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a b s t r a c t 

Background: Hypertension is a major health concern across the globe and needs to be properly diagnosed 

to so it can be treated and to mitigate for this critical health condition. In this context, ambulatory blood 

pressure monitoring is essential to provide for a proper diagnosis of hypertension, which may not be 

possible otherwise due to the white coat effect or masked hypertension. In this paper, the objective is 

to develop a model which incorporates expert’s knowledge in the feature engineering process so as to 

accurately predict multiple medical conditions. As a case study, we have considered multiple symptoms 

related to hypertension and used an ambulatory blood pressure monitoring method to continuously ac- 

quire hypertension relevant data from a patient. The goal is to train a model with a minimum set of the 

most effective knowledge-driven features which are useful to detect multiple symptoms simultaneously 

using multi-class classification techniques. 

Method: Artificial intelligence-based blood pressure monitoring techniques introduce a new dimension in 

the diagnosis of hypertension by enabling a continuous (24hours) analysis of systolic and diastolic blood 

pressure levels. In this work, we present a model that entails a knowledge-driven feature engineering 

method and implemented an ambulatory blood pressure monitoring system to diagnose multiple cardiac 

parameters and associated conditions simultaneously these include morning surge, circadian rhythm, and 

pulse pressure. The knowledge-driven features are extracted to improve the interpretability of the classi- 

fication model and machine learning techniques (Random Forest, Naive Bayes, and KNN) were applied in 

a multi-label classification setup using RAkEL to classify multiple conditions simultaneously. 

Results: The results obtained (F 1 = 0.918) show that the Random forest technique has performed well for 

multilabel classification using knowledge-driven features. Our technique has also reduced the complexity 

of the model by reducing the number of features required to train a machine learning model. 

Conclusion: Considering these results, we conclude that knowledge-driven feature engineering enhances 

the learning process by reducing the number of features given as input to the machine learning algo- 

rithm. The proposed feature engineering method considers expert’s knowledge to develop better diagno- 

sis models which are free from misleading data-driven noisy features in some situations. It is a white-box 

approach in which clinicians can under stand the importance of a feature while looking at its value. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1. Introduction 

Cardiovascular diseases (CVDs) are a major cause of death 

across the globe. An estimated 17.9 million deaths are observed 
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annually across the world due to CVDs [1,2] . Hypertension is the 

most common risk factor for CVD and it is considered to be a silent 

killer, because it can affect a person without them having any vis- 

ible symptoms, making it an extremely dangerous clinical condi- 

tion. The International Society of Hypertension (ISH) has published 

its guidelines to control blood pressure through multiple methods 

including food intake, increasing levels of exercise and, sleep, and 

maintaining an overall healthy life style [3] . The timely detection 

of elevated blood pressure is important to avoid health complica- 
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tions and life-threatening conditions. Blood pressure levels, when 

measured in a clinic give clinicians a snapshot of blood pressure 

at the instant of measurement and this varies across the duration 

of the measurement. As such, measurements taken over a short 

time window can be misleading and do not give clinicians a clear 

picture regarding the true overall level of blood pressure, with po- 

tential overestimation, often called ”white-coat effect” or underes- 

timation of blood pressure known as ”masked hypertension”. Due 

to this reason, ambulatory blood pressure monitoring (ABPM) is 

considered a safe and reliable method for blood pressure measure- 

ment and is the recommended procedure to measure blood pres- 

sure variations as the appropriate diagnosis of the disorder [4] . The 

technique uses an inflatable blood pressure cuff monitoring device 

which records blood pressure every 10 − 15 minutes over a period 

of 24 hours using oscillometric method. In this way, clinicians ac- 

quire an overall picture of the patient’s condition including diurnal 

variations identified through analysis of daytime and night-time 

measurements. 

The daily continuous monitoring of blood pressure is essential 

because of many of the symptoms of CVDs are related to irregular 

blood pressure variations such as morning surge, pulse pressure, and 

circadian rhythm . These variations can be simultaneously present in 

a patient and, thus, their timely detection could help clinicians to 

diagnose and treat to reduce or prevent the onset of complicated 

medical conditions. With ABPM readings, clinicians have a better 

understanding of the patient’s health and, indeed several studies 

have been conducted to use ABPM measurements for effectively 

diagnosing CVDs [5–7] . 

In this paper, an Artificial Intelligence-based technique is pre- 

sented to achieve two objectives: a) it utilizes the knowledge of 

an appropriate domain experts to extract meaningful features from 

datasets which significantly contribute to the detection of a clini- 

cal condition due to blood pressure variations, b) it detects multi- 

ple symptoms of blood pressure (multi-label classification) simul- 

taneously using ABPM data while applying the acquired experts’ 

knowledge. Our proposed model addresses these two important 

problems involved in clinical data analysis, which are useful for the 

accurate prediction of clinical conditions. 

The use of domain expert’s knowledge-based feature engineer- 

ing has a particular significance in the medical domain. In the 

medical domain, feature engineering is a sensitive task and re- 

quires a particular care when compared to other fields such as 

computer vision, and natural language processing. Data-driven fea- 

ture engineering tools (e.g. Cognito, tsfresh) could be cost-effective, 

however, the accuracy and transparency of the predictive model 

could potentially be compromised when using data-driven fea- 

ture engineering as some features are not medically significant or 

necessarily relevant in the prediction of a medical condition [8] . 

Knowledge-guided features could be more comprehensive and im- 

prove the performance of the computational model as knowledge- 

driven methods includes clinical expert’s knowledge related to the 

medical condition as part of the overall process [9] . 

The second objective of this work is to study the influence of 

a domain experts’ knowledge on the predictive model for multi- 

symptoms classification. It is observed that human health disorders 

are often diagnosed through the combination of multiple symp- 

toms and the collective consideration of these symptoms can help 

clinicians to identify a particular disorder. Machine learning mod- 

els could help clinicians to reliably foresee the existence of multi- 

ple symptoms simultaneously using the health-related data for the 

given disorder. 

To the best of our knowledge, such knowledge-driven fea- 

ture engineering and multi-label classification has not been ap- 

plied together on clinical data to simultaneously detect multiple 

ABPM symptoms. The rest of the paper is divided into the fol- 

lowing sections. Section 4 describes research which has already 

been conducted in the area of knowledge-driven feature engineer- 

ing and multi-label classification. Section 2 presents a framework 

which combines knowledge-driven feature engineering and multi- 

label classification to detect multiple symptoms related to ABPM. 

Section 3 describes experiments we have conducted using the 

ABPM dataset explained in Subsection 3.1 . The results obtained are 

presented in Section 3.3 and discussed in Section 4 . Conclusions 

are finally drawn in Section 5 . 

2. Methods 

The main objective of this research is to investigate the impact 

of incorporating clinical experts’ knowledge during the feature en- 

gineering process. In this perspective, the novel contribution of our 

work is the extraction of knowledge-driven features from ambu- 

latory blood pressure data and subsequently using these features 

for multiple symptoms classification. Formally, we defined it as a 

multi-label classification problem, where each feature instance car- 

ries multiple labels. Our case study is based on ABPM data, which 

was collected for 24 hours, recording systolic and diastolic blood 

pressure measurements. The primitive ABPM data reflect physical 

variations in systolic and diastolic blood pressure, without incorpo- 

rating any experts’ knowledge explaining the state of collected fig- 

ures. The primitive ABPM data is defined by time-domain features 

showing blood pressure measurements carried out during different 

time intervals (e.g. daytime and night-time systolic and diastolic 

blood pressure recordings). The ABPM data can be defined as a 

time-domain feature set F , where F = { f 1 , f 2 , f 3 , . . . , f n } . Each fea- 

ture f i is based on ABPM measurements acquired from a group of 

patients. The dataset adopted in this study is further discussed in 

Section 3.1 . Knowledge-driven features are extracted after apply- 

ing experts’ knowledge D on the feature set F , therefore, creating 

a new knowledge-driven feature set F D . According to the problem 

formulation, the knowledge-driven feature set F D is associated with 

multiple labels L , where L = { l 1 , l 2 , . . . , l n } . A machine learning al- 

gorithm tries to find a hidden relationship between instances of 

feature set F D and the associated label set L by using a training 

set. To solve this problem, we explored multi-label classification 

techniques and considered an improved version of Label powerset 

[10] method which is called RAkEL (RAndom k labELsets) [11] . 

The proposed framework illustrated in Fig. 1 , which shows the 

conceptual model that was developed to include domain knowl- 

edge in the design process. In the medical domain, there are 

multiple knowledge sources such as clinicians, web-based clini- 

cal databases, books, and journals. For the sake of simplicity, in 

this work, we relied on a manual knowledge extraction method. The 

manual knowledge extraction was carried out by a knowledge engi- 

neer who acquired knowledge through multiple methods such as 

interviews, web searches, and reading medical journals. The ex- 

tracted knowledge is translated into first-order logic rules . We have 

considered blood pressure related knowledge in this work. The 

blood pressure varies over 24 hours for a variety of reasons. For ex- 

ample, overnight blood pressure is normally lower as compared to 

daytime measurements, when the person is carrying out activities, 

this is known as ”nocturnal dipping”. The domain knowledge ex- 

tracted from various sources guides the feature extraction process, 

which could improve the multi-symptom classification process. 

Taking into account the knowledge related to blood pres- 

sure, we manually formulated several IF-THEN decision rules . These 

rules were stored in a rule-base and applied to the primitive 

time-domain ambulatory blood pressure data to obtainn new 

knowledge-driven features that could have a better relevance to 

the multiple labels for the classification learning model. For exam- 

ple, we defined some rules while considering the knowledge men- 

tioned in Table 1 . The table shows knowledge about blood pres- 

sure range divided into 5 categories: optimal, normal, high normal, 
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Table 1 

Definition of hypertension grades [12] . 

Category Systolic BP range (mmHg) Condition Diastolic BP range (mmHg) 

Optimal < 120 and < 80 

Normal 120 − 129 and/or 80 − 84 

High normal 130 − 139 and/or 85 − 89 

Grade 1 hypertension 140 − 159 and/or 90 − 99 

Grade 2 hypertension 160 − 179 and/or 100 − 109 

Grade 3 hypertension ≥ 180 and/or ≥ 110 

Isolated systolic hypertension ≥ 140 and < 90 

Fig. 1. Proposed framework for knowledge-driven multi-symptoms detection. 

grade 1, grade 2, and grade 3. This knowledge was acquired from a 

document published jointly by the European Society of Hypertension 

and the European Society of Cardiology [12] . As mentioned earlier, 

the rule-base contains many many similar knowledge-driven rules, 

and the rules represented in sets 1,2 , and 3 is an excerpt taken 

from the whole rule-base. 

More explicitly, the rules defined in set 1 are related to aver- 

age ambulatory blood pressure measurements. If the average of 24 

hours systolic ambulatory blood pressure reading is less than 120 

mm Hg and diastolic is less than 80 mm Hg then it is considered 

an optimal blood pressure. Similarly, other rules in set 1 are de- 

fined according to the knowledge mentioned in Table 1 . 

i f (systolic < 120 ∧ diastolic < 80) ⇒ Optimal 
i f (systolic ≥ 120 ∧ systolic ≤ 129) ⇒ Normal 
i f (systolic ≥ 130 ∧ systolic ≤ 139) ⇒ High _ Normal 
i f (systolic ≥ 140 ∧ systolic ≤ 159) ⇒ Grade 1 

i f (systolic ≥ 160 ∧ systolic ≤ 179) ⇒ Grade 2 

i f (systolic ≥ 180) ⇒ Grade 3 

(1) 

In the case of set 2 , knowledge related to blood pressure 

load ( bp _ load _ day ) along with maximum systolic blood pressure 

( max _ systolic) value is taken into account. Blood pressure load is 

defined as the percentage of systolic blood pressure values mea- 

sured above than 140 mm Hg in 24 hours [13] . max _ systolic is the 

maximum value of the systolic blood pressure measurements dur- 

ing day and night-time. The combination of these two features give 

us information regarding the critical situation of the subject. In Set 

2 , the categories are defined by the day time blood pressure mea- 

surements. Similarly, the Set 3 represents the knowledge-driven 

rule for the night time blood pressure. Blood pressure load γ is 

tested for different values, and finally selected γ = 15 for day time 

and γ = 5 for night time measurements, to obtain optimized clas- 

sification results. 

i f (max _ systolic < 140) ⇒ Normal 
i f (bp _ load _ day < γ = 15) ∧ 

(max _ systolic ≥ 140 ∧ max _ systolic ≤ 159) ⇒ Grade 1 

i f (bp _ load _ day < γ = 15) ∧ 

(max _ Systolic ≥ 160 ∧ max _ systolic ≤ 179) ⇒ Grade 2 

i f (bp _ load _ day < γ = 15) ∧ 

(max _ systolic ≥ 180) ⇒ Grade 3 

(2) 

i f (max _ Systolic < 140) ⇒ Normal 
i f (bp _ load _ night < γ = 5) ∧ 

(max _ systolic ≥ 140 ∧ max _ systolic ≤ 159) ⇒ Grade 1 

i f (bp _ load _ night < γ = 5) ∧ 

(max _ systolic ≥ 160 ∧ max _ systolic ≤ 179) ⇒ Grade 2 

i f (bp _ load _ night < γ = 5) ∧ 

(max _ systolic ≥ 180) ⇒ Grade 3 

(3) 

Mathematically, let D t = { (F D i , L i ) | i = 1 , . . . , N} is the given la- 

belled data. we are interested in finding the conditional probability 

of labelset L given features F D based on domain knowledge D , i.e. 

p(L | F D ) . The rules defined in rule-base are applied to the raw am- 

bulatory blood pressure feature set F to extract new knowledge- 

driven features F D . For example, if the measured blood pressure is 

120 mm Hg (systolic) and 80 mm Hg (diastolic) then both features 

are translated into a new knowledge-driven feature F D i ∈ F D , which 

takes an optimal value defined according to clinician’s knowledge 

mentioned in Table 1 . To detect multiple symptoms represented as 

labels in L , we have conducted experiments using different super- 

vised machine learning techniques, which learn prediction classes 

using an annotated dataset. First, we have considered a Naïve 

Bayes classifier within a multi-label classification setup. The Naïve 

Bayes approach models the mathematical problem and calculates 

the posterior probability p(L | F D ) based on knowledge-driven prior 

and likelihood probability. Due to the discrete nature of features F D , 

we have used a Multinomial implementation of Naïve Bayes clas- 

sifier [14] . The states of these features are optimal, normal, high 

normal, grade 1, grade 2, and grade 3. These state values are given 

based on the clinical definition of blood pressure values. 

To generalize our approach, we have also used other classifiers 

to predict the multiple labels. We have considered a Random For- 

est classifier , based on the decision tree algorithm in which the 

strongest estimators are selected through a bootstrap and bagging 

method, and K nearest neighbour (KNN) algorithm, based on dis- 

tance estimation between k training examples in feature space. 

Table 2 lists the knowledge-driven features extracted by using the 

proposed approach. As already explained, these features are de- 

rived from statistical ambulatory blood pressure features listed in 

Table 3 . The new knowledge-driven features mainly state the con- 

dition of a person as identified by a clinical expert after observing 

the clinical ambulatory blood pressure data such as if the person 

3 
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Table 2 

Knowledge-driven features extracted from ambulatory blood pressure dataset. 

The discrete states of features are optimal, normal, high normal, grade 1, 

grade 2, grade 3. 

No. Feature Description 

1 BPS _ A v erage Average of 24 hours systolic blood pressure 

2 BPD _ A v erage Average of 24 hours diastolic blood pressure 

3 BPS _ Day Average of day time systolic blood pressure 

4 BPD _ Day Average of day time diastolic blood pressure 

5 BPS _ Night Average of night time systolic blood pressure 

6 BPD _ Night Average of night time diastolic blood pressure 

7 BPS _ load _ Day Systolic blood pressure load day time 

8 BPS _ load _ Night Systolic blood pressure load night time 

has normal blood pressure or it lies in a critically ill category. The 

proposed model uses these new knowledge-based features to si- 

multaneously detect multiple conditions: circadian rhythm, pulse 

pressure, and morning surge. 

3. Results 

In this section, we present the experimental setup alongwith 

acquired results to validate the performance of the proposed 

model. Section 3.1 explains the dataset used to perform the exper- 

iments and Section 3.2 explains all the tools and techniques used 

to perform the experiments. 

3.1. Dataset 

The dataset D t [15] used for experiments is a multi-label mixed 

gender ambulatory blood pressure dataset having multiple labels 

for each instance. We have considered a subset of labels to validate 

our proposed technique related to cardiovascular disorder and dis- 

carded unrelated labels. The selected labels were circadian rhythm, 

pulse pressure, and morning surge. All labels have two classes: 

true and false. Circadian rhythm has 97 true cases and 173 false 

cases; pulse pressure has 232 true cases and 38 false cases; morn- 

ing surge has 37 true cases and 233 false cases. Circadian rhythm 

relates to the absence of nocturnal blood pressure decrease. Nor- 

mally, during sleep blood pressure is 10 − 20% less than the day 

time blood pressure [16] . However, in some cases, this decrease in 

blood pressure is absent (0 − 10%) . This absence may increase the 

risk of cardiovascular disorders. The second label, pulse pressure, is 

the difference between systolic blood pressure and diastolic blood 

pressure [17] . The difference indicates cardiovascular problems in 

elderly persons. If this difference is more than 50 mm Hg then 

it is an alarming situation for hypertensive patients older than 50 

years. The third label, morning surge, is a measurement of the rise 

in blood pressure from its lowest value during sleep to the first 2 

hours after wakeup [18] . With these labels, we define our label set 

as L = { l 1 , l 2 , l 3 } . The remainder of the dataset is described by 40 

attributes which are mainly based on ambulatory blood pressure 

readings such as average systolic and diastolic blood pressure read- 

ings over 24 hours, day time systolic and diastolic measurements, 

night time systolic and diastolic blood pressure measurements, day 

and night time blood pressure systolic and diastolic load values, 

maximum and minimum systolic and diastolic blood pressure val- 

ues. Each row in the dataset represents one person with a numer- 

ical value of the attribute. 

3.2. Implementation 

We have implemented the framework shown in Fig. 1 in Python 

by primarily using two libraries: Scikit-learn [19] and Scikit- 

multilearn [20] . We have used scikit-learn functions for machine 

learning techniques: MultinomialNB (Naïve Bayes) classifier, Ran- 

domForestClassifier, and KNeighborsClassifier. RAkEL (RAndom k 

labELsets) [11] technique is used to implement the multi-label en- 

vironment. RAkEL is an extension of the well known multi-label 

classification powerset technique. In the case of powerset, each dis- 

tinct set of label is considered as a class and the machine learn- 

ing model tries to learn one labelset. In this way, the multi-label 

classification is actually transformed into single label classification. 

However, the complexity of powerset technique increases as the 

number of distinct labelset patterns increases. To solve this prob- 

lem, RAkEL divides the initial set of labels into smaller random k 

subsets and the machine learning technique try to find association 

between features and label subsets. 

3.3. Experimental results 

The results obtained from the experiments are shown in 

Table 4 . We evaluated the performance of each technique using 

Precision, Recall, F1-score, Hamming loss, Jaccard score. Mathemat- 

ically,Precision, Recall, and F1-score are defined by the following 

equations. 

P recision = 

T P 

(T P + F P ) 
(4) 

Recall = 

T P 

(T P + F N) 
(5) 

F 1 = 2 · (precision · recal l ) 

(precision + recal l ) 
(6) 

Table 4 shows the score obtained for different machine learn- 

ing techniques along with the aacquired parameter settings, where 

required. Fig. 2 shows the graphical representation of scores men- 

tioned in Table 4 . The approach is validated using k -fold cross val- 

idation with k = 10 folds is fixed for each techniques. The dataset 

is divided into 10 equal parts and in each iteration 9 sets are used 

to train the algorithm and 1 set is used to test learned model. 

After observing the results mentioned in Table 4 , we can easily 

conclude that the decision tree based method has performed well 

for the proposed technique. The F1-score score obtained using Ran- 

dom Forest is 0.918. Random forest is a powerful classifier based 

on the decision tree algorithm and its voting method selects the 

best performing classifier based on bootstrapping applied to the 

relevant dataset. The KNN algorithm performs a little worse than 

decision tree with an F1-score score as 0.86. However, Naive Bayes 

performance is quite low as compared to other classifiers with the 

F1-score score of 0.83. 

Table 3 

List of original features [15] . 

List of original features 

BPS-24, BPD-24, BPS-Day24, BPD-Day24, BPS-Night24, BPD-Night24, BPS-load-Day, BPD-load-Day, BPS-load-Night, BPD-load-Night, 

Max-Sys, Min-Sys, Max-Dia, Min-Dia, BPS-CV-all, BPD-CV-all, BPS-CV-Day, BPD-CV-Day, BPS-CV-Night, BPD-CV-Night, BPS-wakeUp, BPD-wakeUp, 

low-BPS-Night, low-BPD-Night, Age, Sex, Height, Weight 
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Table 4 

Performance evaluation metric for multi-label classification. 

Algorithm Precision Recall F1 Hamming Loss Jaccard Score Parameters 

Naïve Bayes 0.82 0.856 0.835 0.183 0.72 - 

Random Forest 0.903 0.933 0.918 0.127 0.75 estimators = 20, criterion = gini 

KNN 0.879 0.855 0.86 0.157 0.74 k = 5, metric = Minkowski, p = 1.5 

Fig. 2. Graphical representation of the obtained results. 

4. Discussion 

Knowledge-driven feature engineering has been used in sev- 

eral health-related studies in the literature. J. Nahar et al. have 

presented a comparison between an automated feature selection 

method and knowledge-based feature selection method and have 

shown that knowledge based feature selection method improves 

the performance of the prediction model in terms of accuracy (up 

to 97% in some cases) [21] . Knowledge-driven feature engineering 

is used in various medical domains including cancer diagnosis, ra- 

diography, ultrasound, MRI, clinical text reports, and sensor-based 

health monitoring in general. For example, H. Feng et al. have 

used domain knowledge to guide the feature learning process for 

deep learning models in breast cancer diagnosis [22] . Often lim- 

ited amount of labelled data is available in the medical domain 

because a smaller number of participants are willing to share their 

personal data due to privacy reasons. In such cases, prior knowl- 

edge about the feature-label distribution is helpful to improve the 

accuracy of the model even having a small amount of data avail- 

able for training purpose. S. Boluki et al. proposed a method which 

uses biological prior knowledge of feature-label distribution to de- 

velop an optimized Bayesian classification model for gene regula- 

tory data [23] . A. Wilcox et al. have studied the effects of expert 

knowledge on inductive learning for medical text report classifica- 

tion and found that acquired knowledge significantly contributes 

to the performance of clinical classification task [24] , where the 

predictive models comparatively performed worst when domain 

knowledge is not considered (p < . 001) . In another case study, au- 

thors studied the effect of including knowledge into the feature 

engineering process, prior to applying machine learning models on 

the data acquired from severe asthma patients [9] . The study con- 

cludes that incorporating knowledge has reduced the complexity 

of the computational model and also improved the performance of 

the predictive model, where the change in area under the curve 

� AUC was ≤ 0 . 03 obtained from all the considered modelling ap- 

proaches. 

The second objective of our proposed model is to use 

knowledge-driven features to solve a multi-label classification 

[25] problem in which multiple indicators are associated with 

the extracted knowledge-based features. Multi-label classification 

is useful in the medical domain as often the available clinical 

data reflects multiple symptoms required to diagnose a disorder. 

In the medical domain, multi-label classification has been widely 

used to classify text and image data linked to multiple indicators. 

For example, J. Du et al. proposed ML-Net, a deep learning based 

framework for multi-label classification of biomedical text [26] . H. 

Chougrad et al. have used multi-label image classification to diag- 

nose early stages of breast cancer [27] . However, limited work has 

been done in cardiovascular and blood pressure disorder detection 

using multi-label classification. Multi-label classification for elec- 

trocardiography (ECG) data was presented by Z. Sun et al. in which 

an ensemble classifier is applied on the multi-label ECG data [28] . 

In another work K. Doubi et al. have applied multi-label classifica- 

tion on ABPM dataset to detect multiple symptoms [15] with an 

average F 1 − score = 0 . 92 . They presented their results for many 

multi-label classification techniques such as binary relevance, label 

powerset, and RAndom k-labELsets (RAkEL), while using decision 

tree as the base algorithm for classification. This research work 

provides the basics for our proposed model. Their work is based 

on data-driven feature extraction, whereas our proposed model 

relies on knowledge-driven features for the detection of multi- 

ple hypertension symptoms. The obtained results show that, with 

knowledge-driven features, we can achieve an optimum detection 

performance by only using 8 features, in comparison to 40 features 

used in the original dataset. Douibi et al. [15] et al. reported an ac- 

curacy per label for circadian rhythm, pulse pressure, and morning 

surge of 0.985, 0.856, and 0.837 using RAKEL, as well as general 

hamming loss of 0.064 and F1 (micro averaged) of 0.953. Our ob- 

jective is to show that, by including a knowledge-driven feature 

engineering step in the learning process, the feature-set could be 

significantly reduced (5-times compared to the original feature-set, 

in the studied case [15] ) without a major impact on the overall 
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performance. The F1-score scores show that knowledge-driven fea- 

tures has given satisfactory performance for multi-label classifica- 

tion. Our approach transforms the numeric hypertension measure- 

ments into an understandable format, which not only plays a role 

in ”correct” learning of the model but also provides clinicians with 

an abstract representation of the features for the better under- 

standing and fine-tuning of the model. Knowledge-driven feature 

extraction could also reduce the complexity of learning as evident 

from the results that we have achieved almost similar performance 

while using 8 knowledge-driven features as compared to 40 data- 

driven features. Often feature reduction is required to implement 

the technique on resource constrained devices such as a micro- 

controller and a raspberry-pi for a wearable edge device. Hence, 

with knowledge enriched features , we can achieve a good perfor- 

mance in terms of feature interpretability (or abstract representa- 

tion of data for better understanding for clinicians), machine learn- 

ing complexity, feature reduction, reduced learning time, and most 

important embedding knowledge to obtain a clinical correct/fine- 

tuned model to detect multiple symptoms. We can further en- 

hance the detection performance of the model by adding rele- 

vant knowledge, however, it depends on the availability of data 

as well as domain experts’ knowledge. While the application of 

knowledge-driven feature engineering for medical applications has 

been considered in some case studies in literature (as mentioned 

in Section 4 ), this is the first time that this approach, as well as 

multi-label classification, is applied together to a blood pressure- 

related study. 

This study has some limitations related to acquiring domain 

knowledge, quality of available data, increase in model complex- 

ity as the number of descriptive features increases, and time con- 

sumption in manual rule formulation. Our proposed approach is 

based on manual knowledge acquisition which gives us precision, 

however, the overall process becomes tedious as the number of 

descriptive features increases. An extension of this work is possi- 

ble by applying automatic rule extraction methods for text mining 

on reliable medical knowledge sources. Text mining can automat- 

ically discover a range of rules to produce new knowledge-driven 

features. However, quality of these rules must be examined by a 

medical expert to ensure robust knowledge-driven features for the 

training purpose. 

5. Conclusion 

In conclusion, we have shown that the proposed approach 

based on knowledge-driven feature engineering and multi-label 

classification could correctly classify multiple symptoms related 

to blood pressure measurements. This proposed approach may be 

useful in tackling several problems in medical prediction models, 

such as white-box transparency, feature reduction, fine-tuning of 

descriptive features by including experts’ knowledge in the detec- 

tion process, and allowing the model to detect multiple disorders. 

We have achieved satisfactory classification results for three con- 

ditions: circadian rhythm, pulse pressure, and morning surge using 

Random forest, KNN, and Naive Bayes techniques. The detection of 

each of these may translate into improved clinical assessment of 

patients with hypertension, in the detection of the presence of hy- 

pertension, in the assessment of the adequacy of the therapeutic 

response to lifestyle and medications, and in the prevention of the 

complications associated with hypertension. 
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