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Short Communication 

Acute stress increases monocyte levels and modulates receptor expression 
in healthy females 
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Gerard M. Moloney a,c, Anne-Marie Cusack a, Kirsten Berding a, Timothy G. Dinan a,d, 
John F. Cryan a,c,* 

a APC Microbiome Ireland, University College Cork, Cork, Ireland 
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A B S T R A C T   

There has been a growing recognition of the involvement of the immune system in stress-related disorders. Acute 
stress leads to the activation of neuroendocrine systems, which in turn orchestrate a large-scale redistribution of 
innate immune cells, such as monocytes. Even though acute stress/monocyte interactions have been well- 
characterized in mice, this is not the case for humans. As such, this study aimed to investigate whether acute 
stress modulates blood monocyte levels in a subtype-dependent manner and whether the receptor expression of 
stress-related receptors is affected in humans. Blood was collected from healthy female volunteers at baseline and 
1 h after the socially evaluated cold pressor test, after which blood monocyte levels and receptor expression were 
assessed by flow cytometry. Our results reveal a stress-induced increase in blood monocyte levels, which was 
independent of monocyte subtypes. Furthermore, colony stimulating factor 1 receptor (CSF-1R) and CD29 re
ceptor expression was increased, while CD62L showed a trend towards increased expression. These results 
provide novel insights into how acute stress affects the innate immune system.   

1. Introduction 

Stress-related psychopathologies, such as anxiety and depression, are 
the most prevalent mental health disorders worldwide and impose a 
significant burden on society (WHO, 2017). These psychopathologies 
have repeatedly been linked to the immune system (Dantzer et al., 2008; 
Langgartner et al., 2019; Wohleb et al., 2016). In particular activation of 
the innate immune system has received significant attention, as patients 
with major depressive disorder have been reported to have an enhanced 
pro-inflammatory monocyte profile (Nowak et al., 2019), while chronic 
stress increases monocyte levels in humans (Heidt et al., 2014). Chronic 
stress has been shown to increase monocyte trafficking, which is asso
ciated with neuroinflammation and deficits in anxiety-like behaviour 
and anhedonia in male mice (Wohleb et al., 2013; Mackos et al., 2016; 
Zheng et al., 2016; Gururajan et al., 2019), and female mice (Yin et al., 
2019). Similar to chronic stress, acute stress changes circulating innate 
immune cell levels in mice (Boehme et al., 2020; Dhabhar et al., 1994, 

2012; van de Wouw et al., 2019b), where immune cells migrate into 
tissues such as the skin (Dhabhar and McEwen, 1996). As such, under
standing how acute stress affects monocytes will provide insight into the 
development of chronic stress and stress-related disorders. 

It has recently been reported that acute stress reduces circulating 
monocyte levels in a subtype-dependent level in mice (van de Wouw 
et al., 2019b). The subtype most affected by acute stress is the LY6Chi 

monocyte subtype, which has been linked to inflammatory responses 
(Jakubzick et al., 2017; Guilliams et al., 2018). Even though acute stress 
decreases blood monocyte levels in humans (Brazaitis et al., 2014), it is 
still unclear whether this is in a subtype-dependent manner. 

The increase in glucocorticoid signalling induced by acute stress has 
been shown to mediate immune cell trafficking in mice and humans 
(Dhabhar et al., 2012; Olnes et al., 2016; Yeager et al., 2016). 
Conversely, this increase in glucocorticoid levels in response to acute 
stress has been associated with an anti-inflammatory effect (Miller et al., 
2002; Kunz-Ebrecht et al., 2003). Indeed, incubation of human and 
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murine monocytes with glucocorticoids ex vivo induces an anti- 
inflammatory phenotype (Ehrchen et al., 2007; Varga et al., 2008, 
2014; Tsianakas et al., 2012). This may indicate that, even though acute 
stress results in a systemic immune activation (Marsland et al., 2017), 
monocytes may be affected by acute stress in an anti-inflammatory 
manner on a cellular level through glucocorticoid signalling. This is 
especially important because repeated acute stressors (i.e. chronic 
stress) induce monocyte trafficking (Reader et al., 2015), which has 
been associated with neuroinflammation (Wohleb et al., 2013; Zheng 
et al., 2016). This indicates the importance of understanding how acute 
stress modulates monocytes on a cellular level. 

As such, the objectives of this study were twofold: 1) Does acute 
stress modulate human monocyte levels in a subtype-dependent 
manner? 2) Does acute stress modulate human monocytes on a 
cellular level as measured by receptor expression? Aim 1 was investi
gated by comparing blood monocyte subtype levels (i.e. classical, in
termediate, and non-classical monocytes) at baseline and after acute 
stress using flow cytometry. Aim 2 was assessed by quantifying receptor 
expression of receptors previously reported to be changed by glucocor
ticoids, or acute or chronic stress. These receptors include the colony 
stimulating factor 1 receptor (CSF-1R) (Wohleb et al., 2018), innate 
immune system activation markers (CD163 and CD14) (Ehrchen et al., 
2007), trafficking receptors (CCR2 and CX3CR1) (Okutsu et al., 2008; 
Prinz and Priller, 2010; Yeager et al., 2016) and adhesion receptors 
(CD29, CD11b and CD62L) (Dhabhar et al., 2012; Sawicki et al., 2015). 

2. Methodology 

2.1. Subjects 

The clinical research described was part of a larger study and 
received approval from the Clinical Research Ethics Committee of the 
Cork Teaching Hospitals (Protocol Number: APC076). The study was 
conducted under the ICH Guidelines on Good Clinical Practice. Written 
informed consent was obtained from all participants before any study 
procedures were performed, and participants were free to withdraw 
from the study at any time. 

These data were derived from participants from a larger healthy 
volunteer study examining the effects of fiber intervention on the 
microbiota-gut-brain-axis, which also contains population characteris
tics (Berding et al., 2020). No effect of fiber intervention was observed 
on any of the reported findings in this manuscript. Briefly, the following 
inclusion criteria were used: able to give written informed consent; fe
male; between 18 and 40 years of age; in generally good health as 
determined by the investigator. The exclusion criteria were: have a 
significant acute or chronic coexisting illness or any condition which 
contraindicates, in the investigators’ judgement, entry to the study; have 
a condition or taking a medication such as anxiolytics, antipsychotics, 
antidepressants, anticonvulsants, centrally acting corticosteroids, opioid 
pain relievers, laxatives, enemas, antibiotics, anti-coagulants, and over- 
the-counter non-steroidal anti-inflammatories (NSAIDS); have used pre- 
or probiotics over the last 4 weeks; are peri-menopausal, menopausal or 
post-menopausal; are pregnant or planning a pregnancy, or lactating; 
are vegan; are a current or past habitual daily smoker; individuals who, 
in the opinion of the investigator, are considered to be poor attendees or 
unlikely for any reason to be able to comply with the trial; subjects 
receiving treatment involving experimental drugs; have a malignant 
disease or any concomitant end-stage organ disease. 

2.2. Socially evaluated cold pressor test 

The socially evaluated cold pressor test (SECPT) combining a psy
chological with a physiological stressor was utilized to elicit an acute 
stress response as previously described (Schwabe et al., 2008; Allen 
et al., 2016). Briefly, the participant was led into the room where the 
SECPT would take place, where a researcher was present with a video 

camera. The participant was told that their facial expressions would be 
video recorded for later analysis and that the researcher was specially 
trained to monitor their non-verbal behavior. They were then asked to 
submerge their hand in water containing ice (i.e., 0 ◦C) for three minutes 
unless the participant indicated they could no longer continue. After 
these three minutes, the participant was given a paper towel to dry their 
hand and allowed to leave the room. 

2.3. Human PBMC isolation 

Blood was collected in 4 mL lithium-heparin containing tubes 
(Greiner Bio-One, 454029) before, and 1 h after the SECPT. Blood tubes 
were centrifuged at 1500g for 10 min at 4 ◦C, after which plasma was 
collected. The collected volume of plasma was replaced with RPMI-1640 
medium with L-glutamine and sodium bicarbonate (Sigma-Aldrich, 
R8758) and blood samples were further diluted with medium (1:1 
dilution). Samples were carefully layered on 4.5 mL Ficoll® Paque Plus 
(Sigma-Aldrich, GE17-1440-02). Tubes were centrifuged at 450g for 30 
min at 4 ◦C without breaks. Mononuclear cells were collected, washed 
with 5 mL medium and centrifuged at 300g for 10 min at 4 ◦C. Super
natant was aspirated and cells were resuspended in 1 mL medium. Cell 
numbers were counted with an automatic cell counter (Countess, Invi
trogen), after which 2*106 cells were used for flow cytometry. 

2.4. Flow cytometric analysis 

Cells were centrifuged at 1500g for 5 min at 4 ◦C, washed with 1 mL 
phosphate-buffered saline, and centrifuged once more. Pellets were 
resuspended in 500 µL BD Horizon™ Fixable Viability Stain 780 (BD 
Biosciences, 565388) and incubated for 15 min at room temperature. 1 
mL Miltenyi buffer (autoMACS Rinsing Solution (Miltenyi, 130-091- 
222) supplemented with MACS BSA stock solution (Miltenyi, 130-091- 
376)) was added to the samples and centrifuged. Cell pellets were sub
sequently resuspended in 50 µL Brilliant Stain Buffer (BD Biosciences, 
563794), after which 5 µL FcR blocking reagent (Miltenyi Biotec, 130- 
059-901) was added. Cell suspensions were incubated for 10 min on 
ice and the mix of antibodies was added (sTable 1). After a 30-minute 
incubation on ice, 1 mL Miltenyi buffer was added, samples were 
centrifuged, and cell pellets were resuspended in 4% paraformaldehyde 
for 30 min. Finally, 1 mL Miltenyi buffer was added, samples were 
centrifuged, and cell pellets were resuspended in Miltenyi buffer for flow 
cytometric analysis the following day on the BD FACSCelesta (BD Bio
sciences). Data were analysed using FlowJo (version 10). Gating of 
monocyte subtypes was performed as previously discussed (Villani et al., 
2017; Berding et al., 2020). Briefly, cells were first selected based on 
FSC/SSC, after which doublets were excluded. Live cells (FVS780-) were 
selected, after which SSChigh cells (granulocytes) and DUMP- cells 
(CD3+ T cells, CD19+ B cells, and CD56+ NK cells) were excluded. 
Monocyte subtypes were subsequently selected based on CD14 and 
CD16 receptor expression. Cell numbers were normalized to total live 
single-cell numbers. Receptor expression was assessed using the median 
fluorescent intensity (MFI). 

2.5. Statistical analysis 

Data were non-parametrically distributed. Differences between 
baseline and stress were analysed using the non-parametric paired 
Wilcoxon signed-rank test. SPSS version 26 was used for the statistical 
analysis. Data are depicted as box plots showing the median and quar
tiles with individual data points. Error bars depict the min and max. P <
0.05 was deemed significant. 
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3. Results 

3.1. Acute stress mobilizes peripheral monocytes 

Acute stress increased the levels of all monocyte subtypes (classical 
monocyte: Z = − 2.215, p = 0.027; intermediate monocytes: Z = − 2.556, 
p = 0.011; non-classical monocytes: Z = − 3.408, p < 0.001) (Fig. 1 and 
sFig. 1A). The relative stress-induced changes in monocyte levels were 
similar between the different monocyte subtypes (sFig. 1B). However, 
the change in cell number was markedly higher in classical monocytes, 
which is likely attributed to the increased prevalence of classical 
monocytes overall (sFig. 1C). We, therefore, primarily focussed on 
classical monocytes in further analyses. 

3.2. Acute stress modulates monocyte receptor expression 

Acute stress increased CSF-1R and CD29 receptor expression on 
classical monocytes (Z = − 2.981, p = 0.003; Z = − 2.062, p = 0.039, 
respectively) (Fig. 2A, C). In addition, acute stress induced a trend to
wards increased CD62L receptor expression on classical monocytes (Z =
− 1.874, p = 0.061) (Fig. 2B). No differences were observed in CD11b, 
CD163, CD14, CCR2 and CX3CR1 receptor expression on classical 
monocytes (Fig. 2D-H). Similar to classical monocytes, acute stress 
increased CSF-1R and CD62L receptor expression in intermediate and 

non-classical monocytes (sFig. 2A–D). Acute stress also induced a trend 
towards decreased CD14 expression in intermediate monocytes, but not 
non-classical monocytes (sFig. 2E, F). No other significant changes in 
receptor expression were observed in intermediate and non-classical 
monocytes. 

3.3. Acute stress-induced changes in monocyte levels do not correlate with 
changes in receptor expression 

There has been an increased emphasis on interindividual differences 
to acute stressor responses (i.e., responders vs non-responders) (Nielsen 
et al., 2013). As such, we correlated acute stress-induced changes in 
monocyte subtype levels with changes in receptor expression, as these 
should correlate with each other if individuals with large changes in 
classical monocytes would also have large changes in other monocyte 
subsets or receptor expression (sFig. 3). We did not find any clear evi
dence for responders vs non-responders to acute stress-induced changes 
in monocyte levels and receptor expression, as there was only a signif
icant correlation between changes in intermediate monocytes with 
changes in non-classical monocytes (p = 0.010, 95% CI: [0.142, 0.991]), 
while all other parameters were not significantly different. 

Fig. 1. Acute stress increased circulating monocyte levels. A) Monocytes were identified by first selecting singlets, after which single cells and subsequently live cells 
were gated. SSCmid and DUMP- cells were subsequently selected, after which monocytes were gated based on CD14 and CD16 receptor expression. Finally, monocyte 
subtypes were selected as classical monocytes (CD14+, CD16− ), intermediate monocytes (CD14+, CD16+), and non-classical monocytes (CD14-, CD16+ ). B-D) 
Acute stress-induced changes were subsequently assessed in all monocyte subtypes using the non-parametric Wilcoxon signed-rank test. Statistical significance is 
depicted as *P < 0.05 and ***P < 0.001. Data are depicted as box plots with individual datapoints (n = 15). 
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4. Discussion 

This study demonstrates that an acute stressor increases circulating 
monocyte levels and CSF-1R and CD29 receptor expression on classical 
monocytes in healthy female individuals. In addition, there was a trend 
towards increased CD62L receptor expression. 

In rodents, it has been repeatedly shown that acute stress decreases 
circulating monocyte levels (Dhabhar et al., 1994, 2012; van de Wouw 
et al., 2019b). Our data reveal that acute stress increases monocyte 
levels, which is the opposite of what has been reported in another study 
(Brazaitis et al., 2014). The discrepancy between mice and humans may 
be explained by the severity or nature of the stressor (i.e. restraint stress 
in rodents compared to the SECPT in humans in this study) or potentially 
sex. For instance, the SECPT stress in this study has a psychosocial 
component, where participants were told that they were monitored and 
videotaped, which is absent during restraint stress in rodents and was 
not done by Brazaitis et al. Indeed, different types of stress affect 
physiology and behavior in different ways in rodents (Du Preez et al., 
2020). Alternatively, sex-specific differences in innate immune re
sponses have been reported (Kovats 2015, Shepherd et al., 2020). For 
instance, ex vivo inflammatory responses of monocytes to multiple mi
crobial stimuli are affected by sex (Ter Horst et al., 2016). Importantly, 
previous studies on acute stress-induced changes in monocyte levels 
have primarily been in male rodents and humans (Brazaitis et al., 2014; 
Dhabhar et al., 2012; van de Wouw et al., 2019b). The majority of 

studies investigating the impact of chronic stress on monocyte traf
ficking and behavior have also been in male mice, even though some of 
these findings have been replicated in female mice (Wohleb et al., 2018; 
Yin et al., 2019). Specific stress-induced effects are also influenced by 
sex, as male mice show increased microglia activation and reduced 
dendritic spine density in the medial prefrontal cortex following chronic 
unpredictable stress compared to female mice (Wohleb et al., 2018). 
These results further highlight the need for the investigation into sex- 
specific effects of acute and chronic stress. Furthermore, one limita
tion to our study is not controlling for menstrual cycle or contraceptive 
use, which will also be crucial to assess in future studies. 

A stress-induced increase in monocyte levels in humans could indi
cate that more monocytes are released from their reservoir than traffic 
into tissues. Acute stress has also been shown to reduce the LY6Chi 

monocyte levels in the splenic reservoir in mice, indicating that acute 
stress may indeed recruit monocyte levels from their reservoir (van de 
Wouw et al., 2019b). The discrepancy between our increase in monocyte 
levels and the previously reported decrease may also be due to differ
ences in techniques as the aforementioned work used an automated 
haematology analyser (Brazaitis et al., 2014). Automated haematology 
analysers have been reported to be less accurate compared to flow 
cytometry, especially for less abundant cell types such as monocytes 
(Buoro et al., 2018), which may indicate that the decrease in monocytes 
in this study may be reflective of decreases of other cell types. As such, 
more studies are warranted comparing different types of stressors and 

Fig. 2. Acute stress increased CSF-1R, CD29 and induced a trend towards increased CD62L receptor expression in classical monocytes. A-H) Acute stress-induced 
changes in CSF-1R, CD62L, CD29, CD11b, CD163, CD14, CCR2 and CX3CR1 receptor expression in classical monocytes was measured by median fluorescent in
tensity (MFI) and assessed using the non-parametric Wilcoxon signed-rank test. Statistical significance is depicted as *P < 0.05 and **P < 0.01. Receptor staining 
plots are depicted on the left. Data are depicted as box plots with individual datapoints on the right (n = 15). 
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immune panels containing more different types of immune cells. 
Acute stress-induced changes in monocyte levels have also been 

shown to be LY6Chi and LY6Cmid, CCR2+ monocyte subtype-specific in 
mice (van de Wouw et al., 2019b). This subtype has been linked to 
classical monocytes in humans (Jakubzick et al., 2017; Guilliams et al., 
2018). Our data reveal that acute stress-induced changes in human 
monocyte levels are not specific to subtypes. This might be explained by 
differences between mice and humans, as others have previously re
ported species-specific differences in monocytes (Shay et al., 2013; 
Reynolds and Haniffa, 2015). 

Acute stress increased CSF-1R and CD29 receptor expression on 
classical monocytes and induced a trend towards increased CD62L re
ceptor expression. Increases in colony stimulating factor-1, the ligand 
for CSF-1R, have been observed in male mice undergoing chronic un
predictable stress, which was linked to microglia-mediated neuronal 
remodelling and deficits in anxiety- and depressive-like behavior 
(Wohleb et al., 2018). Interestingly, CSF-1R has been implicated in 
monocyte differentiation into macrophages (Rojo et al., 2019), and it 
could be that acute stress-induced increases in CSF-1R expression may 
shift monocytes away from a pro-inflammatory state once the stress has 
ceased (Hume et al., 2019). Both CD29 and CD62L have been implicated 
in cell adhesion, indicating that acute stress may increase monocyte 
adhesion and migration (Ivetic et al., 2019). This may also facilitate 
monocytes to traffic into sites of inflammation, as for instance, acute 
stress increases leukocyte infiltration into inflamed skin of rats (Dhabhar 
and McEwen, 1996). It is interesting to note that chronic social defeat 
stress increases the expression of key adhesion molecules (Sawicki et al., 
2015). Changes in CD62L receptor expression have been reported in rats 
exposed to acute stress (Dhabhar et al., 2012), while VCAM-1, the ligand 
for CD29, was upregulated in the murine brain in response to chronic 
defeat stress (Sawicki et al., 2015). As such, these findings may be 
relevant to stress-related disorders. 

Overall, the results presented in this manuscript indicate that acute 
stress induces an inflammatory phenotype in monocytes at a receptor 
expression level in humans. This is in line with other findings showing 
an increase in circulating inflammatory cytokines in response to acute 
stress (Marsland et al., 2017). Even though these findings may be rele
vant to stress-related disorders, it is important to emphasise that the 
participants in this study were healthy, indicating that these are 
“normal” acute stress-induced changes in monocyte levels and receptor 
expression. Future studies should assess how acute stress affects mono
cyte levels in pathological chronic stress-related conditions, such as 
depression or posttraumatic stress disorders (Miller and Raison, 2016; 
Neigh and Ali, 2016; Reader et al., 2015; van de Wouw et al., 2019a). 
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