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Abstract—Software-Defined Networking (SDN) is used widely 

in Data Center Networks (DCNs) to facilitate the automated 

configuration of network devices required to provide cloud 

services and a multi-tenant environment. The resulting rate of 

change presents a challenge to a DCN operator who needs to be 

able to answer questions about the past state of the network. We 

describe our work in addressing this need, and how an ontological 

approach was taken to build a topological and temporal model of 

a DCN, which could then be populated using control-plane data 

captured in a message log. Sophisticated queries applied against 

the populated model allow the DCN operator to gain insight into 

the effects of historical automated configuration changes. We have 

tested our model for accuracy against a network from which a 

message log was captured, and we have demonstrated how queries 

have been formulated to retrieve useful information for the DCN 

operator. 

Keywords— Software-Defined Networking, Data Center 

Networks, Network Management, Ontologies, OpenFlow 

I. INTRODUCTION 

Data Center Networks (DCNs) have provided a natural 
environment for the application of Software-Defined 
Networking (SDN) [1]: the required frequency of changes to 
network configuration or policy, particularly in large cloud or 
multi-tenant DCNs, make it essential to effect those changes 
through software with full automation where possible. The 
frequency of changes to network configuration is driven by on-
demand cloud-services, through which users can increase or 
decrease their resource requirements, and new tenants can sign-
up or existing tenants leave. 

Automation of DCN configuration tasks through SDN 
results in the state of the network changing constantly, meaning 
that the DCN operator no longer has certainty about, for 
example, which hosts can communicate with each other, or what 
paths packets will take over any duration of time. While these 
questions are easily answered for the current state of a network, 
with tools as simple as ping and traceroute, they are not so easily 
answered for past states of the network. 

In previous work, we described how a historical log of 
control messages captured from a software-controlled DCN 
could be used to reconstruct the network state as it was at any 
point in time during its history. We introduced our system, 

LogSnap [2], to demonstrate the use of this approach to quickly 
and accurately reproduce a network in a historical state, allowing 
a DCN operator to review and test the replicated network, and 
to understand its behaviour at a specific time in the past. 

In this paper, we build on our previous work, to satisfy other 
questions that a DCN operator might have about historical 
events on a network, including those that require analysing 
network state over a time interval rather than just at a specific 
past point-in-time. Our key contributions described in this paper 
are methods allowing the resolution of sophisticated operator 
queries about past events on a DCN. These queries can include 
temporal parameters, and provide temporal results. 

In comparison to the state of the art, our contributions 
represent a novel enhancement to techniques for analyzing SDN 
networks based on historical information. The challenges in 
achieving these contributions have been to, firstly, infer a 
topological and temporal model of a DCN using key information 
identified and extracted from network control messages, and, 
secondly, provide meaningful and useful answers to high-level 
temporal (and other) queries posed by the DCN operator. 

The rest of this paper is structured as follows: In Sections II 
and III, we provide further detail on our motivation and research 
challenges. We describe our methodology and design in Section 
IV. Section V presents our Implementation and Evaluation. 
Section VI is Related Work, and Section VII contains the 
Conclusions and Future Work. 

II. MOTIVATION 

Why would a DCN operator want to query the past state of 
their network? Reasons include auditing and compliance, 
troubleshooting, verification, and testing ‘what-if’ scenarios. An 
example of auditing would be to check that the forwarding rules 
in place on a DCN at a particular time match the policy specified 
by the operator. For compliance purposes, it might be necessary 
to show that forwarding behaviour was within the terms of a 
service level agreement with a tenant of the data center - as 
stated in [3], “In a multi-tenant environment, the ability to 
securely contain and isolate tenant traffic is a fundamental 
requirement”. Having the ability to query past network state can 
be useful when troubleshooting one-off or intermittent 
problems. A DCN operator might want to verify reachability, 
isolation or other network properties for time points or intervals 
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in the past. ‘What-if’ queries could be used to plan for failures, 
e.g. what flows and tenants would have been affected if a 
specific switch or link failed at a particular point in time? 
NetFlow / IPFIX [4, 5] and other protocols have been used by 
Network Management Systems to collect data-plane flow 
statistics to give network operators some visibility into historical 
traffic patterns. These protocols do not take advantage of the 
extra information contained in control-plane messages. Other 
researchers have described their approach for recording and 
playing back OpenFlow packets on a campus LAN [6]. 

In a multi-tenant DCN, it is difficult to look back to see 
exactly what happened at a time of interest, let alone to see why 
it happened. When LogSnap was designed (Fig. 1), the aim was 
to capture control-plane messages from a software-controller 
DCN, record those messages to a log, and use the log to 
reproduce the network as it was at any single point in time. The 
reproduced network could be used by a DCN operator to test and 
examine the state of the original network as it was at that point 
in its (possibly quite distant) history. While this can provide a 
means to answering some questions the operator might have, for 
example regarding reachability, isolation, and paths, there are 
many other questions that could be answered with the 
information contained in the message logs if an appropriate 
query mechanism was provided. This paper presents our work 
on such a mechanism. 

Table I lists some queries of interest to a DCN operator, 
presented in a natural language style. For each query, a single 
time point or a time interval might be provided as a parameter. 

The answer to Query #1 might be that switches are 
communicating with the SDN controller as expected, or it might 
reveal that one or more switches that the operator knows to be 
physically present in the DCN were not ‘active’ for some time – 
i.e. not connected to the SDN controller and therefore not 
receiving instructions regarding flow rules to allow data-plane 
packets to be forwarded by those switches. 

TABLE I.  SAMPLE QUERIES 

# Query Query Type 

1 What switches were active in the network, and 

when? 

Enumerating 

elements 

2 For what hosts were flow-rules installed in switch 

flow-tables, but for which no packets were observed 
in the DCN? 

Statistics for 

elements 

3 What path would a specified packet follow through 

the network? 

Path 

determination 

 

Applying Query #2 might yield evidence that the network 
policy (a high-level description of how the network should be 
configured to meet organisational or customer requirements) 
may need to be reviewed to remove out-of-date requirements. 

The intention behind Query #3 is to provide insight into how 
a packet with specific values in its header fields would be 
forwarded through the DCN at a time of interest, based on the 
topology and set of configured flosw-rules at that time. 

All three queries could lead to more questions that may or 
may not be answerable solely from the contents of the message 
log, but they should provide concrete information on which to 
base further investigation by the DCN operator, and may lead to 
the identification of other sources of information that could be 
recorded to augment the picture provided by the control-plane 
message log. 

III. RESEARCH CHALLENGES 

The first challenge in addressing the goals above is to 
identify an appropriate  method for modelling the DCN. The 
model must represent the topology of the network and the state 
of the switch flow-tables, and must change over time to reflect 
the evidence gathered from control-plane messages. An SDN 
controller maintains a model of the network, but it reflects the 
controller’s current view of the network and does not retain 
historical information. Furthermore, the controller’s model is 
designed to meet the functional requirements of the controller, 
not to act as a faithful record of the state of the network, 
including situations where the controller’s view was incorrect. 

The second challenge is to demonstrate how to formulate 
and apply queries against the model to provide meaningful 
information for DCN operators. The task requires the expression 
of informal, natural language questions in terms of the concepts 
and relationships in the model. The sample queries from Table I 
provide a basis for such a demonstration, and will be referred 
back to in the sections below. 

A third challenge relates to the accuracy of the control-plane 
message log that currently provides the input data from which 
queries are answered. There is the possibility that some 
messages may not have been captured, partly due to the passive, 
unintrusive method used by LogSnap to collect control-layer 
information. While our current work is based on message logs 
recorded by LogSnap, it could use any source of OpenFlow 
messages. It is worth noting that any packet-capture based 
source of such messages incurs the risk of missing data if, for 
example, the capture utility being unable to keep up with peak 
control-traffic flow. Other reasons for a message log appearing 
to be incomplete include a device such as a switch failing, or a 
software process such as a controller crashing. Furthermore, the 
timestamps on the messages are not necessarily the exact times 
at which the events occurred that are described by the messages. 
For example, when a switch tells a controller that it has removed 
a rule from a flow table, some time may have elapsed between 
when the rule was removed and when the switch sent the 
message to the controller. Or when a switch acknowledges a 
controller request to add a flow-rule to a flow-table, it might be 
assumed that the rule was added  at some point in time between 
when the switch received the add_flow request and when it sent 
the acknowledgement (although other researchers have shown 

 

Fig. 1: LogSnap Architecture Diagram (previous work) 
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[7] that the flow-rule may be added after the switch sends the 
acknowledgement). These considerations need to be taken into 
account in any solution that aims to provide meaningful answers 
to DCN operator queries regarding the past state of the network. 

IV. METHODOLOGY AND DESIGN 

A. Query System Requirements 

Providing a method to query the past state of a DCN depends 
on a number of requirements being satisfied. Firstly, a model of 
the network must be created that captures the topology, and the 
changes in the topology over time. By topology, we mean the 
links between switches, between switches and hosts, and 
connections between switches and controllers. By changes in 
topology over time, we mean ‘what is the lifespan of each node, 
link and connection, and relevant state information for those 
elements?’, bearing in mind that the lifespan of each element can 
have different start and end points, and indeed can be 
discontinuous – for example, if an element such as a host is 
removed from the network and later re-added. The relevant state 
information differs for each element, but includes, for example, 
flow-rules and flow-tables on switches, each of which may have 
their own lifespans, constrained within the lifespan of the 
device, but otherwise independent. 

The second requirement is an approach to encoding queries. 
It must be possible to query every element in the model – with 
temporal (‘when?’), topological (‘where?’), and other query 
attributes. The sample queries in Table I contain such attributes. 

As a third requirement of any proposed method, in light of 
the considerations discussed in section III, some context should 
be available for query answers to assess their veracity. 

B. Ontological Approach 

The concept of ontology originates from the domain of 
philosophy, and seeks to classify objects and explain their 
structure.  An ontological approach has been used in many 
disciplines to create frameworks and taxonomies. 

Ontologies in Computer Science are most closely associated 
with the semantic web [8] and AI [9]. An ontology formally 
encodes relationships between concepts. Those concepts can 
represent categories of physical or abstract items. Ontologies 
have been used successfully for SDN-related research efforts 
heretofore. One use-case for an ontological approach is to 
provide a mapping between overlapping sets of terminology 
used by different groups within the same domain. For example, 
creating a formal mapping between SDN controller requests and 
legacy network device configuration languages. Another use-
case is the construction of a framework to define concepts for 
which instances can be constructed using data pulled from 
different sources – and this approach has been applied to 
combine collected network monitoring data to mine for 
troubleshooting purposes. For more, see Section VI.  

Our use case for an ontological approach is to facilitate the 
construction of a logical framework based on control-plane 
messages, through which the challenge of inferring a topological 
and temporal model of a DCN can be met. A less formal 
approach could have been taken, however the ontological 
approach has the advantage of making consistency and 
correctness easier to achieve, especially important when dealing 

with large sets of data. Moreover, ontologies can be extended 
and enhanced without impacting previously working code – for 
example, to accommodate changes in future versions of 
OpenFlow. Lastly, we can query an ontology once it has been  
populated with data as properties of instances of the concepts 
defined within the ontology. 

For our purposes, we need to represent several groups of 
concepts ontologically: basic concepts such as control-plane 
messages, network devices and connections; temporal concepts; 
and higher level concepts built on the basic ones. We 
constructed a set of ontologies (Fig. 2) to map from the 
information contained in control-plane messages to higher level 
abstractions. Our ontologies are built on existing ontologies 
where possible, and a rich set of relationships allows us to infer 
from control messages the existence of entities such as network 
switches, hosts, links and controllers, and the states of those 
entities. A benefit of the inference process is that it can reveal 
where information is missing from the log, i.e. control messages 
that may not have been captured for reasons as discussed in 
section III. 

Our new ontologies are built on two existing ontologies: the 
Network Markup Language (NML) Base ontology [10], and the 
Change ontology [11]. The NML ontology contains concepts for 
network objects such as nodes, ports, and links, defines 
properties of these concepts, and relationships between the 
concepts. Its purpose is to facilitate the description of a 
traditional computer network, without SDN-specific 
characteristics. The Change ontology gives us sophisticated 
temporal concepts, allowing us to describe elements of a 
network where some properties of those elements may change 
over time. For example, the IP address of a host may change, 
while the MAC address stays the same. Or a host may be 
connected to one switch for an interval, but may be moved and 
connected to a different switch for a subsequent interval. 

The OpenFlow Message ontology describes types of 
OpenFlow messages and their properties, with the timestamp 
indicating when a message was captured as an additional 
property. Part of the ontology is shown in Fig. 3. Although the 
message ontology is relatively simple, its usefulness is the 
ability to, having populated it with message instances, link 
message instances with instances of other ontological concepts. 
For example, a message instance might be connected to a switch 
instance to represent the relationship “this is the first message 
that was captured from switch X”, or connected with a flow-rule 

 

Fig. 2: Hierarchy of Ontologies 
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instance to represent the relationship “this is the message that 
caused flow-rule Y to be installed in the flow-table of switch Z”. 

The DCN History ontology describes the network elements 
that were present over time, and their relationships. These 
elements are the SDN controller(s) and SDN switches that 
exchanged control-plane messages, the links that the controller 
learned of through topology discovery, and hosts that the 
controller learned of from switches or potentially from other 
sources. SDN switches contain flow-tables, flow-tables contain 
flow-rules, and the tables and rules have properties that can 
change over time. Part of the DCN History ontology is shown 
later in this section, in Fig. 4. 

The OpenFlow Message ontology is defined separately from 
the DCN History ontology for the reason that, although the 
message log we have as source data contains OpenFlow 
messages, our approach can be applied using logs of other 
control-plane protocol messages (NETCONF, OVSDB, and/or 
BGP-LS, for example), or more generally any source of network 
management information. While the OpenFlow Message and 
DCN History ontologies are separate, they are related – since the 
OpenFlow messages are exchanged between controllers and 
switches, which are elements of the DCN. In fact, our approach 
is to infer the network elements and relationships from the 
OpenFlow messages. 

C. Inferring DCN Elements from Control-Plane Messages 

Inferring switches and controllers. OpenFlow messages 
are sent by switches and controllers, providing direct evidence 
of the existence of those DCN components. A sequence of 
messages from a switch or controller indicates that the 
component existed for the duration of the message sequence. A 
gap in communication between a switch and controller might 
indicate that the switch became disconnected from the 
controller, or was rebooted, or might even have been removed 
and replaced with a component that presents the same identity. 
In the latter case, clearly the intention is that the replacement is 
taking the role of the component it replaced. Notwithstanding, 
the gap represents an event that should somehow be signified. 
An SDN controller typically communicates with multiple 
switches. Where these communication sessions overlap, it is 
certain that the controller was present from the start of the first 
overlapping session to the end of the last overlapping session. 

Inferring inter-switch links. Other topological components 
are learned of indirectly, from packets contained in OpenFlow 
PacketIn messages. Some such messages are the result of a 
topology discovery process, by which a controller instructs 
switches to output discovery packets through all ports, and to 
forward any received discovery packets back to the controller. 
The topology discovery process is re-run periodically (e.g. every 
3 to 5 seconds, depending on the controller). A switch will also 
inform the controller via a PortStatus message if a port changes 
state (up or down). The existence and duration of inter-switch 
links, and the switch-ports connected via those links, can be 
inferred from these exchanges. 

Inferring hosts and host-switch links. Other PacketIn 
messages in the capture log may contain ARP packets that can 
be used to infer the existence of hosts and their links to switches. 
The usual response of an SDN controller to receipt of an ARP 
request is to install one or more flow-rules to allow the 
communication to progress. These flow-rules will have a 
lifespan that we can use as evidence of the continued existence 
of the host if at least one of the flow-rules is host-specific. The 
capture log should contain the FlowMod request sent from the 
controller to instruct the switch to install the flow-rule. It should 
also contain a subsequent FlowRemoved message from the 
switch to the controller indicating that the flow-rule was 
removed (if the controller requested this behaviour when it first 
installed the flow-rule). A switch will remove a flow-rule at the 
request of the controller, or if the flow-rule had an idle-timeout 
or hard-timeout value that expired. SDN controllers periodically 
request statistics information about flow-rules from switches, 
and from the replies recorded in the capture log we can identify 
the point at which a flow-rule stopped matching packets (i.e. the 
host stopped sending packets) as being within a time interval. In 
the event that there was no initial ARP request, or at least none 
recorded, the statistics information indicating that a flow-rule 
started matching packets can support the inference of a host’s 
existence. Furthermore, a host will often communicate with 
multiple other hosts, and combining the information gathered 
about those multiple communication sessions helps to build the 
picture of the full lifespan of the host in the DCN. 

Inferring flow-rules and flow-tables. Individual flow-rule 
details (match criteria, actions, priority) can be extracted directly 
from the FlowMod messages instructing switches to add those 
rules. Flow-rule statistics can be gathered from MultipartReply 
messages sent by switches in response to requests from 
controllers, and can also be used to infer the existence of flow-
rules for which the FlowMod messages might have been missed. 
A flow-rule will normally be explicitly removed by a controller 
when it is no longer required, and, as mentioned above in 
relation to inferring hosts, FlowRemoved messages are a further 
indicator of the end of the lifespan of a flow-rule. It can be 
assumed that a switch has at least one flow-table when it initially 
connects to a controller. For later versions of OpenFlow, the 
controller can query the switch’s flow-table configuration and 
request re-configuration via TableFeatures messages. 

Inference dependencies. The inference of any DCN 
element depends on the message ontology having been 
populated with message instances. Furthermore, the inference of 
some DCN elements depends on the prior inference of other 
elements, as outlined above and as detailed in Table II. 

 

Fig. 3: OpenFlow Message Ontology (Partial) 
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TABLE II.  INFERENCE DEPENDENCIES 

DCN Element Depends On 

Switch Control-plane messages 

Controller Switch; control-plane messages 

Port Switch; control-plane messages 

Inter-switch link Port; control-plane messages 

Flow-rule Switch; control-plane messages 

Flow-table Switch; flow-rule 

Host Switch; control-plane messages 

Host-link Port; host 

 

D. Representing Change Over Time in a DCN History 

Our DCN model requires the extra dimension of time, to 
represent how long a DCN element such as a switch was present 
in a network, the lifespan of each link connecting that switch to 
other switches, the duration for which each flow-rule is present 
in the flow-table of the switch, and so forth. We apply Krieger’s 
4D approach [12] to representing change over time in our DCN 
History ontology, following the design pattern described in [10]. 
We believe this to be the first application of the 4D approach to 
a model of an SDN. Applying Krieger’s 4D approach allows us 
to re-use in our ontology concepts from the atemporal Network 
Markup Language ontology. 

When representing an instance of a switch, for example, 
some switch properties are constant, others change. 4D splits the 
representation into two classes: a perdurant class with properties 
that are invariant, and a manifestation class that can have 
multiple temporal instances with individual property values. An 
invariant property of an OpenFlow switch is its DPID (DataPath 
Identifier), hence that property belongs to the switch perdurant. 
Since the IP address of a switch can change, as can the TCP or 
UDP port from which the switch connects to a controller, those 
are properties of switch manifestations. Another property of a 
manifestation is the time interval for which it existed. 

Our temporal entities can be nested: A switch manifestation 
contains a flow-table. A flow-table contains flow-rules, of which 
each flow-rule has perdurant and manifestation parts. The 
priority and match-criteria of a flow-rule cannot change, but the 
other properties, e.g. instructions, timeouts and counters, can. 
The instructions and timeouts of an existing rule can be modified 
by a controller via a FlowMod message. The 4D representation 
of a switch, with nested 4D representation of a flow-rule, is 
illustrated in Fig. 4. 

E. Expressing DCN History Queries 

The sample queries presented in Table I can now be 
expressed in terms of the ontological concepts discussed so far. 
A temporal parameter is assumed (a single time-point or an 
interval), but can be omitted. 

Query #1 ‘What switches were active in the network?’ can 
be expressed more formally as: 

Find the set {P} of switch manifestations, 

where the start and end points of the 

manifestations are within time interval [x..y] 

Query #2 ‘For what hosts were flow-rules installed in switch 
flow-tables, but for which no packets were observed in the 
DCN?’ can be expressed as: 

Find the set {Q} of flow-rules, where for each 

q an element of {Q} there is no host 

manifestation h, where the IP Address property 

of h equals the IP address match property of q 

or the MAC Address property of h equals the MAC 

Address property of q, and where the start and 

end points of q are within time interval [x..y] 

Query #3 ‘What path would a specified packet follow 
through the network?’ is a graph problem, but not a typical ‘best 
path’ problem because each OpenFlow switch forwards packets 
based on its configured rules and their priorities, and the actual 
destination is not known in advance. The desired destination 
may be in the packet header, but the actual destination depends 
on the configured flow-rules. The query might be expressed in 
terms of our defined concepts as follows: 

Given an injection point p representing the 

switch port on which a packet entered the 

network, and the set of packet header field 

values {R}, where each element of R is a tuple 

of field name and value (f, v), and a time-point 

t, find the sequence [S] where each item s in 

[S] is a switch except for slast, which may be  a 

switch, a host or a controller; s1 is the switch 

to which p belongs, and si is the switch, host 

or controller to which switch si-1 will forward 

a packet based on the highest priority flow-rule 

u present in the flow-table on switch si-1 with 

a set of match criteria {M} consisting of field 

name and value tuples (n, o) where {M} matches 

{R}, if any such rule exists at time t. 

The semi-formal queries above must be encoded to be 
applied against the populated ontological model. 

 

Fig. 4: DCN History Ontology (Partial) 
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V. IMPLEMENTATION AND EVALUATION 

The objective of our implementation is to demonstrate that 
the challenges presented in Section III have been met – i.e. that 
our inferred model of a DCN topology matches the original 
network and can track the changes in the original network 
accurately; that queries can be applied against the model to 
provide useful answers to DCN operators; and that the answers 
provide context to allow the impact of inexact data (or an 
incomplete message log) on their accuracy to be assessed. 

The implementation workflow is shown in Fig. 5. The tools 
used at each numbered step in the workflow are as follows: 

Step 1. We created our ontologies with Protégé [13], an 
actively developed authoring tool supporting evolving standards  
and widely used in the ontology development community. 

Step 2. The ontologies we created were exported from 
Protégé as OWL (Web Ontology Language) files expressed in 
Turtle syntax, then imported into AllegroGraph [14], a graph 
database used in this work for its triple-store capabilities. While 
Protégé can act as a triple-store using in-memory storage, or 
combined with a backend database to store and access large 
amounts of data, AllegroGraph is designed to be high 
performance and massively scalable – properties essential for 
handling the quantity of data extracted and inferred from the 
control-plane message log of a multitenant DCN.  

Step 3. Python code was written to populate the message 
ontology in AllegroGraph with instances using data read from 
the OpenFlow message log stored in ElasticSearch [15] by 
LogSnap. Both AllegroGraph and ElasticSearch provide Python 
APIs. While ElasticSearch stores full OpenFlow message 
details, only key data is written to AllegroGraph to populate the 
ontology with the required triples. 

Step 4. Modules to infer temporal instances of network 
elements were written in AllegroCL Common Lisp, which 
interfaces with AllegroGraph, and Allegro Prolog, which is 
embedded in AllegroCL. Where possible, inference logic was 
encoded as Prolog rules to allow consistency checking, however 
the Allegro Prolog implementation is limited so additional Lisp 
code provided the required inferencing functionality.  

Step 5. Queries were encoded in Prolog and SPARQL [16], 
executed from within Lisp modules – or SPARQL queries 
executed from Python if the results were to be charted. SPARQL 
is a W3C-standard semantic query language supported by 
AllegroGraph and accessible via Lisp and Python. Our 
experience has been that SPARQL allowed us to write more 
expressive queries than Prolog, although the queries were not 
readily composable. Results were visualised with Plotly. 

Steps 1 to 5 can be repeated: If an ontology is changed or 
added to (Step 1), then the other 4 steps should be repeated to 
obtain new answers to queries on the updated ontology. If a new 
or updated message log is available, then Step 3 onwards should 
be re-done. If the inference modules are modified, the restart 

point is Step 4. Step 5 can be repeated indefinitely, and if new 
queries are created previous steps do not need to be re-done. 

A. Inferring DCN Elements – Implementation Issues 

In Section IV,  it was stated that the lifespan of a controller 
instance could be inferred from a set of sessions between 
switches and the controller that overlap in time. The task of 
identifying sets of overlapping sessions was recognised as 
lending itself to being formulated as a graph problem. The nodes 
of the graph correspond to switch-controller sessions. An edge 
connects two nodes if the two corresponding sessions overlap in 
time and the identity of the controller is the same for the two 
sessions (matching IP addresses and port numbers). A group of 
nodes is a ‘connected-component’ if all nodes in the group have 
at least one path to every other node in the group. Each 
connected-component of the graph contains the nodes 
corresponding to the overlapping switch-controller sessions  that 
represent the lifespan of the controller instance. The start point 
of the controller instance is the earliest session start point in the 
set, and the end point of the controller instance is the latest 
session end point in the set. The ‘graph’ library available via 
Quicklisp [17] provides a ‘connected-components’ function. 
Fig. 6 illustrates how each identified connected-components 
group of switch-initiated sessions with a controller relates to, 
and can be used to infer, a controller instance. 

Our implementation currently assumes one flow-table per 
switch; and that controllers will be notified when a flow-rule is 
removed, as can be specified when the flow-rule is first added. 

B. Implementing Queries 

The triple-store is ready to be queried once the ontology is 
populated with OpenFlow message instances, and DCN 
elements inferred. We implemented queries including the three 
given in Table I, and revisited in Section IV. Queries #1 and #2 
translate to SPARQL. Query #2 requires more search terms and 
logical operations, being more complex. SPARQL queries are 
constructed dynamically with optional parameters – for example 
to add a time filter to reduce the search interval, if necessary. 
Query #3 required a combination of SPARQL and Lisp.  

Adding new queries currently requires additional code – in 
SPARQL, Prolog, Lisp, and/or Python. New concepts can be 
added to the ontologies (for example ‘Failing Switch’, a concept 
based on ‘Switch’ but taking other criteria into account, such as 
switch-controller session length and frequency), and logic added 
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as an additional inference module to infer instances of those 
concepts. Following the appropriate steps in the workflow (Fig. 
5), the new concepts, instances, and their properties are made 
available for use in queries and as a basis for  other concepts. 

C. Evaluation – Accuracy of the Inferred DCN Elements 

To evaluate the accuracy of our inference of DCN elements, 
we ran experiments using OpenFlow message logs captured on 
emulated networks with different DCN topologies, including: a 
traditional three-layer topology, as used historically in data-
centers; a spine-leaf topology, used on its own or as a building 
block in modern multi-tenant data-centers; and a fat-tree (k=6) 
topology. For a range of DCN topologies, see [18]. 

The verification message logs are from experiments where 
light traffic was generated (using DCT2Gen’s [19] TrafficGen 
utility) on the DCN for two minutes. The traffic profile specifies 
10MB TCP transfers between pairs of hosts scheduled to start 
one per second, with 80% rack-local / 20% inter-rack traffic. For 
each message log, the ontologies were populated with message 
instances (Fig. 5, step 3) – and the remaining workflow steps 
followed. Query results were charted where appropriate. 

Fig. 7 shows a composite inferred topology from the spine-
leaf DCN message log. The chart is ‘composite’ because it is the 
result of a query for all DCN elements inferred within the time 
range covered by the message log, even if these were not present 
at the same time. The time range can be narrowed to query the 
topology for shorter windows of time. For comparison, Fig. 8 is 
a logical diagram of the original network - consisting of 6 leaf 
switches and 6 spine switches, connected in a folded-clos 
arrangement, with 20 hosts connected to each leaf switch. 
Clearly, the inferred network topology contains the same hosts, 
switches and links as the original network. 

In addition to message logs, we had periodic dumps of flow-
table contents from the DCN switches on the original networks. 
By querying the populated ontologies for the flow-rules that 
were inferred to be present at the time of each periodic dump, 
and comparing the two sets of flow-rules, we verified that both 
matched for each network. The results confirmed the accuracy 
of our inferred DCN elements. 

D. Evaluation – Accuracy of Query Results 

The sample queries initially presented in Table I, and 
discussed further in Section IV were applied against the 
populated ontologies. The results of applying queries #1 and #3 
against the ontology for the spine-leaf network are shown in 
Figs. 9 and 10. For query #2, the result was that there were no 
flow-rules installed for hosts that were not active, which was as 
expected since the SDN controller was operating in reactive 
mode, and only installing flow-rules as switches reported 
packets for new data-plane flows. 

In Fig. 9, the inferred set of DCN switches can be seen, 
identified by DPID, and their active lifespans for which they 
were connected to the controller. The chart shows the switches 
did not all connect to the controller at exactly the same time, and 
each switch had a single instance with an uninterrupted lifespan. 
This corresponds with observations from the original DCN. 

Fig. 10 shows the inferred path for a packet sent from host 
10.0.3.11 through the link on which it was connected to a switch. 

The header field values for the packet are 10.0.3.11’s MAC 
address as source, host 10.0.4.11’s MAC address as destination, 
an EtherType value of 0x800 (for an IP datagram. A 
transmission time for the packet was specified, selected based 
on when a flow was scheduled in the TrafficGen profile to be 
active between the two hosts on the original network. Since the 
destination host is in a different rack, the configured flow-rules 
establish the path shown in Fig. 10 across several switches to 
deliver matching packets to their destination. 

VI. RELATED WORK 

Ontologies have been employed for network management 
for quite a number of years, and more recently have been applied 
to aspects of managing a Software-Defined Network. 

ReasoNet [20] maintains an ontology representing the 
current state of an SDN, checking this state for correctness 
against rules that are encoded in the ontology. Requests from 
ReasonNet-aware apps on the SDN controller are subject to 
conflict resolution. The OpenFlow ontology, reasonet-schema, 
is available online. The researchers in [22] describe their 
application of machine learning to data collected using the 
northbound interface of an SDN controller, to identify 
symptoms and causes of faults. Domain knowledge is encoded 
in their SDNDL (SDN Description Language) ontology. 

Neither reasonet-schema nor SDNDL have any temporal 
dimension to them to represent changes in network topology or 
flow tables over time. They do not describe SDN control-plane 
concepts in enough detail to be able to, for example, relate 
events on a network with the control-plane messages that were 
exchanged to communicate the occurrence of the events. Neither 
ontology describes the various OpenFlow message types. 

We have created ontologies that contain concepts to describe 
OpenFlow control-plane messages and their contents, as well as 
concepts to describe a network topology, flow-tables and events. 
Temporal topological instances of controllers, switches and 
hosts, and temporal instances of flow-rules are inferred from 
OpenFlow messages in a log of packets from exchanges 
between controllers and switch in a DCN. 

ForenGuard [21] uses a non-ontological approach to 
identifying root causes of forwarding problems, monitoring and 
analysing related previous data-plane and control plane 
activities. However it is controller-specific, and focussed on 
resolving specific security-related issues. 

VII. CONCLUSIONS AND FUTURE WORK 

The challenges in this work were to find an appropriate 
method for modelling a DCN, to demonstrate how to formulate 
and apply queries against the  model, and to ensure that context 
information is available to assess the accuracy of the query 
results. We described how an ontological approach supported 
the development of a logical framework, enabling construction 
of a topological and temporal model of a DCN. We listed sample 
queries in natural language, expressed them in terms of the 
concepts and relationships defined in the historical model of the 
DCN, and outlined how the model could be extended. We 
described how we tested our model’s accuracy, having 
instantiated the ontologies from a control-plane message log. 
We included graphical representations of the results of applying 



the queries to the populated ontologies. The queries can return 
detail to show the data points and relationships used to formulate 
the answers, in order to assess their veracity. 

For the future, we plan to extend the DCN model with higher 
level abstract concepts, their properties, and relationships to the 
current set of concepts. We will work on an extensible, modular 
query system allowing a DCN operator construct new queries. 
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Fig. 8: Logical Diagram of Original Spine-Leaf DCN 

Fig	6:	DCN	Spine‐Leaf	Topology
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Fig. 7: Composite Inferred Topology for a Spine-Leaf DCN - 

switches identified by OpenFlow DPID, hosts by IP address. 

   
Fig. 9: Inferred Switch Instance Lifespans (Query #1) for Spine-Leaf DCN  

 

Fig. 10: Inferred Path for Packet ‘X’ (Query #3) on Spine-Leaf DCN 
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