
UCC Library and UCC researchers have made this item openly available.
Please let us know how this has helped you. Thanks!

Title Inferring and querying the past state of a Software-Defined Data Center
Network

Author(s) Sherwin, Jonathan; Sreenan, Cormac J.

Publication date 2022-03-17

Original citation Sherwin, J. and Sreenan, C. J. (2021) 'Inferring and querying the past
state of a Software-Defined Data Center Network', 2021 Eighth
International Conference on Software Defined Systems (SDS), Gandia,
Spain, 6-9 December, pp. 1-8. doi: 10.1109/SDS54264.2021.9731853

Type of publication Conference item

Link to publisher's
version

http://dx.doi.org/10.1109/SDS54264.2021.9731853
Access to the full text of the published version may require a
subscription.

Rights © 2021, IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works,
for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

Item downloaded
from

http://hdl.handle.net/10468/12963

Downloaded on 2022-05-18T19:56:50Z

https://libguides.ucc.ie/openaccess/impact?suffix=12963&title=Inferring and querying the past state of a Software-Defined Data Center Network
http://dx.doi.org/10.1109/SDS54264.2021.9731853
http://hdl.handle.net/10468/12963

Inferring and Querying the Past State of a

Software-Defined Data Center Network

Jonathan Sherwin

Department of Computer Science

Munster Technological

University

Cork, Ireland

jonathan.sherwin@mtu.ie

Cormac J. Sreenan

School of Computer Science and

Information Technology

University College Cork

Cork, Ireland

cjs@cs.ucc.ie

Abstract—Software-Defined Networking (SDN) is used widely

in Data Center Networks (DCNs) to facilitate the automated

configuration of network devices required to provide cloud

services and a multi-tenant environment. The resulting rate of

change presents a challenge to a DCN operator who needs to be

able to answer questions about the past state of the network. We

describe our work in addressing this need, and how an ontological

approach was taken to build a topological and temporal model of

a DCN, which could then be populated using control-plane data

captured in a message log. Sophisticated queries applied against

the populated model allow the DCN operator to gain insight into

the effects of historical automated configuration changes. We have

tested our model for accuracy against a network from which a

message log was captured, and we have demonstrated how queries

have been formulated to retrieve useful information for the DCN

operator.

Keywords— Software-Defined Networking, Data Center

Networks, Network Management, Ontologies, OpenFlow

I. INTRODUCTION

Data Center Networks (DCNs) have provided a natural
environment for the application of Software-Defined
Networking (SDN) [1]: the required frequency of changes to
network configuration or policy, particularly in large cloud or
multi-tenant DCNs, make it essential to effect those changes
through software with full automation where possible. The
frequency of changes to network configuration is driven by on-
demand cloud-services, through which users can increase or
decrease their resource requirements, and new tenants can sign-
up or existing tenants leave.

Automation of DCN configuration tasks through SDN
results in the state of the network changing constantly, meaning
that the DCN operator no longer has certainty about, for
example, which hosts can communicate with each other, or what
paths packets will take over any duration of time. While these
questions are easily answered for the current state of a network,
with tools as simple as ping and traceroute, they are not so easily
answered for past states of the network.

In previous work, we described how a historical log of
control messages captured from a software-controlled DCN
could be used to reconstruct the network state as it was at any
point in time during its history. We introduced our system,

LogSnap [2], to demonstrate the use of this approach to quickly
and accurately reproduce a network in a historical state, allowing
a DCN operator to review and test the replicated network, and
to understand its behaviour at a specific time in the past.

In this paper, we build on our previous work, to satisfy other
questions that a DCN operator might have about historical
events on a network, including those that require analysing
network state over a time interval rather than just at a specific
past point-in-time. Our key contributions described in this paper
are methods allowing the resolution of sophisticated operator
queries about past events on a DCN. These queries can include
temporal parameters, and provide temporal results.

In comparison to the state of the art, our contributions
represent a novel enhancement to techniques for analyzing SDN
networks based on historical information. The challenges in
achieving these contributions have been to, firstly, infer a
topological and temporal model of a DCN using key information
identified and extracted from network control messages, and,
secondly, provide meaningful and useful answers to high-level
temporal (and other) queries posed by the DCN operator.

The rest of this paper is structured as follows: In Sections II
and III, we provide further detail on our motivation and research
challenges. We describe our methodology and design in Section
IV. Section V presents our Implementation and Evaluation.
Section VI is Related Work, and Section VII contains the
Conclusions and Future Work.

II. MOTIVATION

Why would a DCN operator want to query the past state of
their network? Reasons include auditing and compliance,
troubleshooting, verification, and testing ‘what-if’ scenarios. An
example of auditing would be to check that the forwarding rules
in place on a DCN at a particular time match the policy specified
by the operator. For compliance purposes, it might be necessary
to show that forwarding behaviour was within the terms of a
service level agreement with a tenant of the data center - as
stated in [3], “In a multi-tenant environment, the ability to
securely contain and isolate tenant traffic is a fundamental
requirement”. Having the ability to query past network state can
be useful when troubleshooting one-off or intermittent
problems. A DCN operator might want to verify reachability,
isolation or other network properties for time points or intervals

We acknowledge the support of SFI CONNECT, grant 13/RC/2077.

Jonathan Sherwin is funded by Munster Technological University.

in the past. ‘What-if’ queries could be used to plan for failures,
e.g. what flows and tenants would have been affected if a
specific switch or link failed at a particular point in time?
NetFlow / IPFIX [4, 5] and other protocols have been used by
Network Management Systems to collect data-plane flow
statistics to give network operators some visibility into historical
traffic patterns. These protocols do not take advantage of the
extra information contained in control-plane messages. Other
researchers have described their approach for recording and
playing back OpenFlow packets on a campus LAN [6].

In a multi-tenant DCN, it is difficult to look back to see
exactly what happened at a time of interest, let alone to see why
it happened. When LogSnap was designed (Fig. 1), the aim was
to capture control-plane messages from a software-controller
DCN, record those messages to a log, and use the log to
reproduce the network as it was at any single point in time. The
reproduced network could be used by a DCN operator to test and
examine the state of the original network as it was at that point
in its (possibly quite distant) history. While this can provide a
means to answering some questions the operator might have, for
example regarding reachability, isolation, and paths, there are
many other questions that could be answered with the
information contained in the message logs if an appropriate
query mechanism was provided. This paper presents our work
on such a mechanism.

Table I lists some queries of interest to a DCN operator,
presented in a natural language style. For each query, a single
time point or a time interval might be provided as a parameter.

The answer to Query #1 might be that switches are
communicating with the SDN controller as expected, or it might
reveal that one or more switches that the operator knows to be
physically present in the DCN were not ‘active’ for some time –
i.e. not connected to the SDN controller and therefore not
receiving instructions regarding flow rules to allow data-plane
packets to be forwarded by those switches.

TABLE I. SAMPLE QUERIES

Query Query Type

1 What switches were active in the network, and

when?

Enumerating

elements

2 For what hosts were flow-rules installed in switch

flow-tables, but for which no packets were observed
in the DCN?

Statistics for

elements

3 What path would a specified packet follow through

the network?

Path

determination

Applying Query #2 might yield evidence that the network
policy (a high-level description of how the network should be
configured to meet organisational or customer requirements)
may need to be reviewed to remove out-of-date requirements.

The intention behind Query #3 is to provide insight into how
a packet with specific values in its header fields would be
forwarded through the DCN at a time of interest, based on the
topology and set of configured flosw-rules at that time.

All three queries could lead to more questions that may or
may not be answerable solely from the contents of the message
log, but they should provide concrete information on which to
base further investigation by the DCN operator, and may lead to
the identification of other sources of information that could be
recorded to augment the picture provided by the control-plane
message log.

III. RESEARCH CHALLENGES

The first challenge in addressing the goals above is to
identify an appropriate method for modelling the DCN. The
model must represent the topology of the network and the state
of the switch flow-tables, and must change over time to reflect
the evidence gathered from control-plane messages. An SDN
controller maintains a model of the network, but it reflects the
controller’s current view of the network and does not retain
historical information. Furthermore, the controller’s model is
designed to meet the functional requirements of the controller,
not to act as a faithful record of the state of the network,
including situations where the controller’s view was incorrect.

The second challenge is to demonstrate how to formulate
and apply queries against the model to provide meaningful
information for DCN operators. The task requires the expression
of informal, natural language questions in terms of the concepts
and relationships in the model. The sample queries from Table I
provide a basis for such a demonstration, and will be referred
back to in the sections below.

A third challenge relates to the accuracy of the control-plane
message log that currently provides the input data from which
queries are answered. There is the possibility that some
messages may not have been captured, partly due to the passive,
unintrusive method used by LogSnap to collect control-layer
information. While our current work is based on message logs
recorded by LogSnap, it could use any source of OpenFlow
messages. It is worth noting that any packet-capture based
source of such messages incurs the risk of missing data if, for
example, the capture utility being unable to keep up with peak
control-traffic flow. Other reasons for a message log appearing
to be incomplete include a device such as a switch failing, or a
software process such as a controller crashing. Furthermore, the
timestamps on the messages are not necessarily the exact times
at which the events occurred that are described by the messages.
For example, when a switch tells a controller that it has removed
a rule from a flow table, some time may have elapsed between
when the rule was removed and when the switch sent the
message to the controller. Or when a switch acknowledges a
controller request to add a flow-rule to a flow-table, it might be
assumed that the rule was added at some point in time between
when the switch received the add_flow request and when it sent
the acknowledgement (although other researchers have shown

Fig. 1: LogSnap Architecture Diagram (previous work)

SDN

Controllers

To Switches

in Original

Network

OpenFlow

Message

Logger

OpenFlow

Message Store

Snapshot

Generator

Snapshot

Store

Network State

Recreator

Recreated

Network

[7] that the flow-rule may be added after the switch sends the
acknowledgement). These considerations need to be taken into
account in any solution that aims to provide meaningful answers
to DCN operator queries regarding the past state of the network.

IV. METHODOLOGY AND DESIGN

A. Query System Requirements

Providing a method to query the past state of a DCN depends
on a number of requirements being satisfied. Firstly, a model of
the network must be created that captures the topology, and the
changes in the topology over time. By topology, we mean the
links between switches, between switches and hosts, and
connections between switches and controllers. By changes in
topology over time, we mean ‘what is the lifespan of each node,
link and connection, and relevant state information for those
elements?’, bearing in mind that the lifespan of each element can
have different start and end points, and indeed can be
discontinuous – for example, if an element such as a host is
removed from the network and later re-added. The relevant state
information differs for each element, but includes, for example,
flow-rules and flow-tables on switches, each of which may have
their own lifespans, constrained within the lifespan of the
device, but otherwise independent.

The second requirement is an approach to encoding queries.
It must be possible to query every element in the model – with
temporal (‘when?’), topological (‘where?’), and other query
attributes. The sample queries in Table I contain such attributes.

As a third requirement of any proposed method, in light of
the considerations discussed in section III, some context should
be available for query answers to assess their veracity.

B. Ontological Approach

The concept of ontology originates from the domain of
philosophy, and seeks to classify objects and explain their
structure. An ontological approach has been used in many
disciplines to create frameworks and taxonomies.

Ontologies in Computer Science are most closely associated
with the semantic web [8] and AI [9]. An ontology formally
encodes relationships between concepts. Those concepts can
represent categories of physical or abstract items. Ontologies
have been used successfully for SDN-related research efforts
heretofore. One use-case for an ontological approach is to
provide a mapping between overlapping sets of terminology
used by different groups within the same domain. For example,
creating a formal mapping between SDN controller requests and
legacy network device configuration languages. Another use-
case is the construction of a framework to define concepts for
which instances can be constructed using data pulled from
different sources – and this approach has been applied to
combine collected network monitoring data to mine for
troubleshooting purposes. For more, see Section VI.

Our use case for an ontological approach is to facilitate the
construction of a logical framework based on control-plane
messages, through which the challenge of inferring a topological
and temporal model of a DCN can be met. A less formal
approach could have been taken, however the ontological
approach has the advantage of making consistency and
correctness easier to achieve, especially important when dealing

with large sets of data. Moreover, ontologies can be extended
and enhanced without impacting previously working code – for
example, to accommodate changes in future versions of
OpenFlow. Lastly, we can query an ontology once it has been
populated with data as properties of instances of the concepts
defined within the ontology.

For our purposes, we need to represent several groups of
concepts ontologically: basic concepts such as control-plane
messages, network devices and connections; temporal concepts;
and higher level concepts built on the basic ones. We
constructed a set of ontologies (Fig. 2) to map from the
information contained in control-plane messages to higher level
abstractions. Our ontologies are built on existing ontologies
where possible, and a rich set of relationships allows us to infer
from control messages the existence of entities such as network
switches, hosts, links and controllers, and the states of those
entities. A benefit of the inference process is that it can reveal
where information is missing from the log, i.e. control messages
that may not have been captured for reasons as discussed in
section III.

Our new ontologies are built on two existing ontologies: the
Network Markup Language (NML) Base ontology [10], and the
Change ontology [11]. The NML ontology contains concepts for
network objects such as nodes, ports, and links, defines
properties of these concepts, and relationships between the
concepts. Its purpose is to facilitate the description of a
traditional computer network, without SDN-specific
characteristics. The Change ontology gives us sophisticated
temporal concepts, allowing us to describe elements of a
network where some properties of those elements may change
over time. For example, the IP address of a host may change,
while the MAC address stays the same. Or a host may be
connected to one switch for an interval, but may be moved and
connected to a different switch for a subsequent interval.

The OpenFlow Message ontology describes types of
OpenFlow messages and their properties, with the timestamp
indicating when a message was captured as an additional
property. Part of the ontology is shown in Fig. 3. Although the
message ontology is relatively simple, its usefulness is the
ability to, having populated it with message instances, link
message instances with instances of other ontological concepts.
For example, a message instance might be connected to a switch
instance to represent the relationship “this is the first message
that was captured from switch X”, or connected with a flow-rule

Fig. 2: Hierarchy of Ontologies

(arrows represent dependencies)

DCN History

Fig. 2: Hierarchy of Ontologies

Network

Markup

Language [10]

OpenFlow

Message

Existing

Ontologies

New Ontologies

Change [11]

instance to represent the relationship “this is the message that
caused flow-rule Y to be installed in the flow-table of switch Z”.

The DCN History ontology describes the network elements
that were present over time, and their relationships. These
elements are the SDN controller(s) and SDN switches that
exchanged control-plane messages, the links that the controller
learned of through topology discovery, and hosts that the
controller learned of from switches or potentially from other
sources. SDN switches contain flow-tables, flow-tables contain
flow-rules, and the tables and rules have properties that can
change over time. Part of the DCN History ontology is shown
later in this section, in Fig. 4.

The OpenFlow Message ontology is defined separately from
the DCN History ontology for the reason that, although the
message log we have as source data contains OpenFlow
messages, our approach can be applied using logs of other
control-plane protocol messages (NETCONF, OVSDB, and/or
BGP-LS, for example), or more generally any source of network
management information. While the OpenFlow Message and
DCN History ontologies are separate, they are related – since the
OpenFlow messages are exchanged between controllers and
switches, which are elements of the DCN. In fact, our approach
is to infer the network elements and relationships from the
OpenFlow messages.

C. Inferring DCN Elements from Control-Plane Messages

Inferring switches and controllers. OpenFlow messages
are sent by switches and controllers, providing direct evidence
of the existence of those DCN components. A sequence of
messages from a switch or controller indicates that the
component existed for the duration of the message sequence. A
gap in communication between a switch and controller might
indicate that the switch became disconnected from the
controller, or was rebooted, or might even have been removed
and replaced with a component that presents the same identity.
In the latter case, clearly the intention is that the replacement is
taking the role of the component it replaced. Notwithstanding,
the gap represents an event that should somehow be signified.
An SDN controller typically communicates with multiple
switches. Where these communication sessions overlap, it is
certain that the controller was present from the start of the first
overlapping session to the end of the last overlapping session.

Inferring inter-switch links. Other topological components
are learned of indirectly, from packets contained in OpenFlow
PacketIn messages. Some such messages are the result of a
topology discovery process, by which a controller instructs
switches to output discovery packets through all ports, and to
forward any received discovery packets back to the controller.
The topology discovery process is re-run periodically (e.g. every
3 to 5 seconds, depending on the controller). A switch will also
inform the controller via a PortStatus message if a port changes
state (up or down). The existence and duration of inter-switch
links, and the switch-ports connected via those links, can be
inferred from these exchanges.

Inferring hosts and host-switch links. Other PacketIn
messages in the capture log may contain ARP packets that can
be used to infer the existence of hosts and their links to switches.
The usual response of an SDN controller to receipt of an ARP
request is to install one or more flow-rules to allow the
communication to progress. These flow-rules will have a
lifespan that we can use as evidence of the continued existence
of the host if at least one of the flow-rules is host-specific. The
capture log should contain the FlowMod request sent from the
controller to instruct the switch to install the flow-rule. It should
also contain a subsequent FlowRemoved message from the
switch to the controller indicating that the flow-rule was
removed (if the controller requested this behaviour when it first
installed the flow-rule). A switch will remove a flow-rule at the
request of the controller, or if the flow-rule had an idle-timeout
or hard-timeout value that expired. SDN controllers periodically
request statistics information about flow-rules from switches,
and from the replies recorded in the capture log we can identify
the point at which a flow-rule stopped matching packets (i.e. the
host stopped sending packets) as being within a time interval. In
the event that there was no initial ARP request, or at least none
recorded, the statistics information indicating that a flow-rule
started matching packets can support the inference of a host’s
existence. Furthermore, a host will often communicate with
multiple other hosts, and combining the information gathered
about those multiple communication sessions helps to build the
picture of the full lifespan of the host in the DCN.

Inferring flow-rules and flow-tables. Individual flow-rule
details (match criteria, actions, priority) can be extracted directly
from the FlowMod messages instructing switches to add those
rules. Flow-rule statistics can be gathered from MultipartReply
messages sent by switches in response to requests from
controllers, and can also be used to infer the existence of flow-
rules for which the FlowMod messages might have been missed.
A flow-rule will normally be explicitly removed by a controller
when it is no longer required, and, as mentioned above in
relation to inferring hosts, FlowRemoved messages are a further
indicator of the end of the lifespan of a flow-rule. It can be
assumed that a switch has at least one flow-table when it initially
connects to a controller. For later versions of OpenFlow, the
controller can query the switch’s flow-table configuration and
request re-configuration via TableFeatures messages.

Inference dependencies. The inference of any DCN
element depends on the message ontology having been
populated with message instances. Furthermore, the inference of
some DCN elements depends on the prior inference of other
elements, as outlined above and as detailed in Table II.

Fig. 3: OpenFlow Message Ontology (Partial)

FlowMod
Message

TemporalEntity

existsAt

OpenFlow
Message

isA

BarrierReply

BarrierRequest

PacketOut
Message

isA

isA

isA

Multipart
Request

isA

FeaturesReplyisA

Features
Request

isA

TABLE II. INFERENCE DEPENDENCIES

DCN Element Depends On

Switch Control-plane messages

Controller Switch; control-plane messages

Port Switch; control-plane messages

Inter-switch link Port; control-plane messages

Flow-rule Switch; control-plane messages

Flow-table Switch; flow-rule

Host Switch; control-plane messages

Host-link Port; host

D. Representing Change Over Time in a DCN History

Our DCN model requires the extra dimension of time, to
represent how long a DCN element such as a switch was present
in a network, the lifespan of each link connecting that switch to
other switches, the duration for which each flow-rule is present
in the flow-table of the switch, and so forth. We apply Krieger’s
4D approach [12] to representing change over time in our DCN
History ontology, following the design pattern described in [10].
We believe this to be the first application of the 4D approach to
a model of an SDN. Applying Krieger’s 4D approach allows us
to re-use in our ontology concepts from the atemporal Network
Markup Language ontology.

When representing an instance of a switch, for example,
some switch properties are constant, others change. 4D splits the
representation into two classes: a perdurant class with properties
that are invariant, and a manifestation class that can have
multiple temporal instances with individual property values. An
invariant property of an OpenFlow switch is its DPID (DataPath
Identifier), hence that property belongs to the switch perdurant.
Since the IP address of a switch can change, as can the TCP or
UDP port from which the switch connects to a controller, those
are properties of switch manifestations. Another property of a
manifestation is the time interval for which it existed.

Our temporal entities can be nested: A switch manifestation
contains a flow-table. A flow-table contains flow-rules, of which
each flow-rule has perdurant and manifestation parts. The
priority and match-criteria of a flow-rule cannot change, but the
other properties, e.g. instructions, timeouts and counters, can.
The instructions and timeouts of an existing rule can be modified
by a controller via a FlowMod message. The 4D representation
of a switch, with nested 4D representation of a flow-rule, is
illustrated in Fig. 4.

E. Expressing DCN History Queries

The sample queries presented in Table I can now be
expressed in terms of the ontological concepts discussed so far.
A temporal parameter is assumed (a single time-point or an
interval), but can be omitted.

Query #1 ‘What switches were active in the network?’ can
be expressed more formally as:

Find the set {P} of switch manifestations,

where the start and end points of the

manifestations are within time interval [x..y]

Query #2 ‘For what hosts were flow-rules installed in switch
flow-tables, but for which no packets were observed in the
DCN?’ can be expressed as:

Find the set {Q} of flow-rules, where for each

q an element of {Q} there is no host

manifestation h, where the IP Address property

of h equals the IP address match property of q

or the MAC Address property of h equals the MAC

Address property of q, and where the start and

end points of q are within time interval [x..y]

Query #3 ‘What path would a specified packet follow
through the network?’ is a graph problem, but not a typical ‘best
path’ problem because each OpenFlow switch forwards packets
based on its configured rules and their priorities, and the actual
destination is not known in advance. The desired destination
may be in the packet header, but the actual destination depends
on the configured flow-rules. The query might be expressed in
terms of our defined concepts as follows:

Given an injection point p representing the

switch port on which a packet entered the

network, and the set of packet header field

values {R}, where each element of R is a tuple

of field name and value (f, v), and a time-point

t, find the sequence [S] where each item s in

[S] is a switch except for slast, which may be a

switch, a host or a controller; s1 is the switch

to which p belongs, and si is the switch, host

or controller to which switch si-1 will forward

a packet based on the highest priority flow-rule

u present in the flow-table on switch si-1 with

a set of match criteria {M} consisting of field

name and value tuples (n, o) where {M} matches

{R}, if any such rule exists at time t.

The semi-formal queries above must be encoded to be
applied against the populated ontological model.

Fig. 4: DCN History Ontology (Partial)

Switch

FlowTable

groupTable

FlowRule matchFields

instructionSet

Port

[counters]

priority

cookie

TemporalEntity

TimeVarying
Entity

Manifestation

TemporalEntity

tcpPort

dpid

dpid

FlowRulePD

TemporalEntity

TimeVarying
Entity

matchFields

Manifestation

TemporalEntity

SwitchPD

openFlow
Version

TemporalEntity

hasManifestation

existsAt

existsAt

existsAt

existsAt

existsAt

hasPort

hasFlowTable hasFlowEntry

hasConnectionTo

hasConnectionFrom

ipAddress

macAddress

Link

priority
hasManifestation

subClassOf

property

Class

Object
Property

perdurantPD

V. IMPLEMENTATION AND EVALUATION

The objective of our implementation is to demonstrate that
the challenges presented in Section III have been met – i.e. that
our inferred model of a DCN topology matches the original
network and can track the changes in the original network
accurately; that queries can be applied against the model to
provide useful answers to DCN operators; and that the answers
provide context to allow the impact of inexact data (or an
incomplete message log) on their accuracy to be assessed.

The implementation workflow is shown in Fig. 5. The tools
used at each numbered step in the workflow are as follows:

Step 1. We created our ontologies with Protégé [13], an
actively developed authoring tool supporting evolving standards
and widely used in the ontology development community.

Step 2. The ontologies we created were exported from
Protégé as OWL (Web Ontology Language) files expressed in
Turtle syntax, then imported into AllegroGraph [14], a graph
database used in this work for its triple-store capabilities. While
Protégé can act as a triple-store using in-memory storage, or
combined with a backend database to store and access large
amounts of data, AllegroGraph is designed to be high
performance and massively scalable – properties essential for
handling the quantity of data extracted and inferred from the
control-plane message log of a multitenant DCN.

Step 3. Python code was written to populate the message
ontology in AllegroGraph with instances using data read from
the OpenFlow message log stored in ElasticSearch [15] by
LogSnap. Both AllegroGraph and ElasticSearch provide Python
APIs. While ElasticSearch stores full OpenFlow message
details, only key data is written to AllegroGraph to populate the
ontology with the required triples.

Step 4. Modules to infer temporal instances of network
elements were written in AllegroCL Common Lisp, which
interfaces with AllegroGraph, and Allegro Prolog, which is
embedded in AllegroCL. Where possible, inference logic was
encoded as Prolog rules to allow consistency checking, however
the Allegro Prolog implementation is limited so additional Lisp
code provided the required inferencing functionality.

Step 5. Queries were encoded in Prolog and SPARQL [16],
executed from within Lisp modules – or SPARQL queries
executed from Python if the results were to be charted. SPARQL
is a W3C-standard semantic query language supported by
AllegroGraph and accessible via Lisp and Python. Our
experience has been that SPARQL allowed us to write more
expressive queries than Prolog, although the queries were not
readily composable. Results were visualised with Plotly.

Steps 1 to 5 can be repeated: If an ontology is changed or
added to (Step 1), then the other 4 steps should be repeated to
obtain new answers to queries on the updated ontology. If a new
or updated message log is available, then Step 3 onwards should
be re-done. If the inference modules are modified, the restart

point is Step 4. Step 5 can be repeated indefinitely, and if new
queries are created previous steps do not need to be re-done.

A. Inferring DCN Elements – Implementation Issues

In Section IV, it was stated that the lifespan of a controller
instance could be inferred from a set of sessions between
switches and the controller that overlap in time. The task of
identifying sets of overlapping sessions was recognised as
lending itself to being formulated as a graph problem. The nodes
of the graph correspond to switch-controller sessions. An edge
connects two nodes if the two corresponding sessions overlap in
time and the identity of the controller is the same for the two
sessions (matching IP addresses and port numbers). A group of
nodes is a ‘connected-component’ if all nodes in the group have
at least one path to every other node in the group. Each
connected-component of the graph contains the nodes
corresponding to the overlapping switch-controller sessions that
represent the lifespan of the controller instance. The start point
of the controller instance is the earliest session start point in the
set, and the end point of the controller instance is the latest
session end point in the set. The ‘graph’ library available via
Quicklisp [17] provides a ‘connected-components’ function.
Fig. 6 illustrates how each identified connected-components
group of switch-initiated sessions with a controller relates to,
and can be used to infer, a controller instance.

Our implementation currently assumes one flow-table per
switch; and that controllers will be notified when a flow-rule is
removed, as can be specified when the flow-rule is first added.

B. Implementing Queries

The triple-store is ready to be queried once the ontology is
populated with OpenFlow message instances, and DCN
elements inferred. We implemented queries including the three
given in Table I, and revisited in Section IV. Queries #1 and #2
translate to SPARQL. Query #2 requires more search terms and
logical operations, being more complex. SPARQL queries are
constructed dynamically with optional parameters – for example
to add a time filter to reduce the search interval, if necessary.
Query #3 required a combination of SPARQL and Lisp.

Adding new queries currently requires additional code – in
SPARQL, Prolog, Lisp, and/or Python. New concepts can be
added to the ontologies (for example ‘Failing Switch’, a concept
based on ‘Switch’ but taking other criteria into account, such as
switch-controller session length and frequency), and logic added

Fig. 5: Workflow Diagram

Fig.	5:	Workflow	Diagram	Workflow

2.	Import
Ontologies
to	Triple
Store

3.	Populate
OpenFlow

Message	Ontology
with	Instances

from	Message	Log

4.	Infer	DCN
Element	Instances
from	OpenFlow

Message	Instances

5.	Execute
Queries	on
Populated

Ontologies	in
Triple	Store

1.	Author
Ontologies

2.	Import
Ontologies
to	Triple
Store

3.	Populate
OpenFlow

Message	Ontology
with	Instances

from	Message	Log

4.	Infer	DCN
Element	Instances
from	OpenFlow

Message
Instances

5.	Execute
Queries	on
Populated

Ontologies	in
Triple	Store

1.	Author
Ontologies

Fig.	5:	Workflow	Diagram	Workflow

Fig. 6: Inferring Controller Instances from Switch-Controller
Sessions (illustration purposes only) Fig	?:	Inferring	controller	instances	from

switch‐controller	sessions

D
C
N
	E
le
m
en
t

Switch1

Switch2

Switch3

Switch4

Switch5

Switch6

Controller

Time ‐>

Switch-

Controller

Sessions

Inferred Controller Instances

as an additional inference module to infer instances of those
concepts. Following the appropriate steps in the workflow (Fig.
5), the new concepts, instances, and their properties are made
available for use in queries and as a basis for other concepts.

C. Evaluation – Accuracy of the Inferred DCN Elements

To evaluate the accuracy of our inference of DCN elements,
we ran experiments using OpenFlow message logs captured on
emulated networks with different DCN topologies, including: a
traditional three-layer topology, as used historically in data-
centers; a spine-leaf topology, used on its own or as a building
block in modern multi-tenant data-centers; and a fat-tree (k=6)
topology. For a range of DCN topologies, see [18].

The verification message logs are from experiments where
light traffic was generated (using DCT2Gen’s [19] TrafficGen
utility) on the DCN for two minutes. The traffic profile specifies
10MB TCP transfers between pairs of hosts scheduled to start
one per second, with 80% rack-local / 20% inter-rack traffic. For
each message log, the ontologies were populated with message
instances (Fig. 5, step 3) – and the remaining workflow steps
followed. Query results were charted where appropriate.

Fig. 7 shows a composite inferred topology from the spine-
leaf DCN message log. The chart is ‘composite’ because it is the
result of a query for all DCN elements inferred within the time
range covered by the message log, even if these were not present
at the same time. The time range can be narrowed to query the
topology for shorter windows of time. For comparison, Fig. 8 is
a logical diagram of the original network - consisting of 6 leaf
switches and 6 spine switches, connected in a folded-clos
arrangement, with 20 hosts connected to each leaf switch.
Clearly, the inferred network topology contains the same hosts,
switches and links as the original network.

In addition to message logs, we had periodic dumps of flow-
table contents from the DCN switches on the original networks.
By querying the populated ontologies for the flow-rules that
were inferred to be present at the time of each periodic dump,
and comparing the two sets of flow-rules, we verified that both
matched for each network. The results confirmed the accuracy
of our inferred DCN elements.

D. Evaluation – Accuracy of Query Results

The sample queries initially presented in Table I, and
discussed further in Section IV were applied against the
populated ontologies. The results of applying queries #1 and #3
against the ontology for the spine-leaf network are shown in
Figs. 9 and 10. For query #2, the result was that there were no
flow-rules installed for hosts that were not active, which was as
expected since the SDN controller was operating in reactive
mode, and only installing flow-rules as switches reported
packets for new data-plane flows.

In Fig. 9, the inferred set of DCN switches can be seen,
identified by DPID, and their active lifespans for which they
were connected to the controller. The chart shows the switches
did not all connect to the controller at exactly the same time, and
each switch had a single instance with an uninterrupted lifespan.
This corresponds with observations from the original DCN.

Fig. 10 shows the inferred path for a packet sent from host
10.0.3.11 through the link on which it was connected to a switch.

The header field values for the packet are 10.0.3.11’s MAC
address as source, host 10.0.4.11’s MAC address as destination,
an EtherType value of 0x800 (for an IP datagram. A
transmission time for the packet was specified, selected based
on when a flow was scheduled in the TrafficGen profile to be
active between the two hosts on the original network. Since the
destination host is in a different rack, the configured flow-rules
establish the path shown in Fig. 10 across several switches to
deliver matching packets to their destination.

VI. RELATED WORK

Ontologies have been employed for network management
for quite a number of years, and more recently have been applied
to aspects of managing a Software-Defined Network.

ReasoNet [20] maintains an ontology representing the
current state of an SDN, checking this state for correctness
against rules that are encoded in the ontology. Requests from
ReasonNet-aware apps on the SDN controller are subject to
conflict resolution. The OpenFlow ontology, reasonet-schema,
is available online. The researchers in [22] describe their
application of machine learning to data collected using the
northbound interface of an SDN controller, to identify
symptoms and causes of faults. Domain knowledge is encoded
in their SDNDL (SDN Description Language) ontology.

Neither reasonet-schema nor SDNDL have any temporal
dimension to them to represent changes in network topology or
flow tables over time. They do not describe SDN control-plane
concepts in enough detail to be able to, for example, relate
events on a network with the control-plane messages that were
exchanged to communicate the occurrence of the events. Neither
ontology describes the various OpenFlow message types.

We have created ontologies that contain concepts to describe
OpenFlow control-plane messages and their contents, as well as
concepts to describe a network topology, flow-tables and events.
Temporal topological instances of controllers, switches and
hosts, and temporal instances of flow-rules are inferred from
OpenFlow messages in a log of packets from exchanges
between controllers and switch in a DCN.

ForenGuard [21] uses a non-ontological approach to
identifying root causes of forwarding problems, monitoring and
analysing related previous data-plane and control plane
activities. However it is controller-specific, and focussed on
resolving specific security-related issues.

VII. CONCLUSIONS AND FUTURE WORK

The challenges in this work were to find an appropriate
method for modelling a DCN, to demonstrate how to formulate
and apply queries against the model, and to ensure that context
information is available to assess the accuracy of the query
results. We described how an ontological approach supported
the development of a logical framework, enabling construction
of a topological and temporal model of a DCN. We listed sample
queries in natural language, expressed them in terms of the
concepts and relationships defined in the historical model of the
DCN, and outlined how the model could be extended. We
described how we tested our model’s accuracy, having
instantiated the ontologies from a control-plane message log.
We included graphical representations of the results of applying

the queries to the populated ontologies. The queries can return
detail to show the data points and relationships used to formulate
the answers, in order to assess their veracity.

For the future, we plan to extend the DCN model with higher
level abstract concepts, their properties, and relationships to the
current set of concepts. We will work on an extensible, modular
query system allowing a DCN operator construct new queries.

REFERENCES

[1] J. Son and R. Buyya, "A taxonomy of software-defined networking
(SDN)-enabled cloud computing," ACM Computing Surveys (CSUR), vol.
51, no. 3, pp. 1-36, 2018.

[2] J. Sherwin and C. J. Sreenan, "LogSnap: Creating Snapshots of OpenFlow
Data Centre Networks for Offline Querying," in 10th International
Conference on Network of the Future (NoF 2019), 2019.

[3] Cisco Virtualized Multi-Tenant Data Center, Version 2.2 Design Guide.
Cisco Systems, 2013.

[4] B. Blaise, "RFC 3954: Cisco Systems NetFlow Services Export Version
9," 2004.

[5] B. Blaise, B. Trammel, and P. Aitken, "RFC 7011: Specification of the IP
Flow Information Export (IPFIX) Protocol for the Exchange of Flow
Information," ed: Internet Engineering Task Force, 2013.

[6] A. Wundsam, D. Levin, S. Seetharaman, and A. Feldmann, "OFRewind:
enabling record and replay troubleshooting for networks," presented at the
Proceedings of the 2011 USENIX Annual Technical Conference,
Portland, OR, 2011.

[7] M. Kuźniar, P. Perešíni, and D. Kostić. What you need to know about SDN
flow tables, Lecture Notes in Computer, vol. 8995, pp. 347-359, 2015.

[8] T. Berners-Lee, J. Hendler, and O. Lassila, "The semantic web," Scientific
american, vol. 284, no. 5, pp. 34-43, 2001.

[9] B. Chandrasekaran, J. R. Josephson, and V. R. Benjamins, "What are
ontologies, and why do we need them?," IEEE Intelligent Systems and
their applications, vol. 14, no. 1, pp. 20-26, 1999.

[10] J. van der Ham, F. Dijkstra, R. Lapacz, and A. Brown, "The Network
Markup Language (NML) A Standardized Network Topology

Abstraction for Inter-domain and Cross-layer Network Applications,"
presented at the TNC2013, 2013.

[11] M. Katsumi and M. Fox, "A Logical Design Pattern for Representing
Change Over Time in OWL," Proceedings of the 8th Workshop on
Ontology Design and Patterns (WOP 2017).

[12] H.-U. Krieger, "Where temporal description logics fail: Representing
temporally-changing relationships," in Annual Conference on Artificial
Intelligence, 2008: Springer, pp. 249-257.

[13] J. H. Gennari et al., "The evolution of Protégé: an environment for
knowledge-based systems development," International Journal of
Human-computer studies, vol. 58, no. 1, pp. 89-123, 2003.

[14] AllegroGraph. Accessed: 2021-07-10. [Online]. Available:
https://allegrograph.com/products/allegrograph/

[15] What is the ELK Stack? Accessed: 2021-07-10. [Online]. Available:
https://www.elastic.co/elk-stack

[16] C. Buil-Aranda et al., "SPARQL 1.1. Overview. W3C
Recommendation.." Accessed: 2021-07-10. [Online]. Available:
https://www.w3.org/TR/sparql11-overview/

[17] Quicklisp beta. Accessed: 2021-07-10. [Online]. Available:
https://www.quicklisp.org/beta/

[18] T. Chen, X. Gao, and G. Chen, "The features, hardware, and architectures
of data center networks: A survey," Journal of Parallel and Distributed
Computing, vol. 96, pp. 45-74, 2016.

[19] P. Wette and H. Karl, "DCT2Gen: A traffic generator for data centers,"
Computer Communications, Article vol. 80, pp. 45-58, 2016.

[20] C. Rotsos et al., "ReasoNet: Inferring Network Policies Using
Ontologies," in 2018 4th IEEE Conference on Network Softwarization
and Workshops (NetSoft), 25-29 June 2018 2018, pp. 159-167, doi:
10.1109/NETSOFT.2018.8460050.

[21] F. Benayas, Á. Carrera, M. García‐Amado, and C. A. Iglesias, "A
semantic data lake framework for autonomous fault management in SDN
environments," Transactions on Emerging Telecommunications
Technologies, p. e3629, 2019, doi: 10.1002/ett.3629.

[22] H. Wang, G. Yang, P. Chinprutthiwong, L. Xu, Y. Zhang, and G. Gu,
"Towards Fine-grained Network Security Forensics and Diagnosis in the
SDN Era," Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, Toronto, Canada, 2018.

Fig. 8: Logical Diagram of Original Spine-Leaf DCN

Fig	6:	DCN	Spine‐Leaf	Topology

Spine
Switch

Spine
Switch

Spine
Switch

Spine
Switch

Leaf
Switch

Leaf
Switch

Leaf
Switch

Leaf
Switch

Leaf
Switch

Leaf
Switch

Spine
Switch

Spine
Switch

Server
Rack

Server
Rack

Server
Rack

Server
Rack

Server
Rack

Server
Rack

Fig. 7: Composite Inferred Topology for a Spine-Leaf DCN -

switches identified by OpenFlow DPID, hosts by IP address.

Fig. 9: Inferred Switch Instance Lifespans (Query #1) for Spine-Leaf DCN

Fig. 10: Inferred Path for Packet ‘X’ (Query #3) on Spine-Leaf DCN

https://allegrograph.com/products/allegrograph/
https://www.elastic.co/elk-stack
https://www.w3.org/TR/sparql11-overview/
https://www.quicklisp.org/beta/

