems, challenges,
and limitations of these detection systems.

Results: After conducting the initial search, a total of 40,071 papers were identified. After screening for inclusion and exclusion
criteria, 29 (0.07%) studies were included in this scoping review. Most studies (20/29, 69%) used smartphone and wearable
technology to detect loneliness or social isolation, and 72% (21/29) of the studies used a validated reference standard to assess
the accuracy of passively collected data for detecting loneliness or social isolation.

Conclusions: Despite the growing use of passive sensing technologies for detecting loneliness and social isolation, some
substantial gaps still remain in this domain. A population heterogeneity issue exists among several studies, indicating that different
demographic characteristics, such as age and differences in participants’ behaviors, can affect loneliness and social isolation. In
addition, despite extensive personal data collection, relatively few studies have addressed privacy and ethical issues. This review
provides uncertain evidence regarding the use of passive sensing to detect loneliness and social isolation. Future research is
needed using robust study designs, measures, and examinations of privacy and ethical concerns.

(JMIR Mhealth Uhealth 2022;10(4):e34638) doi: 10.2196/34638
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Introduction

Background
Humans are social creatures; thus, maintaining a healthy and
positive social interaction is a necessary component of human
existence [1]. Over the past few decades, loneliness has emerged
as a global issue, and people rate it as a primary source of
unhappiness in their lives [2]. Perlman defined loneliness as
when an individual thinks that the quality or quantity of their
social relationships is inadequate [3]. Loneliness or social
isolation is a common problem that most people experience at
some stage in their lives; however, it can be very distressing,
especially when it becomes chronic [4]. In other words,
loneliness is a distressing emotional state in which a person is
dissatisfied with the proximity and pattern of their social
interactions and relationships. Thus, loneliness is a fully
subjective state of mind; a person can live completely alone and
not experience loneliness, whereas another person may
experience loneliness despite having a wide social network.
Adult loneliness is a growing concern; according to a survey
from the United Kingdom, 1 in every 20 adults reports feeling
completely alone [5].

Social isolation refers to a person’s lack of social interaction
with others at the individual or group level [6]. Social isolation
can occur voluntarily or involuntarily and can have a positive
or negative effect on an individual based on their mental and
physical health [7]. Social isolation and loneliness are
overlapping concepts often used interchangeably. Unlike social
isolation, loneliness is always involuntary and involves negative
emotions [8]. Although these two ideas are closely related, they
do not have the same meaning. An individual can feel alone in
a crowd, whereas another person can benefit from social
isolation while experiencing solitude. Loneliness may occur
when an individual is socially isolated for a prolonged period
[9]. Loneliness is also a complex phenomenon that varies in
intensity and is influenced by a variety of factors and conditions.
To explain the multifaceted aspects of loneliness, Sadler and
Weiss [10] distinguished between emotional loneliness and
social loneliness. Emotional loneliness refers to the absence of
close or intimate connections, whereas social loneliness refers
to the absence of social networks. For instance, a child who has
lost their mother experiences loneliness differently from a child
who lacks playmates [11].

Loneliness is influenced by a variety of factors, including age,
poor health, physical disability, relationship status, living alone,
infertility, low wages, low levels of education, and
socioeconomic status [12]. Certain personality traits, such as
lower levels of extraversion and higher levels of neuroticism,
may also increase the risk of loneliness [13]. According to a
study on loneliness over the life span, it peaks in late
adolescence, gradually declines during middle age, and then
returns in later life [14]. As people age, they often lose social
contact because of illness and cognitive decline, leading to loss
of social relationships. Gradually, their social networks decline
as they grow older, resulting in very few people from whom
they receive support [15]. A report published by the Survey of
Health, Ageing, and Retirement in Europe found that older

adults living alone can experience higher levels of loneliness
[16].

Loneliness has a detrimental effect on physical and mental
health, increasing an individual’s risk of morbidity and mortality
[17]. The effects of loneliness on cardiovascular health have
been widely studied [18]. Poor social bonds have been linked
to a 29% increase in incident coronary heart disease and a 32%
increase in stroke according to a meta-analysis of longitudinal
data on 35,925 people [19]. Loneliness can also result in various
neuroendocrine problems and a weakened immune system [20].
In addition, loneliness can disrupt normal blood pressure, sleep
patterns, and cortisol levels, resulting in serious health problems
or even death [21]. Loneliness has been linked to various
detrimental mental health outcomes [22], including depression
[23], suicidality, less positive mood, poor sleep quality, poor
overall physical health, and physiological abnormalities [13].

In addition to their primary function as communication devices,
modern smartphones provide a plethora of capabilities [24]. A
smartphone can be used as a handheld camera, a navigator, a
fitness tracker, and a personal assistant [24]. As smartphones
are equipped with a variety of powerful sensors, they have
evolved into pervasive tracking systems [25]. Similarly, sensors
in new wearable devices, such as smart watches and fitness
trackers, have created the possibility of transforming them into
a robust health tracking system [26]. Among the many fields
that make use of the several capabilities of smartphones and
wearables, one is passive sensing, the process of collecting data
in the background using the ubiquitous nature of smartphones
and wearables without the user’s active engagement. This
concept of passive sensing or self-monitoring emerged from
studies in the field of ubiquitous computing, where it has been
called context-aware computing [27]. Smartphones can collect
a vast amount of data regarding a user’s behavioral patterns,
which can be modeled into bioindicators of the user’s well-being
[28]. Using sensors, such as an accelerometer, a heart rate
sensor, or a microphone as well as the GPS or Bluetooth
connectivity as a proximity sensor, researchers collect high
volumes of data about a user’s everyday life and behavioral
patterns, such as social activities, time spent at certain places,
daily health data, and a user’s activity log. All these capabilities
of smartphones and wearables have made them a promising
tool for tracking users’ health and well-being on a ubiquitous
and passive level. In addition to smartphones and wearables,
various environmental or ambient sensor-based devices have
been used to passively gather information about users’ in-home
behavioral habits, such as passive and active infrared sensors,
pressure mats and tiles, and camera and microphone sensors,
particularly for older adults [29].

In contrast to systematic reviews and other review-based
approaches, scoping reviews are a relatively new tool for
searching and summarizing the literature. Systematic reviews
address specific questions using predefined methods to assess
study quality. Scoping reviews can be used to map new or
emerging fields of research and are useful when investigating
a broader set of review questions that require the inclusion of
studies from a wider range of study methodologies [30-32].
Researchers can conduct a scoping analysis in a recent or
neglected research area for four primary reasons: to determine
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the design and purpose of the study, to determine the necessity
of conducting a systematic review, to summarize the research
results, and to locate research gaps within the existing literature
[33]. This study investigated the broader field of loneliness and
social isolation detection through passive sensing as a recent
and less explored research area. This review aims to explore
the types of passive sensing detection methods available in the
literature for loneliness and social isolation, to investigate the
target populations of these detection methods, to review how
the developed systems were validated, and to find challenges
and limitations of these detection systems.

Loneliness Detection Approaches: An Overview

Assessing Loneliness in Research and Clinical Settings
There are several tools that assess loneliness. These assessments
or scales are well established and have shown promising results
in inferring loneliness. The University of California, Los
Angeles (UCLA) loneliness measurement scale (version 3) is
one of the most widely used in the general population and health
care settings for assessing the frequency and severity of
subjective loneliness in an individual [34-37]. Several other
measures are available that may be used as a validated reference
measure to determine an individual’s level of loneliness [38-41].
These scales include questions regarding marital status, social
involvement in religious activities and clubs, social contact,
social support, and social networks [28,42-46]. Most loneliness
measures appear reliable. However, the evidence for validity is
relatively limited, consisting mostly of comparisons between
at-risk and normal populations or correlations with questions
generating explicit self-identification as being lonely [47].
Moreover, we could not find any study that has used passive
sensing methods to detect loneliness or social isolation in a
larger, nonclinical population.

Technology-Based Detection Through Passive Sensing
Over the last decade, there has been increasing interest among
researchers and clinicians in the opportunities presented by
technology-based approaches for detecting loneliness and social
isolation. Innovative technology-based approaches are extremely
effective in terms of ubiquity and passive sensing [48] because
they do not require the participant’s active participation. In the
existing literature, most studies have used the following two
methods to detect loneliness and social isolation: smart
home–based methods (ambient sensors–based) and smartphone
and wearable-based mobile sensing methods.

A smart home comprises a variety of in-home environmental
or ambient sensors, along with more specialized audio, video,
and biometric systems that can be used by family and caregivers
to track older individuals’ actions and well-being while being

physically away. A smart home can include a variety of sensors
depending on the application. For instance, numerous studies
have used in-home surveillance through video cameras [49,50],
whereas others have used body-worn tags [51,52]. On the other
hand, inexpensive ambient sensors allow a more unobtrusive
method of monitoring behaviors in the home without user
involvement. Ambient in-home sensors have been used for
human behavior learning over the last few years, in which
emotions, daily life patterns, or personality could be related to
loneliness levels [53-55]. It incorporates an assessment of both
physical and emotional well-being. These ambient in-home
sensors are cost-effective, energy efficient, and easy to mount
and maintain. They include motion sensors, which emit a signal
whenever a motion is detected within the sensor’s coverage
range; touch sensors, which generate a signal whenever a door
is opened or closed; and pressure sensors, which emit a signal
whenever a pressure threshold is crossed at the location of the
sensor, which is usually in beds. Consequently, these sensors
collect data on a user’s various behaviors, such as time spent
in various areas of the home, sleep habits, time spent inside and
outside the home, and in-home mobility patterns. These activity
patterns can ultimately serve as measures or biomarkers of
loneliness or social isolation.

Researchers have also used mobile and wearable devices for
health monitoring over the last few years. The rapid proliferation
of smartphones and wearables, such as fitness trackers, which
are equipped with powerful sensors, may provide another
pathway for detecting loneliness and social isolation. The data
passively acquired from mobile sensors can be modeled into
various behavioral habits that can be used to identify lonely
individuals. Behavioral patterns included a participant’s social
experiences, mobility patterns, and frequently visited places.

Methods

Search Strategy and Data Sources
The protocol for this scoping review was developed as per the
guidelines of the PRISMA (Preferred Reporting Items for
Systematic Reviews and Meta-Analyses) [56] and PRISMA-ScR
(Preferred Reporting Items for Systematic Reviews and
Meta-Analyses extension for Scoping Reviews) [57]. The
databases IEEE Xplore, Scopus, ACM, PubMed, Web of
Science, and Embase were searched. Articles published between
January 2011 and December 2021 were extracted independently
by the authors MMQ and EZ. The search terms and results for
each database are presented in Table 1. The search criteria were
based on loneliness, social isolation, and detection-related
keywords.
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Table 1. Search keywords and result statistics for computer science and social science databases.

Search results, nDatabase and keywords combination

IEEE Xplore

13Loneliness AND Detection

27Loneliness AND Sensing

1Loneliness AND Passive Sensing

15Loneliness AND Monitoring

56Social Isolation AND Detection

41Social Isolation AND Sensing

1Social Isolation AND Passive Sensing

65Social Isolation AND Monitoring

Scopus

4373Loneliness AND Detection

725Loneliness AND Sensing

61Loneliness AND Passive Sensing

6443Loneliness AND Monitoring

5501Social Isolation AND Detection

834Social Isolation AND Sensing

51Social Isolation AND Passive Sensing

5901Social Isolation AND Monitoring

ACM

703Loneliness AND Detection

1339Loneliness AND Sensing

27Loneliness AND Passive Sensing

603Loneliness AND Monitoring

313Social Isolation AND Detection

631Social Isolation AND Sensing

10Social Isolation AND Passive Sensing

357Social Isolation AND Monitoring

PubMed

220Loneliness AND Detection

770Loneliness AND Sensing

8Loneliness AND Passive Sensing

200Loneliness AND Monitoring

2238Social Isolation AND Detection

1981Social Isolation AND Sensing

24Social Isolation AND Passive Sensing

1202Social Isolation AND Monitoring

Web of Science

109Loneliness AND Detection

1130Loneliness AND Sensing

16Loneliness AND Passive Sensing

299Loneliness AND Monitoring

350Social Isolation AND Detection
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Search results, nDatabase and keywords combination

1195Social Isolation AND Sensing

13Social Isolation AND Passive Sensing

701Social Isolation AND Monitoring

Embase

137Loneliness AND Detection

22Loneliness AND Sensing

1Loneliness AND Passive Sensing

235Loneliness AND Monitoring

390Social Isolation AND Detection

34Social Isolation AND Sensing

1Social Isolation AND Passive Sensing

704Social Isolation AND Monitoring

Inclusion and Exclusion Criteria
Studies were included if they were published in the English
language and presented results on identifying loneliness and
social isolation using passive sensing technology, such as
smartphone apps, fitness trackers, and home sensors. Studies
were excluded if they were written in a non-English language,
if loneliness or social isolation was not one of the assessed
outcomes, or if the detection method was other than passive
sensing.

Data Extraction
The selection process is illustrated in Figure 1. A total of 40,071
studies were identified using the search terms. After title and

abstract screening, 862 full texts were reviewed, of which 29
(3.4%) studies were selected for inclusion in the review, as
follows:

• General description of the study: authors, year, and country
• Study design: population type and age, participant sample

selection process, duration of the study, ground truth data
collection methods, and privacy handling

• Study technology insights: technology used for sensing,
data collection streams, and algorithm.

• Study outcome characteristics: indicators or identification
markers and sensed outcomes.

JMIR Mhealth Uhealth 2022 | vol. 10 | iss. 4 | e34638 | p. 5https://mhealth.jmir.org/2022/4/e34638
(page number not for citation purposes)

Qirtas et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 1. Flow diagram of the literature search and selection process (adapted from PRISMA [Preferred Reporting Items for Systematic Reviews and
Meta-Analyses]).

Results

Multimedia Appendix 1 [58-85] summarizes the main
information from each study to address the questions under
investigation.

Population
Most studies targeted young adults (10/29, 34%), most
frequently college students [58-67], or older adults (12/29, 41%)
[68-78,86], whereas 17% (5/29) of the studies included a mixed
age group [79-84]. The studies sampled between 5 and 364
participants and lasted anywhere from 1 week to 5 years. In all,

3% (1/29) of studies was not longitudinal [61], and 7% (2/29)
of other studies did not report the duration [75,81].

In all, 37% (11/29) of studies explicitly stated the participants’
ages [61,62,64,67,68,70,75,76,78,83,84], whereas the other
studies (18/29, 62%) mentioned only the age group without
providing their age: younger adults [58-60,63,65,66], older
adults [69,71-74,77,86], or mixed age groups [79-82]. Of the
11 studies, a total of 4 (36%) of studies focusing on a younger
population reported an age range of 18 to 28 years [60-62,64],
whereas 6 (55%) studies with a target sample of older adults
reported an age range of 53 to 91 years [68,70,75,76,78,83].
Participants in 9% (1/11) of studies ranged in age from 18 to
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78 years, representing a mixed group of younger and older adults
[84].

With respect to the participants’ gender, a total of 3 studies
focusing on a younger population included both male and female
participants [60,63,83]. Female participants dominated 3 studies
[59,61,67], male participants dominated 2 others [64,66], and
1 study had exclusively female participants [62]. Female
dominance has been clearly observed in older population studies.
A total of 7 studies concerning older adults reported their gender,
and all (7/29, 24%) these studies showed a female
predominance, except one. The female ratios in these studies
were 60% [70], 81% [72], 74% [68], 54% [74], 89% [75], 44%
[78], and 88% [76].

A total of 11 studies mentioned participants’ educational level
[59,63-68,72,76,78,83]. The younger population mostly
comprised college students [59,63-67]. In all, 2 studies recruited
first-year college students [59,63], whereas 4 others targeting
a younger population recruited a mix of university students at
the graduate and undergraduate levels [61,65-67]. Only 4 studies
reported the education levels of the older adults [68,72,76,78],
of which 2 (50%) studies included participants who had
completed their graduate studies [72,78], and the remaining 2
(50%) studies included participants with varying levels of
education, with 46% (12/26) completing a college education in
a study [76], 39% (19/50) completing primary level education,
and 39% (19/50) having had no formal education in another
study [68].

Participants’ ethnic status varied. A total of 8 studies clearly
reported the origin of their participants
[59,60,63,65,66,68,75,78], 5 (63%) of which targeted a younger
population from diverse ethnic groups [59,60,63,65,66], and 3
(37%) of which targeted older adults [68,75,78]. In the younger
population, most participants had an Asian cultural background,
whereas 2 studies were from the United States with participants
from different backgrounds [59,66], 1 study was from China
[65], and 1 was from Singapore [63]. The remainder were White,
Hispanic, African American, or Caucasian [60,65]. A study
from Singapore examining an older population had 87% Chinese
participants [68], whereas another US-based study included
75% White participants [75].

Sensing Streams
Given that smartphones and wearable fitness trackers are
equipped with a variety of physical sensors, they are highly
effective instruments for monitoring users’ movements and
passively collecting data on their daily life patterns. Of the 29
studies, 18 (62%) used smartphones or wearables as a sensing
modality to passively capture data [58-67,71,74,79,80,82-84,87].

Among the various physical sensors used in smartphones or
wearable devices, the accelerometer and GPS are the most
frequently used sensors for passive data collection. Indeed, 72%
(13/18) of the studies that used a smartphone or smart watch as
a sensing instrument made use of accelerometer and GPS sensors
to gather data on a user’s physical activities
[59-63,65-67,74,80-83]. The accelerometer is used because of
its low power use and low privacy concerns, whereas GPS is
used to monitor the users’ regularly visited locations and the

time spent at those locations, which aids in determining their
social habits. Another explanation for using GPS in several
studies is that it is typically available with all smartphones.

Following this, Bluetooth and microphones are the second most
widely used sensors in the identified studies, accounting for
39% (7/18) of studies that used passive sensing via smartphones
or wearable devices to acquire user data [59,62,65-67,80].
Bluetooth is typically used as a form of proximity sensor to
gather information about a user’s sociability and physical
encounters with other users who also have Bluetooth enabled
in their devices, whereas a microphone is used to infer sleep
and social experiences. In addition, 7% (2/29) of studies used
Wi-Fi MAC addresses to collect information about users’
sociability. Moreover, a study collected data from a smartphone
light sensor to detect the screen lock or unlock status [82].

Apart from the sensors in smartphones, the studies included
data on phone activity, which could also be used as an indicator
of loneliness or social isolation. SMS text messages and call
logs are the most frequently used; 56% (10/18) of the studies
have used these logs to derive user communication activities
[59,60,62-65,71,74,76,82]. In addition, 2 experiments integrated
the number of times that each smartphone was locked and
unlocked [59,82], and 2 studies gathered data on the types of
apps that were used more often to ascertain users’ mood and
sociability levels [65,82]. To maximize learning opportunities
regarding user habits, a study collected contact information,
browsing history, and email-related data [64].

Of the 29 studies included here, 9 (31%) solely used ambient
and other physical sensors installed at different locations in the
home to learn about participants’ in-home mobility patterns and
behavior [68-70,72,73,75,77,81,86]. Different types of sensors
were used, including passive infrared motion sensors installed
on walls to collect motion data, pressure sensors to detect the
presence of the participant on a bed or chair, sound sensors to
detect social interactions and activities in the household, and
door sensors to detect walking patterns and people movements.

Loneliness and Social Isolation Assessment
Different assessment methods have been used in experiments
to validate the passively collected data. Most studies (21/29,
72%) relied on self-reports and questionnaires, which can be
administered directly in a clinical setting or remotely using a
mobile app. Self-reports or questionnaires were used to gather
data on participants’ physical and mental health in some of the
included studies (8/29, 27%) that assessed social interactions
and well-being [60,67,68,71,80,82-84], depression or anxiety
[60,62,65,66,70,77,78], and daily activities [63,67,68,79,80,82].
Numerous scales have been used specifically for the detection
of loneliness, including the UCLA loneliness scale [88], the De
Jong Gierveld Loneliness Scale [41], and the ESTE-R
Loneliness Scale [74]. The Social Interaction Anxiety Scale
[89], Depression Anxiety Stress Scale [90], and Positive Affect
Negative Affect Schedule [91] have been used to measure
depression and anxiety symptoms in individuals. Some studies
used self-developed questionnaires, such as the ecological
momentary assessment, which were specifically related to the
application domain and target populations.
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Efficacy and Reliability

Detection Methods
Numerous markers were used in the included studies to identify
changes in behavior, which may infer loneliness or social
isolation. Of the various markers, the number of incoming and
outgoing calls and SMS text messages is the most widely
studied, with 24% (7/29) of studies () using this metric for
detecting loneliness [60,63,64,72,74,76,82]. Similarly, time
spent outside the home is also the most explored marker; 24%
(7/29) of studies presented the relationship between time spent
outside the home and its effect on loneliness levels in individuals
[68,72-75,83,86]. Additional markers include sleep cycles that
have been examined in 4 studies [59,66,68,70], voice activity
and verbal communication explored by 4 studies [62,63,66,83],
activity, mobility, and walking speed investigated in 6 studies
[59,61,62,70,72,80], the average time spent in different areas
of the household [68,71], and app types that have been studied
by 2 studies [65,82]. Interaction with others detected through
Bluetooth proximity sensing was examined in 5 studies
[59,62,63,65,67], and 3 studies investigated the effect of speech
activity on loneliness [62,63,83].

Phone Calls or SMS Text Messages
A total of 8 studies examined the relationship between incoming
and outgoing phone calls and loneliness
[64,65,71,72,74,76,82,84]. According to a study, individuals
who received fewer incoming calls rated themselves as being
more lonely on loneliness measurement scales compared with
those who received more calls [82]. Another study found that
loneliness was associated with fewer incoming calls but not
with increased outgoing calls. The most lonely individual
received only 40% of the number of calls received by the least
lonely individual [76]. Another study explored the relationship
between loneliness and calls from family members and friends.
Outgoing and incoming family calls are significant
characteristics of family and spousal loneliness, which is about
feeling lonely within intimate relations. Similarly, for social
loneliness, calls from friends were not considered a relevant
attribute; rather, calls from acquaintances were considered a
relevant attribute while developing predictive models for
loneliness detection [74]. A total of 8 studies investigated the
relationships between call frequency and call duration with
loneliness. Individuals with greater loneliness received fewer
calls on average according to a study [76]. There is a weak
negative correlation between loneliness and call length,
indicating that people who make longer calls have lower feelings
of loneliness. In comparison, loneliness showed no significant
relationship with the frequency of phone calls [65]. Another
study found a similar negative correlation between phone
conversation duration and social well-being [84]. In addition,
2 other studies found a similar negative correlation between the
length of calls and loneliness on the UCLA loneliness scale
[64,71]. Similarly, the frequency of phone calls was significantly
linked to the length of time spent on the phone [72]. Another
study found that students who received more phone calls,
particularly on weekdays, reported reduced feelings of
loneliness, better transition to college life, and a stronger sense
of class community [63]. Regarding SMS text messages,

individuals with a high score for social anxiety or loneliness
rarely receive messages [82]. Another study discovered a weak
negative correlation between loneliness and SMS text messages,
particularly at night [65]. Although another study found no
significant relationship between instant messenger and SMS
text message frequency and loneliness or social well-being,
phone call use was shown to be favorably associated with social
well-being [84]. Another study discovered a significant
correlation between the quantity of messages and UCLA
loneliness scale [64].

Web Social Activity and Communication Apps
A total of 3 studies examined the relationship between web
social engagement and loneliness [65,82,84]. According to a
study conducted with a younger population, loneliness is
positively linked to app use frequency, which implies that
younger individuals who spend more time on social apps
experience more loneliness [65]. However, a study targeting
older adults found the opposite: older adults who spent more
time on social media had substantially reduced feelings of
loneliness [84]. The authors found that older adults’social media
networks led to reduced feelings of loneliness and increased
levels of general well-being compared with younger adults’
social media networks [84]. Another study found that
smartphone behaviors indicative of web social activity (eg, the
frequency of using social or communication apps) were
unrelated to social anxiety or loneliness [82].

Number of Computer Sessions or Hours on the
Computer
In addition, 2 studies evaluated computer use in terms of the
number of sessions and overall time spent on the computer daily
[72,78]. They discovered that an increasing number of computer
sessions was associated with higher levels of loneliness.
Previous research on the relationship between computer use
and loneliness has produced contradictory results. Although
some argue that computer use helps combat loneliness [92],
others argue that increasing computer use (particularly among
young people) is associated with increased loneliness [93-96].
According to a study, telephone use and computer use were not
shown to be substantially related to loneliness [72]. The authors
stated that the lack of significance for these social factors may
be explained in part by the strong correlation between them.
That is, the number of phone calls was significantly associated
with the amount of time spent on the phone, whereas the number
of computer sessions was significantly associated with the
amount of time spent on the computer [72].

Bluetooth Proximity Sensing
A total of 4 studies examined the association between Bluetooth
proximity-sensing social interactions and feelings of loneliness
[58,59,65,67]. According to a study, when a number of different
Bluetooth devices are identified in the vicinity, people tend to
report feelings of loneliness. This tendency may represent
situations in which a person feels lonely in public places with
a high concentration of Bluetooth devices [67]. Another study
discovered a significant association between Bluetooth device
encounters and the Patient Health Questionnaire-9 depression
scale [58]. However, a study found no relationship between
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Bluetooth proximity and loneliness [65]. A study used Bluetooth
together with other sensor data, such as GPS, Wi-Fi, SMS text
messages, and call logs, which showed better accuracy in
predicting loneliness levels in individuals [59].

Daily Phone Use or Time on Mobile Phone
A total of 3 studies have explored the relationship between
general smartphone use and loneliness [59,65,76]. According
to a study, loneliness in older adults is associated with reduced
daily phone use, to the point where the most lonely individual
uses the phone almost two-thirds less than the least lonely one
[76]. Another study found that decreased phone use during
certain weekends and morning hours was associated with
increased loneliness among the younger population [59].
Similarly, another study on students discovered that those at
risk of loneliness spend more time on their smartphone each
day and that loneliness was positively associated with app use,
irrespective of the time of day [65].

Demographic Characteristics Affecting Loneliness
Of the 29 studies, 4 (14%) assessed gender differences in
loneliness [76,82,84,87]. According to Petersen et al [76], gender
had a substantial effect on the daily number of calls, with women
making or receiving twice as many calls as men. Another study
compared the gender of participants in high- and low-loneliness
groups; the result of the chi-square test on the gender-based
difference revealed no significance [82]. Another study found
that women with a greater sense of well-being use reading apps
and browsers more often than men do [87]. Similarly, 4 studies
examined passive sensing and participants’ behaviors in terms
of age. A study assessed the ages of participants in high- and
low-loneliness groups; the chi-square test indicated no statistical
significance for the age difference [82]. According to another
study, age was not a significant predictor of the daily number
of calls [76]. In a study by Wetzel et al [84], the authors
discovered a substantial relationship between participants’ age
and social media use time, suggesting that the association
between social media use and perceived loneliness varies by
age. This indicates that older adults who spend more time on
social media experience substantially reduced feelings of
loneliness. At younger ages, more time spent on social media
was associated with increased levels of perceived loneliness.
Another study found that the activity and frequency of messages
and calls increased with the age of participants born before the
year 2000 [79]. Cognitive ability was included as a demographic
variable in 2 studies. According to a study, people with a chronic
illness report significantly higher feelings of loneliness and
poorer levels of social well-being than those without a chronic
condition [84]. Another study discovered a relationship between
better cognitive performance and higher daily call frequency
[76]. In addition, this research examined whether an individual’s
pain level might serve as a predictor of phone calls but
discovered no significant relationship between pain level and
call frequency [76]. A total of 2 studies examined the
relationship between an individual’s personality traits and
activity patterns inferred from passively collected smartphone
data [64,79]. Moreover, a study discovered a significant
correlation between emotional stability and extroverted
personality characteristics and most smartphone-sensed features.

In comparison, agreeableness, conscientiousness, and intellect
personality traits are slightly associated with most of the features
sensed by the smartphone, such as the number of messages,
number of browser searches, number of calls, number of long
incoming or outgoing calls, and number of contacts [64].
According to another study, gratitude is associated with
participants’ message and call patterns, with the most grateful
participants communicating mostly through their smartphones
[79]. Regarding occupational status, participants who are retired,
are homemakers, or are unemployed are typically the least active
and more prone to loneliness, whereas those enrolled in college
or working full-time or self-employed are typically the most
active with lower levels of loneliness. This analysis was
performed using smartphone sensor data collected from an
accelerometer, GPS, microphone, SMS text messages, and call
logs [79]. Another study that used smartphone app
communication data as an indicator of loneliness across the
adult life span during the COVID-19 pandemic found that
individuals who did not have a partner reported greater feelings
of loneliness and poorer social well-being than those who had
a partner [84]. The reason for this might be that during the
COVID-19 pandemic, everyone was required to stay at home,
and those without a partner were more prone to experiencing
loneliness than those in a relationship.

Time Outside of Home and Time Spent at Home
A total of 7 studies examined the effect of time spent outdoors
or at home on an individual’s loneliness levels
[68,72,73,75,77,83,86]. A study with older adults found that
spending more time away from home was associated with
decreased levels of loneliness [75]. Similarly, other research
with both young and older participants discovered that people
who spent more time outside the home reported fewer feelings
of loneliness [83]. Other research has analyzed older adults’
outdoor trips using two measures: average daily outdoor time
and number of outdoor visits. They discovered that spending
more time outdoors resulted in decreased levels of loneliness
and higher social networking scores. In addition, 2 other studies
discovered a strong association between the daily time spent
outside the house and loneliness [72,77]. Similarly, another
study discovered that individuals who spend more time at home
are lonely. The physical activity score is positively associated
with the average amount of time spent outside the house,
suggesting that outings are also an important indicator of
physical activity [86]. A preliminary analysis found no
relationship between the time spent outside the home and
loneliness [73]. They stated that their participants were more
technology literate and may have engaged in social activities
such as computer or mobile use that do not require leaving the
home.

Daily Activity and Movement
A total of 5 studies investigated the effects of daily activities
and movements and their duration on loneliness levels
[59,65,66,68,83]. A study discovered that individuals performing
more physical activities experience less loneliness [66].
Similarly, greater dispositional loneliness (UCLA loneliness
scale) was associated with a substantially shorter mean
movement duration in another study [83]; dispositional
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loneliness is defined by a sense of disconnection from others
and distressing emotions of isolation [97]. In addition, loneliness
increased with the number of significant places visited [83].
Loneliness is also negatively correlated with movement duration
[83]. Other research conducted with students discovered a strong
negative correlation between loneliness and indoor mobility;
for example, the amount of time a student moves indoors
throughout the day. Research indicates that inactive students
are more likely to experience loneliness. Another study found
that people who spend more time engaging in activities are less
lonely regardless of the time of day or night [65]. Another study
found a similar pattern: a higher total amount of movement and
steps throughout the day and night time hours results in less
feelings of loneliness [59]. Deviation from one’s regular
geospatial activity was associated with a substantial reduction
in daily stress and loneliness [68].

Conversation Activity
A total of 3 studies investigated the effect of conversation and
its duration on loneliness levels [58,66,83]. In addition, 2 studies
found no significant correlation between speech duration and
loneliness [66,83]. However, another study found that students
who engage in less conversational contacts are more likely to
experience depression [58].

Sleep
A total of 3 studies investigated the relationship between sleep
duration and feelings of loneliness and stress [58,66,68].
According to a study, sleep duration was not correlated with
loneliness but was negatively related to daily stress, meaning
that people who get enough sleep experience less stress [66].
Another study with students discovered that those who sleep
fewer hours are more prone to depression [58]. A study focusing
on older adults found that those who perceived themselves as
socially isolated had more midday naps [68].

Privacy Issues and Ethical Concerns
Overall, 69% (20/29) of the studies did not address privacy or
ethical issues and did not explicitly mention privacy concerns
[59,64-69,71-83]. A total of 5 studies provided details of ethical
approval from the relevant committees and participant consent
[60-62,70,84]. In addition, 2 studies stated that they maintained
user data on a secure data server and anonymized user identifiers
to protect users’ privacy [58,85]. Moreover, a study collected
statistical data on smartphone use only to preserve participants’
privacy [63]. Another study, which uses a video camera placed
in a smart home to monitor users’ activities, reported that they
captured footage for only 5 seconds whenever a motion was
detected at the door [86].

Discussion

Comparison With Previous Work
Numerous review studies have examined the use of passive
sensing to monitor a variety of mental and physical health and
well-being outcomes. Many aspects of passive sensing have
been covered in previous review studies, providing researchers
with current challenges and suggestions for potential future
research. These reviews have focused on different mental and

physical health conditions, such as stress [98], mood disorders
[99], sleep problems [100], cardiac issues [101], chronic health
conditions in older adults [102] and schizophrenia [103].
Compared with previous reviews, this review is the first to focus
on the use of passive sensing for loneliness and social isolation
detection and to explore the limitations of the passive sensing
systems used.

Findings From Reviewed Studies
The targeted population is one of the key dimensions to be
considered when designing and developing loneliness detection
systems. Most studies (17/29, 58%) included in this scoping
review targeted younger populations. It may be relatively easier
to generate a sample group of younger people from colleges or
universities, as opposed to older adults, who are dispersed across
community settings and may not be readily accessible through
services, education, or workspaces. Evidence in the literature
suggests that isolation is typically higher in late adolescence
and after retirement than in the middle age range [14]. Moreover,
unemployed individuals in the middle age group are more
susceptible to loneliness [104]. An age-related association was
observed in the detection methods; loneliness in younger adults
was assessed mostly through smartphones [58-60,62,63,65-67],
whereas ambient sensors were used more frequently by older
adults [68-78,86]. Ambient sensing may be used by older people
because they are less likely to use wearables and have higher
privacy concerns [105]. Some older adults may not be able to
use smartphones because of lack of technological literacy and
complex user interfaces [106]. In addition, people with dementia
can forget to carry or wear such devices or charge their
smartphones in a timely manner, resulting in intermittent or no
data collection. Furthermore, there is a strong possibility that
some wearable sensors create an unpleasant feeling during
prolonged skin connection (eg, electrodes on the skin). As a
result, older adults may reject such wearables, particularly at
home [107].

Before they are widely available to the public, these loneliness
detection systems must undergo extensive validation to ensure
that users feel comfortable using and trusting them. The
validation of such detection systems is important because it
provides relevant input and knowledge about the performance
and reliability of the systems to researchers and developers.
Two facets of validation of these loneliness detection systems
should be discussed: participant selection and technology’s
efficacy in assessing social outcomes. With regard to population
selection, most of the included studies (17/29, 58%) recruited
younger adults and college students via advertisements on
student mailing lists or Facebook groups. Moreover, most of
the studies recruited first-year college students or undergraduate
students from the same college or university, with a random
ratio of male and female participants. A study recruited students
from a specific class only [58], resulting in a population with
very similar sociodemographic backgrounds, daily routines,
and study challenges. There is a lack of detail on randomization
in student population selection, either in terms of sample
collection from more than one college or from younger
populations other than college students. A study recruited
international students because they were considered at a higher
risk of loneliness [64]. In addition, many studies (9/29, 31%)

JMIR Mhealth Uhealth 2022 | vol. 10 | iss. 4 | e34638 | p. 10https://mhealth.jmir.org/2022/4/e34638
(page number not for citation purposes)

Qirtas et alJMIR MHEALTH AND UHEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


did not include sufficient information on the participants’
socioeconomic status. In the case of older adults, studies
recruited participants who resided in sensor-enabled homes
created by specific senior citizen welfare organizations. Some
studies (6/29, 20%) omitted older adults with physical, sensory,
or cognitive impairment, which may have resulted in
demographic selection bias because people with disabilities
may experience greater loneliness [108,109]. Most studies (9/12,
75%) have focused on older adults who were already living
alone to assess their loneliness, which may result in biased
findings. Few studies (3/29, 10%) used the Mini-Mental State
Examination [110] to screen and exclude older adults with
cognitive impairment. In addition, some studies (7/29, 24%)
have not mentioned their sample selection or recruitment process
for both the younger and older populations; instead, they simply
reported the number of individuals from a specific age group.

Most studies (24/29, 82%) have used supervised machine
learning techniques to infer loneliness levels from passively
acquired data. In supervised machine learning, labeled data are
required to train a model, where the gathered ground truth data
are used to label the raw sensor data. Ground truth data have
been used to compare and validate passively acquired data
through smartphones and other passive devices. Inaccuracies
in the ground truth evidence result in incorrect model training
and an inefficient detection system. Thus, ground truth data
were critical in these studies. Ground truth data from
assessments, such as loneliness assessment questionnaires, are
used to label the data collected through passive sensing streams
with the corresponding ground truth state. Most studies (21/29,
72%) have used self-reports and questionnaires, which can then
be used for validation purposes with passively collected data.
This method has some drawbacks, such as users may not always
respond to such questionnaires, or there could be accuracy issues
depending on the participants’current mental and physical state.

Participants’ motives, preferences, and expectations regarding
surveillance systems can influence their willingness to use
available solutions. Some of those interests could be
physiological, such as improving behaviors in daily life, and
some could be more technical, such as system scalability and
acceptability. Most studies (18/29, 62%) that use smartphone
apps to passively acquire user data have used Android-based
mobile apps because of their lower privacy restrictions compared
with the iPhone iOS operating system when collecting data
through various sensors available on smartphones. Another
reason might be cost, as Android devices are more affordable
and are the most widely used operating system, encouraging
more users to use the proposed systems.

Another technological consideration of smartphone-based
detection systems is their power use. Owing to continuous data
collection and constant use of energy by various sensors, the
battery life of smartphones degrades more quickly, which is a
major concern for users. Only a few studies (6/29, 20%) have
addressed this topic or plan to do so in the future. The approach
used to reduce power use is to reduce the sampling rate of
sensors when the battery level falls below a certain threshold
or to use less beneficial sensors only once a day [48].

Apart from energy use, the participants’ primary concern is
privacy [48]. Although most of the reports did not mention
privacy concerns, few studies (8/29, 28%) indicated that this is
one of the key concerns of participants. These studies indicated
that they obtained approval from participants for passive data
collection or that they obtained privacy and ethical clearance
from an organization. Several (6/8, 75%) of these studies used
anonymous participant identifiers to store data and transmitted
them securely to the server. However, a sizable portion of the
studies did not address privacy concerns, which raises questions
about their acceptability to participants and the wider public
and about the potential harms for this detection method in the
case of data and privacy breaches.

Implications for Future Research
This review demonstrates that previous research has not drawn
strong distinctions between social isolation and loneliness, with
many researchers using both terms interchangeably. According
to previous research, loneliness and isolation overlap relatively
little, with most lonely times occurring when not alone, for
example, when an individual is in a crowd of strangers [67].
Across all self-reports, loneliness seems to be greatest when
participants also report being alone at the time and lowest when
participants additionally report being with a significant other
(partner or friend) [67]. In addition, some experiments have
intertwined loneliness with other related concepts. For instance,
in a study [111], the authors recorded the number of visits to
older adults living alone and did not attempt to explicitly detect
loneliness. Thus, it is necessary to distinguish loneliness from
other similar terms, most notably, social isolation.

Another significant gap pertains to privacy concerns. Most
research has not focused on privacy issues. A few studies (9/29,
31%) discussed their strategies for maintaining device and data
privacy, which included anonymization and safe data
transmission to data collection servers; however, most of the
studies (18/29, 62%) plainly stated that they gathered data with
the consent of the users but did not discuss data privacy and
security. Most studies (12/18, 66%) collecting participant data
passively through smartphones and wearables were based in
the United States, China, and Asia, with very few studies
conducted in European countries. This may be because the
European Union’s General Data Protection Regulations place
stringent restrictions on data collection and transfer. It is
important to engage potential study participants in the design,
development, and validation phases of such systems to ensure
that the system satisfies their expectations [112]. This is crucial
if the system is to be adopted extensively and sustainably by
the target population.

Many smartphone or wearable users prefer tracking systems to
provide them with valuable knowledge and feedback about their
activities and well-being status [113]. When people receive
well-being-based feedback, they are more likely to make positive
changes in their lifestyle and behaviors related to physical
activity, including well-being, sociability, and mental health
[114,115]. However, little is known about the impact of user
feedback on behavioral changes related to loneliness. As
demonstrated in this scoping review, existing systems are
deficient in delivering real-time feedback to participants, which
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can help participants develop interest and trust in such tracking
systems and help them to make attempts to change their lifestyle
in response to system recommendations. Experts are examining
ways to develop these tracking systems to provide valuable
feedback, alerts, and advice to users to improve their current
mental health [116].

Most of the studies (25/29, 86%) in this scoping review were
pilot or feasibility studies with very small or limited sample
sizes. The validation of these detection systems is a crucial
component, and the systems should be validated with a subset
of the target population that is highly representative over an
adequate period to obtain appropriate data to deliver as reliable
results as possible. Many studies are of short duration, which
may provide an insufficient window for detection and build
participants’ trust and acceptability in detection systems. In
addition, some of the proposed systems selected population
samples from a very specific population type or at a specific
period, such as a lockdown during a pandemic crisis [84], which
may result in misleading outcomes when applied to other
populations or at different periods. Similarly, the population
selection methods used were not rigorous, resulting in potential
self-selection bias and limited generalizability, particularly with
low representations of at-risk groups, such as unemployed
people or older adults not in supported housing.

Limitations
Although we conducted a thorough search of computer science,
health, and social science databases using multiple search terms
related to loneliness and social isolation detection, some articles

could have been overlooked. For example, studies that focused
on general mental health or emotion recognition, with loneliness
or social isolation serving as a subset of larger research, were
not included. Furthermore, because we included only studies
conducted in English, there might be several studies on
loneliness detection published in other languages that were not
included in this scoping analysis.

Conclusions
It is evident that the use of smartphones, wearable smart devices,
and ambient sensors to detect loneliness and social isolation in
different age groups has increased in the last few years.
Compared with more conventional tracking systems,
smartphones are simple to use, unobtrusive, familiar, and
inexpensive. They also have a variety of sensors that allow the
collection of users’ data in real time, without interfering with
users’ daily activities. This comprehensive scoping review
reveals that smartphones and mobile and ambient sensing
systems have the potential to monitor users’behaviors and daily
activities to infer loneliness and social isolation, and it is likely
that research interest in this field will grow in the future.
However, most existing methods have shortcomings, particularly
in privacy preservation and validation across diverse
populations, which need to be rigorously addressed in future
research. Finally, it is worth noting that researchers need to
investigate what motivates people to use such tracking
mechanisms and what inspires their trust and long-term
adherence if they are to be adopted and implemented within
wider populations.
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