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A B S T R A C T   

The microbiome-gut-brain-axis is a complex phenomenon spanning several dynamic systems in the body which 
can be parsed at a molecular, cellular, physiological and ecological level. A growing body of evidence indicates 
that this axis is particularly sensitive to the effects of stress and that it may be relevant to stress resilience and 
susceptibility. Although stress-induced changes in the composition of the microbiome have been reported, the 
degree of compositional change over time, which we define as volatility, has not been the subject of in-depth 
scrutiny. Using a chronic psychosocial stress paradigm in male mice, we report that the volatility of the 
microbiome significantly correlated with several readouts of the stress response, including behaviour and 
corticosterone response. We then validated these findings in a second independent group of stressed mice. 
Additionally, we assessed the relationship between volatility and stress parameters in a cohort of health vol
unteers who were undergoing academic exams and report similar observations. Finally, we found inter-species 
similarities in the microbiome stress response on a functional level. Our research highlights the effects of 
stress on the dynamic microbiome and underscores the informative value of volatility as a parameter that should 
be considered in all future analyses of the microbiome.   

1. Introduction 

The mammalian gut plays host to approximately 1 trillion microbial 
organisms collectively known as the gut microbiome (Sommer and 
Bäckhed, 2013). The microbiome is highly sensitive and reactive to the 
effects of stress to the extent that it is now accepted that the stress 
response is not solely the domain of brain function, but rather that it 
results from a synergy of mechanisms that constitute the gut-brain axis 
(Bastiaanssen et al., 2018; Bastiaanssen et al., 2020; Cruz-Pereira et al., 
2020; Cryan et al., 2019; Dinan and Cryan, 2012; Foster et al., 2017). In 
particular, studies in rodents have correlatively linked alterations in 
microbiota composition to the effects of stress on behaviour (Bharwani 
et al., 2016; Bharwani et al., 2017; Burokas et al., 2017; Marin et al., 

2017; Szyszkowicz et al., 2017; Xu et al., 2020) and the central/
peripheral inflammatory milieu (Bailey et al., 2011; Bharwani et al., 
2016; Bharwani et al., 2017; Burokas et al., 2017; Szyszkowicz et al., 
2017). Going further, manipulation and perturbation of the microbiome 
have been shown to alter the reaction to stress, further solidifying the 
regulatory role of the microbiome in the stress response (Donoso et al., 
2020; Jašarević et al., 2017; Kuti et al., 2020; Langgartner et al., 2018; 
Morais et al., 2020; Pearson-Leary et al., 2019; Provensi et al., 2019; 
Stothart et al., 2019; Wang et al., 2020). Moreover, in humans there 
have been a number of studies confirming a relationship between stress 
and microbiome composition across the lifespan (Allen et al., 2016; 
Hemmings et al., 2017; Messaoudi et al., 2011; Papalini et al., 2019; 
Zijlmans et al., 2015). 
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These observations notwithstanding, a common feature of the above 
cited studies is the fact that they are a ‘snapshot-in-time’ analyses of 
samples and therefore do not consider the compositional and temporal 
instability of the microbiome (Caporaso et al., 2011; Claesson et al., 
2011). Temporal variance as a feature of the microbiome has been dis
cussed before. Initially, the volatile nature of the microbiome was 
pointed out (Weinstock, 2011) and relatively soon thereafter, the term 
volatility was used to refer to the degree of change between timepoints 
(Goodrich et al., 2014). Aside from these studies, the term volatility has 
been scarcely used in the context of the microbiome. One example of its 
rare use is in the context of the rapidly shifting microbial communities 
on shoes and cell phones (Lax et al., 2015). In the context of stress, 
recent studies have shown differential effects on microbiota 
beta-diversity dependent on when the samples were taken – shortly after 
commencement of social stress or towards the end of the protocol 
(Gautam et al., 2018), though the degree of change was not pursued, nor 
linked to the severity of the stress response. More broadly, there have 
been reports of microbiome beta-diversity being altered after stress 
compared to control, though often these reports do not relate severity of 
stress to difference in beta diversity, nor do they take the baseline 
microbiome into account (Langgartner et al., 2018; Xu et al., 2020). 
Recently, in a large human cohort, patients with inflammatory bowel 
disease (IBD), a condition that is associated with an increased level of 
stress, were shown to have a more volatile microbiome than healthy 
volunteers (Clooney et al., 2020; Ryan et al., 2020). While these studies 
provide some evidence that volatility may be related to stress, the 
impact of stress on microbial volatility measures remains unknown. 
Furthermore, deciphering what makes a microbial community volatile 
can provide new insights into its role in mediating the effects of stress. 
To further investigate volatility in relation to stress, we exposed mice to 
chronic psychosocial stress and assessed volatility. Based on the findings 
of this discovery cohort, we then set out to validate our findings in an 
independent cohort of a different strain of mice under the same exper
imental conditions. Finally, we also took advantage of an ongoing study 
involving healthy volunteers undergoing academic examination stress 
and sought to examine whether the interaction between volatility and 
stress occurred across species. 

2. Materials & Methods 

2.1. Animals 

For this study we used two cohorts of adult male mice. The first 
cohort will be referred to as the Discovery cohort and consisted of 
(B6;129-Gt(ROSA)26Sortm1(CAG-cas9,-EGFP)Fezh/J; https://www.jax. 
org/strain/024857). The second cohort will be referred to as the Vali
dation cohort and consisted of adult male C57BL/6 (Envigo, UK). There 
were no differences in terms of experimental treatment and handling 
between the two cohorts. There were three weeks between the arrival of 
the animals and the start of singly housing. Approximately one week 
before commencement of social defeat sessions, all mice were singly 
housed and weighed daily over the course of the experimental protocol 
(Fig. 1). For the chronic social defeat stress procedure, non-experimental 
singly housed adult male CD1 were used as aggressors (Envigo, UK). 
Mice were kept under a 12 hr light/dark cycle (ON 7:30AM, OFF 
7:30PM) in a temperature/humidity controlled environment (21 ◦C, 
55.5%) with food and water ad libitum. The main behavioural and 

physiological responses to chronic stress of the Discovery cohort have 
been initially reported elsewhere (Gururajan et al., 2019) and are used 
here in a correlative capacity with the microbiome analysis. 

2.2. Chronic social defeat stress 

Mice were randomly assigned to either the social defeat stress or 
control groups. Defeat sessions were performed as previously described 
(Gururajan et al., 2019). Briefly, for each defeat session, test mice were 
subjected to a pre-screened aggressor CD1 mouse until the first attack, 
expression of submissive posturing or until 5 min had passed. The mice 
were then separated by a perforated plexiglass wall that allowed only 
non-physical contact for 2 hrs. Subsequently, the separator was removed 
and, after another defeat, mice were transferred back to their 
home-cage. This was repeated with a different CD1 aggressor each day 
for 10 days. Control mice remained in their home-cages over the course 
of the stress protocol but were handled to an equal extent as the stressed 
mice in the process of measuring daily body weight and collecting 
tail-blood samples. Across the duration of the defeat protocol, to prevent 
contamination during defeat procedures, the experimenter removed any 
traces of faecal boli produced by the aggressor or the stressed mice. 
Based on the findings in the first cohort of mice, we repeated the 
experiment in a larger cohort. We refer to these cohorts as the Discovery 
cohort and the Validation cohort, respectively. Further details can be 
found in Supplementary Methods. 

2.3. Social interaction test 

The social interaction testing of mice was used to assess avoidance of 
the CD1 aggressors the day after the last defeat session and was carried 
out as previously described (Gururajan et al., 2019). Briefly, the test was 
carried out in a plastic box (41 × 32 × 24 cm) containing a wire mesh 
cage (9.5 × 7.5 × 7.0 cm) against one wall. In the first 2.5 min trial, the 
test mouse was allowed to explore freely. The mouse was then returned 
to its home cage for 1 min. During this time, an unfamiliar aggressor CD1 
mouse was placed inside the wire mesh cage. This was followed by a 
second 2.5 min trial in which the test mouse was allowed to explore the 
area freely in the presence of the caged CD1. Social interaction (SIT) 
ratios were generated based on social investigation time in an arbitrarily 
defined interaction zone around the wire mesh cage. Further details can 
be found in Supplementary Methods. 

2.4. Plasma sampling for corticosterone 

Collection and analysis of plasma samples for corticosterone was 
carried out as previously described (Gururajan et al., 2019; van de 
Wouw et al., 2018). Briefly, tail bleeds were carried out within 1 hour of 
the lights turning off (1930-2030). Whole blood was collected in sterile 
eppendorfs. Whole blood was centrifuged (3500 g, 10 minutes, 4 degrees 
C) and plasma was collected. Plasma samples were analyzed in duplicate 
using the Enzo® Corticosterone ELISA kit plate (ADI-900-097, Enzo, 
Exeter, United Kingdom) according to the manufacturer’s instructions. 
ELISA plates were read using a Multiskan® microplate photometer 
(Thermofisher Scientific®, Waltham, MA, USA) at 405 nm. See Sup
plementary Methods for further detail. 

Fig. 1. Mouse experimental timeline. Mice were singly housed 
for 1 week prior to the first stool and plasma collection on Day 0. 
From Day 1 to 10, mice were randomly assigned to either the 
control condition (not shown) or chronic social defeat stress. On 
Day 11, plasma and faecal boli samples were again collected and 
social behaviour was assessed. The following day, all mice were 
culled. Trunk blood was collected for flow cytometry and brain 
tissue was processed for gene expression analyses.   
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2.5. Gene Expression Analysis 

Gene expression analysis was carried out as previously described 
(Gururajan et al., 2019) Briefly, total RNA was extracted using the 
miRVana™ miRNA Isolation kit (Ambion/Life Technologies, Paisley, 
UK) according to the manufacturer’s instructions. RNA was 
reverse-transcribed to complementary DNA using the Applied Bio
system® High Capacity cDNA Reverse Transcription Kit (10X RT Buffer, 
25X dNTP mix (100 mM), 10X RT Random Primers, Multiscribe® 
Reverse Transcriptase) on the Applied Biosystem® GeneAmp PCR Sys
tem 9700 (Thermofisher®, Waltham, MA, USA). qRT-PCR was carried 
out on the StepOnePlus® PCR machine (Thermofisher®, Waltham, MA, 
USA) using primer assays designed by Integrated DNA Technologies 
(Skokie, Illinois, USA). See supplementary information for primer IDs. 
Experimental samples were run in duplicates and to check for amplicon 
contamination, each run also contained template free controls for each 
probe used. PCR data were normalised using β-actin, with an average ct 
value of 20.9 (+/-0.5SD) across all samples, and transformed using the 
ΔΔCt method as previously described (Stilling et al., 2018). 

2.6. Human Healthy Volunteer Study 

Briefly, healthy volunteer study participants were recruited via 
advertisement and direct contact to the student population of University 
College Cork (UCC). A total of 84 volunteers responded to advertisement 
and direct contact; 54 were pre-screened by telephone call (64%); 36 
were invited to a screening visit (43%); and thirty were enrolled in the 
study and randomised to treatment (36%). Inclusion criteria: participant 
must be able to give written informed consent; be between 18 and 30 
years of age; be male; be in generally good health as determined by the 
investigator. Prior to testing days, participants were asked to refrain 
from strenuous exercise and alcohol 24 hours before the session, and 
from caffeine three hours prior to the session. At the screening visit, two 
weeks before baseline measurement, study participants were asked 
about their demographics, general medical history, medication record, 
and other metadata. Furthermore, the participants were screened using 
the MINI International Psychiatric Interview (to exclude subjects with a 
significant DSM-V psychiatric diagnosis). Participants attended for study 
visits during 2 semesters in UCC – both 8 weeks prior to an exam period 
and during an exam period. The exam visit took place during the par
ticipant’s exams, but not on the day of an exam. The measures taken 
during the visit included Cohen’s Perceived Stress Scale (PSS). Faecal 
samples from the morning of the visit were collected into plastic con
tainers containing an Anaerogen sachet. Participants were instructed to 
keep the sample in a cool place until delivery at the study visit. Samples 
were immediately frozen at − 80 ◦C at the visit. 200 mg was taken from 
the core after thawing and subsequently used for DNA extractions and 
16 s sequencing. Salivary Cortisol Awakening Response was assessed 
using the Cortisol ELISA kit plate ADI-900-071, Enzo, Exeter, United 
Kingdom) according to the manufacturer’s instructions. ELISA plates 
were read using a Multiskan® microplate photometer (Thermofisher 
Scientific®, Waltham, MA, USA) at 405 nm. These data were derived 
from control participants from a larger healthy volunteer study exam
ining the effects of an intervention on the microbiota-gut-brain-axis 
(Moloney et al., 2020). 

2.7. 16S rRNA Gene Sequencing 

Faecal samples were collected during the weighing of mice before the 
first day and after the last day of social defeat. Boli were transferred to 
eppendorfs and stored at − 80 ◦C. DNA was extracted from faecal sam
ples and prepared for sequencing using an Illumina 16S Metagenomic 
Sequencing Library Protocol. See supplementary methods for further 
details. 

2.8. Bioinformatics analysis 

Three hundred base pair paired-end reads were pre-filtered based on 
a quality score threshold of >28 and trimmed, filtered for quality and 
chimaeras using the DADA2 library in R (version 3.6.3). Only samples 
with >10.000 reads after QC were used in analysis. Taxonomy was 
assigned with DADA2 against the SILVA SSURef database release v138. 
Parameters as recommended in the DADA2 manual were adhered to 
unless mentioned otherwise. ASVs were aggregated at genus level; those 
that were unknown on the genus level were not considered in down
stream analysis, as were genera that were only detected as non-zero in 
10% or few of total samples. As ratios are invariant to subsetting and this 
study employs compositional data analysis techniques (Aitchison et al., 
2000; Gloor et al., 2017). 

2.9. Statistical analysis 

Further data-handling was done in R (version 3.6.3) with the Rstudio 
GUI (version 1.1.453). Custom R scripts are available at at https://gith 
ub.com/thomazbastiaanssen/Tjazi (Bastiaanssen, 2018). Stacked bar
plots were generated by normalizing counts to 1, generating pro
portions. Genera that were never detected at a 1% relative abundance or 
higher were aggregated and defined as rare taxa for the purposes of the 
stacked barplots. Principal component analysis was performed on cen
tred log-ratio transformed (clr) values using the ALDEx2 library (Fer
nandes et al., 2014). Number of permutations was always set to 1000. 
Volatility was measured as distance between before and after the 
experiment or treatment and was calculated as the Aitchison distance 
between the two timepoints. Unlike other distance metrics such as 
Bray-Curtis and Jensen-Shannon divergence, the Aitchison distance 
takes into account the compositional nature of microbiome datasets 
(Aitchison et al., 2000). Piphillin was used for functional inference from 
16S rRNA gene seqeunce of mouse stool samples in the form of KEGG 
orthologues (Iwai et al., 2016). Gut-Brain Modules (GBMs) and 
Gut-Metabolic Modules (GMMs) were calculated using the R version of 
the Gomixer tool (Valles-Colomer et al., 2019). Differential abundance 
of both microbes and functional modules were calculated using imple
mentations of the ALDEx2 library. As part of testing for correlations 
between volatility and metadata, skadi, an implementation of jack
knifing and Grubb’s test, was used to assess reliability of the data and 
detect outliers (Bastiaanssen, 2018). Correlation was assessed using 
Spearmans’s rank correlation coefficient in the case of low N or heter
oskedacity. In all other cases the Pearson correlation coefficient was 
used. Normality was assessed using the Shapiro-Wilk test. For normally 
distributed data, between-group differences were analysed using 
ANOVA or unpaired two-tailed t-test and Tukey’s test for post-hoc 
analysis. For datasets in which the condition of normality was violated 
the non-parametric Kruskal-Wallis test was used and post-hoc analysis 
was done using the Wilcoxon test. A p-value of <0.05 was deemed sig
nificant in all cases. To correct for multiple testing in tests involving 
microbiota or Functional Modules, the Benjamini-Hochberg (BH) 
post-hoc was performed with a q-value of 0.1 as a cut-off. R scripts are 
available online on GitHub (https://github.com/thomazbastiaanssen/V 
olatility). 

3. Results 

3.1. The gut microbiome is differentially volatile in response to chronic 
social defeat stress 

After filtering, 137 different genera were detected in the mouse 
microbiome samples (Fig. 2A, B). Differential abundance analysis can be 
found in the supplementary files at genus (Supplementary Figure S1) 
and at higher taxonomic levels (Supplementary Figure S2). In the Vali
dation cohort, stressed animals showed more changes in their micro
biome compared to control animals. To quantify volatility, which we 
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Fig. 2. Microbial volatility is influenced by stress. (A) Stacked barplot showing the proportion of genera based on 16S sequences detected per sample in the 
Validation cohort and the (B) Discovery cohort. Volatility was defined as the Aitchison distance travelled over the 10-day experiment. (C) PCA showing the 
microbiome compositions of animals before and after the 10-day period. Lines link the same animal over time, showing the trajectory and distance travelled in time. 
(D) Aitchison distance travelled is shown on the y-axis; Mann-Whitney p = 0.093, W = 38, d = 0.7. (E) The PCA of the validation cohort and (F) corresponding 
elevated volatility in stressed mice.; Mann-Whitney p = 5.06 × 10-5, W = 30, d = 1.66. Discovery cohort: Control N = 9; Stress: N = 13, validation Control cohort: N 
= 10; Stress: N = 28. 
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define as the degree of compositional change of the microbial ecosystem 
over time, we calculated the intra-subject Aitchison distance between 
the genus-level count tables from the same subject taken before and after 
the experiment using the clr-transformation (Fig. 2C). Stressed mice 
showed a trend toward a significantly higher degree of volatility when 
compared to controls in the Discovery cohort (Fig. 2D). In the Discovery 
cohort, we found that volatility correlated with several measurements 
associated with the stress response, including social avoidance behav
iour (Fig. 3). In the first cohort, we randomly selected samples for 16S 
rRNA gene sequencing from the original 27 stressed and 29 control mice 
(Gururajan et al., 2019). All data regarding the Discovery cohort in this 
manuscript only refers to the subset of animals of which the faecal 
microbiome was sequenced. We ran a second larger independent cohort 
under the same conditions, the Validation cohort, with the intent to 
verify our results from the smaller Discovery cohort. In the Validation 
cohort, we again found a higher degree of volatility in stressed animals 
compared to controls, this time significantly so (Fig. 2E-F). 

3.2. Volatility of the gut microbiome is correlated with aspects of the stress 
response 

Pursuing the elevated volatility in stressed animals compared to 
controls, we found a significant correlation between social avoidance 
behaviour and volatility. This finding was again replicated in the vali
dation cohort (Fig. 4). 

3.3. Volatility is correlated with absolute change in measures of alpha- 
diversity 

As alpha-diversity and beta-diversity are related metrics, we asked 
whether changes in beta-diversity, volatility, would be related to 
changes in alpha diversity. We computed alpha-diversity based on the 
first three hill-numbers; Chao1, Simpson and Shannon and found cor
relations between these metrics and volatility in both cohorts in the 
stressed mice, but never in controls (Fig. 5). 

3.4. Perceived Stress in Humans 

To investigate whether the relation between volatility and stress was 
observed in humans, we tested for correlation between volatility and 
stress as measured by the Perceived Stress Scale (PSS) in a cohort of 
students undergoing academic exams. We found a significant correlation 
between volatility and PSS during stress, but not under non-stress con
ditions i.e., before the exam period (Fig. 6). On their own, we detected 
no differential abundance in terms of genera, Gut-Brain Modules or Gut 
Metabolic Modules in the human cohort after FDR (Supplementary Ta
bles 6-8). 

Additionally, we set out to compare the relationship between blood 
cortisol and corticosterone and volatility in our human and mouse co
horts, respectively. In humans, we found a correlation between the 
cortisol awakening response (AUC) and volatility. Analogously, we 
found a significant positive correlation between evening corticosterone 
levels in the discovery mouse cohort as well as a trend in the same di
rection in the validation mouse cohort (Fig. 7) using the Pearson 

Fig. 3. Volatility correlates with biological measures associated with stress. (A) Inverse volcano plot showing correlations between volatility and all other 
experimental parameters. Y and x-axis represent p-value on a log10 scale and spearman’s rho, respectively. Red dashed line depicts p = 0.05. (B-F) Show individual 
correlations between all experimental values (y-axis) and volatility (x-axis). Measurements were assessed for reliability using Grubbs’ test for outliers and jack- 
knifing. Controls and outliers were left out for correlations (opaque circles). Lines represent the fitted regression line, with a full line indicating a significant cor
relation, while a dotted line indicates no significance. Spearman: (B); p = 0.016, rho = -0.676 (C); p = 0.154, rho = 0.441 (D, Nr3c1); p = 0.001, rho = 0.832 (E, 
Nr3c2); p = 0.019, rho = 0.709 (F); p = 0.011, rho = -0.730. Discovery cohort: Control N = 9; Stress: N = 13. 
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correlation coefficient, even though we did not find significance in the 
validation cohort using the Spearman correlation coefficient, likely due 
to low N (Fig. 3C). 

3.5. Comparing Microbiome response to stress across cohorts 

Finally, we set out to investigate whether other types of changes 
could be replicated between cohorts. We assessed differential abun
dance on the genus level in both discovery and validation cohorts as well 
as differential abundance on the level of Gut-Brain Modules (GBMs) and 
Gut-Metabolic Modules (GMMs). These modules represent functional 
pathways curated from literature that have been reported to take place 
in the microbiome and are involved in either gut-brain communication 
or in microbiome metabolism, respectively (Valles-Colomer et al., 
2019). In order to compare the responses between the two cohorts, the 
effect sizes representing the change per microbiome feature were 
extracted and those modules that were present in both cohorts were 
tested for correlation. In the theoretical case of perfect agreement be
tween cohorts, the rho for the correlation of the effect sizes would be 1. 
We found no correlation on the genus level in any animals, but in the 
stressed animals we found a strong positive correlation in the effect sizes 
on both the GBM and GMM level (Fig. 8). The same procedure was then 
carried out comparing the functional changes in the mouse cohorts to 
those in the human cohort. The mouse cohorts were aggregated in order 
to promote interpretability (Fig. 9). We observed significant correlations 
between the responses to chronic stress for both GBM and GMM across 
human and mouse host species. In particular, in terms of effect sizes, 
GABA synthesis and isovaleric acid synthesis seemed to increase the 
most in both host species in terms of GBMs, while mucin degradation 
increased the most in terms of GMMs. Complete differential abundance 
features results can be found in the supplementary files in terms of 
genera (Supplementary Table 3) Gut-Brain Modules (Supplementary 
Table 4) and Gut-Metabolic Modules (Supplementary Table 5). A heat
map visual representation of these differentially abundant features can 
be found as well (Supplementary Fig. 1). 

4. Discussion 

Microbiome volatility is a relatively underutilized concept in 
microbiome ecology. With regard to stress it has not been explored 
previously. One exception is in the context of irritable bowel syndrome 
(IBS) (Halfvarson et al., 2017), a condition which has been linked to 
physical and psychosocial stress exposure (Mayer et al., 2001) or In
flammatory Bowel Disease (IBD), which has also been linked to stress 
and anxiety (Mawdsley and Rampton, 2005), both of which found 
display more volatility (though it was not referred to as such) in patients 
compared with healthy controls (Clooney et al., 2020; Ryan et al., 2020). 
In this study, we further investigated the concept of volatility and, for 
what is to our knowledge the first time, report its potential influence on 
stress-related central and peripheral phenotypes. 

We firstly showed that mice which had higher values in biological 
measures commonly associated with stress, such as changes in cortico
sterone levels also showed an increased volatility. Secondly, we 
observed a significant negative correlation between volatility and social 
behaviour. Notably, this correlation was found in both the discovery and 
validation cohorts. The implication is that severity of the stressor is 
related to degree of volatility, indicating volatility is related to stress 
susceptibility and resilience. Clearly, some stressed animals showed a 
higher degree of volatility than others. There are two possible expla
nations for this observation. The first is that volatility is determined by 
the microbiome, which would imply that a more volatile microbiome is 
a marker of stress susceptibility. Conversely, a more stable microbiome 
would then be a marker of stress resilience. Second, an elevated vola
tility after stress could be the result of a more severe reaction to stress. 
Indeed, exposure to stress has often been associated with changes in the 
microbiome (Bharwani et al., 2016; Langgartner et al., 2018). Stress is 
known to change host physiology and behaviour including diet, both of 
which are known to impact the microbiome (David et al., 2014; Lucking 
et al., 2018; O’Connor et al., 2020; O’Connor et al., 2019). This makes it 
seem likely that volatility is determined at least to a degree by stress. 
However, recently more attention has been brought upon the temporal 
dynamics including stability and drift in the microbiome, viewing it as 

Fig. 4. Microbial volatility is nega
tively correlated with Social Interac
tion Ratio after Social Defeat Stress. 
The x-axis shows volatility as defined by 
Aitchison distance moved over 10 days, 
while the y-axis shows the Social Inter
action Ratio as defined by the ratio of 
time spent in proximity to an unfamiliar 
CD-1 mouse and time spent in the same 
area without the second mouse present. 
Red points show stressed mice, while 
blue points show controls. Lines repre
sent the fitted regression line, with a full 
line indicating a significant correlation, 
while a dotted line indicates no signifi
cance. Spearman: In the Discovery 
cohort (Left); p = 0.017, rho = -0.68. In 
the Validation cohort (Right); p =

0.045, rho = -0.41. Discovery cohort: N 
= 8; stress: N = 13, validation cohort: N 
= 10; Stress: N = 28.   
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an ecological system (Kenney et al., 2020). Previous research reported 
that both external and microbiome composition itself influence micro
biome stability (Gibbons et al., 2017). Determining causality in 
non-linear systems like the microbiome brings its own set of challenges. 
For instance, different factors often cannot be separated as they together 
represent the system (Sugihara et al., 2012). Taken together, it is 
entirely possible that stress and volatility could be in a positive feedback 
loop with each influencing and potentially exacerbating the other. 
Research incorporating more frequent and numerous timepoints could 
shed light on this question. A similar approach was recently employed to 
great effect to characterise the interaction between diet and the micro
biome (Johnson et al., 2019). There, diet was shown to partially explain 
changes in microbiome composition over very short timeframes. 

While inconclusive, we initially sought to identify features in the 
baseline microbiome that could explain the degree of volatility after 
stress (data not shown), however, such differences in baseline did not 
hold up in the validation cohort or in the human study. Here, we were 
unable to find predictor features in the baseline microbiome that were 
generalizable over all three cohorts. In future studies, the volatility at 
baseline as opposed to single point measures in the current study could 
be measured to address this question. Specifically, one may hypothesize 
that hosts with the most volatile microbiomes during neutral conditions 
could be the most susceptible to stress and that low volatility is a pre
dictor of stress resilience. Additionally, future studies are needed to 

examine the correlation between volatility and other phenotypes of 
relevance following chronic stress. 

The findings of this study have potential translational implications in 
understanding volatility in the context of human health. Indeed, the fact 
that we observed a correlation between self-reported stress during ac
ademic exams and volatility strengthens the notion that volatility is 
closely associated to stress and stress resilience. For example, one could 
consider volatility in the context of microbial-based interventions to 
treat stress-induced psychopathologies, formulations designed to stabi
lise the microbiome could be administered over a period of time to 
improve response. Alternatively, given that psychotropics are them
selves known to influence the microbiome (Cussotto et al., 2019), we 
speculate that pre-treatment with psychobiotics which introduce spe
cific keystone species into the microbiome may make it more receptive 
to the therapeutic effects of antidepressants or anxiolytics. This latter 
approach could be relevant especially for patients who are resistant to 
treatment using conventional approaches. This also opens the door to 
keystone species, species that when absent will destabilize the gut 
ecosystem, in psychobiotic formulations. On its own, it is unclear what 
the impact a more volatile microbiome could be on host health, if any. 
One could hypothesise that volatility destabilizes the microbiome 
resulting in an increased susceptibility for bacterial taxa to colonize. We 
did not find evidence of this in this study, but this might be due to the 
sanitary housing conditions of the animals and that mice are 

Fig. 5. Microbial volatility is positively correlated with absolute changes in Alpha Diversity indices after Social Defeat Stress. The x-axis shows volatility as 
defined by Aitchison distance moved over 10 days, while the y-axis shows the absolute difference in Chao1 (A,D), Simpson Index (B,E) and Shannon Index (C,F) on a 
genus level. A-C relates to the discovery cohort, whereas D-F corresponds to the Validation cohort. Red points show stressed mice, while blue points show controls. 
Lines represent the fitted regression line, with a full line indicating a significant correlation, a dashed line showing a trend (0.05 < p < 0.1) while a dotted line 
indicates no significance. Spearman: (A); p = 0.004, rho = 0.739 (B); p = 0.014, rho = 0.687 (C); p = 0.10, rho = 0.495 (D); p = 0.024, rho = 0.43 (E); p = 0.003, rho 
= 0.55 (F); p = 0.002, rho = 0.55. Discovery cohort: Control N = 9; Stress: N = 13, validation Control cohort: N = 10; Stress: N = 28. 
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Fig. 6. Microbial volatility is correlated with Perceived Stress during academic exam stress. (A) Stacked barplot showing the proportion of genera based on 16S se
quences detected per sample. (B) The x-axis shows volatility as defined by Aitchison distance while the y-axis shows the Perceived Stress Scale Score during academic exam 
stress. Line represents the fitted regression line indicating a significant correlation. N = 16, Spearman: p = 0.028, rho = 0.55. 
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Fig. 7. Microbial volatility is positively correlated with Cortisol and Corticosterone after chronic stress in humans and mice, respectively. The x-axis shows 
volatility as defined by Aitchison distance while the y-axis shows the evening corticosterone levels in the two left-most figures and the Cortisol Awakening Response 
in the rightmost figure. Line represents the fitted regression line, with a full line indicating a significant correlation and a dashed line indicating a statistical trend. 
Pearson: Discovery: p = 0.0293, rho = 0.537; Validation: p = 0.063, rho = 0.327; Human: p = 0.024, rho = 0.517. Discovery cohort: Control: N = 8; Stress: N = 13, 
validation cohort: N = 10; Stress: N = 28, human cohort: N = 16. 

Fig. 8. Microbiome responds to stress similarly on a functional level but not on a taxonomical level. The x-axis shows the effect size per feature of the 
Discovery cohort, while the y-axis shows the effect size fer feature of the Validation cohort. Every dot represents one microbial feature. The top (blue; A-C) row shows 
the comparisons from the Controls, while the bottom (red; D-F) shows the comparisons for the Stressed animals. Lines represent the fitted regression line, with a full 
line indicating a significant correlation, a dashed line showing a trend (0.05 < p < 0.1) while a dotted line indicates no significance. Pearson: (A); p = 0.657 rho =
0.052 (B); p = 0.844, rho = 0.04 (C); p = 0.051, rho = 0.243 (D); p = 0.674, rho = 0.04 (E); p = 0.0004, rho = 0.625 (F); p = 1.9 × 10-11, rho = 0.694. 
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coprophagic. Indeed, fecal microbiota transplantation, representing a 
high-alpha-diversity pool, has been shown to expedite colonization rate 
over natural recovery (Suez et al., 2018). Moreover, the microbiome has 
been shown to regulate microbiome ecosystem stability (Gibbons et al., 
2017). More research is warranted to test this hypothesis. 

We also found consistent changes across cohorts and even between 
mice and humans in the microbiome after chronic stress. We did not, 
however, find such agreement at a taxonomic level. This is likely due to 
the differences in baseline microbiome between the two cohorts and the 
humans. Indeed, in humans, it is well-known that interpersonal vari
ability is much lower on the functional level than on the taxonomical 
level (Human Microbiome Project Consortium, 2012; Mehta et al., 
2018). From our findings we extrapolate that in the context of stress, 
while the taxonomical changes of the microbiome seem to be 
cohort-dependent and ultimately baseline microbiome dependent, there 
is a strong agreement in how the functional microbiome changes after a 
stressor. A stress response in the microbiome that seems invariant of the 
baseline condition could indicate some sort of adaptive stress response, 
either on the level of the microbiome or on the host level. Per definition, 
the GMMs and especially the GBMs have functional implications for host 
health. In a recent study, GBMs were shown to be influenced by diet 
(Butler et al., 2020; Valles-Colomer et al., 2019). Together with the 
finding that stress influences these modules in a specific manner, this 
opens up the door for psychobiotics that specifically aim to control the 
levels of specific modules that are known to be altered by stress. 
Notably, GABA synthesis was altered in both our human and mouse 
cohorts. The GABAergic system has been previously shown to be 
modulated by the microbiome in the context of the stress response 
(Bravo et al., 2011) and GABA-modulating bacteria have been impli
cated in stress-related disorders such as depression in humans (Strand
witz et al., 2019). In addition, the synthesis pathway of the short-chain 
fatty acids propionate and isovalerate were inferred to be upregulated 
after stress. These metabolites have been shown to influence 
stress-resilience (van de Wouw et al., 2018). Similarly, tryptophan 
metabolism and quinolinic acid synthesis was found to be increased 
after stress and have been implicated in mental health (Cervenka et al., 
2017; Schwarcz et al., 2012). Alterations in menaquinone (vitamin K2) 
synthesis after stress were also found. Menaquinone has anti-oxidant 

properties and has been reported to confer neuroprotective effects 
(Farhadi Moghadam and Fereidoni, 2020). Notably, most of the signif
icant changes after stress had a positive effect size, indicating consistent 
gains of functions occurring. This together with the correlations we re
ported in the changes in GBMs and GMMs following stress supports the 
notion that there is a directed response to stress in the microbiome. 
Indeed, there has been speculation that some alterations in the micro
biome due to a stressor could actually be adaptations to protect the host 
(Walter et al., 2020). These alterations should be pursued in future 
research. 

To conclude, we propose that an analysis of volatility should be 
considered in all future longitudinal microbiome research projects. 
Given the novelty of this concept, we make some basic recommenda
tions as to how examine this variable. The approach to calculating 
volatility presented here relies on Aitchison distance. This metric was 
selected because it was specifically designed to deal with compositional 
data, such as the microbiome (Aitchison et al., 2000; Gloor et al., 2017). 
While other metrics for beta-diversity do exist (Bokulich et al., 2018), 
Aitchison distance has the added benefit of satisfying the criteria for 
being a Euclidean distance, making comparisons between two distances 
within the same analysis possible. Other popular metrics like Bray-Curtis 
or Unifrac do not have this property, but rather give relative distance on 
a scale from zero to one, making them less suitable for the purpose of 
assessing volatility. We speculate that further convergence of 
high-dimensional mathematics, microbiology and genetics will lead to 
newer algorithms which prove to be more useful and easier to use. For 
instance, the phILR beta-diversity metric combines the taxonomic 
framework of Unifrac with the compositionally appropriate 
Ilr-transformation and should be explored in further volatility research 
(Silverman et al., 2017). Lastly, in this study, volatility was calculated by 
assessing the distance ‘travelled’ between two points over time. Future 
studies should consider collecting samples over multiple time points (e. 
g. during stress exposure) to produce higher-dimensional geometric 
shapes in microbiome-space which could lead to more nuanced insights 
into the role of the microbiome as a mediator of the stress response. 

Fig. 9. Microbiome responds to stress similarly on a functional level across mice and humans. The x-axis shows the effect size per feature of the Mouse cohort, 
while the y-axis shows the effect size fer feature of the Human cohort. The left (A) figure shows Gut-Brain modules while the right (B) figure shows Gut-Metabolic 
Modules. Every dot is one microbial feature. Labels show the module names that had an absolute effect size higher than 0.2 in both mice and humans. Lines represent 
the fitted regression line, with a full line indicating a significant correlation. Pearson: (A); p = 0.005 rho = 0.494 (B); p = 0.011, rho = 0.279. 
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