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Abstract 

The purpose of this research is to perform statistical data analysis of currently manually collected data in an area of the industrial 
manufacturing organisation employed in this study that is not digitalised to show the value that can be achieved through 
digitalisation. The insights gained through analysis of the data can be used to drive decision making in relation to the 
optimisation of input parameters to minimise the level of defective parts. The parts under investigation in this study were ceramic 
shells used in the manufacturing process of orthopaedic metal implants.   The ceramic shell is a crucial element in the investment 
casting process because molten metal is poured into the ceramic shell to form the shape of the metal orthopaedic implant. Hence, 
by minimising the number of defective ceramic shells, there are fewer defective metal implants produced, resulting in cost 
savings and increased efficiency of the manufacturing process. A number of scientific questions to establish the relationship 
between the quantity of scrapped products and the level of the silica component in the ceramic slurry were defined and a series of 
independent t-tests were conducted to address these questions. The results from the t-tests showed the statistically optimal 
percentage of silica in the binder of the ceramic slurry to minimise the rate of a particular scrap type caused by thin or weak areas 
of the shell. These results demonstrate the value of analysing digital data relating to the manufacturing process to understand 
relationships between parameters in the manufacturing process and effectively root-cause scrap outputs. The results from the 
analysis gave rise to the implementation of a digitalised data collection system that allows continuous monitoring of the 
components in the ceramic slurry to ensure they are in the optimal specified range. Hence, the quality and yield rate of the 
orthopaedic implants are maintained at a high level. The digital data collection system also acts as a resource containing 
historical data for further potential scrap root-cause analysis.  
Keywords: Digitalisation; Industry 4.0; Manufacturing, Data Analytics 

1. Introduction 

The German initiative “Industrie 4.0” is a strategic approach to the digitalisation of manufacturing. Digitalisation 
allows deeper insight into complex manufacturing processes, which is crucial, as only the organisations that can 
analyse their business operations and control their processes using data driven decision making will remain 
competitive in this digital era [1]. It is vital that organisations prepare for the challenges and take advantage of the 
benefits brought about by the digitalisation of the supply chain. Digitalisation refers to the integration of digital data 
(brought about by digitisation) with advanced technologies to optimise processes [2]. By creating a connected 
environment through digitalisation, businesses can extract and use key information from their processes in real-time 
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to inform decision-making, resulting in improved supply chain management and performance [3]. The digitisation of 
production systems has been stated in research to have a positive influence on supply chain performance  and has 
become an imperative part of organisation’s transitioning process to Industry 4.0 [4]. A key benefit of the digitisation 
of manufacturing processes is the ability to use analytics to extract insights and key information to aid decision-making 
[6][7]. Traditional supply chains will all eventually face the challenge of updating to a digital supply chain [4]. One 
of the biggest challenges with the digitalisation of the supply chain is to write a defendable business case with uncertain 
outcomes and justify the additional costs [4][8]. There is hesitation amongst decision-makers regarding the efficiencies 
promised as a result of digitalizing manufacturing processes [8][9][10]. The aspect of Industry 4.0 focused on in this 
study is big data analytics. The objective of this research was to employ statistical techniques to identify if 
relationships exist using historical manually collected data. Insights found from the analysis could then be used as 
leverage to validate the need for the implementation of a digital data acquisition system. The data used for the analysis 
is currently manually collected, stored in an Excel file and is not connected to other data sources or accessible to the 
wider organisation. In summary, statistical analysis was conducted to gain insights into the relationships within the 
manufacturing process, which led to a clear justification for the implementation of a data acquisition system. This 
system allows the input parameters to be carefully monitored in real-time such that they can then be optimised to 
produce the best possible yield rate and aid in the beginning of the transition to Industry 4.0. Section 2 describes the 
manufacturing process in detail. Section 3 gives an overview of the methods used for data analysis and the scientific 
questions that were set for the study. Section 4 gives the results for the statistical analysis. Section 5 provides a 
discussion of the results found and the system implemented. Section 6 summarises the conclusion and findings from 
the study.  

2. Manufacturing process description 

The organisation in this study is located in Ireland and is one of the world’s largest manufacturers of orthopaedic 
implants. They manufacture orthopaedic products for joint replacement, trauma, spine, sports medicine and others. 
The value stream in this use case is a foundry, which employs investment casting (also known as precision casting) 
methods to manufacture components of biomedical joint replacements. A foundry is a process in which castings are 
produced by melting metal, pouring liquid metal into a mould and then allowing it to solidify. The basic principles of 
an investment casting process are illustrated in [11]. 
 

 

Figure 1. Basic principles of investment casting process 
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  Investment casting uses mobile ceramic slurry to produce moulds with very smooth finishes [12]. This makes them 
suitable for use in automotive, aerospace and biomedical industries [13]. The ceramic shell is made by dipping a 
precise wax pattern usually 4-6 times into the slurry to build the layers of the ceramic shell. Each shell coat is dried 
for a set number of hours with controlled humidity, temperature and airflow [14]. After the wax pattern has been 
dipped into the ceramic slurry, it is sprinkled with a coarse refractory stucco and dried [11]. When the ceramic shell 
is complete, the wax is removed, usually with a steam autoclave, and filled with molten metal that solidifies inside the 
shell [11]. The ceramic shell is then removed mechanically to obtain the metal part. The investment casting technique 
has a number of advantages, including accuracy, versatility and integrity [11]. However, it is a labour intensive, time-
consuming process and one study found that the production of larger moulds using silica bonded ceramics resulted in 
failure rates up to 40% [15]. Research in this area has stated that “it is becoming imperative that the investment casting 
industry improves current casting quality and reduces manufacturing costs” and that “optimisation of the mechanical 
and physical properties of the ceramic shell will be fundamental to achieving these aims” [15]. The production of the 
ceramic shell is a critical part of the investment casting process [11]. The prime coat of the ceramic is the most 
important as it is in contact with the metal and it must maintain strength and surface integrity during the casting process 
[16]. There are a number of key requirements for the ceramic shell in investment casting, including but not limited to, 
sufficient fired strength to withstand the weight of the metal, high thermal shock resistance to prevent cracking during 
metal pouring and sufficient permeability to allow heat transfer to allow the metal to cool [11]. The shell dipping 
process can take between 40-60 hours, making it a significant rate-limiting factor and costly process [17]. The ceramic 
slurry is composed of a refractory flour and a colloidal binder system [17]. The ingredients in the slurry play a crucial 
role in the properties of the shell [18]. In the investment casting industry, colloidal silica is the most popular binder 
used and it makes up the main part of the shell mould [16]. These colloidal silica binders usually contain between 
20% w/w  and 30% w/w amorphous silicon dioxide (SiO2) particles and a typical level used in the primary slurry is 
26% SiO2 [11]. The SiO2 particles are stabilised by Na+ counter ions which encourages crystallisation to produce a 
ceramic shell with the required strength to withstand metal casting [19]. The structural response of the mould lies 
within the mechanical properties of the binder system [19]. Silica represents the percentage of silica in the binder [11].  
 

It is difficult to avoid the occurrence of defects taking place in the investment casting manufacturing process [20]. 
Defects are often caused by non-optimal settings of process parameters and there is a need for determining the optimal 
specification values for these parameters to ensure casting quality [20]. A number of approaches have been taken in 
attempt to determine the cause of investment casting defects, including cause-effect diagram [21], expert system [22], 
artificial neural network [23], computerised simulation [24] and Design of Experiment [25]. However, the 
development of many of these approaches requires a significant effort and considerable domain knowledge [20]. 
Furthermore, computerized simulation and Design of Experiment may prove effective in a research setting, however, 
in practice they are unsuitable and problematic to implement in industry [20]. The use of Bayesian inference in the 
application of foundry data analytics has been shown to be easy to implement and has been successful in identifying 
the optimal range of process parameters to prevent defects [20]. Other research agrees that the data analysis of 
historical data is required to aid the reduction of defective parts in an investment casting facility [26]. It also argues 
that a data acquisition system is required to automatically capture and monitor data for the major parameters in 
shelling, such as, the viscosity, the slurry temperature, the slurry pH and the drying time [26]. This research found the 
penalty matrix data analysis to be useful in helping to reduce the rejection of parts and find the optimal parameter 
ranges [26]. However, this research did not highlight the level of silica in the binder as a major parameter for analysis. 
This study proposes a type of statistical analysis that has not been seen in literature, a series of independent t-tests, to 
determine if the level of silica in the binder of the ceramic slurry is related to the number of defective products.  

3. Methodology 

The data used in this analysis is the process output data for the batches produced in the Foundry of the organisation 
for an eight week period in 2021. A change was made to the SiO2 level in the prime slurry to test if there is a difference 
in the average level of the three most common scrap types for the foundry value stream. A one week difference was 
included between the scrap data and the testing data for silicon dioxide levels that allows for the time lag from when 
the products are dipped in the first prime slurry to when they are recorded as scrap on the manufacturing system. The 
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SiO2 level is the % SiO2 of the binder solids in the slurry mixture for the first prime slurry. The organisation in this 
study works within a tighter limit of the typical industry range of 22%-32% SiO2 [11]. Of the 8 weeks of scrap data, 
the first four weeks had an average SiO2 level of X% (level 1) and the last four weeks had SiO2 levels of Y% (level 
2) as seen in Table 1. The labels X% and Y% are used to represent the actual numerical values of the silica levels 
during this time period as it is sensitive information to the organization. Level 1 had a higher level of SiO2 in the 
binder and Level 2 had a lower level of SiO2 in the binder. The difference in Level 1 and Level 2 of SiO2 is 8.2% as 
shown in Equation 1. For the reminder of the paper, the levels of SiO2 are referred to as Level 1 and Level 2 for 
simplicity.  

Table 1. Upper and lower level of SiO2. 

Level Time Period % SiO2 

Level 1 (Upper level) Week 1-4 X%  

Level 2 (Lower level) Week 5-8 Y%   

 

    
𝑋𝑋%−𝑌𝑌%

𝑋𝑋%  ×  100 =  8.2%           (1) 

 

The goal of the statistical analysis in this project was to investigate a set of scientific questions relating to the data 
to find potential insights into possible relationships between the silica level in the first prime and the rate of defective 
parts. The three most common scrap types for the foundry manufacturing process were selected for analysis. As this 
scrap information is sensitive to the organisation, they will be referred to as Scrap Type I, Scrap Type II and Scrap 
Type III. All three of these scrap reasons relate to the quality of the ceramic shell. The scientific questions were defined 
so as to determine if the level of silica in the binder of the ceramic slurry had a relationship with any of the three scrap 
types. The first three scientific questions were as follows:  
 

1. Is there a difference between the mean quantity of Scrap Type I at level 1 (upper level) of SiO2 and at level 
2 (lower level) of SiO2? 

2. Is there a difference between the mean quantity of Scrap Type II at level 1 (upper level) of SiO2 and at level 
2 (lower level) of SiO2? 

3. Is there a difference between the mean quantity of Scrap Type III at level 1 (upper level) of SiO2 and at level 
2 (lower level) of SiO2? 

 
SPSS (a statistical software platform) was used to address the questions described in the introduction. This platform 

was used to perform descriptive analysis of the data and perform statistical significance tests. This section outlines the 
data analysis approach that was used for each question.  
 
Q1: Is there a difference between the mean quantity of Scrap Type I at level 1 (upper level) of SiO2 and at level 2 
(lower level) of SiO2? 
 

An independent t-test was conducted using SPSS to test if there is a difference in the average number of defective 
parts with Scrap Type I per batch when SiO2 is at level 1 (upper level) and at level 2 (lower level). An independent 
samples t-test is an appropriate test to use for each of the four set questions in this study as it is used to estimate 
whether the mean value of an outcome variable is significantly different between two groups of experimental units 
[27]. Experimental units are the units e.g. people or objects, to which the treatment is applied in the experimental 
study. The independent samples t-test is typically used when the outcome variable is a continuous variable and the 
explanatory variable is binary, in that it takes only two values [27]. The data used for this test originates from the 
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  Investment casting uses mobile ceramic slurry to produce moulds with very smooth finishes [12]. This makes them 
suitable for use in automotive, aerospace and biomedical industries [13]. The ceramic shell is made by dipping a 
precise wax pattern usually 4-6 times into the slurry to build the layers of the ceramic shell. Each shell coat is dried 
for a set number of hours with controlled humidity, temperature and airflow [14]. After the wax pattern has been 
dipped into the ceramic slurry, it is sprinkled with a coarse refractory stucco and dried [11]. When the ceramic shell 
is complete, the wax is removed, usually with a steam autoclave, and filled with molten metal that solidifies inside the 
shell [11]. The ceramic shell is then removed mechanically to obtain the metal part. The investment casting technique 
has a number of advantages, including accuracy, versatility and integrity [11]. However, it is a labour intensive, time-
consuming process and one study found that the production of larger moulds using silica bonded ceramics resulted in 
failure rates up to 40% [15]. Research in this area has stated that “it is becoming imperative that the investment casting 
industry improves current casting quality and reduces manufacturing costs” and that “optimisation of the mechanical 
and physical properties of the ceramic shell will be fundamental to achieving these aims” [15]. The production of the 
ceramic shell is a critical part of the investment casting process [11]. The prime coat of the ceramic is the most 
important as it is in contact with the metal and it must maintain strength and surface integrity during the casting process 
[16]. There are a number of key requirements for the ceramic shell in investment casting, including but not limited to, 
sufficient fired strength to withstand the weight of the metal, high thermal shock resistance to prevent cracking during 
metal pouring and sufficient permeability to allow heat transfer to allow the metal to cool [11]. The shell dipping 
process can take between 40-60 hours, making it a significant rate-limiting factor and costly process [17]. The ceramic 
slurry is composed of a refractory flour and a colloidal binder system [17]. The ingredients in the slurry play a crucial 
role in the properties of the shell [18]. In the investment casting industry, colloidal silica is the most popular binder 
used and it makes up the main part of the shell mould [16]. These colloidal silica binders usually contain between 
20% w/w  and 30% w/w amorphous silicon dioxide (SiO2) particles and a typical level used in the primary slurry is 
26% SiO2 [11]. The SiO2 particles are stabilised by Na+ counter ions which encourages crystallisation to produce a 
ceramic shell with the required strength to withstand metal casting [19]. The structural response of the mould lies 
within the mechanical properties of the binder system [19]. Silica represents the percentage of silica in the binder [11].  
 

It is difficult to avoid the occurrence of defects taking place in the investment casting manufacturing process [20]. 
Defects are often caused by non-optimal settings of process parameters and there is a need for determining the optimal 
specification values for these parameters to ensure casting quality [20]. A number of approaches have been taken in 
attempt to determine the cause of investment casting defects, including cause-effect diagram [21], expert system [22], 
artificial neural network [23], computerised simulation [24] and Design of Experiment [25]. However, the 
development of many of these approaches requires a significant effort and considerable domain knowledge [20]. 
Furthermore, computerized simulation and Design of Experiment may prove effective in a research setting, however, 
in practice they are unsuitable and problematic to implement in industry [20]. The use of Bayesian inference in the 
application of foundry data analytics has been shown to be easy to implement and has been successful in identifying 
the optimal range of process parameters to prevent defects [20]. Other research agrees that the data analysis of 
historical data is required to aid the reduction of defective parts in an investment casting facility [26]. It also argues 
that a data acquisition system is required to automatically capture and monitor data for the major parameters in 
shelling, such as, the viscosity, the slurry temperature, the slurry pH and the drying time [26]. This research found the 
penalty matrix data analysis to be useful in helping to reduce the rejection of parts and find the optimal parameter 
ranges [26]. However, this research did not highlight the level of silica in the binder as a major parameter for analysis. 
This study proposes a type of statistical analysis that has not been seen in literature, a series of independent t-tests, to 
determine if the level of silica in the binder of the ceramic slurry is related to the number of defective products.  

3. Methodology 

The data used in this analysis is the process output data for the batches produced in the Foundry of the organisation 
for an eight week period in 2021. A change was made to the SiO2 level in the prime slurry to test if there is a difference 
in the average level of the three most common scrap types for the foundry value stream. A one week difference was 
included between the scrap data and the testing data for silicon dioxide levels that allows for the time lag from when 
the products are dipped in the first prime slurry to when they are recorded as scrap on the manufacturing system. The 
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SiO2 level is the % SiO2 of the binder solids in the slurry mixture for the first prime slurry. The organisation in this 
study works within a tighter limit of the typical industry range of 22%-32% SiO2 [11]. Of the 8 weeks of scrap data, 
the first four weeks had an average SiO2 level of X% (level 1) and the last four weeks had SiO2 levels of Y% (level 
2) as seen in Table 1. The labels X% and Y% are used to represent the actual numerical values of the silica levels 
during this time period as it is sensitive information to the organization. Level 1 had a higher level of SiO2 in the 
binder and Level 2 had a lower level of SiO2 in the binder. The difference in Level 1 and Level 2 of SiO2 is 8.2% as 
shown in Equation 1. For the reminder of the paper, the levels of SiO2 are referred to as Level 1 and Level 2 for 
simplicity.  

Table 1. Upper and lower level of SiO2. 

Level Time Period % SiO2 

Level 1 (Upper level) Week 1-4 X%  

Level 2 (Lower level) Week 5-8 Y%   

 

    
𝑋𝑋%−𝑌𝑌%

𝑋𝑋%  ×  100 =  8.2%           (1) 

 

The goal of the statistical analysis in this project was to investigate a set of scientific questions relating to the data 
to find potential insights into possible relationships between the silica level in the first prime and the rate of defective 
parts. The three most common scrap types for the foundry manufacturing process were selected for analysis. As this 
scrap information is sensitive to the organisation, they will be referred to as Scrap Type I, Scrap Type II and Scrap 
Type III. All three of these scrap reasons relate to the quality of the ceramic shell. The scientific questions were defined 
so as to determine if the level of silica in the binder of the ceramic slurry had a relationship with any of the three scrap 
types. The first three scientific questions were as follows:  
 

1. Is there a difference between the mean quantity of Scrap Type I at level 1 (upper level) of SiO2 and at level 
2 (lower level) of SiO2? 

2. Is there a difference between the mean quantity of Scrap Type II at level 1 (upper level) of SiO2 and at level 
2 (lower level) of SiO2? 

3. Is there a difference between the mean quantity of Scrap Type III at level 1 (upper level) of SiO2 and at level 
2 (lower level) of SiO2? 

 
SPSS (a statistical software platform) was used to address the questions described in the introduction. This platform 

was used to perform descriptive analysis of the data and perform statistical significance tests. This section outlines the 
data analysis approach that was used for each question.  
 
Q1: Is there a difference between the mean quantity of Scrap Type I at level 1 (upper level) of SiO2 and at level 2 
(lower level) of SiO2? 
 

An independent t-test was conducted using SPSS to test if there is a difference in the average number of defective 
parts with Scrap Type I per batch when SiO2 is at level 1 (upper level) and at level 2 (lower level). An independent 
samples t-test is an appropriate test to use for each of the four set questions in this study as it is used to estimate 
whether the mean value of an outcome variable is significantly different between two groups of experimental units 
[27]. Experimental units are the units e.g. people or objects, to which the treatment is applied in the experimental 
study. The independent samples t-test is typically used when the outcome variable is a continuous variable and the 
explanatory variable is binary, in that it takes only two values [27]. The data used for this test originates from the 
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organisation’s management execution system and includes all batches processed for the eight-week period in 2021. In 
this case, the other types of scrap have been set to zero to represent no Scrap Type I, as Scrap Type I is the response 
variable of interest. The outcome variable for this question is the quantity of Scrap Type I per batch. The explanatory 
variable in this question is the level of SiO2, this is a binary variable as the two groups are level 1 and level 2. The 
rejection of the null hypothesis of a two sample t-test indicates that the differences in means of the two groups is large 
and is not due to chance or sampling variation [27]. The hypothesis test to address this question is as follows: 

• H0: μ1 = μ2 (There is no difference in the average amount of defective parts with Scrap Type I per batch 
between products produced with the first prime at level 1 (upper level) and level 2 (lower level) of SiO2.) 

• HA: μ1 ≠ μ2 (There is a difference in the average amount of defective parts with Scrap Type I per batch 
between products produced with the first prime at level 1 (upper level) and level 2 (lower level) of SiO2.) 

The assumptions for the independent samples t-test are given in Table 2 (Watt, 2008). 

Table 2. Assumptions for independent t-test. 

Assumption Description 

1. Groups are independent 

2. Measurements are independent 

3. Outcome variable is on a continuous scale 

4. Outcome variable normally distributed in each group 

 
The first assumption for the groups to be independent is met as the batches produced with the first prime SiO2 at 

level 1 (upper level) were different batches to the batches produced with the first prime SiO2 at level 2 (lower level). 
This is true for all scientific questions set in this study. The second assumption for the measurements to be independent 
is also met as each batch is only included once in both the group of batches produced with the first prime SiO2 at level 
1 (upper level) and the group of batches produced with the first prime SiO2 at level 2 (lower level). This is true for all 
scientific questions set in this study. The assumption of the outcome variable being on a continuous scale is met, as 
the data in this study for the number of defective parts with Scrap Type I, Scrap Type II and Scrap Type III are 
quantitative. The fourth assumption for the independent samples t-test, is that the outcome variable must be normally 
distributed in each group. However, the independent t-test is robust to non-normality if the sample size is large (>30) 
[27]. This assumption is met for all scientific questions set out in this study, as all sample sizes are large (>30) [27]. 
The exact sample sizes used are given in the results section. 

 
Question 2: Is there a difference between the mean quantity of Scrap Type II at level 1 (upper level) of SiO2 and at 
level 2 (lower level) of SiO2? 
 

An independent t-test was conducted using SPSS to test if there is a difference in the average quantity of Scrap 
Type II per batch when SiO2 is at level 1 (upper level) and at level 2 (lower level). In this case, the other types of scrap 
have been set to zero to represent no Scrap Type II, as Scrap Type II is the response variable of interest in this question. 
The hypothesis test to address this question is as follows: 

• H0: μ1 = μ2 (There is no difference in the average quantity of Scrap Type II per batch between products 
produced with the first prime at level 1 (upper level) and level 2 (lower level) of SiO2.) 

• HA: μ2 ≠ μ2 (There is a difference in the average quantity of Scrap Type II per batch between products 
produced with the first prime at level 1 (upper level) and level 2 (lower level) of SiO2.) 

 
Question 3: Is there a difference between the mean quantity of Scrap Type III at level 1 (upper level) of SiO2 and at 
level 2 (lower level) of SiO2? 
 

An independent t-test was conducted using SPSS to test if there is a difference in the average quantity of Scrap 
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Type III per batch when SiO2 is at level 1 (upper level) and at level 2 (lower level). In this case, the other types of 
scrap have been set to zero to represent no Scrap Type III, as Scrap Type III is the response variable of interest for 
this question. The hypothesis test to address this question is as follows: 

• H0: μ1 = μ2 (There is no difference in the average quantity of Scrap Type III per batch between products 
produced with the first prime at level 1 (upper level) and level 2 (lower level) of SiO2.) 

• HA: μ1 ≠ μ2 (There is a difference in the average quantity of Scrap Type III per batch between products 
produced with the first prime at level 1 (upper level) and level 2 (lower level) of SiO2.) 

 

4. Results 

Question 1 
 
Table 3 presents descriptive statistics for the breakdown of the quantity of Scrap Type I at level 1 (upper level) and 

level 2 (lower level) of SiO2. The majority of data points are at the value zero Scrap Type I; this can be explained by 
the fact that the data is from a manufacturing process with the majority of batches going through the process without 
defective (scrap) parts. Table 3. (iii) presents the results from the independent t-test conducted to address the first 
question. The t-test assumes equal variances. A useful guide is that one standard deviation should not be more than 
twice the other standard deviation. In this case the standard deviation of 0.635 units at level 1 (upper level) is more 
than twice the standard deviation of 0.266 units at level 2 (lower level). Therefore, the results from the t-test in which 
equal variances are not assumed in the second row of the results will be used. The results indicate that the H0 (i.e. that 
there is no difference in mean Scrap Type I per batch between products produced with the first prime at level 1 (upper 
level) and level 2 (lower level) of SiO2) can be rejected as the significance or p-value <0.01. This leads to the 
conclusion that there is a statistically significant difference in the mean quantity of Scrap Type I (per batch) between 
high levels of SiO2 and low levels of silica.  The mean quantity of Scrap Type I with SiO2 at level 2 (lower level) is 
lower than the mean quantity of scrap when SiO2 is at level 1 (upper level). The mean quantity of Scrap Type I at the 
higher levels of SiO2 (level 1), is 0.12 units with a standard deviation of 0.635 units and the mean quantity of Scrap 
Type I at lower levels of silica (level 2), is 0.03 units with a standard deviation of 0.266 units as seen in Table 3. (ii). 
The difference in the mean quantity Scrap Type I is 0.09 units with a standard deviation of 0.006 units. The 95% 
confidence interval is 0.078 units to 0.1 units. The sample size of batches produced with SiO2 at level 1 (upper level) 
is 13869 and the sample size of the batches produced with SiO2 at level 2 (lower level) is 15637. 

Table 3. (i) Frequencies of Scrap Type I quantity at level 1 and level 2 of SiO2. 

Scrap 
Quantity 

Level 1 Level 2 Total  

0 13135 15300 28435 

1 290 208 498 

2 187 84 271 

3 117 30 147 

4 66 10 76 

5 38 4 42 

6 16 0 16 

7 14 1 15 

8 2 0 2 

9 4 0 4 

Total 13869 15637 29506 
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organisation’s management execution system and includes all batches processed for the eight-week period in 2021. In 
this case, the other types of scrap have been set to zero to represent no Scrap Type I, as Scrap Type I is the response 
variable of interest. The outcome variable for this question is the quantity of Scrap Type I per batch. The explanatory 
variable in this question is the level of SiO2, this is a binary variable as the two groups are level 1 and level 2. The 
rejection of the null hypothesis of a two sample t-test indicates that the differences in means of the two groups is large 
and is not due to chance or sampling variation [27]. The hypothesis test to address this question is as follows: 

• H0: μ1 = μ2 (There is no difference in the average amount of defective parts with Scrap Type I per batch 
between products produced with the first prime at level 1 (upper level) and level 2 (lower level) of SiO2.) 

• HA: μ1 ≠ μ2 (There is a difference in the average amount of defective parts with Scrap Type I per batch 
between products produced with the first prime at level 1 (upper level) and level 2 (lower level) of SiO2.) 

The assumptions for the independent samples t-test are given in Table 2 (Watt, 2008). 

Table 2. Assumptions for independent t-test. 

Assumption Description 

1. Groups are independent 

2. Measurements are independent 

3. Outcome variable is on a continuous scale 

4. Outcome variable normally distributed in each group 

 
The first assumption for the groups to be independent is met as the batches produced with the first prime SiO2 at 

level 1 (upper level) were different batches to the batches produced with the first prime SiO2 at level 2 (lower level). 
This is true for all scientific questions set in this study. The second assumption for the measurements to be independent 
is also met as each batch is only included once in both the group of batches produced with the first prime SiO2 at level 
1 (upper level) and the group of batches produced with the first prime SiO2 at level 2 (lower level). This is true for all 
scientific questions set in this study. The assumption of the outcome variable being on a continuous scale is met, as 
the data in this study for the number of defective parts with Scrap Type I, Scrap Type II and Scrap Type III are 
quantitative. The fourth assumption for the independent samples t-test, is that the outcome variable must be normally 
distributed in each group. However, the independent t-test is robust to non-normality if the sample size is large (>30) 
[27]. This assumption is met for all scientific questions set out in this study, as all sample sizes are large (>30) [27]. 
The exact sample sizes used are given in the results section. 

 
Question 2: Is there a difference between the mean quantity of Scrap Type II at level 1 (upper level) of SiO2 and at 
level 2 (lower level) of SiO2? 
 

An independent t-test was conducted using SPSS to test if there is a difference in the average quantity of Scrap 
Type II per batch when SiO2 is at level 1 (upper level) and at level 2 (lower level). In this case, the other types of scrap 
have been set to zero to represent no Scrap Type II, as Scrap Type II is the response variable of interest in this question. 
The hypothesis test to address this question is as follows: 

• H0: μ1 = μ2 (There is no difference in the average quantity of Scrap Type II per batch between products 
produced with the first prime at level 1 (upper level) and level 2 (lower level) of SiO2.) 

• HA: μ2 ≠ μ2 (There is a difference in the average quantity of Scrap Type II per batch between products 
produced with the first prime at level 1 (upper level) and level 2 (lower level) of SiO2.) 

 
Question 3: Is there a difference between the mean quantity of Scrap Type III at level 1 (upper level) of SiO2 and at 
level 2 (lower level) of SiO2? 
 

An independent t-test was conducted using SPSS to test if there is a difference in the average quantity of Scrap 
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Type III per batch when SiO2 is at level 1 (upper level) and at level 2 (lower level). In this case, the other types of 
scrap have been set to zero to represent no Scrap Type III, as Scrap Type III is the response variable of interest for 
this question. The hypothesis test to address this question is as follows: 

• H0: μ1 = μ2 (There is no difference in the average quantity of Scrap Type III per batch between products 
produced with the first prime at level 1 (upper level) and level 2 (lower level) of SiO2.) 

• HA: μ1 ≠ μ2 (There is a difference in the average quantity of Scrap Type III per batch between products 
produced with the first prime at level 1 (upper level) and level 2 (lower level) of SiO2.) 

 

4. Results 

Question 1 
 
Table 3 presents descriptive statistics for the breakdown of the quantity of Scrap Type I at level 1 (upper level) and 

level 2 (lower level) of SiO2. The majority of data points are at the value zero Scrap Type I; this can be explained by 
the fact that the data is from a manufacturing process with the majority of batches going through the process without 
defective (scrap) parts. Table 3. (iii) presents the results from the independent t-test conducted to address the first 
question. The t-test assumes equal variances. A useful guide is that one standard deviation should not be more than 
twice the other standard deviation. In this case the standard deviation of 0.635 units at level 1 (upper level) is more 
than twice the standard deviation of 0.266 units at level 2 (lower level). Therefore, the results from the t-test in which 
equal variances are not assumed in the second row of the results will be used. The results indicate that the H0 (i.e. that 
there is no difference in mean Scrap Type I per batch between products produced with the first prime at level 1 (upper 
level) and level 2 (lower level) of SiO2) can be rejected as the significance or p-value <0.01. This leads to the 
conclusion that there is a statistically significant difference in the mean quantity of Scrap Type I (per batch) between 
high levels of SiO2 and low levels of silica.  The mean quantity of Scrap Type I with SiO2 at level 2 (lower level) is 
lower than the mean quantity of scrap when SiO2 is at level 1 (upper level). The mean quantity of Scrap Type I at the 
higher levels of SiO2 (level 1), is 0.12 units with a standard deviation of 0.635 units and the mean quantity of Scrap 
Type I at lower levels of silica (level 2), is 0.03 units with a standard deviation of 0.266 units as seen in Table 3. (ii). 
The difference in the mean quantity Scrap Type I is 0.09 units with a standard deviation of 0.006 units. The 95% 
confidence interval is 0.078 units to 0.1 units. The sample size of batches produced with SiO2 at level 1 (upper level) 
is 13869 and the sample size of the batches produced with SiO2 at level 2 (lower level) is 15637. 

Table 3. (i) Frequencies of Scrap Type I quantity at level 1 and level 2 of SiO2. 

Scrap 
Quantity 

Level 1 Level 2 Total  

0 13135 15300 28435 

1 290 208 498 

2 187 84 271 

3 117 30 147 

4 66 10 76 

5 38 4 42 

6 16 0 16 

7 14 1 15 

8 2 0 2 

9 4 0 4 

Total 13869 15637 29506 
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Table 3. (ii) Descriptive statistics for Q1. 

 Level Count Mean Standard 
Deviation 

Standard 
Error Mean 

Scrap 
Quantity 

1 13869 0.12 0.635 0.005 

 2 15637 0.03 0.266 0.002 

 

Table 3. (iii) Results for independent samples t-test for Q1. 

  Levene’s Test for 
Equality of Variances 

  t-test for Equality of Means 95% Confidence 
Interval of the 
Difference 

  F Significance t df Significance 
(2-tailed) 

Mean 
Difference 

Standard 
Error 
Difference 

Lower Upper 

Scrap 
Quantity 

Equal 
variances 
assumed 

1036.178 0.000 16.110 29504 0.000 0.090 0.006 0.079 0.100 

 Equal 
variances 
not 
assumed 

  15.446 18120.323 0.000 0.090 0.006 0.078 0.101 

 
Question 2 
 
Table 4. (i) presents descriptive statistics for the breakdown of quantities of Scrap Type II at level 1 (upper level) 

and level 2 (lower level) of SiO2. In this case, the standard deviation of 1.293 units at level 1 (upper level) is not more 
than twice the standard deviation of 1.211 units at level 2 (lower level) as seen in Table 4. (ii). Therefore, the results 
from the t-test in which equal variances are assumed in the first row of the results in Table 4. (iii) will be used. The 
results from the independent t-test conducted to address the second question are given in Table 4. (iii) The results 
indicate that the H0 (i.e. that there is no difference in the average quantity of Scrap Type II per batch between products 
produced with the first prime SiO2 levels at level 1 (upper level) and level 2 (lower level)) cannot be rejected as the 
p-value = 0.998 (p>0.05). This leads to the conclusion that there is not a statistically significant difference in the mean 
quantity of Scrap Type II (per batch) between higher levels of SiO2 (level 1) and lower levels of SiO2 (level 2). The 
sample size of batches produced with SiO2 at level 1 (upper level) is 13869 and the sample size of the batches produced 
with SiO2 at level 2 (lower level) is 15637. 

Table 4. (i) Frequency of Scrap Type II quantity at level 1 and level 2 of SiO2. 

Scrap 
Quantity 

Level 1 Level 2 Total  

0 13715 15449 29164 

1 8 13 21 

2 8 6 14 

3 5 9 14 

4 28 20 48 

5 8 7 15 

6 12 20 32 
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7 3 8 11 

8 5 19 24 

9 0 4 4 

10 1 0 1 

11 0 1 1 

12 51 62 113 

21 1 0 1 

22 0 1 1 

23 0 1 1 

24 24 17 41 

Total 13869 15637 29506 

 

Table 4. (ii) Descriptive statistics for Q2. 

 Level Count Mean Standard 
Deviation 

Standard 
Error Mean 

Scrap 
Quantity 

1 13869 0.11 1.293 0.011 

 2 15637 0.11 1.211 0.010 

 

Table 4. (iii) Results for independent samples t-test for Q2. 

  Levene’s Test for 
Equality of Variances 

  t-test for Equality of Means 95% Confidence 
Interval of the 
Difference 

  F Significance t df Significance 
(2-tailed) 

Mean 
Difference 

Standard 
Error 
Difference 

Lower Upper 

Scrap 
Quantity 

Equal 
variances 
assumed 

0.000 0.984 0.003 29504 0.998 0.000 0.015 -0.029 0.029 

 Equal 
variances 
not 
assumed 

  0.003 28528.861 0.998 0.000 0.015 -0.029 0.029 

 
Question 3 
 

Table 5. (i) presents descriptive statistics for the breakdown of quantities of Scrap Type III at level 1 (upper level) and 
level 2 (lower level) of SiO2. In this case, the standard deviation of 0.636 units at level 1 (upper level) is not more than 
twice the standard deviation of 0.628 units at level 2 (lower level) as seen in Table 5. (ii). Therefore, the results from 
the t-test in which equal variances are assumed in the first row of the results in Table 5. (iii) will be used. The results 
from the independent t-test conducted to address the third question are given in Table 5 (iii). The results indicate that 
the H0 (i.e. that there is no difference in the average quantity of Scrap Type III per batch between the first prime SiO2 
at level 1 (upper level) and at level 2 (lower level), cannot be rejected as the p-value = 0.617 (p>0.05). This leads to 
the conclusion that there is not a statistically significant difference in the mean quantity of Scrap Type III (per batch) 
between higher levels of SiO2 (level 1) and lower levels of SiO2 (level 2). The sample size of batches produced with 
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Table 3. (ii) Descriptive statistics for Q1. 

 Level Count Mean Standard 
Deviation 

Standard 
Error Mean 

Scrap 
Quantity 

1 13869 0.12 0.635 0.005 

 2 15637 0.03 0.266 0.002 

 

Table 3. (iii) Results for independent samples t-test for Q1. 

  Levene’s Test for 
Equality of Variances 

  t-test for Equality of Means 95% Confidence 
Interval of the 
Difference 

  F Significance t df Significance 
(2-tailed) 

Mean 
Difference 

Standard 
Error 
Difference 

Lower Upper 

Scrap 
Quantity 

Equal 
variances 
assumed 

1036.178 0.000 16.110 29504 0.000 0.090 0.006 0.079 0.100 

 Equal 
variances 
not 
assumed 

  15.446 18120.323 0.000 0.090 0.006 0.078 0.101 

 
Question 2 
 
Table 4. (i) presents descriptive statistics for the breakdown of quantities of Scrap Type II at level 1 (upper level) 

and level 2 (lower level) of SiO2. In this case, the standard deviation of 1.293 units at level 1 (upper level) is not more 
than twice the standard deviation of 1.211 units at level 2 (lower level) as seen in Table 4. (ii). Therefore, the results 
from the t-test in which equal variances are assumed in the first row of the results in Table 4. (iii) will be used. The 
results from the independent t-test conducted to address the second question are given in Table 4. (iii) The results 
indicate that the H0 (i.e. that there is no difference in the average quantity of Scrap Type II per batch between products 
produced with the first prime SiO2 levels at level 1 (upper level) and level 2 (lower level)) cannot be rejected as the 
p-value = 0.998 (p>0.05). This leads to the conclusion that there is not a statistically significant difference in the mean 
quantity of Scrap Type II (per batch) between higher levels of SiO2 (level 1) and lower levels of SiO2 (level 2). The 
sample size of batches produced with SiO2 at level 1 (upper level) is 13869 and the sample size of the batches produced 
with SiO2 at level 2 (lower level) is 15637. 

Table 4. (i) Frequency of Scrap Type II quantity at level 1 and level 2 of SiO2. 

Scrap 
Quantity 

Level 1 Level 2 Total  

0 13715 15449 29164 

1 8 13 21 

2 8 6 14 

3 5 9 14 

4 28 20 48 

5 8 7 15 

6 12 20 32 
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7 3 8 11 

8 5 19 24 

9 0 4 4 

10 1 0 1 

11 0 1 1 

12 51 62 113 

21 1 0 1 

22 0 1 1 

23 0 1 1 

24 24 17 41 

Total 13869 15637 29506 

 

Table 4. (ii) Descriptive statistics for Q2. 

 Level Count Mean Standard 
Deviation 

Standard 
Error Mean 

Scrap 
Quantity 

1 13869 0.11 1.293 0.011 

 2 15637 0.11 1.211 0.010 

 

Table 4. (iii) Results for independent samples t-test for Q2. 

  Levene’s Test for 
Equality of Variances 

  t-test for Equality of Means 95% Confidence 
Interval of the 
Difference 

  F Significance t df Significance 
(2-tailed) 

Mean 
Difference 

Standard 
Error 
Difference 

Lower Upper 

Scrap 
Quantity 

Equal 
variances 
assumed 

0.000 0.984 0.003 29504 0.998 0.000 0.015 -0.029 0.029 

 Equal 
variances 
not 
assumed 

  0.003 28528.861 0.998 0.000 0.015 -0.029 0.029 

 
Question 3 
 

Table 5. (i) presents descriptive statistics for the breakdown of quantities of Scrap Type III at level 1 (upper level) and 
level 2 (lower level) of SiO2. In this case, the standard deviation of 0.636 units at level 1 (upper level) is not more than 
twice the standard deviation of 0.628 units at level 2 (lower level) as seen in Table 5. (ii). Therefore, the results from 
the t-test in which equal variances are assumed in the first row of the results in Table 5. (iii) will be used. The results 
from the independent t-test conducted to address the third question are given in Table 5 (iii). The results indicate that 
the H0 (i.e. that there is no difference in the average quantity of Scrap Type III per batch between the first prime SiO2 
at level 1 (upper level) and at level 2 (lower level), cannot be rejected as the p-value = 0.617 (p>0.05). This leads to 
the conclusion that there is not a statistically significant difference in the mean quantity of Scrap Type III (per batch) 
between higher levels of SiO2 (level 1) and lower levels of SiO2 (level 2). The sample size of batches produced with 
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SiO2 at level 1 (upper level) is 13869 and the sample size of the batches produced with SiO2 at level 2 (lower level) is 
15637. 

Table 5. (i) Frequency of Scrap Type III quantity at level 1 and level 2 of SiO2. 

Scrap 
Quantity 

Level 1 Level 2 Total  

0 12498 14078 26576 

1 768 825 1593 

2 8347 424 771 

3 148 188 336 

4 69 86 155 

5 20 25 45 

6 13 29 22 

7 3 1 4 

8 2 0 2 

9 0 1 1 

14 1 0 1 

Total 13869 15637 29506 

 

Table 5. (ii) Descriptive statistics for Q3. 

 Level Count Mean Standard 
Deviation 

Standard 
Error Mean 

Scrap 
Quantity 

1 13869 0.17 0.636 0.005 

 2 15637 0.18 0.628 0.005 

 

Table 5. (iii) Results for independent samples t-test for Q3. 

  Levene’s Test for 
Equality of Variances 

  t-test for Equality of Means 95% Confidence 
Interval of the 
Difference 

  F Significance t df Significance 
(2-tailed) 

Mean 
Difference 

Standard 
Error 
Difference 

Lower Upper 

Scrap 
Quantity 

Equal 
variances 
assumed 

0.989 0.320 -0.500 29504 0.617 -0.004 0.007 -0.018 0.011 

 

 Equal 
variances 
not 
assumed 

  -0.500 28997.242 0.617 -0.004 0.007 -0.018 0.011 

 
Development of Question 4 
 
The results from the t-test conducted to address the first question indicated that there is a statistically significant 

difference in the average quantity of Scrap Type I at level 1 (upper level) and level 2 (lower level) of SiO2. The insight 
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of the relationship between the level of SiO2 and the quantity of Scrap Type I led to the development of a further 
scientific question. The majority of Scrap Type I that occurred during the eight-week period was for a specific type 
of product. The name of this product is sensitive to the organisation; hence, it will be referred to as product family A. 
A fourth question was set to investigate if there is a difference in the average quantity of Scrap Type I for the product 
family A when SiO2 is at level 1 (upper level) and level 2 (lower level). The fourth scientific question addressed in 
this study was as follows: 
 

Question 4: Is there a difference between the mean quantity of Scrap Type I for product family A at level 1 (upper 
level) of SiO2 and at level 2 (lower level) of SiO2? 

 
An independent t-test was conducted using SPSS to test if there is a difference in the average quantity of Scrap 

Type I per batch for a specific type of product, product family A, when SiO2 is at level 1 (upper level) and at level 2 
(lower level). In this case, the other types of scrap have been set to zero to represent no Scrap Type I, as Scrap Type I 
is the response variable of interest. The hypothesis test to address this question is as follows: 

• H0: μ1 = μ2 (There is no difference in the average quantity of Scrap Type I per batch of product family A 
produced with the first prime at level 1 (upper level) and level 2 (lower level) of SiO2.) 

• HA: μ1 ≠ μ2 (There is a difference in the average quantity of Scrap Type I per batch of product family A 
produced with the first prime at level 1 (upper level) and level 2 (lower level) of SiO2.) 

 
 Table 6. (i) presents descriptive statistics for the breakdown of Scrap Type I for product family A at level 1 (upper 

level) and level 2 (lower level) of SiO2. In this case, the standard deviation of 1.131 units at level 1 (upper level) of 
SiO2 is more than twice the standard deviation of 0.521 units at level 2 (lower level) of SiO2 as seen in Table 6. (ii) 
Therefore, the results from the t-test in which equal variances are not assumed in the second row of the results in Table 
6. (iii) will be used. The results from the independent t-test conducted to address the fourth question are given in Table 
6. (iii). The results indicate that the H0, i.e. that there is no difference in mean Scrap Type I per batch for product 
family A between SiO2 levels 1 and 2, can be rejected as p<0.01. This leads to the conclusion that there is a statistically 
significant difference in the mean quantity of Scrap Type I (per batch of product family A) between level 1 of SiO2 
(upper level) and level 2 (lower level) of SiO2. The mean quantity of Scrap Type I with SiO2 at level 2 (lower level) 
is lower than the mean quantity of Scrap Type I when SiO2 is at level 1 (upper level). The mean quantity of Scrap 
Type I per batch of product family A at high levels of SiO2 (level 1) is 0.42 units with a standard deviation of 1.13 
units. The mean quantity of Scrap Type I per batch of product family A at lower levels of SiO2 (level 2) is 0.13 units 
with a standard deviation of 0.52 units. The difference in Scrap Type I mean is 0.3 units with a standard deviation of 
0.02 units. The 95% confidence interval is 0.255 units to 0.335 units. The sample size of product family A batches 
produced with SiO2 at level 1 (upper level) is 3781 and the sample size of product family A batches produced with 
SiO2 at level 2 (lower level) is 3321. 

Table 6. (i). Frequency of Scrap Type I at level 1 and level 2 of SiO2. 

Scrap 
Quantity 

Level 1 Level 2 Total  

0 3107 3063 6170 

1 257 146 403 

2 171 73 244 

3 113 25 138 

4 63 9 72 

5 35 4 39 

6 15 0 15 

7 14 1 15 

8 2 0 2 
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SiO2 at level 1 (upper level) is 13869 and the sample size of the batches produced with SiO2 at level 2 (lower level) is 
15637. 

Table 5. (i) Frequency of Scrap Type III quantity at level 1 and level 2 of SiO2. 

Scrap 
Quantity 

Level 1 Level 2 Total  

0 12498 14078 26576 

1 768 825 1593 

2 8347 424 771 

3 148 188 336 

4 69 86 155 

5 20 25 45 

6 13 29 22 

7 3 1 4 

8 2 0 2 

9 0 1 1 

14 1 0 1 

Total 13869 15637 29506 

 

Table 5. (ii) Descriptive statistics for Q3. 

 Level Count Mean Standard 
Deviation 

Standard 
Error Mean 

Scrap 
Quantity 

1 13869 0.17 0.636 0.005 

 2 15637 0.18 0.628 0.005 

 

Table 5. (iii) Results for independent samples t-test for Q3. 

  Levene’s Test for 
Equality of Variances 

  t-test for Equality of Means 95% Confidence 
Interval of the 
Difference 

  F Significance t df Significance 
(2-tailed) 

Mean 
Difference 

Standard 
Error 
Difference 

Lower Upper 

Scrap 
Quantity 

Equal 
variances 
assumed 

0.989 0.320 -0.500 29504 0.617 -0.004 0.007 -0.018 0.011 

 

 Equal 
variances 
not 
assumed 

  -0.500 28997.242 0.617 -0.004 0.007 -0.018 0.011 

 
Development of Question 4 
 
The results from the t-test conducted to address the first question indicated that there is a statistically significant 

difference in the average quantity of Scrap Type I at level 1 (upper level) and level 2 (lower level) of SiO2. The insight 
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of the relationship between the level of SiO2 and the quantity of Scrap Type I led to the development of a further 
scientific question. The majority of Scrap Type I that occurred during the eight-week period was for a specific type 
of product. The name of this product is sensitive to the organisation; hence, it will be referred to as product family A. 
A fourth question was set to investigate if there is a difference in the average quantity of Scrap Type I for the product 
family A when SiO2 is at level 1 (upper level) and level 2 (lower level). The fourth scientific question addressed in 
this study was as follows: 
 

Question 4: Is there a difference between the mean quantity of Scrap Type I for product family A at level 1 (upper 
level) of SiO2 and at level 2 (lower level) of SiO2? 

 
An independent t-test was conducted using SPSS to test if there is a difference in the average quantity of Scrap 

Type I per batch for a specific type of product, product family A, when SiO2 is at level 1 (upper level) and at level 2 
(lower level). In this case, the other types of scrap have been set to zero to represent no Scrap Type I, as Scrap Type I 
is the response variable of interest. The hypothesis test to address this question is as follows: 

• H0: μ1 = μ2 (There is no difference in the average quantity of Scrap Type I per batch of product family A 
produced with the first prime at level 1 (upper level) and level 2 (lower level) of SiO2.) 

• HA: μ1 ≠ μ2 (There is a difference in the average quantity of Scrap Type I per batch of product family A 
produced with the first prime at level 1 (upper level) and level 2 (lower level) of SiO2.) 

 
 Table 6. (i) presents descriptive statistics for the breakdown of Scrap Type I for product family A at level 1 (upper 

level) and level 2 (lower level) of SiO2. In this case, the standard deviation of 1.131 units at level 1 (upper level) of 
SiO2 is more than twice the standard deviation of 0.521 units at level 2 (lower level) of SiO2 as seen in Table 6. (ii) 
Therefore, the results from the t-test in which equal variances are not assumed in the second row of the results in Table 
6. (iii) will be used. The results from the independent t-test conducted to address the fourth question are given in Table 
6. (iii). The results indicate that the H0, i.e. that there is no difference in mean Scrap Type I per batch for product 
family A between SiO2 levels 1 and 2, can be rejected as p<0.01. This leads to the conclusion that there is a statistically 
significant difference in the mean quantity of Scrap Type I (per batch of product family A) between level 1 of SiO2 
(upper level) and level 2 (lower level) of SiO2. The mean quantity of Scrap Type I with SiO2 at level 2 (lower level) 
is lower than the mean quantity of Scrap Type I when SiO2 is at level 1 (upper level). The mean quantity of Scrap 
Type I per batch of product family A at high levels of SiO2 (level 1) is 0.42 units with a standard deviation of 1.13 
units. The mean quantity of Scrap Type I per batch of product family A at lower levels of SiO2 (level 2) is 0.13 units 
with a standard deviation of 0.52 units. The difference in Scrap Type I mean is 0.3 units with a standard deviation of 
0.02 units. The 95% confidence interval is 0.255 units to 0.335 units. The sample size of product family A batches 
produced with SiO2 at level 1 (upper level) is 3781 and the sample size of product family A batches produced with 
SiO2 at level 2 (lower level) is 3321. 

Table 6. (i). Frequency of Scrap Type I at level 1 and level 2 of SiO2. 

Scrap 
Quantity 

Level 1 Level 2 Total  

0 3107 3063 6170 

1 257 146 403 

2 171 73 244 

3 113 25 138 

4 63 9 72 

5 35 4 39 

6 15 0 15 

7 14 1 15 

8 2 0 2 
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9 4 0 4 

Total 3781 3321 7102 

 

Table 6. (ii) Descriptive statistics for Q4. 

 Level Count Mean Standard 
Deviation 

Standard 
Error Mean 

Scrap 
Quantity 

1 3781 0.42 1.131 0.018 

 2 3321 0.13 0.521 0.009 

 

Table 6. (iii) Results for independent samples t-test for Q4. 

  Levene’s Test for 
Equality of Variances 

  t-test for Equality of Means 95% Confidence 
Interval of the 
Difference 

  F Significance t df Significance 
(2-tailed) 

Mean 
Difference 

Standard 
Error 
Difference 

Lower Upper 

Scrap 
Quantity 

Equal 
variances 
assumed 

712.565 0.000 13.799 7100 0.000 0.295 0.021 0.253 0.337 

 

 Equal 
variances 
not 
assumed 

  14.393 5461.864 0.000 0.295 0.020 0.255 0.335 

 

5. Discussion 

The first question was set to test if a relationship existed between Scrap Type I and the level of SiO2. The results 
from the independent t-test indicated a statistically significant difference in the mean quantity of Scrap Type I between 
SiO2 at level 1 (upper level) and level 2 (lower level) (p<0.01). The results showed that the mean level of Scrap Type 
I was lower (0.03 units) when SiO2 was at level 2 (lower level) for the second four weeks in comparison to the mean 
of 0.12 units when the SiO2 was at level 1 (upper level) for the first four weeks of the eight week period. The second 
question in this study was to investigate if a difference existed between the mean quantity of Scrap Type II at level 1 
(upper level) and at level 2 (lower level) of SiO2. This question was addressed with an independent t-test. The results 
from this test established that there is not a statistically significant difference in the mean quantity of Scrap Type II 
between SiO2 at level 1 (upper level) and level 2 (lower level) (p>0.05). The third question examined if mean quantity 
of Scrap Type III at level 1 (upper level) differed to the mean quantity of Scrap Type III at level 2 (lower level) of 
SiO2. The results from the independent t-test for the third question revealed that there is not a statistically significant 
difference in the mean quantity of Scrap Type III between SiO2 at level 1 (upper level) and level 2 (lower level) 
(p>0.05). The fourth question was developed as a result of the findings that a relationship existed between the mean 
quantity of Scrap Type I and the level of SiO2 in the binder. This question was formulated to test if a difference existed 
between the mean quantity of Scrap Type I for product family A at level 1 (upper level) and at level 2 (lower level) 
of SiO2. The results from the independent t-test to address this question determined that there is a statistically 
significant difference in the mean level of Scrap Type I for product family A between SiO2 at level 1 (upper level) 
and level 2 (lower level) (p<0.01). The results showed that the mean level of Scrap Type I per batch of product family 
A was lower (0.13 units) when SiO2 was at level 2 (lower level) in comparison to the mean of 0.42 units of Scrap 
Type I for product family A per batch when the SiO2 was at level 1 (upper level). Scrap Type I is caused by thin or 
weak areas of the shell failing during dewax or casting allowing metal to leak into the void of the shell [28]. It is a 
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very expensive type of scrap as the metal material is much more expensive in comparison to the wax material. Almost 
all of this type of defect is believed to be related to the quality of the ceramic shell [28]. The results of these statistical 
tests have shown that the level of silica in the colloidal binder is related to the quantity of Scrap Type I, which is 
caused by thin or weak areas in the shell. Specifically, the mean quantity of Scrap Type I for this investment casting 
process is lower when the % of silica in the binder was at the lower level. These results show that there was less 
occurrences of Scrap Type I when the % SiO2 was reduced to the lower level. As Scrap Type I occurs after the casting 
stage, in which the metal is poured into the ceramic shell, it results in a large financial and material loss for the 
manufacturing organisation. By identifying this relationship through statistical analysis of historical data, this type of 
scrap related to the level of silica in the binder can be preventing from occurring, through continuous monitoring. To 
achieve this continuous monitoring a digital data acquisition system was required. As outlined in Figure 2, the slurry 
parameter levels, including SiO2, were tested and collected manually. This information was then stored in an Excel 
spreadsheet on a single PC. A new system was implemented, in which the information is entered into a wireless tablet. 
This information is then fed to a server that allows it to be brought into a business analytics platform for continuous 
monitoring. This study provides an example of how analysis of data can provide insights into relationships for 
manufacturing processes.  

 

 

Figure 2. Digitalised data collection 

6. Conclusion 

The results from the statistical analysis gave valuable insight into the optimal setting of the silica % in the binder 
of the ceramic slurry to minimise the quantity of Scrap Type I. These insights resulted in the implementation of a data 
acquisition system to allow continuous monitoring of the ceramic slurry parameters. The knowledge gained from the 
analysis and the digitalisation of this information has helped to reduce the waste and financial losses for this 
manufacturing process in the organisation. This study has demonstrated the value that can be achieved by analysing 
and digitalising data to improve the yield of the process and gain a deeper understanding of the relationships within 
the process. In conclusion, this study has shown that insights gained from analysis of historical data can be used to 
write a defendable business case with uncertain outcomes and justify the additional costs. Unlike more complex 
approaches, such as neural networks, statistical analysis is easier to implement and a more approachable initial step 
that can be taken by organisations to begin the transition to digital production and Industry 4.0. 
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9 4 0 4 

Total 3781 3321 7102 

 

Table 6. (ii) Descriptive statistics for Q4. 

 Level Count Mean Standard 
Deviation 

Standard 
Error Mean 

Scrap 
Quantity 

1 3781 0.42 1.131 0.018 

 2 3321 0.13 0.521 0.009 

 

Table 6. (iii) Results for independent samples t-test for Q4. 

  Levene’s Test for 
Equality of Variances 

  t-test for Equality of Means 95% Confidence 
Interval of the 
Difference 

  F Significance t df Significance 
(2-tailed) 

Mean 
Difference 

Standard 
Error 
Difference 

Lower Upper 

Scrap 
Quantity 

Equal 
variances 
assumed 

712.565 0.000 13.799 7100 0.000 0.295 0.021 0.253 0.337 

 

 Equal 
variances 
not 
assumed 

  14.393 5461.864 0.000 0.295 0.020 0.255 0.335 

 

5. Discussion 

The first question was set to test if a relationship existed between Scrap Type I and the level of SiO2. The results 
from the independent t-test indicated a statistically significant difference in the mean quantity of Scrap Type I between 
SiO2 at level 1 (upper level) and level 2 (lower level) (p<0.01). The results showed that the mean level of Scrap Type 
I was lower (0.03 units) when SiO2 was at level 2 (lower level) for the second four weeks in comparison to the mean 
of 0.12 units when the SiO2 was at level 1 (upper level) for the first four weeks of the eight week period. The second 
question in this study was to investigate if a difference existed between the mean quantity of Scrap Type II at level 1 
(upper level) and at level 2 (lower level) of SiO2. This question was addressed with an independent t-test. The results 
from this test established that there is not a statistically significant difference in the mean quantity of Scrap Type II 
between SiO2 at level 1 (upper level) and level 2 (lower level) (p>0.05). The third question examined if mean quantity 
of Scrap Type III at level 1 (upper level) differed to the mean quantity of Scrap Type III at level 2 (lower level) of 
SiO2. The results from the independent t-test for the third question revealed that there is not a statistically significant 
difference in the mean quantity of Scrap Type III between SiO2 at level 1 (upper level) and level 2 (lower level) 
(p>0.05). The fourth question was developed as a result of the findings that a relationship existed between the mean 
quantity of Scrap Type I and the level of SiO2 in the binder. This question was formulated to test if a difference existed 
between the mean quantity of Scrap Type I for product family A at level 1 (upper level) and at level 2 (lower level) 
of SiO2. The results from the independent t-test to address this question determined that there is a statistically 
significant difference in the mean level of Scrap Type I for product family A between SiO2 at level 1 (upper level) 
and level 2 (lower level) (p<0.01). The results showed that the mean level of Scrap Type I per batch of product family 
A was lower (0.13 units) when SiO2 was at level 2 (lower level) in comparison to the mean of 0.42 units of Scrap 
Type I for product family A per batch when the SiO2 was at level 1 (upper level). Scrap Type I is caused by thin or 
weak areas of the shell failing during dewax or casting allowing metal to leak into the void of the shell [28]. It is a 
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very expensive type of scrap as the metal material is much more expensive in comparison to the wax material. Almost 
all of this type of defect is believed to be related to the quality of the ceramic shell [28]. The results of these statistical 
tests have shown that the level of silica in the colloidal binder is related to the quantity of Scrap Type I, which is 
caused by thin or weak areas in the shell. Specifically, the mean quantity of Scrap Type I for this investment casting 
process is lower when the % of silica in the binder was at the lower level. These results show that there was less 
occurrences of Scrap Type I when the % SiO2 was reduced to the lower level. As Scrap Type I occurs after the casting 
stage, in which the metal is poured into the ceramic shell, it results in a large financial and material loss for the 
manufacturing organisation. By identifying this relationship through statistical analysis of historical data, this type of 
scrap related to the level of silica in the binder can be preventing from occurring, through continuous monitoring. To 
achieve this continuous monitoring a digital data acquisition system was required. As outlined in Figure 2, the slurry 
parameter levels, including SiO2, were tested and collected manually. This information was then stored in an Excel 
spreadsheet on a single PC. A new system was implemented, in which the information is entered into a wireless tablet. 
This information is then fed to a server that allows it to be brought into a business analytics platform for continuous 
monitoring. This study provides an example of how analysis of data can provide insights into relationships for 
manufacturing processes.  

 

 

Figure 2. Digitalised data collection 

6. Conclusion 

The results from the statistical analysis gave valuable insight into the optimal setting of the silica % in the binder 
of the ceramic slurry to minimise the quantity of Scrap Type I. These insights resulted in the implementation of a data 
acquisition system to allow continuous monitoring of the ceramic slurry parameters. The knowledge gained from the 
analysis and the digitalisation of this information has helped to reduce the waste and financial losses for this 
manufacturing process in the organisation. This study has demonstrated the value that can be achieved by analysing 
and digitalising data to improve the yield of the process and gain a deeper understanding of the relationships within 
the process. In conclusion, this study has shown that insights gained from analysis of historical data can be used to 
write a defendable business case with uncertain outcomes and justify the additional costs. Unlike more complex 
approaches, such as neural networks, statistical analysis is easier to implement and a more approachable initial step 
that can be taken by organisations to begin the transition to digital production and Industry 4.0. 
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6.1. Assumptions and limitations 

This study focused on the effect of changing a single factor (the percentage level of SiO2) on the quantity of three 
scrap types for an investment casting process. It has been assumed that other factors in this process remained 
reasonably unchanged during the eight week period. One of the limitations of this study is that the interaction of SiO2 
with other factors has not been analysed. 
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6.1. Assumptions and limitations 

This study focused on the effect of changing a single factor (the percentage level of SiO2) on the quantity of three 
scrap types for an investment casting process. It has been assumed that other factors in this process remained 
reasonably unchanged during the eight week period. One of the limitations of this study is that the interaction of SiO2 
with other factors has not been analysed. 
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