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Abstract  

 

Globally, grasslands are an important source of food for livestock and provide 

additional ecosystem services such as greenhouse gas (GHG) mitigation through 

carbon sequestration, habitats for biodiversity, and recreational amenities. Grass is 

the cheapest source of fodder providing Irish farmers with an economic benefit 

against international competitors. Hence, to maintain profitability, farmers have to 

maximize the proportion of grazed grass in cow’s diet or save it as silage. 

 

The overall objective of the current research project was to build a machine-

learning model to estimate grass growth nationally using earth observation imagery 

from the Sentinel 2 satellite constellation and ancillary meteorological data, which 

are known to influence grass growth. Firstly, the impact of meteorological data and 

Growing Degree Days (GDD) was assessed for Teagasc Moorepark experimental 

farm (Fermoy, Co Cork, Ireland). GDD was modified to include Soil Moisture 

Deficit (SMD), which included the impact of summer drought conditions in 2018. 

Results demonstrated the importance of GDD for grass growth estimation using 

ordinary linear regression (OLS). The potential evapotranspiration (PE) 0.65 

(r=0.65) and evaporation (r=0.65) were equally significant variables in 2017, while 

in 2018 the solar radiation had the highest correlation (r=0.43), followed by 

potential evapotranspiration and evaporation with r of 0.42. The standard and 

modified GDD were equally significant variables with r of 0.65 in 2017, but both 

had a reduced correlation in 2018 with modified GDD (0.38, p<0.01) performing 

slightly better than the standard GDD (0.26, p<0.01) calculation. These models 

only explained 53% (RMSE of 18.90 kg DM ha-1day-1) and 36% (RMSE of 27.02 

kg DM ha-1day-1) of variability in grass growth for 2017 and 2018, respectively.  

 

Considering the importance of meteorological data, an empirical grass model called 

the Brereton model, previously used for Irish grass growing conditions were tested. 

Since this model lacks a spatial element, we compared the Brereton model with the 

previously used machine-learning model ANFIS and Random Forest (RF) with the 

combination of satellite data and meteorological data for eight Teagasc farms. 



xiv 

Overall, the machine-learning algorithms (R2= 0.32 to 0.73 and RMSE=14.65 to 

24.76 kg DM ha-1day-1 for the test data) performed better than the Brereton model 

(range of R2=0.03 to 0.33 and RMSE=41.68 to 82.29 kg DM ha-1day-1). The RF 

model (with all the variables except rainfall) had the highest accuracy for predicting 

grass growth rate, with (R2= 0.55, RMSE = 14.65 kg DM ha-1day-1, MSE= 214.79 

kg DM ha-1day-1 versus ANFIS with R2 = 0.47, RMSE = 15.95 kg DM ha-1day-1, 

MSE= 254.40 kg DM ha-1day-1).  

 

When developing a national model, meteorological data were missing (except 

precipitation). A different approach was followed, whereby the grass growing 

season was subdivided (January-June Agmodel 1 and July–December Agmodel 2). 

Phenologically, the peak grass growth in Ireland typically occurs in May, with a 

slow decline in subsequent months. Spring is the most important season for 

grassland management, where growing conditions can impact the grass supply for 

the whole year. The national models were developed using Sentinel 2 band metrics, 

spectral indices (NDVI and NDRE), and rainfall for 179 farms. Data from 2017-

2019 was divided into training and testing data (70:30 split), with 2020 data used 

for independent validation of the final trained model. Test accuracy was higher for 

Agmodel 1 (R2 = 0.74, RMSE= 15.52 kg DM ha-1day-1) versus Agmodel 2 (R2 = 

0.58, RMSE= 13.74 kg DM ha-1day-1). This trained model was used on validation 

data from 2020, and the results were similar with better performance for Agmodel1 

(R2 =0.70) versus Agmodel2 (R2=0.36). The improved spatial resolution of Sentinel 

2 and the availability of red-edge bands showed improved results compared with 

previous work based on coarse resolution satellite imagery.  
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1 
Chapter 1 Introduction 

 

1.1 General introduction 

The global human population is growing rapidly and is projected to reach 9.8 billion 

by 2050 (Ma et al., 2020). Ensuring sufficient food and raw materials to meet 

demand is a massive societal challenge (Timsina, 2018). In conjunction with 

continuing population growth, food producers globally must also deal with other 

factors that can threaten food production. Those factors are, for example, climate 

change (Gomez-Zavaglia et al., 2020), increasing urbanisation on agricultural lands 

(Arntzen et al., 2017), as well as a range of biotic stresses, for example, pests and 

plant diseases (van Zonneveld et al., 2020) and abiotic stresses, for example, water 

deficit and drought (Dormatey et al., 2020). At the same time, there is an increasing 

public awareness around the need for food production to be more sustainable, have a 

less environmental impact, and use fewer resources to produce more and better 

quality food (Yue et al., 2020).  

 

The concept of sustainable food production is reflected in the current European 

Union (EU) Farm to Fork Strategy, which aims to transform agricultural production 

across the Union, to reduce greenhouse gas (GHG) emissions, consumption of 

natural resources and loss of biodiversity ensure access to sufficient, safe, nutritious 

and sustainable food (Commission, 2020). Additionally, EU Commission 

Agricultural Policy reform is putting pressure on European farmers to ensure that 

food production is both economically and environmentally sustainable (Hennessy et 

al., 2020). 
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Grasslands are a major ecosystem that makes a significant contribution to the global 

food supply (Zarei et al., 2020), supplying fodder for ruminants such as cattle, sheep, 

goats and horses, which in turn provide meat, milk, and other raw materials (for 

example, wool and leather) for human consumption (Nelson et al., 2017). For 

example, the volume of cow milk produced worldwide has risen from ~497 million 

tons in 2015 to ~532 million tons in 2020 (Statista, 2021). Grasslands cover 

approximately 40% of the terrestrial area. They are broadly characterized by grasses 

and herbaceous vegetation with little or no tree cover (White and Rohweder, 2000). 

They occur across various geographical areas and climatic conditions, including 

tropical and subtropical grasslands located in semi-arid to semi-humid climate 

regions in Africa, Australia, and South America. Temperate grasslands are found in 

semi-arid to semi-humid climates in Europe, North & South America and New 

Zealand.  

 

Grasslands are used worldwide to feed livestock for meat and dairy production, 

although the level of management and expected yield vary considerably between 

regions. Figures 1-1 indicates that large areas of the world are under some form of 

pasture. A more detailed map of European pastures is illustrated in Figure 1-2. In 

Europe, a total agricultural area, nearly 21% is grassland (EUROSTAT, 2015), 

which includes a spectrum of management levels, from natural grasslands with 

minimum human interference, to extensive (semi-natural) low yield grasslands to 

high yielding, intensively managed grasslands with high inputs, and regular 

grazing/silage cutting (Velthof et al., 2014).  

 

The EU is a major dairy producer producing over 157 million tons of milk in 2020 

from a dairy herd of ~22 million dairy cows (EUROSTAT, 2021b). Intensive, 

pasture-based grazing systems dominate in Western Europe, with the Republic of 

Ireland leading the field in the proportion of area (93.4%) devoted to grazing (van 

den Pol-van Dasselaar et al., 2020, Eurostat, 2021a). Cheap, abundant grass and 

widespread grazing underpin the competitiveness of Ireland’s domestic beef and 

dairy livestock industries. Recent surveys (Teagasc National Farm Survey 2018) 

(Dillon et al., 2018c) reported Ireland’s national herd was approximately 6.5 million 
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cattle, which produced 8,075 million litres of milk and 617000 tons of meat in 2017.  

From 2015 to 2019, the number of dairy cows nationally increased by 17% 

(EUROSTAT, 2021b), resulting in a 20% increase in milk production (FAO, 2021). 

These figures are in the context of a program of agricultural intensification in the 

past decade, including Food Harvest 2020 and Food Wise 2025 strategies that put 

ambitious targets on primary production.  

 

As well as food production, grasslands also provide additional ecosystem services, 

such as habitats for biodiversity (Bengtsson et al., 2018) or as places of 

tourism/aesthetical value (Schirpke et al., 2019). A critical function of grasslands is 

supporting biodiversity. Extensively managed grasslands such as semi-natural in 

Ireland are low-output and high diversity grasslands supporting pollination and 

biological control. Carbon sequestration means carbon storage over time, including 

above-ground and below-ground biomass, soil, and dead organic matter in terrestrial 

ecosystems. Grasslands contribute to ~34% of the global carbon stock (João Pedro 

Silva Justin Toland and O’Hara, 2008). Grasslands are associated with aesthetic 

value and are used for recreation activities such as bird watching and hiking 

(Schirpke et al., 2019). A critical ecosystem service, in the context of global climate 

change, is their role in carbon sequestration, the storage of carbon over time in both 

above-ground and below-ground biomass, as well as soil and dead organic matter in 

terrestrial ecosystems (João Pedro Silva Justin Toland and O’Hara, 2008). However, 

grasslands in Ireland are a net carbon source because of the drainage of organic soils 

(Renou-Wilson et al., 2015).These additional services are also important for 

improving the sustainability of grassland production in an economically viable way 

that is resilient to future change (OECD, 2003).  
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Figure 1-1 Global distribution of pastures in the year 2000  

(Source: NASA Socioeconomic Data and Applications Center (SEDAC) Pasture map (Ramankutty et al., 2008). Darker green shades depict higher 

proportion of pastureland. These maps were derived from Moderate Resolution Imaging Spectroradiometer (MODIS) and Satellite Pour 

l’Observation de la Terre (SPOT) vegetation-based Global Land Cover 2000 data and combined with agricultural inventory data from the UN Food 

and Agriculture Organisation (FAO).



5 

 

Figure 1-2 Pasture map of Europe in 2000 

The darker the green shade, the higher is the proportion of area under pasture. The map 

was created using 1km resolution MODIS Global Land Cover Product and SPOT 

Vegetation Global Land Cover 2000 dataset (GLC2000) (Ramankutty et al., 2008). 

 

For intensive agricultural grassland systems, such as those found in the Republic of 

Ireland, a crucial step in achieving sustainable production is increasing the 

proportion of fodder in the livestock diet. This can be done by growing and utilising 

more grass and minimizing the purchase of supplemental feedstuffs (O’Donovan et 

al., 2020), maximizing production while reducing environmental impacts such as 

increased emissions and nutrient leaching (Shalloo et al., 2021). Improved grazing 

management is a key step for sustainable grass production, which includes getting 

reliable data to facilitate targeted and timely management decisions. Using data to 
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target underperforming areas of a farm is the foundation of Precision Agriculture 

(PA). Increasingly, PA technologies are being adopted by livestock farmers (Michels 

et al., 2019). These include a vast array of sensors from the Internet of Things (IoT), 

biosensors and Earth observation satellites. One management intervention essential 

to all grass growers is measuring grass to understand growth rates and better manage 

surpluses or deficits.   

 

Grass measurement is a common task for grassland farms, where farmers try to 

match their stocking rate (the number of livestock units they have per unit of area) 

with grass availability from spring to autumn while saving enough to feed the herd 

during winter when animals are housed indoors. There are management support 

systems available to farmers in several countries to help them better understand their 

grass availability and plan their grazing rotation (Vinogradovs et al., 2020, Sturm et 

al., 2018). In Ireland, a web- and smartphone-based grassland decision support 

system called PastureBase Ireland (PBI) was launched in 2013 (Hanrahan et al., 

2017, Dasselaar et al., 2017). The input to PBI is typically in-field measurements by 

the farmers. These may be destructive methods, for example, where a small amount 

of grass must be cut and dried to gain accurate measurements of dry matter content 

(the cut and dry approach), or they may be non-destructive methods. These non-

destructive techniques include a range of methods, from low-technology, point-based 

approaches, for example, visual assessment, simple measuring sticks or more 

technological approaches using rising plate meters (RPM, see Section 1.5.1 below 

for further details). These approaches are highly accurate but not spatially 

representative.  

 

There are increasingly technical approaches to estimating grass biomass using 

biophysical models or Earth observation satellite data. Biophysical simulation 

models rely on physiological growth processes to predict yields and simulate yield 

responses to changing environmental conditions (for example, climate change) 

(Zhang et al., 2021a). The computer-simulated biophysical models lack a spatial 

component and can be constrained by the accuracy of the input datasets (Bellocchi et 

al., 2010). Earth observation methods offer a solution to the spatial limitations of 
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field-based and biophysical simulation methods by collecting data continuously over 

large geographical footprints at high spatial and temporal resolution. Satellite 

estimates of biomass have been used previously in Ireland. Coarse-resolution 

biomass estimates were made for two independent sites in Moorpark and Grange 

using Adaptive Neuro Fuzzy Inference Systems-ANFIS (Ali, 2016). The 8-day 

composite MODIS image time series was used, along with in-situ data. The results 

showed that machine-learning could retrieve grassland biomass with high 

performance (R2 = 0.86 for Moorepark and R2=0.76 for Grange). The study 

demonstrated the potential of using remote sensing and weather data to predict 

grassland biomass using machine-learning algorithms. The major limitation of the 

work was the coarse resolution satellite dataset, which cannot detect the variations 

between the fields at the farm scale. However, this issue will be resolved in terms of 

spatial resolution by the Sentinel 2 data in this work. In this research, a national 

model for Ireland will be developed to estimate the grass growth rate. The machine-

learning models, .i.e. Random Forest (RF) and ANFIS, will be used with Sentinel 2 

and meteorological data as input variables which will be validated against in-situ 

data from PBI. 

 

1.2 Role of grasslands 

From the introductory section above, it is clear that grasslands provide an essential 

service in food production and have other roles in carbon sequestration, biodiversity, 

and other areas. These applications will be explored in greater detail in the following 

sections. As noted previously, grasslands provide several services, including food 

supply, carbon storage, habitats for biodiversity and amenity/recreation value.  

 

1.2.1 Food production 

Grasslands play a significant role in food production and global food security. 

According to the Food and agriculture Organisation (FAO), food security, having 

access to adequate and nourishing food which meets daily dietary requirements, is 

comprised of four elements: food availability, food access, utilization and stability 

(Schmidhuber and Tubiello, 2007). Food availability focuses on producing enough 

food to meet the increasing global demand. As the population grows, there is 
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increasing pressure on agriculture to meet global needs sustainably. Factors such as 

weather and economical price fluctuations can affect the availability of food over 

time (Charlton, 2016). In conjunction with population growth, the improvement in 

incomes has seen a shift in consumption of meat (beef and poultry) and dairy 

products (milk and cheese) in the recent past (O'Mara, 2012, Baldi and Gottardo, 

2017), particularly in low to middle-income countries (Drewnowski, 2018). These 

products primarily come from grass- or fodder-crop fed ruminants. As grass forms 

an abundant and cheap feedstuff, proper grasslands management to increase yield 

and fodder availability is critical for food production (O'Mara, 2012). 

 

1.2.2 Carbon sequestration 

Carbon sequestration is the process of capturing and storing atmospheric carbon 

dioxide (CO2) in soils or vegetation, which can reduce global climate change (Jain et 

al., 2012). It is increasingly recognized that grasslands may have an essential role in 

carbon sequestration by acting as carbon sinks (Bossio et al., 2020), particularly in 

more intensively managed grasslands, where grazing and cutting can help re-stock 

soil carbon and prevent carbon loss from soils (Conant, 2010). As Figure 1-3 

illustrates, excessive grazing on poorly managed grasslands does not allow grass to 

grow, leading to degradation. Simultaneously, under-grazing can also affect carbon 

storage, as insufficient organic content is added to the soil. Improved grazing 

practices are encouraged to maintain the carbon cycle in the grassland system 

(Abberton et al., 2009). The grassland management approaches such as cattle slurry 

application, grazing, fertilization, grass species diversity (mixed with clover) and 

planting hedgerows can supplement soil carbon stocks, thus sequestering 

atmospheric carbon in the soils.  
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Figure 1-3 The effect of improving grassland management on soil carbon storage.  

By improving poorly managed or degraded grasslands, more atmospheric C can be 

sequestered and stored long-term in soils (Conant, 2010).  

 

 

1.2.3 Semi-natural habitats & biodiversity conservation 

Extensive grasslands have had centuries of low-intensity management, which has 

allowed them to support large amounts of vertebrate and invertebrate species. 

Intensification of grassland production includes frequent grazing, fertilization and 

pesticide use and artificial drainage, which impacts the richness and diversity of flora 

and fauna. Many of Europe’s grassland ecosystems are now under threat from the 

intensification of agriculture or the abandonment of marginal lands (Gaujour et al., 

2011). Grasslands can vary from monocultures to multi-species vegetation with 

varying management practices. Semi-natural grasslands are traditionally managed 

grasslands, with low inputs and infrequent interventions that are low-producing 

grasslands but very often-rich and very attractive to pollinators such as bees and 

butterflies. Semi-natural grasslands have declined between 2007 and 2012 due to 

conversion to woodlands or by the intensification of management in Ireland 

(Devaney et al., 2013).  
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EU policies such as the Commnon Agricultural policy (CAP) (Environnement, 2019) 

and EU Green Deal (Hart et al., 2020) support the conservation of semi-natural 

grasslands and High Nature Value (HNV) farmland. The farmers are advised to use 

fewer pesticides and fertilizers or use them more responsibly to protect the 

threatened habitats. According to proposed CAP reforms (Environnement, 2019), 

practices that conserve permanent areas, maintain species diversity or establish 

ecological focus areas will be compensated. Farmers are advised to keep some space 

on their farm for habitats such as trees, hedges, and ponds to promote biodiversity. 

Such habitats attract butterflies, bees, and birds, which perform different ecological 

services affecting other organisms' diversity, such as pollination. 

 

1.2.4 Tourism 

Many grasslands have an aesthetic attractiveness, combining landscape and species 

biodiversity that can promote well-being or have tourism potential (Parente and 

Bovolents, 2012). These activities can help farmers actively conserve biodiversity on 

their farms to enhance such an environment. Tourism has been used as a strategy for 

farms to find supplementary incomes by supplying accommodation to tourists or 

facilitating on-farm activities.  

 

1.3 Introduction to Irish grasslands 

Ireland’s temperate climate and fertile soils are well adapted for growing grass. 

Grasslands have a hugely important role in the Irish economy. As noted previously, 

Ireland has the highest proportion of total land area under grass within the EU. This 

abundance of grass provides a cheap source of nutrition for cattle and sheep and 

gives Ireland’s agro-food industries an advantage over international competitors 

(Hennessy et al., 2020). The Irish agri-food industry is export-orientated, with ~90% 

of the food produced exported to over 180 countries worldwide (DAFM, 2020). The 

largest export destination is the United Kingdom (UK), with 38% (€5.5 billion) of 

total exports by value in 2019, followed by the United States and the Netherlands, 

both importing over €1 billion of Irish agri-food products (DAFM, 2020). Brexit will 

have a negative impact on Irish export value, impacting sterling value and high trade 

costs between the two countries (Matthews, 2017).   
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1.3.1 Regional differences in farming enterprises  

There are regional differences in the kind of farm enterprise carried out in Ireland 

(Walsh and Horner, 1984). There are physical reasons for these, such as soil type, 

climate, topography and geology. At NUTS Level 2, Ireland is divided into two 

parts, the Border, Midland and Western region (BMW) and the South and Eastern 

region (SE). The BMW Region consists of 13 counties in the Border (Louth, 

Monaghan, Cavan, Leitrim, Sligo, and Donegal), Midland (Longford, Westmeath, 

Offaly and Laois) and Western (Mayo, Galway, and Roscommon). Southern and 

Eastern region is composed of Dublin (Dublin City, Dun Laoghaire, Fingal, and 

South Dublin), Mid-East (Meath, Kildare, and Wicklow), South-East (Carlow, 

Kilkenny, Tipperary South, Waterford, and Wexford), Mid-West (Clare, Limerick, 

and Tipperary North), South-West (Cork and Kerry).  

 

On average, dairy farms in the SE region are more extensive in terms of land area 

than in the BMW region, with an average farm size of 38.3 hectares compared to 

27.1 hectares. Most dairy farms are located in the SE region of well-drained soil and 

long growing season (Dillon et al., 2018c). The West of Ireland has heavy clay and 

poorly drained soils with high rainfall. High rainfall can lead to excessive losses 

through drainage, affecting soil trafficability (Shalloo et al., 2004).  

Trafficability is soil moisture conditions to support agricultural traffic such as 

planting and cultivating, and grazing without affecting the soils (Müller et al., 2011). 

In poorly drained soils, the growing season is shorter, which can affect dairy 

production. As a result, the milk production is reduced, and since there is no grass 

during the winter, the cows have to be supplemented using other feedstuff, which 

leads to an increase in production cost.  

 

According to the recent data by CSO Farm Structures Survey (CSO, 2012), there 

were 137,500 farms in Ireland in 2016, 52.7% of which were located in the BMW 

region and the rest of the farms in the SE area (Figure 1-4). 43,200 of these farms 

were located in the Border, Midland and Western region. Specialist dairy farms 

(12,900) were located in the Southern and Eastern region. 
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Figure 1-4 Number of the farm by category and region, 2016 (Source: CSO 2016).  

SE regions are represented by blue bars, and the BMW area is shown as green bars, where 

the y-axis is the number of farms and the x-axis is the category of farms. 
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1.3.2 Grass growth  

The minimum temperature required for grass to grow in Ireland is 5 ºC. In Ireland, 

perennial ryegrass (Lolium perenne) is the dominant grass species. Ryegrass can 

support three leaves at one time. When the fourth leaf emerges, the leaf at the bottom 

dies. The rate at which a new leaf appears depends on the time of the year and 

season. For example, in early spring, a new leaf emerges every 30-40 days, which 

means the grazing rotation is long. However, during peak season in May and June, a 

new leaf is produced every 7-8 days so that the growing season cycle can take 18-21 

days. If this grass is not grazed within 21 days, then the grass-grown is lost. It is 

because of such variation in grass growth rate that grass budgeting is essential. A 

farmer needs to match the grazing rotation to the time at which a new leaf appears. 

The farm is divided into a small number of paddocks. Each paddock is grazed until 

3-4 cm residual height in rotation, known as rotational grazing.  

 

The Irish grassland systems is a grass-based system focused on spring-calving. In 

grass-based feeding systems, cattle are fed on grass outdoors during the warmer 

season and are housed for winter (Dillon et al., 1995). During spring, the proportion 

of grazed grass is more than during winter, and as the proportion of concentrates 

increases in the feeding system, the milk prices increase, and production decreases. 

Ireland has one of the lowest milk production costs (Dillon et al., 2008). In spring-

calving systems, cows calve early in the spring and start grazing to be fed by a 

grazed-grass diet. The grass growth curve for Ireland for the period of this study is 

illustrated in Figure 1-5. The beginning of the grass growing system and growth over 

the season is affected by several factors, including management factors such as 

fertilizer grazing of animals and environmental factors such as meteorological 

conditions and soil type. 
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It is crucial to increase grazed grass in a cow's diet to achieve high farm output. 

Proper grassland management is essential to achieve high grass production 

sustainably. When the grazed grass does not meet the cattle's feed requirement, then 

the proportion of other feed in the diet increases. Calving date and stocking rate are 

essential factors in a grass-based system and affect milk production. Late calving can 

lead to more concentrates and silage in the diet leading to the under-utilization of 

grass. The stocking rate is defined as the number of animals per hectare.  

 

 

Figure 1-5 National grass growth curve with average growth rate values from PBI.  

The orange curve shows the five-year average, and the values from 2019 and 2020 are 

represented with a yellow and green curve, respectively. 

 

The national average grass growth curve with average growth rate values from PBI 

consists of a peak in May and early season growth is higher than late season growth 

(Figure 1-5) (Hanrahan et al., 2017). In grassland, feed budgeting is important, i.e. 

matching grass growth with the grass demand on the farm to plan and decide on the 

farm (Figure 1-6). The grass budgeting might be challenging due to the uncertainty 

of pasture availability in the future (Barrett et al., 2004). The calving begins in 

February for spring calving animals, and the requirement for fresh grass is high. 
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Grass growth starts in February, and therefore, there is a deficit during the beginning 

of the season. During autumn, the grass growth starts to decline again. The cows are 

in the lactation period, and therefore the demand is more than the supply of grass. 

There is a surplus amount of grass during peak season, and the surplus can be used 

as hay or silage and kept for the deficit season during autumn (Snip, 2016). If there is 

an imbalance between demand and grass supply, there might be excess grass leading 

to wastage or deficit leading to under-feeding of animals and reducing the lactation 

period.  

 

There is poor synchronisation between grass supply and feed demand on farms, as 

shown in Figure 1-6. The green curve is the grass growth curve with a primary peak 

in May. A blue curve represents the demand curve. There is a surplus of grass from 

mid-April to mid-August and a deficit for the rest of the year. Usually, the surplus 

grass during May and June is used as silage or hay to use during the winter when 

there is a fodder deficit.  

 

 

Figure 1-6 Grass supply and demand curve (Snip, 2016).  

The green curve is the grass growth curve with the primary peak in May and the secondary 

peak in July. A blue curve represents the demand curve. From April till August, a surplus of 

grass can be saved as silage to be used during winter when the cattle are housed. There is a 

deficit of grass before the beginning of spring and in winter. 
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1.3.3 Factors affecting the grass growth rate 

The grass growth rate is affected by climatic conditions, which are not controlled by 

a farmer and the grass management, which depends on the farmer. Management 

factors include fertilisation application rate, grazing or silage cutting, and grazing 

rotation. Climatic conditions such as rainfall, solar radiation, soil moisture deficit, 

and temperature affect the grass growth rate (Hurtado-Uria et al., 2014). The grass 

growth rate increases as the average air temperature increase up to 30 ºC, and when 

the temperature is below 5 ºC, the grass growth stops. Growing degree days (GDD) 

gives the amount of heat accumulated required for grass growth as species mature 

only after attaining a certain number of degree days (Fealy and Fealy, 2008). 

Extreme weather affects the quality and quantity of grass produced and, in turn, 

affecting livestock production. It is crucial to reduce the dependency of animals on 

indoor feeding during winters to decrease the production cost. Climate change 

affects agricultural production (Hopkins and Prado, 2007 ). It can lead to extreme 

weather conditions such as drought, flooding, and storm. The grazing season can be 

affected by soil and weather conditions (Lapple et al., 2012).  

 

1.4 Why measure grass? 

Ireland has an advantage over its international competitors for milk and meat 

production because of cheap and abundantly available grass. Grass growth is highly 

seasonal and can vary significantly both within and between farms. Such variation in 

growth makes grass budgeting challenging. It becomes essential for farmers to 

identify any surplus or deficit on their farm, helping them make management 

decisions. It was estimated that, on average, 8t grass DM ha-1 year-1 of grass is 

utilised nationally on dairy farms using data from the commercial and research farms 

(O’Donovan, 2017). In 2017, a campaign was launched by Teagasc known as 

Grass10, and the main aim was to increase grass utilisation on the farms. Number 10 

means to utilize 10 tonnes of grass DM/ha/year with ten grazings per paddock on 

farms by improving grazing management practices (Maher et al., 2019). This 

promoted regular measurement of grass grown on the farm and the maximum 

utilisation of grass.  
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1.4.1 Fodder crises  

Grass growth is highly dependent on meteorological conditions such as rainfall, soil 

moisture, solar radiation, and temperature. In late 2012 and early 2013, Ireland was 

affected by the fodder crises (Dermody, 2013). The summer of 2012 had below-

average temperatures and higher than average rainfall resulting in an insufficient 

quantity of fodder for the winter. The autumn was cold and led to low grass growth, 

and the farmers used up their available fodder rapidly. The spring of 2013 was colder 

and wetter than average, which affected the grass growth leading to a fodder 

shortage in 2013. Grass growth productivity is not always the result of a single, 

extreme event but the cumulative impact of small events such as long winter (White 

et al., 2020).  

 

The cold and wet weather in the summer of 2017 led to low grass growth, which 

affected the winter fodder. Storm Emma was one of the most significant snowfall 

events of recent years that hit Ireland in March 2018, delaying the spring (Falzoi et 

al., 2019). A heatwave followed with low on-farm soil moisture with drought-like 

conditions in the country. In the summer, delayed spring and drought affected the 

grass growth rate during summer, with some regions producing 5-10% less grass 

than average. According to Dillon et al. (2018c), the drought-affected dairy farms the 

most, and their concentrate expenditure increased by 42% and the unfavourable 

weather conditions along with an increase in production cost led to a decline in 

farmer's income by one-third on average to €61,273. 

 

The extent of the impact of the fodder crisis of 2018 was illustrated in a map 

produced by the Spatial Analysis Unit, Teagasc (Figure 1-7). The 10-day composite 

NDVI MODIS images were produced each month in 2018 and summed up from Feb 

to October, compared with average February-October growth for the ten years 2002-

2012. The grass growth rate was below average for Eastern region farms and above 

normal for North-West regions. Poorly-drained soils performed better than well-

drained soil as the poorly-drained soils can hold moisture for much longer and 

benefit from high temperature. The fodder crises in 2013 and 2018 highlighted that 

the national grass growth rate is essential, which means more measurement of grass 
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on the farm. If there is a surplus growth, it can be used for silage for winter. If there 

is a deficit, then farmers have to plan. In the next section, methods to measure grass 

growth are discussed.  

 

 

Figure 1-7 Poor fodder production in 2018 (Spatial Analysis Unit, Teagasc Ashtown). 

The map was created using NASA’s 10-day composite NDVI MODIS images produced each 

month in 2018 and summed up from February to October, compared with average Feb-Oct 

growth for the ten years 2002-2012. The eastern regions produced between 5 and 10% less 

grass than normal grass. The poorly drained soils in the north and west fared best, 

producing more biomass than usual.  
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1.5 Grass measurement 

Grass growth is highly spatially variable across pasture farms for various 

environmental and management specific factors (see Sections 1.3.2 above). As 

discussed in Section 1.3, grass measurement is a critical part of the grass budgeting 

process, helping farmers maximize utilization and increase profit margins. This 

section outlines several methods currently available for measuring grass, including 

on-farm methods, biophysical methods and remote sensing methods.  

 

1.5.1 On-farm methods  

On-farm methods of estimating grass growth rate can be divided into two categories- 

destructive and non-destructive methods. A standard method is a destructive cut and 

dry method where the grass is cut, dried and weighed to estimate grass biomass. Cut 

and dry is an accurate method but time-consuming. Another standard method is a 

non-destructive visual known as the "eye-ball" method, where a farmer estimates 

grass biomass by visually checking the biomass (O'Donovan et al., 2002). This 

method is time-effective but is inaccurate.  

 

Biomass can also be estimated using grass height. A rising plate meter (RPM) is a 

farmer's tool to walk the farm and calculate the grass height (McSweeney et al., 

2019). It consists of a one-meter shaft and a plate. The shaft can freely move through 

the plate. When the shaft is pressed downwards, the plate rises. The distance the 

plate moves is recorded relative to the one-meter shaft, which gives the grass height. 

If multiple samples are taken throughout the farm, then the average distance is 

calculated.  

 

A similar device is a GPS-enabled Grasshopper™ which calculates grass height 

using a micro-sonic beam. The measured grass height is sent via Bluetooth to a 

mobile application. Also, GPS helps to map the paddocks on the farm. This device 

also gives an estimation of yield. Both the RPM and Grasshopper™ are non-

destructive but time-consuming. Grasshopper™ is more accurate than RPM for 

calculating grass height/biomass and is less prone to measurement errors 
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(McSweeney et al., 2019). Both RPM and Grasshopper™ can get a more spatially 

representative assessment of grass height across the field. They do require farmers to 

measure grass, which can be time-consuming and repetitious actively. They also 

require farmers to spend money on additional equipment. As noted above, farmers 

can input grass growth into a decision support system such as PBI and include other 

factors such as stocking rate and several paddocks to see where grass 

surpluses/deficits exist on their farm. PBI is explained in greater detail in a 

subsequent chapter (See Section 3.4.4). 

 

1.5.2 Biophysical simulation models 

A model is a simulation of reality without performing actual experiments. 

Biophysical simulation models predict the predict crop yields under different 

management strategies (Rossiter, 2009). The major limitation of field-based methods 

is that they can give biomass estimate for few paddocks on a farm but will not give 

the whole farm performance. At the same time, biophysical models give predictions 

for the whole site, region or country. These growth models are parametrized and 

categorized into empirical and mechanistic models (Marshall et al., 2018).  

• Empirical models estimate biomass by forming a statistical relationship 

between ground biomass and vegetation indices calculated using satellite 

images. The model obtained using these techniques are usually site-specific 

and need recalibration for every site.  

• Mechanistic models involve equations based on crop physiology and the 

response of crop to environmental changes, that needs proper calibration 

before using them (Estes et al., 2013). Such models are input dependent, 

which can be difficult to acquire.  

Many grass growth models have been developed for grasslands, such as DairyMod, 

EcoMod  (Johnson et al., 2008) and LINGRA model (Schapendonk et al., 1998). 

Some of the grass growth models used for Irish conditions are Moorepark St Gilles 

(MoSt) grass growth model (Ruelle et al., 2018b), Jouven and Johnson & Thornley, 

which are mechanistic models, and the Brereton model is empirical (Hurtado-Uria et 

al., 2012). These models have been developed for perennial ryegrass in a temperate 

climate. These models can be used at a local scale (farm or catchment) or for a small 
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region with the same agro-meteorological conditions. They are data and parameters 

dependent, which must be calibrated for the site. The limitation of these models is 

that they are heavily dependent on the local parameters, field measured parameters, 

and cannot be used for any other site where they have not been calibrated (Higgins et 

al., 2019). 

 

1.5.3 Remote-sensing methods   

As discussed in Sections 1.5.1 and 1.5.2, farmers' on-farm measurement methods are 

often destructive and time-consuming, while the biophysical models must be 

parametrized and might apply to specific conditions. Remote sensing is an 

alternative method of grass growth estimation. Remote sensing is the science of 

observing and recording phenomena from a distance to obtain information about it. 

Earth observation (EO) is a branch of remote sensing that uses satellite platforms to 

measure reflected or emitted electromagnetic (EM) radiation. Depending upon the 

electromagnetic spectrum's wavelength, they can be optical sensors (433-2300 nm) 

such as Landsat 8, Sentinel 2, and microwave sensors (1 mm-1 m) and an example 

for it is Sentinel 1.  

 

Satellite remote sensing has been used in agriculture for various applications such as 

biomass estimation (Ali et al., 2017b, Shoko et al., 2018), management intensity 

mapping (Griffiths et al., 2020, De Vroey et al., 2021), fertilizer application 

(Hollberg and Schellberg, 2017), identifying artificial drainage on grasslands (Hara 

et al., 2020) and classification (Barrett et al., 2014). Multispectral imagery from 

optical sensors can derive vegetation indices such as the Normalised vegetation 

index (NDVI) and Enhanced vegetation index (EVI). Vegetation indices have been 

used for biomass estimation over the years, such as using statistical models, e.g. 

multiple linear regression models (Shammi and Meng, 2021). The drawback of such 

approaches is that they assume that data have a normal distribution. It assumes a 

straight-line relationship between the dependent and independent variables, which is 

hardly true in real-world data.  
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The research has been shifting towards machine-learning algorithms. These are 

powerful algorithms that are non-parametric and do not depend on the data 

distribution. These models are not limited by any specific site or scale of application. 

The machine-learning algorithms have been used for crop biomass estimation, such 

as soy bean (Schwalbert et al., 2020), sugarcane (Shendryk et al., 2021), and rice 

(Guo et al., 2021). The use of remote sensing for Irish grasslands biomass estimation 

is relatively new, and it needs to be explored more due to the dynamic nature of 

these grasslands. For two sites in Ireland, a machine-learning algorithm was used to 

estimate grass growth rate with MODIS data (Ali et al., 2017b). 

 

1.6 Rationale for this study  

In the previous sections, it has been demonstrated that grasslands are essential for 

food security, biodiversity, carbon storage and tourism. The grass growth rate is 

variable over the seasons and can depend on meteorological and management 

factors. Extreme climatic factors such as drought and floods can affect the grass 

growth rate. A farmer needs to understand the spatial variation of grass on the farm 

to manage the feed budget. Conventional methods to estimate grass biomass rely on 

either visual methods or empirical/mechanistic grass models. The problem with 

visual methods is that they depend on a person's experience, which requires much 

training, as discussed in Section 1.5.1 (O'Donovan et al., 2002). The grass growth 

models can vary from a straightforward empirical model to complex mechanistic 

models. The problem with mechanistic/empirical models is that they depend on the 

site where they are applied and are highly dependent on parameters' field 

measurements (Hurtado-Uria et al., 2012). They cannot be applied over large 

geographical areas and cannot be used at a national level.  

 

EO offers a promising alternative to conventional methods of grass biomass 

estimation. Satellite data is used widely for grassland biomass estimation but is still 

developing in Ireland. The potential was demonstrated in a previous study that used 

coarse resolution, multispectral data from the MODIS satellite at two locations (Ali 

et al., 2017b). It is not possible to detect the variations within the fields using coarse 
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resolution. This study builds on this earlier study by developing a national model 

with higher spatial and shorter temporal resolution imagery. A new dataset, Sentinel 

2 and a new algorithm, i.e. Random Forest will be used in this work. An accurate 

model of national grass growth can help farmers optimize grass production and 

utilization.  

 

1.7 Summary  

In this chapter, the importance of grasslands globally has been introduced. The Irish 

grazing system has been explored, and the need for accurate grass measurement has 

been outlined. ML and EO's use for retrieving biomass in an intensively managed 

grassland is investigated in the remainder of this thesis. In the next chapter, grassland 

biomass estimation's current status is investigated, focusing on current biophysical 

and EO-based methods and a more in-depth discussion of machine-learning for 

grassland monitoring. The thesis structure is shown in Figure 1-8.  

 

The objectives of this research are to:  

i. Evaluate the role of growing degree-days (GDD) for estimating and 

understanding grass growth rate at a farm-scale for one farm- Moorepark 

(Chapter 4);  

ii. Compare the performance of the Brereton model estimating grass growth rate 

at 8 farm locations against RF and ANFIS regression models (Chapter 5); 

and  

iii. Transfer the machine-learning model developed in (ii) above to a broader 

national scale using 179 representative farms which contribute grass 

measurements to PBI (Chapter 6). 

 

This chapter has introduced grasslands and grassland production in Ireland. The Irish 

grazing system has been explored, and the need for accurate grass measurement has 

been outlined. In the next chapter, the current state of the art in grassland biomass 

estimation's is discussed, focusing on recent studies using biophysical simulation and 

satellite remote sensing methods.  
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Figure 1-8 Thesis structure and chapter descriptions 
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1.8 Chapter overview 

The structure of the remainder of this thesis is as follows:  

• Chapter 1 presents an introduction to grasslands, their importance, and their 

relevance. It also defines research objectives and outlines all the chapters.  

• Chapter 2 gives a detailed literature review of the methods to estimate 

grassland biomass. The methods using field-based, biophysical and remote-

sensing methods will be discussed. 

• Chapter 3 introduces the study area and the dataset used, such as input data 

and the ground data from PastureBase Ireland.  

• Chapter 4 presents the factors influencing the grass growth rate in Ireland. 

The importance of growing degree days is presented.  

• Chapter 5 compares the biophysical simulation model, the Brereton model, 

and machine-learning models: ANFIS and RF. Both models were evaluated, 

and the method to perform better was selected for further use. This chapter 

develops a machine-learning approach for grass growth rate estimation using 

remote sensing. Two machine-learning models were also compared.  

• Chapter 6 extends the model developed in Chapter 5 to a national level. It 

includes 179 representative farms in Ireland.  

• Finally, Chapters 7 and 8 discuss the overall outcomes and conclusions for all 

the chapters and present the recommendations for future work.  
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2 
Chapter 2 Literature Review  

 

This review chapter aims to place the research presented hereafter into a broader 

research context, examining the need for more accurate grass growth models, 

particularly using satellite data and machine-learning. The review will demonstrate a 

gap in current literature regarding available grass growth models for Western 

European temperate grasslands. The role of Earth observation (EO) in biomass 

modelling is examined, focusing on pasture biomass. This chapter is arranged as 

follows: Section 2.1 presents field-based, destructive methods (the “cut and dry” 

approach) as well as non-destructive methods (including visual estimation, proximal 

sensors, and rising plate meters (RPM), including “Grasshopper™”. Section 2.2 

discusses empirical and mechanistic grass growth models, presenting and their 

advantages and disadvantages. Section 2.3 analyses the use of remote-sensing 

methods of grass biomass estimation, including RADAR and optical satellites and 

unmanned aerial systems (UAS).  

 

EO-based estimation of biomass is a very active area of research. Ali et al. (2016) 

presented a review of the current status of grassland monitoring/observation methods 

and applications based on satellite remote sensing data, and related technological and 

methodological developments, to retrieve grassland information. They noted that the 

retrieval of grassland biophysical parameters moved from standard regression 

analysis to more robust mechanistic modelling approaches, primarily driven by the 

increasing volume of satellite imagery. Ali et al. (2017) also explored the use of 

machine-learning and EO data for biomass estimation as part of an Irish study on 

biomass estimation using MODIS (Ali et al., 2017b). In their study, a model was 

developed for two Teagasc farms in the Republic of Ireland, Moorepark, Co. Cork 

https://www.sciencedirect.com/science/article/pii/S1161030117301685#sec0070
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and Grange, Co. Meath. The model used 8-day composite imagery collected over 12 

years. A more recent review paper by Reinermann et al. (2020) presented optical and 

SAR data applications in grassland use intensity and management, including 

monitoring grazing, mowing, irrigation and fertilizer applications. The paper 

highlighted the most commonly used spectral indices, which were - NDVI (62% of 

studies reviewed), EVI (15%), SAVI (9%) and 8% using leaf area index (LAI). The 

authors also drew attention to the impact grassland heterogeneity has on biomass 

estimation. Since the launch of Sentinel 2A in 2015 followed by Sentinel 2B in 

2017, the researchers have been able to use higher spatial resolution data when 

estimating biomass.  

 

2.1 Ground-based methods to estimate grass growth 

2.1.1 Non-remote sensing methods 

Grass biomass is positively correlated with sward height (Hakl et al., 2012). Sward 

height can be measured in the field using an RPM or a more straightforward “sward 

stick” that can be linearly related to canopy biomass by regression equations. The 

“cut and dry” approach is the most accurate and direct method to estimate grass 

biomass but is time-consuming and destructive, limiting its applications (Harmoney 

et al., 1997). The “cut and dry” methods are typically used as a benchmark for 

calibrating and validating the other ground-based methods. The RPM consists of a 

shaft and movable disc plate (Figure 2-1 (a)). When the shaft is placed on the grass, 

the plate moves up to the canopy to measure compressed sward height. There are 

disadvantages to using RPM; for example, it is labour intensive to record sufficient 

measurements to get an accurate canopy height value (Wachendorf et al., 2018). As a 

result, another version of an RPM, known as the ‘Grasshopper™’, uses an ultrasonic 

sensor to measure the sward height emitting ultrasonic waves to the plate and 

measuring the return time. It also has an integrated to record the measurement 

location (Figure 2-1 (b)) (McSweeney et al., 2019).  
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(a) (b) 

Figure 2-1 Ground-based methods to measure sward height  

(a) RPM with manual shaft and disc (b) The Grasshopper™, which automatically measures 

grass height location coordinates. Source: (Teagasc, 2017)  

 

 

 

Figure 2-2 An example of a sward stick.  

This measure has markings for grass height and corresponding grass yield. The colour-

coded markings offer advice based on the sward height and estimates of yield in kg/DM/ha 

 

 

A sward stick is a method comprising a ruler with corresponding biomass values in 

kg DM/ha (Figure 2-2). The red markings are for low yield with less than 4 cm 

height. Between 150-1150 kg DM/ha, the grass is let grow. Between 1150-1900 kg 

DM/ha grass is available for grazing, while cover greater than 1900 kg DM/ha is 

considered excessively high. RPM and sward sticks are affordable, quick estimators 

of yields and are in everyday use among farmers. In a comparative study, 

(O'Donovan et al., 2002) reported visual estimation by the farmer and RPM had had 
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an R2 of 0.95 and 0.94 against actual yields, and for the sward stick, R2 was 0.72. 

Sanderson et al. (2001) found that RPM measurements calibrated for ryegrass and 

clover swards in New Zealand yielded high error when used on pastures in the USA 

with R2 of 0.31 and RMSE 653 kg/ha. 

 

Serrano et al. (2020) used a capacitance probe known as Grassmaster IITM to 

estimate pasture biomass. The capacitance probe produces an electric field, which 

changes when brought close to the pasture. The capacitance of a material is 

proportional to the dielectric of the pasture, which changes with the water content 

and can be correlated with the biomass. The experimental data using the capacitance 

probe from 2007-2018 was used for calibration, and the data from 2019 was used as 

validation data. The probe is sensitive to the moisture content and, therefore, to the 

wet biomass and does not work well during the summer as there is a low moisture 

content in pastures, which affects the estimation accuracy. The ground-based 

methods are costly and difficult to implement over a large geographical area or an 

area that is difficult to access and therefore does not give the spatial distribution of 

biomass. 

 

2.1.2 Proximal sensors 

Proximal sensors are field-based sensors that can provide accurate measurements and 

help identify temporal and spatial variability within paddocks. Legg and Bradley 

(2019) used an array of low-frequency ultrasonic sensors mounted on a moving 

vehicle by sending ultrasonic echoes through the vertical depth of the pasture to get 

the height. A regression model was developed using measured height and biomass 

from the cut and dry method. The R2 was in the range of 0.70 to 0.80. The ultrasonic 

sensors used were low frequencies, which might not be helpful with increased 

driving speeds and could result in inaccurate measurements. Nguyen et al. (2020) 

used a vehicular Light Detection and Ranging (LiDAR) sensor and a Real-Time 

Kinematic positioning system called DairyBioBot to measure grass volume to 

estimate biomass. The ground truth data were measured using a mower and weighing 

the samples by the cut and dry method. There were 160 experimental plots with three 

rows per plot. There was a high correlation between grass volume and ground 
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biomass with R2 of 0.71 at row level and 0.73 at plot level. The authors observed that 

in the reproductive phase of grass, the biomass also includes the flower heads, 

creating complexity in LiDAR measurements. Overall, the proximal sensors are a 

promising technology for grass biomass estimation; it can be easily used by farmers, 

and can provide results instantly.   

 

2.2 Grass growth models 

2.2.1 Biophysical simulation models 

Biophysical simulation models provide an understanding of the complex biophysical 

interactions between site-specific soil, weather and management conditions that 

affect grass growth rate. They can also simulate future climatic conditions and the 

impact of climate change on grass growth. For example, Holden and Brereton (2002) 

used a grass growth model to predict the impact of climate change on grass growth 

rate in Ireland for over 100 years for blocks of 30 years- 1961-1990, 2041-2070 and 

from 2061-2090.  

 

Grass growth models are typically divided into two types- empirical models and 

mechanistic models. Empirical models describe the relationship between the local 

climatic variable and pasture biomass. Empirical models are relatively 

straightforward to implement as they have a small number of input variables. The 

Brereton model is an example of an empirical grass model developed at Teagasc 

Research Centre in Co. Wexford, Ireland (Brereton and Keane, 1992). Empirical 

models are site-specific and are further limited by not considering processes such as 

photosynthesis and respiration.  

 

Mechanistic models overcome these limitations by including crop physiological 

information and variables such as fertilizer application and grazing dates. 

Mechanistic models are more complex and require additional parameters but can be 

used for various soils and climates (White and Snow, 2012). Dairymod (Johnson et 

al., 2003a), EcoMod (Johnson et al., 2008) and Sustainable Grazing Systems- SGS 

Pasture Model are collectively known as GrazeMod (Johnson et al., 2003b), are 
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mechanistic models to estimate pasture growth. They are based on Johnson and 

Thornley (1983) model. The models are a daily step model considering different soil 

types, management, irrigation, and fertiliser in Australia and New Zealand. 

GrazeMod was applied to pasture in Australia and New Zealand under a range of 

climatic, soil and management conditions for temperate and tropical pastures. The 

model predicted the pasture yield with an R2 of 0.73 (Cullen et al., 2008). Their 

model could not take into account the variability of yield in paddocks due to grazing.  

 

2.2.1.1 LINGRA 

LINGRA (Light INTerception and UtiLization simulator- LINTUL-GRASS) is 

another example of a mechanistic grass growth model developed by Schapendonk et 

al. (1998). The model is based on the energy conversion from radiation to carbon 

stored in the grass, depending on light efficiency and leaf area indexes. The authors 

used the LINGRA model, calibrated using the experimental data from 35 sites across 

16 European countries with different meteorological and soil conditions from 1982-

1986. The model was tested on a subset of farms from Southern and Northern 

Europe (the exact number was not mentioned), divided into two categories- irrigated 

and non-irrigated to assess the models potential to work in irrigated and in water-

limited conditions. The fields were irrigated when the soil-water deficit exceeded 

12.5 mm. The average normalised error between actual and predicted grass yield was 

14% for irrigated farms with over-prediction and 19% for non-irrigated farms with 

under-prediction. Non-irrigated farms were water-limited, and the impact of deficit 

soil moisture led to under-estimation. 

 

2.2.1.2 GrazeGro 

GrazeGro, proposed by Barrett et al. (2005), is based on the LINGRA model 

described above and was used to predict pasture yield for sites in Spain, France, 

Norway, Northern Ireland and the Netherlands. The inputs to the model were 

photosynthetically active radiation (PAR), mean air temperature, rainfall and the rate 

of nitrogen fertilizer application. The mean normalised error for the accumulated 

yield varied from 1.9% to 15.3%, and the R2 varied from 0.27 to 0.85. A data 

limitation, such as the soil type and rate of nitrogen fertilizer application data, was 
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not available, and the assumptions had to be made for each site. The growth data 

were questionable as some sites had unusually high grass growth rates.  

 

Barrett et al. (2004) compared the Brereton model, LINGRA, Johnson & Thornley 

and a version of LINGRA, which considers the seasonal growth effects adapted by 

the authors. The models were tested for two sites with data for 17 years for site 1 and 

11 years of data for site 2. For site 1, the Brereton model performed the best with an 

R2 of 0.67 and mean squared prediction error (MSPE) of 355.3 kg DM/ha, and the 

LINGRA model performed the worst with an R2 of 0.27 and MSP of 1194.4 kg 

DM/ha. The second site modified LINGRA model performed the best with R2 of 

0.65 and MSPE of 333.8 kg DM/ha, and the Brereton model performed the worst 

with R2 of 0.20 and MSPE of 975.7 kg DM/ha. The two sites were different because 

site 1 was affected by drought leading to low grass growth rates during summer and 

the Brereton model (34.5 kg DM ha-1day-1) predicted the values close to the actual 

values (41.0 kg DM ha-1day-1).    

 

2.2.1.3 APSIM 

Agriculture Production System Simulator (APSIM) has a pasture growth prediction 

module called AgPasture. It was used to predict the pasture growth for 27 sites in 

New Zealand over 37 years (Li et al., 2011). The measured and simulated annual 

pasture biomass accumulation was 7277 and 6833 kg DM/ha, respectively, with an 

R2 of 0.83. The model did not take into account pasture phenology and management, 

such as grazing and fertilizer. There was heterogeneity on the sites with multi-

species pastures and different grazing management, affecting the biomass. 
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2.2.1.4 MoSt GGM 

The Moorepark St. Gilles grass growth model (MoSt GGM) is a mechanistic model 

which is a modified form of Jouven et al. (2006). It uses soil, weather, and N content 

and management data to predict perennial ryegrass growth at a paddock scale (Ruelle 

et al., 2018b). The model was modified to include the meteorological forecasts, 

which performed better than the model with climatological data (McDonnell et al., 

2019). The model can predict grass growth up to 6 days in advance. To calculate the 

farm grass growth rate, the model has to run for each paddock and average the 

results, which is time-consuming. Another limitation of the model is that it could not 

predict extreme grass growth values.    

 

In a comparative study of grass growth models used under Irish conditions, Hurtado-

Uria et al. (2012) compared one empirical model - Brereton and two mechanistic 

models - the Johnson and Thornley model (Johnson and Thornley (1983)) and the 

Jouven Model (Jouven et al. (2006)). The Johnson and Thornley model used the 

meteorological data and initial conditions such as dry matter and leaf area index 

(LAI). The initial conditions are the values needed at the beginning of the simulation 

period. The Jouven model uses meteorological data, N index and soil water holding 

capacity. The three models were tested at Moorepark, County Cork, using data from 

2005-2009. The study concluded that no one model was ideal for grass growing 

conditions in Ireland. The average annual grass growth rate for 5 years was 50.3 kg 

DM ha-1day-1. The Johnson and Thornley and the Brereton model over-predicted the 

growth by 88.9 and 8.3 kg DM ha-1day-1 respectively, while the Jouven model under-

predicted the growth rate by 13.9 kg DM ha-1day-1. The site-specific parameters 

required for the empirical model limits their applicability for the diverse range of 

conditions on farms nationally.  

 

2.2.2 Biomass using radiative transfer models 

Radiative transfer models are used to measure grass biophysical parameters such as 

LAI, which can be used to estimate AGB. Grass AGB is positively correlated with 

sward height (Andersson et al., 2017) and LAI (Crabbe et al., 2019). Schwieder et al. 

(2020) compared random forest (RF) with a radiative transfer model called soil–leaf-
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canopy (SLC) for estimating grass biomass using Sentinel 2 imagery. The RMSE 

was normalised (NRMSE) according to the validation data or easier comparison. RF 

performed better with NRMSE of 11% for biomass estimation than the SLC model 

with NRMSE of 47%. The grasslands were heterogeneous in this study area, and 

therefore SLC modelled biomass with high variability. For RF, many field samples 

were needed from all grass species types to estimate biomass with high accuracy.  

 

Punalekar et al. (2018) used LAI to estimate grass biomass for three sites in the UK. 

LAI was derived from an inversion of radiative transfer model PROSAIL, NDVI 

from the proximal hyperspectral sensor and Sentinel 2 imagery using an exponential 

equation. Linear regression between the LAI using an instrument called a ceptometer 

(a device with an array of light interception sensors to measure photosynthetically 

active radiation and LAI) and grass biomass using RPM gave an equation to estimate 

grass biomass. The obtained equation was used to estimate biomass from LAI 

derived from Sentinel 2 and the inversion model. The R2 ranged from 0.22 to 0.76 

for PROSAIL derived LAI and from 0.16 to 0.73 for NDVI derived LAI for three 

different dates. The limitation of PROSAIL is that it assumes vegetation as 

homogenous and therefore does not work well with multispecies grass. The equation 

used to derive AGB from LAI was developed specifically for these sites, and to use 

it for new locations, new regression equations would be required. The major 

drawback is that they are site-specific and incapable of capturing the non-linear and 

complex patterns in data from other locations and cannot be applied generically 

across diverse pasture ecotypes with dissimilar management practices. 

 

2.3 Biomass estimation using Earth observation data  

As noted above, ground-based methods are time-consuming and labour-intensive, 

while grass growth models are complex and do not consider spatial element. 

Consequently, there has been a shift toward EO data for grass biomass estimation. 

EO-based methods can overcome some of the spatial disadvantages of the previous 

methods. The satellite can record data synoptically over large geographical areas, 

including areas that may be difficult to access.  
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2.3.1 Unmanned aerial systems  

Unmanned Aerial Systems (UAS) can be mounted with various sensors to measure 

biomass, including standard RGB cameras, as well as multispectral or hyperspectral 

sensors. UASs have an advantage over satellite data as they can be deployed on-

demand and capture very high spatial and temporal resolution data. Moeckel et al. 

(2018) used UAS RGB imagery to estimate minimum, mean, and standard deviation 

grass height as input variables for RF and SVM models to predict sward height. RF 

(R2 = 0.89 - 0.97) performed slightly better than SVM (R2 = 0.87 - 0.91) for three 

crop types (eggplant, tomato, and cabbage). The algorithms were able to work 

efficiently with crops of different structure and heights. Predicted crop heights were 

then used to estimate biomass (RF with R2 = 0.88-0.95).  

 

Barnetson et al. (2020) used UAS RGB imagery with random sample consensus 

(RANSAC) and a - decision tree-based pipeline optimisation tool (TPOT) to 

estimate pasture biomass. The site had a mix of arid and sparse grasslands with 

woodland. Grass height from UAS (9-10 mm pixel size) using photogrammetry was 

used as an input to the two models. The field-based biomass collected using RPM 

was used as reference data. The R2 between the heights estimated using UAS and 

field height using RPM was 0.44. Both approaches under-estimated the actual yield 

of 1840 kg/ha, and the RANSAC model performed slightly better with an average 

yield of 1230 kg/ha versus 960 kg/ha for TPOT. There was a limitation of using 

UAS for height measurement - occlusion of grass by woodland and shrub affecting 

the height calculations as the site had sparsely located grass and woodland.   

 

De Rosa et al. (2021) used a multispectral camera on UAS to calculate NDVI for two 

sites in Australia at < 1 m spatial resolution. They reported an exponential 

relationship between ABG and NDVI using pre-and post- grazing biomass, rainfall, 

temperature, fertilization, season and soil type. A generalised additive model (GAM) 

and RF was used to predict pre-grazing pasture biomass using UAS data. RF 

performed better with 27.7% error than GAM with 22.9% error. UAS are suited to 

biomass estimation and can provide timely data at farm and paddock scale; however, 

they are limited in providing regional or national scale estimates. 
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2.3.2 Synthetic Aperture RADAR 

Synthetic aperture RADAR (SAR) sensors work in the microwave region of the 

electromagnetic spectrum. They have an advantage over optical satellite data owing 

to the fact that microwaves can work for any atmospheric conditions because of their 

ability to penetrate clouds. SAR can also capture data at night and are not sensitive to 

high values of biomass. The usefulness of SAR sensors depends on the sensor 

specifications such as polarisation, soil moisture and surface roughness, which can 

affect biomass estimation  

 

Crabbe et al. (2019) correlated ESA satellite Sentinel 1 data with pasture leaf area 

index, height and above-ground biomass (AGB). The study assessed VV (vertically 

polarised waves transmitted and vertically polarised waves received) and VH 

(vertically polarised waves transmitted and horizontally polarised waves received) 

polarisation, scattering entropy and anisotropy, and mean scattering angle. The VH 

channel was significantly related to AGB with an R2 of 0.71. In contrast, the VV 

channel had an R2 of 0.35. A generalised additive model (GAM) was used to 

estimate AGB (R2=0.66; RMSE=391.93 kg /ha). In a second study, Crabbe et al. 

(2020) used the VH polarisation to identify grass clumps (the clusters of residual 

grass after grazing) due to grazing because VH is sensitive to volume scattering and 

grass canopy.  

 

In intensively managed grasslands, there are multiple grazing and silage cuttings in a 

year. It is vital to monitor such management events for accurate grass biomass 

estimation to get accurate estimates of total harvest yield. Taravat et al. (2019) used 

an artificial neural network (ANN) to detect mowing events on grasslands under 

different grazing and moisture conditions. The model used 50 Sentinel 2 images in 

2016. The ANN inputs were VV, VH polarisation backscattering intensity and 

texture metrics such as homogeneity, entropy, contrast and dissimilarity. The 

methodology worked well, with an overall accuracy of 85.71%. The study did not 

consider the impact of each variable on the detection capability.  
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In a similar study, Sentinel 1 data were used to detect grazing and mowing events by 

De Vroey et al. (2021). After any grazing or mowing event, the coherence values 

increase due to the reduction of biomass. The summer grazing events were detected 

with 71% accuracy as the grass takes time to re-grow and have similar coherence 

values until complete re-growth. Such a method can be affected by mixed pixels due 

to the presence of trees or shrubs nearby, leading to false detection.  

 

2.3.3 Multi-sensor approach 

There have been studies into multi-sensor approaches, combining optical and SAR 

data to benefit from the specific capabilities. Wang et al. (2019) combined Landsat 8 

with Sentinel 2 and Sentinel 1 to predict grass biomass using SVM and RF. The 

combination of Landsat 8 and Sentinel 2 provided a finer spatial and temporal 

resolution to capture the seasonality of pastures, such as the start and end of the 

season. However, there can be issues combining Landsat and Sentinel because whilst 

designed to be comparable, the optical sensors have different specifications and 

performance characteristics such as different bandwidths and band centres. For 

biomass above 0.50 kg/m2, the model using Sentinel 1 had the lowest RMSE and the 

model with optical data- Landsat 8 and Sentinel 2 had the highest RMSE. Overall, 

the model with the combination of Sentinel 1, Sentinel 2 and Landsat 8 was the best, 

with an R2 of 0.78 and the lowest RMSE of 0.00011 kg/m2.  

 

A European project, GrassQ, developed by Teagasc and Maynooth University, is a 

decision support system to estimate grass yield (Murphy et al., 2019). GrassQ is a 

multi-sensor approach with ground-based data collected using RPM, providing the 

data such as grass height (mm) and yield (kg DM/ha). The spectral indices were 

calculated using the data from Sentinel 2 and UAV. The grass biomass was 

estimated with Sentinel 2 (R2 > 0.7) and UAV (R2 > 0.8) using stepwise multi-linear 

regression (MLR). The SWIR bands (band 11 with 1.610 µm and band 12 with 2.190 

µm) from Sentinel 2 were the most important in grass biomass estimation.  
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2.3.4 Optical sensors 

Optical satellite data provide coarse to medium spatial resolution from visible to 

infrared wavelength region and are free of cost with a large geographical area for 

biomass estimation. A common technique to estimate grass biomass is to establish a 

regression equation between ground biomass and EO data, typically a vegetation 

index. Variables used to estimate grass biomass are such as vegetation indices, grass 

height (Yang et al., 2018), LAI (Punalekar et al., 2018) and Fraction of Absorbed 

Photosynthetically Active Radiation (FPAR) (Wu and Fu, 2018). In such studies, 

these variables are used as the predictor variable and, as such, can be used to train 

machine-learning regression models. Vegetation indices, such as NDVI, SAVI, and 

EVI, correlate well with grassland biomass (Yin et al., 2018) and can be calculated 

with satellite data across different spatial resolutions. The vegetation index and 

satellite data choice depend on the study area, vegetation type and structure, and 

application. For example, for the grass biomass estimates at a paddock-scale, high 

temporal and spatial resolution satellite data are required, whereas low spatial 

resolution data will suffice for global biomass modelling.   

 

2.3.4.1 Statistical techniques  

MODIS NDVI has been widely used to describe the phenology of grasslands and 

pastures due to high-frequency observations (Green et al., 2018, Ali et al., 2017b). 

However, the spatial resolution of the sensor is often larger than the parcel size of 

pastures being observed, so it will include surrounding land cover types within each 

pixel (known as mixed pixels).  

 

Clementini et al. (2020) used - linear, power and exponential regression models to 

estimate grass biomass. Actual biomass was estimated using an RPM. EO-estimates 

of biomass were based on Sentinel 2 NDVI. The power function model performed 

best on calibration and validation dataset with RMSE of 572.29 kg/ha. The Sentinel 

2 data coincided with the ground data collection date. The developed model was 

subsequently used to estimate biomass using MODIS, SPOT and Landsat 5 NDVI in 

the 21 years (1996-2017). The authors concluded that the model developed on 

specific vegetation characteristics and climatology can be used on another 
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geographical area with the same characteristics and climatology, especially where 

there is insufficient data availability. 

 

Zumo and Hashim (2020) used linear regression to estimate pasture AGB. 

Vegetation indices from Sentinel 2 from 2017 to 2018 and temperature and rainfall 

data were used as input data. Correlation analysis was done for each variable with a 

vegetation index number (VIN) as the lowest RMSE of 0.00175 kg/m2. During the 

wet season (April to September in Nigeria), the rainfall was positively related with 

AGB with R2 of 0.86, while the temperature was negatively correlated with AGB 

with R2 of -0.86. Regression models were developed separately for each variable, 

whereas there was no combined model with all the variables.  

 

Amies et al. (2021) developed a regression model using 4 years (2015–2020) of 

Sentinel 2 NDVI imagery to estimate annual pasture yield (kg/ha/year). Measured 

yield data were collected from a literature review for 21 sites in New Zealand. A 

linear model was used to predict pasture yield national at field-scale by fitting 

median NDVI from Sentinel 2 and the measured data from 21 sites. The fitted model 

was used to create a national pasture yield map using median values of NDVI. The 

standard error was 2200 kg/ha/year. The field-based pasture yield for 21 sites ranged 

from 4800 t/ha/y to 17200 t/ha/y, and any values outside this range, the model will 

not be accurate.  

 

2.3.4.2 Machine-learning models  

Most of the studies above assume a linear relationship between features of the input 

data in the model and use statistical techniques to examine these relationships, such 

as multiple regression analysis and least-square methods. This assumption might 

lead to the underestimated results showing an insignificant relationship between the 

variables (Rasoolimanesh et al., 2018). Machine-learning algorithms can model non-

linear problems (Xia et al., 2018). ML models such as ANN and SVM contains a 

non-linear mathematical function that can help model input-output relationships 

(Zekić-Sušac et al., 2014). See section 5.2.4 for discussion on ML algorithm and 

how they work. 
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In Zeng et al. (2019), NDVI and EVI, along with factors such as topographical and 

meteorological data, were used as an input into the RF model, which was effective in 

handling the non-linearity in the data (R2  = 0.85 and RMSE=46.57 g/m2) and was 

able to capture spatial heterogeneity in the grassland. However, the vegetation index 

was calculated using MODIS data with 250 m resolution, a coarse resolution dataset. 

In several studies, RF has proven to be robust, which can model complex 

interactions among the variables in grass biomass modelling (Gao et al., 2020a). RF 

performed better (R2=0.95 and RMSE=208.88 kg DW/ha) than SVM and MLR in a 

study for biomass modelling with NDVI, SAVI and EVI along with topological 

variables (Liang et al., 2019). In a similar study by Meng et al. (2018), although RF 

performed the best among all the models (R2=0.78 and RMSE=10.84%), Back 

propagation-ANN (BP-ANN) was used as a final model as its stability was the 

highest with standard deviation in R2 of 0.062. There can be some temporal and 

spatial mismatch between ground data collection and the satellite data leading to 

inaccuracy and error in the model. For example, the use of NDVI3g data with 8 km 

resolution (Xia et al., 2018) and MODIS data with 250 m and 500 m resolution 

might not capture the phenological changes in the grass growth curve because the 

data is 16-day composite (Gao et al., 2020b). The higher resolution satellite images 

than MODIS such as L-8 (30 m) (Wang et al., 2017), S-2 (10 m)  and World-View-3 

(1.24 m) (Naidoo et al., 2019) can lead to high accuracy in modelling biomass in 

more complex grasslands with varying grassland types.  

 

Compared to Landsat 8 data, WorldView-2 (WV2) images provide a potential for 

estimating biophysical parameters with higher spatial and spectral resolution and 

red-edge band. For example, (Zhu et al., 2017) suggested the red-edge band was the 

most appropriate band for estimation of LAI using SVM, RF and ANN with 

reasonable accuracy improvement (3.79%, 2.70% and 4.47% for ANN, SVM and 

RF). Apart from optical data, microwave data can also be used for biomass 

modelling. The microwave data gives textural information about the grass, and 

optical data gives the reflectance data. The complementary information from both 

the sensors can be combined into one model to give better accuracy than the 

individual models. For example, RF with Sentinel 1 had an R2 of 0.56, and with 
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Sentinel 2, it was 0.60, but when both datasets were combined in the same model, R2 

increased to 0.63 (Naidoo et al., 2019).  

 

Grass height is an indicator of biomass, especially in the early growth stages. AGB 

can be indirectly estimated using grass height, in which grass height can be estimated 

using an RF model with vegetation indices, topographical and meteorological 

variables as input (R2=0.51 and RMSE=6.15 cm) (Yin et al., 2020). RF and support 

vector machine (SVM) algorithms could handle high correlation between the 

variables (Moeckel et al., 2018). RF can also be used to estimate forest height. L-

band SAR data were used as an independent variable, and the reference data used 

was Lidar height as an input to the RF (Urbazaev et al., 2018). An important 

observation was that as RF averages the predictions from each tree, it could lead to 

under or overestimation of the values. For example, the height of small and tall trees 

was over-estimated and under-estimated, respectively. Machine-learning such as RF 

worked well in grassland system with LiDAR used for data collection. Jansen et al. 

(2019) observed that the canopy height and intensity data were the most accurate 

model with an R2 of 0.64 as the intensity of the return wave are more for the green 

crop than the bare soil. Biomass can be affected by grazing intensity by the livestock. 

As the pixel size increases, it is difficult to observe the impact of grazing on the 

spatial heterogeneity of the grassland. A finer resolution is required to quantify the 

impact of grazing on grasslands.    

 

Another application of machine-learning algorithms in grasslands is evaluating 

grassland degradation using biomass and net primary production (NPP). (Lyu et al., 

2020) employed a multi-layer perception neural network (MLPNN) for grassland 

degradation monitoring using Hyperion data with varying degree of degradation 

levels. The indices used for the study were AGB, species information, vegetation 

coverage and soil information. The authors presented a detailed study combining 

ground data with satellite data, which can potentially be used as the reference 

method for other studies. Grassland degradation can also be indicated by the changes 

in nutrients of the soil such as carbon, phosphorus and nitrogen. SVM was 
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implemented to predict these nutrients to indicate the severity of grassland 

degradation (Li et al., 2017).  

 

A comparison of parametric and non-parametric models was made for the estimation 

of sawgrass biomass. The non-parametric models used were SVM, RF, k-nearest 

neighbour (k-NN), ANN, and the parametric model used was Multiple Linear 

Regression (MLR) (Zhang et al., 2018). Non-parametric models performed better 

than parametric with R2 of 0.58 for live biomass and 0.47 for total biomass. ANN 

and SVM performed better among non-parametric models with R2 0.91 and 0.75 for 

total biomass receptively. Chen et al. (2021) used a multilayer perceptron (MLP) 

neural network to predict pasture biomass for two years, 2017 and 2018. The model 

was developed for 5 dairy farms in Australia using Sentinel 2, field biomass and 

climate variables such as precipitation and minimum temperature, solar radiation and 

the vapour pressure deficits as input data. Two models were developed- one with all 

the bands and NDVI from Sentinel 2 and the other one using Sentinel 2 and climatic 

data. The best model used all the variables- Sentinel 2 and climate data with R2 of 

0.60 and RMSE of 356 kg DM/ha. There were missing factors from the model such 

as management and soil information.  
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2.4 Conclusions 

It was seen that none of the conventional models, empirical and mechanistic, is ideal 

for Irish grassland conditions, and some modifications such as adapting to a range of 

management and soil might be needed to predict the grass growth rate accurately 

(Ruelle et al., 2018b). EO methods are increasing, a good amount of data is now 

available. Previous work by Ali et al. (2017b) showed a promising machine-learning 

model which worked well for Moorepark and Grange but was limited by spatial 

resolution as it used the MODIS data (250 m).  

 

The choice of data collection methods can affect the scale, complexity, accuracy and 

time to estimate the biomass. The methods to estimate grass growth rate are moving 

towards new technology such as UAS and proximal sensors. These technologies 

work well at a paddock scale but are limited to large geographical areas. Several 

studies have shown how synoptic, wide-area EO imagery can play an important role 

in biomass estimation on managed grasslands. There is still a need and an 

opportunity for improved biomass estimation using Sentinel 2 data. The model in 

this work will try to improve upon the developed model by bringing in more farms 

with a higher resolution dataset and a new algorithm.  

 

The most important lesson from the literature on empirical, mechanistic and 

machine-learning models is that there is an enormous variety in grasslands in terms 

of management and enterprise across regions at all scales and between seasons. Such 

factors make the performance of algorithms developed in one site to another very 

variable, and that differences in seasonal performance can outmatch the model range. 

The EO data can capture such variability, which can provide spatial and temporal 

data to model national grass growth.  
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3 
Chapter 3 Study Area & Datasets  

 

3.1 Introduction 

In Chapter 1, it was established how a grass growth model at the farm scale could 

have several applications, including on-farm day-to-day management and developing 

or supporting policies relating to food production, carbon budgeting, and climate 

change mitigation. This chapter presents information on the study areas used in this 

research and introduces the datasets used. The general study area, the Republic of 

Ireland, is introduced and several specific locations, including Teagasc research 

farms and several large commercial farms.  

 

3.2 Geography & climate of Ireland 

The Republic of Ireland is part of an island, approximately 70,273 km2 in area, 

located in North-West Europe. The central portion of Ireland comprises lowlands 

with a ring of coastal uplands reaching 1,038 m above sea level (a.s.l.). Ireland has a 

maritime oceanic climate, which means mild summers and cool, but not 

cold, winters. Mean annual temperatures for Ireland range between 9°C and 10°C 

and average annual rainfall for Ireland is approximately 1230 mm (Éireann, 2012). 

Ireland receives between 1100 and 1600 sunshine hours, and May and June are 

typically the sunniest months (Éireann, 2012). 

 

Chapter 4 focuses on just one study site, i.e. Moorepark Farm, a Teagasc research 

farm in County Cork, with additional sites, both research and commercial farms from 

PastureBase Ireland (PBI), added to it in Chapter 5. A national model was developed 

using 179 farms that are registered with PBI in Chapter 6.  
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3.3 Specific sites 

3.3.1 Moorepark Farm 

The Teagasc Animal and Grassland Research and Innovation Centre, Moorepark, 

Fermoy, Co. Cork (hereafter Moorepark Farm) (50°7 N 8°16 W; see Figures 3-1) 

comprises 136 paddocks (as shown in Figure 3-2) covering approximately 220.77 ha 

and is used for grazing and scientific experiments. A typical grazing season lasts 

from February to November, but the grazing season length varies according to the 

management and weather conditions, as shown in Table 3-1. Moorepark is an 

experimental farm, and the grazing season length may have become shorter from 

2017 to 2020 because there are different experiments over different paddocks and the 

size and grass of each paddock could change every year. 10-year variations in 

maximum, mean and minimum temperature between 2010 and 2020 are illustrated in 

Figure 3-3. These data are taken from a Met Éireann weather station located on-site, 

which provides hourly, daily, and monthly data on rainfall, air temperature, wind 

speed, sunshine duration, evaporation/potential evapotranspiration and soil moisture 

deficit (SMD). 

 

Soil type at Moorepark Farm ranges from sandy loamy to loamy and free-draining 

soils. The bedrock at this location is pale grey and fine gain carbonate limestone of 

the Waulsortian  Formation (GSI, 2021) (Murray and Henry, 2018). A mean 

elevation across the farm of 40m above sea level (a.s.l.) was calculated based on the 

Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) with a 

resolution of 90 m.   
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Figure 3-1 Moorepark farm in County Cork. 

(A) Location in Republic of Ireland (B) Location in County Cork (C) Moorepark farm 

boundary 

 

 

A 

B C 
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Table 3-1 Grazing season length (in days) for Moorepark farm (2017 to 2020).  

Grazing season length can vary depending upon weather and management conditions. 

Year Start grazing End grazing Grazing season length 

2017 18th January (18) 9th December (343) 325 

2018 3rd February (34) 6th December (340) 306 

2019 2nd February (32) 3rd December (337) 305 

2020 16th February (47) 26th November (331) 284 

 

 

 

Figure 3-2 Moorepark farm showing the location of 136 paddocks 



48 

 

Figure 3-3  Monthly meteorological data for Moorepark farm (2010- 2020).  

The average monthly mean temperature is shown in a cyan curve, the minimum temperature 

in green, the maximum temperature in blue and the average monthly rainfall in a red dotted 

curve.  
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3.3.2 Teagasc farms  

The study area for Chapter 5 was extended to include seven additional Teagasc 

research farms distributed across the South and West of Ireland (see Figure 3-4). 

These farms are in three clusters, with three farms in Galway, three farms in Fermoy, 

County Cork and two farms in Johnstown Castle, Wexford. Incorporating farms 

nationwide is more representative of the different farming systems, farm sizes, soil 

types and variable weather conditions found across the country. The soil properties, 

elevation and bedrock type for each of these locations are presented in Table 3-2. 

The farms have contrasting soil and bedrock properties, with the farms in Galway 

and Wexford dominated by fine loamy soils, with fine and coarse loamy soil in 

Cork.  

 

Bedrock was a mixture of sedimentary limestone and greywacke in Galway, pale 

grey limestone in Cork, and Greywacke slate is found in Wexford (extracted from 

100K geological maps from the Geological Survey of Ireland (GSI, 2021). Soil 

association types were taken from the Irish Soil Information System (Irish SIS) 

project.  

 

Table 3-2 Soil type, elevation and bedrock type for Teagasc research farms. 

Farm Soil Elevation Bedrock 

Galway: Farm 1 

Fine loamy  31.40 m Limestone  Galway: Farm 2 

Galway: Farm 3 

Cork: Farm 1 Fine loamy  51.77 m 
Limestone  

Cork: Farm 2 
Coarse loamy  

39.25 m 

Cork: Farm 3 45.56 m Limestone with shale 

Wexford: Farm 1 

Fine loamy  

51.88 m Grey-green meta-greywacke & 

slate 

 

Wexford: Farm 2 57.28 m 
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Figure 3-4. Locations of Teagasc research farms with the outline of the farms.  

The map shows three clusters of farms. The first cluster is in Galway in the West 

(crosshatched farms), containing three farms. The second cluster is in County Cork with 

three farms (diagonal lines), and the third cluster is in County Wexford (dotted) with two 

farms.  
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3.3.3 Commercial Farms 

The study area for Chapter 6 also includes 10 commercial farms distributed across 

Counties Limerick, Tipperary and Cork (Figure 3-5). Table 3-3 describes these 

locations in elevation, proximal rain station, soil properties and bedrock type. 

 

Figure 3-5 Locations of commercial farms in Counties Cork, Limerick & Tipperary 

A farm may consist of several parcels, such as Farm 2 and 7 in Cork has two parcels.  
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Table 3-3 Farm properties of the commercial farm cluster.  

Table lists county, elevation, nearby rain station, soil properties and bedrock type. 

Farm Parcel Location Rain station/ elevation Distance to 

station (km) 

Bedrock Soils 

Farm 1 1 Tipperary Ardfinnan, 46 m 5.6 Pale-grey limestone Fine loamy 

2 5.8 

3 6.2  

Farm 2 1 Cork Carrigadrohid, 65 m 5.2  Dark grey argillaceous limestone Coarse loamy 

2 4.8  Shale and sandstone Fine loamy 

Farm 3 1 Tipperary Cashel, 123 m 0.6  Purple mudstone and sandstone 

2 2.0 Coarse loamy 

Farm 4 1 Limerick Cooga, 88 m 6.3  Limestone Fine loamy 

2 6.3 Basaltic lava flows 

3 4.6  Waulsortian soil 

 

Clayey 

4 21.2  

Farm 5 1 Cork/ Tipperary Skeheenarinky, 335 m 6.0 Grey, fine-grained limestone Coarse loamy 

 2 Tipperary 5.2  Pale-grey limestone 

3 Limerick 

 

5.4  Dark-grey clean to muddy limestone 

4 5.5  

Farm 7 1 Cork 

 

Inishcarra, 24 m 1.7  Limestone 

Basaltic lava flows 

Fine loamy 

2  0.6  

Farm 8 

 

1 M.Inchigeelagh, 299 m 

 

4.1 Pebbly sandstones with purple mudrock Coarse loamy 

2 5.4  Pale to dark grey limestone 

3 5.7 Limestone 

 

River alluvium 

 4 4.6  

5 3.4  

Farm 9 

 

1 Mallow, 61m 

 

3.0 Mudstone and siltstone Coarse loamy 

2 4.3  Purple mudstone and sandstone Fine loamy 

3 10.5  

Farm 10 1 Mitchelstown, 168 m 4.6  Purple siltstone and fine-grained sandstone Peat 

2 4.8  

3 5.6  Purple and green medium to coarse-grained and 

sandstones 

Coarse loamy 

4 4.9  

5 5.0 

6 5.5  
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Only rainfall data are available for these farms as there are no climatological stations 

nearby to provide temperature, global radiation, SMD, and evapotranspiration 

values. The average total monthly rainfall from 2015-2020 (mm) for the rainfall 

station closest to each farm is shown in Figure 3-6. Farm 6 was excluded from the 

plot as it had only 2018 rainfall data. There are two types of grass growth rate data 

available on PBI for this work- paddock and farm average data. The average farm 

grass growth rate is used for this work. 

 

 

 

Figure 3-6 Average monthly rainfall (in mm) for 9 commercial farms (2015-2020).  

Rainfall stations closest to the commercial farms (excluding Farm 6) 
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3.3.4 National Farms 

These 179 farms were located in Counties Donegal, Galway, Sligo and Cork (Figure 

3-7). They were selected because they had PBI data for all four years of the study 

(2017 to 2020). The soil and bedrock information for these counties are given in 

Table 3-4. In the North, Counties Donegal and Sligo are characterised by 

metamorphic rocks and sandstones with peat soil. The South of County Galway 

consists of granite, and in the North, metamorphic rocks dominate. The South and 

South West of Ireland (County Cork) are dominated by sandstone and shales. There 

are nine major soil types in Ireland (Fay et al., 2007). Each soil type has a different 

drainage capacity. Alluvial soils are formed in river or lake deposits and are poorly 

drained. Brown Earths are a well-drained soil found in Co. Galway. Rendzinas are 

shallow soils found in Sligo. Donegal is dominated by peat, which contains high 

organic matter. The South of Ireland consists of Brown Podzolic soils rich in Iron, 

Aluminium, and Acid Brown Earths. The exact locations of the farms are not known 

because of General Data Protection Regulation (GDPR), which is 

a regulation on data protection and privacy in the European Union (EU) and 

the European Economic Area (EEA) and gives individuals control over their 

personal information. 

 

Table 3-4 Soil type and bedrock for counties hosting the 179 farms used in Chapter 6  

County Soil Bedrock 

Donegal Peat- high organic matter Metamorphic rocks and 

sandstones 

Sligo Rendzinas - shallow soils Metamorphic rocks and 

sandstones 

Galway Brown Earths - well-drained soil Granite and metamorphic rocks 

Cork Brown Podzolic and Acid Brown Earths - 

rich in Iron, Aluminium 

Sandstone and shales 
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Figure 3-7 Location of farms used in Chapter 6.  

The sites cover four counties- Donegal (Yellow), Sligo (Blue), Galway (Green) and Cork 

(Red). 
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3.4 Datasets 

3.4.1 Landsat 8 data & processing  

Landsat 8 Operational Land Imager (OLI) collection 2 multispectral imagery was 

downloaded from the USGS Earth Explorer website for the 8 Teagasc farms 

described in Section 3.3.2. The cloud-free images were downloaded as surface 

reflectance products, as processed by USGS with 30 m spatial resolution and 16 days 

temporal resolution. OLI has nine spectral bands with wavelengths ranging from 

0.435 µm to 2.294 µm, as given in Table 3-5. Ireland is covered by paths 205-209 

and rows 21-24. The surface reflectance data were converted into NDVI using 

equation 3-1, where BNIR is the near-infrared band (band 5), and BRed is the red band 

(band 4). 

 

 NDVI  = 
(𝐵𝑁𝐼𝑅−𝐵𝑅𝑒𝑑)

(𝐵𝑁𝐼𝑅+𝐵𝑅𝑒𝑑)
 Equation 3-1 

 

Table 3-5 Landsat 8 OLI bands and their names, spatial resolution and wavelengths 

Band Band name Spatial resolution Wavelength (µm) 

Band 1 Coastal/aerosol 30 m 0.435-0.451 

Band 2 Blue 30 m 0.452-0.512 

Band 3 Green 30 m 0.533-0.590 

Band 4 Red 30 m 0.636-0.673 

Band 5 NIR 30 m 0.851-0.879 

Band 6 SWIR-1 30 m 1.566-1.651 

Band 7 SWIR-2 30 m 2.107-2.294 

Band 8 Pan 15 m 0.503-0.676 

Band 9 Cirrus 30 m 1.363-1.384 
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3.4.2 Sentinel 2 data & processing  

Sentinel 2 is a constellation with two satellites. Sentinel 2A was launched in June 

2015 and Sentinel 2B in March 2017. Sentinel 2 has a Multispectral Instrument 

(MSI) with 13 spectral bands (from 0.458 µm to 2.28 µm), as shown in Table 3-6. It 

has a swath width of 290 km and a 5-day temporal resolution. As the farm 

boundaries were not available for the PBI farms due to GDPR restrictions, the 

satellite data were processed by a Teagasc colleague who had access to the spatial 

location information and provided to this project as a vector of average NDVI values 

for each of the 179 farms.  

 

The field level Sentinel 2 imagery was derived by cropping Sentinel 2 Level 2A tiles 

using polygons of the field outlines. The process was comprised of multiple steps. 

Level 1C Sentinel 2 imagery was downloaded from the Plateforme d’Exploitation 

des Produits Sentinels (PEPS) platform maintained by the French National Centre 

for Space Studies (CNES). A complete timeline covering the entire Island of Ireland 

ranging from 2017 to 2020 was acquired.  

 

In an initial check, all polygons were tested for cloud cover for each acquisition. 

Cloud detection was carried out using the cloud mask created by the multi-temporal 

Multi-Mission Atmospheric Correction and Cloud Screening (MACCS), 

Atmospheric and Topographic Correction (ATCOR) Joint Algorithm (MAJA) v.3.3, 

developed by CNES (Hagolle et al., 2010). The MAJA algorithm produces a cloud 

mask raster, as well as a sensor footprint mask. Any part of a field polygon that 

overlapped with the cloud mask or fell outside the sensor footprint was not included 

for extraction of that specific polygon.  

 

While the MAJA algorithm applies an atmospheric correction to produce Level 2A 

images, these images showed a large number of negative surface reflection rates, 

rendering many images unsuitable. Instead, Level 2A images were produced using 

the Sen2Cor atmospheric correction algorithm (v 2.8) (Louis et al., 2016). The 

Sen2Cor algorithm outputs Level-2 imagery as a set of single-band raster data.  
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A Python 3.6 processing chain was developed to crop the Sentinel 2 raster data, 

using the ‘rasterio’ package to read and crop the Sentinel 2 images and the 

‘geopandas’ package to read and select the polygons for cropping. All bands were 

extracted separately for each valid polygon (i.e. no cloud cover and falling fully 

within the sensor footprint). To avoid issues with the different resolutions of the 

separate bands (10 m resolution: Bands 2, 3, 4 and 8; 20 m resolution: Bands 5, 6, 7, 

8A, 11, 12; 60 m resolution bands were not included in the analysis), a 20 m buffer 

was applied to the polygon initially. The buffer ensures that for each 10 m pixel, all 

according to 20 m pixels were extracted as well. Then the 20 m bands were upscaled 

to 10 m using nearest neighbour resampling. Finally, all extracted bands were 

stacked into a single multi-band Geotiff.  Band statistics for each image were 

calculated using the ‘numpy’ package in R. The sensor specifications of Landsat 8 

and Sentinel 2 are shown in Table 3-7. 

 

Table 3-6 Sentinel 2 bands and their names, spatial resolution and wavelengths 

Band Band name Spatial resolution Wavelength (µm) 

Band 2 Blue 10 m 0.458-0.523 

Band 3 Green 10 m 0.543-0.578 

Band 4 Red 10 m 0.65-0.68 

Band 5 Red-edge 20 m 0.698-0.713 

Band 6 Red-edge 20 m 0.733-0.748 

Band 7 Red-edge 20 m 0.765-0.785 

Band 8 NIR 10 m 0.785-0.899 

Band 8A NIR narrow 20 m 0.855-0.875 

Band 11 SWIR 20 m 1.565-1.655 

Band 12 SWIR 20 m 2.1-2.28 
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Table 3-7 Specifications of Landsat 8 and Sentinel 2 satellites 

 Landsat 8 Sentinel 2 

Wavelength 0.435 – 1.384 µm (VIS – SWIR) 0.443 - 2.150 µm (VIS – SWIR) 

Orbit 705 km (sun-synchronous) 786 km (sun-synchronous) 

Interval 16 days 5 days 

Mode Multispectral Imager Multispectral Imager 

Swath width 185 km 290 km 

Product Level-2A Surface Reflectance Level-2A Surface Reflectance 

Spatial 

resolution 
30 m 10 - 20 m 

Operator U.S. Geological Survey (USGS) European Space Agency (ESA) 

 

 

3.4.3 Meteorological data 

Meteorological data were downloaded from Met Éireann, the Irish Meteorological 

Service1, which operates a national network of instruments to record meteorological 

data. There are four different weather station types, which differ in the available 

instrumentation and the measurement interval. There are 4 manned and 20 automatic 

weather stations, 60 climatological stations, and 500 rainfall stations as shown in 

Figure 3-8. Manned and automatic synoptic stations provide hourly data for air 

temperature, rainfall, wind speed, relative humidity, global solar radiation and soil 

temperature. Climatological stations provide minute-by-minute and hourly data on 

air and grass temperature, humidity and rainfall. The extensive network of rainfall 

stations provides daily and monthly data.  

 

 

 

 

1 https://www.met.ie/climate/available-data/historical-data. Accessed 16th May 2018 

https://en.wikipedia.org/wiki/Earth_observation
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Figure 3-8 Irish meteorological stations. 

Climatological stations (yellow squared boxes), rainfall stations(blue circles) and 

manned/automatic synoptic stations (red triangles) (Falzoi et al., 2019) 

 

The mean, maximum and minimum air temperature, rainfall, soil moisture deficit, 

global radiation, potential evapotranspiration, and evaporation were used for this 

study. For some sites, such as the Teagasc farms, all the variables listed above could 

be obtained for 2017-2020. However, as new weather stations are installed and 
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others discontinued over time, some datasets are incomplete, so when the model was 

expanded to a national level, only widely available rainfall data could be used.  

 

3.4.4 PastureBase Ireland data 

Ground data is required to validate the grass growth rate models developed in this 

thesis. Pasturebase Ireland (PBI) is an online grass budgeting decision support 

system (DSS) for Irish farmers, whereby the farmers record grass growth rates in 

their fields. These data are uploaded to the national grassland database that is 

available via online and mobile applications and allows farmers to maintain up-to-

date on-farm grass growth records. PBI subscribers include all Teagasc research 

farms, commercial farms, and some family-run, owner-operator farms. PBI has been 

described as an example of citizen science (Shalloo et al., 2018), where a distributed 

network of farmers collect data as they walk through their farm and then upload it 

into the web application, which can be used to gather a national picture of grass 

growth. Subscription to PBI also allows farmers to participate in broader discussion 

forums that inform farmers about cutting edge grassland research and innovation. 

 

Grass records are added weekly for fields and paddocks using different methods (see 

Section 1.5.1) depending on the farmer’s preference. These include a rising plate 

meter and visual inspection (“eyeballing”) method. A paddock’s status is also 

entered based on whether they are available for grazing, being grazed, or being kept 

for silage. Nutrient management and history can also be recorded. PBI uses this 

information to calculate a “grass wedge”, an essential tool in rotational grazing 

systems that shows farmers whether paddocks are over-performing (have surplus 

grass) or under-performing (require intervention) (see Figure 3-9). 

 

The grass wedge ranks paddocks from highest to lowest grass cover in kg of dry 

matter per hectare of grass (kg DM ha-1) for a given week. Figures 3-9 to 3-11 show 

a grass wedge with a demand line (red line) to calculate pre-grazing yield and 

demand for the current stocking rate. It joins two points corresponding to the pre-and 

post-grazing growth rate. The highest point is the target pre-grazing (kg DM ha-1), 

and the lowest point is the post-grazing grass growth rate. Target pre-grazing yield is 
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calculated as the product of the stocking rate (cows ha-1) and demand (kg DM cow-

1day-1) by the rotation length (in days) plus the target residual grass yield (kg DM ha-

1). The width of the columns in Figure 3-9 for the grass wedge depends on the 

paddock area.  

 

 

Figure 3-9 Grass wedge showing a scenario of the on-target wedge. 

On target means a paddock’s grass growth rate meets the farm's demand. Red line is a 

demand line, which connects pre- and post-grazing yield line and blue bars are the grass 

yield for each paddock. 

 

According to Dilon and Kennedy (2009), there are three scenarios identified by the 

grass wedge: on-target, surplus or deficit. 

i. On-target: All paddocks meet the demand line, as shown in Figure 3-9, an 

“ideal” case. There is usually a mixture of grass surplus and grass deficit on a 

typical farm throughout the season. 

ii. Surplus wedge: Surplus wedge means that the paddocks are above the 

demand line, which means that those paddocks have a surplus of grass that 

needs to be removed. It is important to note that the pre-grazing yield should 

not be exceeded, and the post-grazing yield should be achieved. For example, 

paddocks 1, 2, 3, and 7 in Figure 3-10 have surplus grass, and 4, 5, 6, 8 and 9 
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are on-target. In this case, surplus paddocks exceed the pre-grazing yield and 

should be addressed by the farmer. The surplus grass can either be grazed or 

removed as silage for winter. 

iii. Deficit wedge: A deficit wedge occurs when the paddocks are below the 

demand line. For example, in Figures 3-11, the farmer immediately addresses 

paddocks 1, 2, 3 and 4 in deficit. The paddocks with a lower grass growth 

rate than the demand can be supplemented using fertilizer, or those areas can 

be closed for grazing until they reach the demand level. 

 

 

Figure 3-10 Grass wedge showing surplus condition on a farm. 

The grass growth rate on paddocks 1, 2, 3 and 7 is more than the demand showing a 

surplus. Red line is a demand line, which connects pre- and post-grazing yield line and blue 

bars are the grass yield for each paddock. 
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Figure 3-11 Grass wedge showing deficit condition on a farm.  

The grass growth rate in paddocks 1, 2, 3 and 4 is less than the demand, which shows the 

farm's deficit condition. Red line is a demand line, which connects pre- and post-grazing 

yield line and blue bars are the grass yield for each paddock. 

 

Figure 3-12 illustrates a real-life example of a grass wedge for Moorepark Farm, 

taken from PBI for 25th May 2020. The width of each column is proportional to the 

paddock area, for example, Paddocks C37B and C34 are 1.01 ha and 0.87 ha, 

whereas Paddock C39D is only 0.25 ha. Having a paddock area included in the 

wedge can help farmers make more informed decisions on matching the stocking 

rate to a particular paddock. Paddock C28A was being grazed, so it is shaded as 

brown. All the other paddocks are not grazed and are either surplus (C29B, C31A, 

C32C, C28A, C34 and C31B) or on target (C37B, C41C and C38B), except for 

Paddocks C39D and C40B, which are in deficit.  
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Figure 3-12 Grass wedge from PBI on 25th May 2020.  

It ranks paddocks from highest to lowest grass cover (kg DM ha-1). All the paddocks are 

shown as green meaning ungrazed, except for C28A, as it is being grazed at the moment. 

The width of each column represents the area of the paddock. The red line is called the 

demand line, which connects pre- and post-grazing yield.  

 

Figure 3-13 is a screenshot of the PBI application showing the corresponding Table 

of data from which the wedge is drawn. The user must complete some parts, for 

example, paddock area, current grass cover (kg DM/ha), current status (“being 

grazed”, “silage cutting”, “grass available”, “reseeding” or “other enterprise-area 

used for other than cattle grazing”), and daily growth (kg DM ha-1day-1). The number 

of feed days is the number of days a paddock will last based on current cover and 

demand. For example, in Figure 3-13, paddock C29B, C28A and C38B will last for 

two days with current grass cover. Days Last Fertilizer indicates how many days 

since the paddock was last fertilized, which is generated automatically, and it is 

column blank in the figure indicating that these paddocks have not been fertilised 

this year. The action column is for silage cutting, if the paddock is being cut for 

silage, it can be set to cut now. Feed days represents the number of days a paddock 

will last with the current amount of grass it has. The Last Event represented when the 

paddock was last grazed or cut. The grass growth rates (kg DM ha-1day-1) shown in 

the daily growth column are calculated for all paddocks with the status ‘Grass’ using 

Equation 3-2. 
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Grass Growth rate =
 Current grass cover-Previous date grass cover 

Current date-Previous date
          Equation 3-2 

 

 

Figure 3-13 Screenshot of the information contained in PBI.  

It shows the area of each paddock, grass cover or yield (kg DM ha-1), status (grass, being 

grazed and silage), feed days (number of days a paddock will last with current grass cover), 

number of previous grazings, the day last fertilized, previous date of grazing or silage 

cutting, action (to change a paddock status to silage if there is an excess of grass) and daily 

growth rate (kg DMha-1) for each paddock. 

 

PBI also provides overall average farm values such as grass growth rate, demand, 

cover, grazing area, livestock unit and grass wedge option. The screenshot for 

overall farm data from PBI for Moorepark farm for December 2020 to February 

2021 is shown in Figure 3-14. It records information including experiment, 

treatment, grass growth rate (kg DM ha-1day-1), demand ha-1 (kg DM ha-1day-1), 

cover (kg DM ha-1), grazing area (ha), livestock numbers and livestock unit per 

hectare and grass wedge option. 
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Figure 3-14 A screenshot from PBI for Moorepark Farm.  

It shows the whole farm records such as experiment, treatment, grass growth rate, demand, 

cover, grazing area, livestock unit, and grass wedge option. 

 

PBI provides a spring rotation planner (SRP) and an autumn rotation planner (ARP) 

to help farmers better utilise grass during critical times when supply may be short. 

During the spring period, the grass growth available is usually less than farm 

demand, due to which grass should be managed optimally. The SRP is a tool that 

helps farmers plan their first grazing of the year. The planner divides a farm into 

weekly portions known as paddocks and ensures that grass is provided throughout 

the spring, ideally until early April, depending upon the weather conditions when 

grass growth supply equals demand.  
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After spring, October is the most critical month where farmers plan for winter 

housing, as the grass growth rate slows down and the weather becomes wetter and 

colder. The ARP is intended to keep animals grazing grass for as long as possible 

and set up a final grazing rotation to ensure sufficient growth during winter to 

provide adequate grass in the following spring. The ARP subdivides a farm so that 

allocated paddocks match the available grass. PBI can help farmers decide when to 

close paddocks for grazing based on soil type, geographic location and grass 

availability. Using the “60:40 Rule”, 60% of the total farm area should be closed for 

grazing by early November, while the remaining 40% should be closed between 

November and the beginning of the housing period (Dillon et al., 2018a). In this 

way, 60% of the farm has sufficient time to grow and supply grass for the following 

spring, and these would be the first paddocks to be grazed. The remaining 40% 

would be available for grazing later in the spring.  

 

In summary, PBI provides three essential tools in one place: spring rotation planner, 

grass wedge during the primary season, and autumn rotation planner to assist farmers 

in Ireland. All these tools can be used if grass growth rate measurements have been 

made on the farm. PBI has an elaborate website structure, so retrieving the PBI data 

for analysis is not easy, and as the farms are recorded using only farm names, there is 

no information about the exact location or farm/field boundaries. In the following 

chapters, several grass growth models driven by satellite and meteorological data and 

validated using PBI data for the locations described in this chapter will be presented.  
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4 
Chapter 4 Determining the Influence of Growing Degree-Days on 

Grass Growth Rate in Ireland.  

 

4.1 Introduction 

4.1.1 Need to monitor grass growth 

In Ireland, livestock is primarily fed with grazed grass during spring, summer and 

autumn, and with silage (and to a lesser extent concentrates) provided during the 

winter housing period (O'Mara, 2012). The widespread availability of cheap and 

abundant fodder source, coupled with a favourable climate and long growing season, 

gives Ireland an economic advantage over competitors in other regions (O'Donovan 

et al., 2002). Grass utilisation is defined as the amount of grass harvested/grazed per 

hectare on a farm (McCarthy et al., 2011). While the opportunity to grow grass is 

high, farmers' ability to utilize the grass-grown varies according to grass growth rate, 

stocking rate (number of livestock units (LU) per hectare (LU/ha)), and usage of 

supplements. Shalloo (2009) analysed the data from representative Irish dairy farms 

from 2003 to 2008 and found that approximately 44% of the difference in net 

profits/ha between farms can be explained by the amount of grass utilised. Increasing 

the volume of grass utilisation on farms, for example, through improved 

management practices (such as rotational feeding, fertilising, reseeding and grass 

measurement), can improve farms' profitability (Shalloo et al., 2011, Ruelle et al., 

2018a). The stocking rate of a farm is directly related to grass utilisation. For 

maximum utilisation of grass grown, it is essential to match the herd demand with 

the grass-grown. A high stocking rate means that there will be much more livestock 

per hectare of the farm, and there will not be enough grass to feed the cows. When 

the stocking rate is low, there will not be enough cows per hectare, and grass-grown 

will be wasted. The optimum stocking rate is when the amount of grass grown is 

sufficient to meet livestock demand (McCarthy et al., 2011).  
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4.1.2 Factors affecting the grass growth rate 

As outlined in Section 1.3.3, several climatic or weather-related factors can influence 

grass growth rate, including air and soil temperature, rainfall, soil moisture content 

(excess or deficit) and growing degree-days (GDD) (Brereton and Keane, 1992). 

Weather influences grass in two ways. Firstly, it sets limits on the length of the 

growing season, and secondly, it controls grass growth rates during the growing 

season (Keane, 1986).  

 

The growth rates and phenological development of grass are influenced by soil 

moisture deficit and precipitation. Soil moisture deficit (SMD) is the amount of 

water (mm) needed to bring the soil water content to the field capacity. Soil water 

content is the amount of water present in the soil. Field capacity (FC) is the amount 

of water soil can hold after the excess water has been drained away (Twarakavi et 

al., 2009). Water deficit is represented by positive soil moisture values, whereas 

negative values mean excess water in the soil. This surplus will drain away in time 

through surface runoff and percolation. Soil moisture depends on the soil type and 

the weather conditions (Schulte et al., 2005). Well-drained soil drains excess water 

immediately, moderately well-drained soil takes up to 24 hours, and poorly drained 

soil requires several days (Schulte et al., 2005). When rainfall is high during the 

winter months, SMD is zero for well-drained soil and less than zero for moderately 

and poorly drained soil.  

 

These interrelated meteorological factors can have a significant impact on the start of 

the growing season. For example, traditionally, farmers look to put out cattle after 

winter housing by specific calendar data. In Ireland, it was traditional to let cattle out 

by mid-March (and usually around St. Patrick’s Day on 17th March) (Green, 2019). 

However, grass development does not respect calendar dates, as growth can be 

delayed or expedited by meteorological conditions in late winter or early spring.  
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4.1.3 Growing degree days  

Grass development in spring is affected by the amount of heat accumulation known 

as GDD. The concept of GDD was first introduced by Réaumur (1735), in which he 

stated that temperature affected the organism growth. A certain number of 

accumulated GDD are required to initiate growth, development and maturity 

depending on species. The GDD concept has been used for organisms such as insects 

(Hodgson et al., 2011), pests (Luedeling et al., 2011) and to predict crop’s growth 

and maturity, for example, soybean (Kessler et al., 2020), wheat (Li et al., 2012), 

cotton (DeLaune et al., 2020) and grass (Calvache et al., 2020). The basic concept of 

GDD is that plant development will only occur when air temperatures exceed some 

minimum threshold. GDD is often strongly correlated with other factors, for 

example, soil type, rainfall and solar radiation (Hutchinson et al., 2000). 

 

GDD is a temperature-based weather index to estimate crop growth. GDD is used as 

a scalar value that is input into a regression model. The essential assumption is that 

each plant has a base temperature below which growth stops and above which 

growth increases each day for every degree above this temperature until an upper 

limit is reached. Base temperature varies by crop type (for example, spring wheat 

and peas 4.5 ºC, oats 6.1 ºC and potatoes 7.2 ºC) (Burke, 1968). For temperate 

grasses such as perennial ryegrass, the air temperature at which growth starts is 

typically 5-6 ºC (Burke, 1968). Traditionally, GDD values can be used as a 

benchmark to differentiate various crop growth stages (Frank and Hofmann, 1989). 

Similarly, changes in growth resulting from extreme weather may also be evident. In 

this work, GDD is used as a direct response of temperature to include the impact of 

drought in 2018 in Ireland. 

 

GDD is calculated using daily mean air temperature data from which a base value is 

subtracted. The base values are unique to each species and represent the lower 

temperature threshold for growth. Similarly, a maximum temperature threshold is 

present, above which the growth stops. The standard equation for calculating GDD is 

given in Equation 4-1(McMaster and Wilhelm, 1997). 
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 𝐺𝐷𝐷 =  [
(𝑇𝑚𝑎𝑥 + 𝑇𝑚𝑖𝑛)

2
] −  𝑇𝐵𝑎𝑠𝑒 

Equation 4-1 

Where, TBase : Base temperature below which growth stops (5.5 °C for grass) 

Tmax : Daily maximum temperature  

Tmin : Daily minimum temperature 

 

For Irish grasslands, the base temperature is 5-6 ºC, and for this work, the base 

temperature is defined as 5.5 ºC, which is in the middle of the range (Green, 2019). 

Different methods have been proposed to model GDD and its spatial variability in 

Ireland (Burke, 1968, Hargy, 1997). Such methods include temperature and 

geographic data such as elevation, latitude and longitude of the stations using 

regression algorithms. For example, Fealy and Fealy (2008) used stepwise linear 

regression to model the relationship between GDD and distance, distance east and 

north from an origin point, and elevation. Using this approach, they mapped 

geographical variation in GDD within Ireland for three threshold temperatures (0º C, 

5º C and 10º C) using 30 years of meteorological data (1961-1990) as shown in 

Figure 4-1.  
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Figure 4-1 Average monthly accumulated GDD (1961-1990). 

0ºC, 5ºC and 10ºC base temperature. The R-values are the correlation between observed 

values from the stations and predicted values from the regression model. (Source: Fealy and 

Fealy (2008)) 
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McMaster and Wilhelm (1997) recommended that it is essential to clearly state the 

equations to calculate GDD as each method can lead to different results. They 

discussed two methods to calculate GDD using Equation 4-1 with the following 

conditions.  

Method 1 

If  
[
(Tmax+Tmin)

2
] < TBase 

Equation 4-2 

Then, 
[
(Tmax+Tmin)

2
] = TBase 

Equation 4-3 

 

Method 2 

If   Tmax <  TBase   then   Tmax =  TBase Equation 4-4 

If  Tmin <  TBase   then   Tmin =  TBase Equation 4-5 

 

Both methods have been widely used to calculate GDD, and both generate 

approximated values giving different results. For example, the GDD for maize (base 

temperature = 10 ºC) and wheat (base temperature = 0 ºC) were calculated using 

both methods (McMaster and Wilhelm, 1997). However, the difference in the 

number of GDD using two methods was 9% for wheat and 28% for maize. 

Therefore, it is important to standardise the GDD equation and state the equations 

used.    

 

In literature, GDD is associated with the phenology of crops and can be used to 

monitor various stages of development. Aslam et al. (2017) used GDD in 

combination with photoperiod to predict wheat developmental stages-emergence, 

tillering, stem elongation, flowering, and grain filling. The GDD was calculated 

using equations by Wang and Engel (1998). The crops were sown at a different time 

to investigate the impact of changing temperature and day length conditions. The 

GDD without photoperiod overestimated the days to flowering stage. Using the 

combination of the GDD with photoperiod, the days to flowering and maturity were 

closer to the observations. In a similar study, GDD was used to investigate wheat 
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phenology (McMaster and Smika, 1988), but the impact of soil water, cultivar, 

seeding rates, row spacing, rotation, and fertilizer on the phenology were also 

investigated. The GDD was related to soil water at the beginning of Jointing with the 

decreasing trend until maturity. GDD was sensitive to cultivar and row spacing as 

they affect light and nutrients, and water available to the wheat crop. GDD was not 

sensitive to fertilizer and planting date. GDD was used to predict the phenological 

stages of table grapes- budburst, flowering, and version, with the flowering stage 

best predicted with variability of only 4.4 days (Verdugo-Vásquez et al., 2017). 

GDD can help predict phenology (Aslam et al., 2017, Ahmad et al., 2017) and 

growing season length (Hastings et al., 2009) or as a heat stress indicator (Chen et 

al., 2018). GDD has also been used as a predictor variable to predict yields in maize, 

soybean, sorghum, spring wheat, winter wheat, and cotton (Kukal and Irmak, 2018).  

 

This research aims to develop a national model based on GDD to estimate grass 

growth rate, using machine-learning with meteorological and satellite data. The 

GDD used in this model is a scalar quantity, which is a function of temperature 

rather than as a phenological factor. Meteorological variables influence the grass 

growth rate, whereas satellite-derived vegetation indices form a proxy for grass 

biomass and add spatial variability to the model. This work is for two years, i.e. 2017 

and 2018, for Moorepark, County Cork. 2017 was a typical year with SMD values of 

9.60 mm, compared to the 10-year average SMD of 8.20 mm, whereas 2018 was 

drought-affected with a high SMD of 17.49 mm during the summer, which is 

unusual for Ireland. The standard GDD equation (Equation 4-1) does not include the 

effect of extremely high temperature and SMD values. Therefore, the approach by 

Fealy and Fealy (2008) was modified  to include conditions for high temperature and 

soil moisture deficit.  
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4.2 Study area & datasets  

4.2.1 Study area 

This chapter's study area was Moorepark, County Cork (50°7 N 8°16 W; (see Figure 

3-1). Moorepark is a 220.77 ha dairy farm divided into 136 paddocks. Soil type 

within the farm ranges from sandy loamy to loamy and free-draining soils. In 2017, 

the grazing started on 18th January, and the last grazing was done on 9th December, 

i.e. a grazing season of 325 days. In 2018, the grazing started on 3rd February, and 

the last grazing was on 6th December, i.e. 306 grazing days. More details are 

provided in Section 3.3.1. 

 

4.2.2 Meteorological data 

Daily meteorological data from 2017-2018 were available from an on-site weather 

station operated by the Irish meteorological service, Met Éireann. Available 

meteorological data included rainfall (mm), evaporation (mm), potential 

evapotranspiration (mm), minimum, maximum, and mean air temperatures (°C), 

SMD (mm) and base temperature (°C).  

 

The mean daily temperature and total daily rainfall for 2017 for Moorepark Farm are 

shown in Figure 4-2, The driest months are April until August, with the highest 

average monthly temperature in July (15.7 ºC). The winter months have an average 

of approximately 100 mm total rainfall. According to Met Éireann, the 

meteorological winter is from December (DOY 335 until 365) to February (DOY 1 

until 59), spring from March to May (DOY 60 until 151), summer from June to 

August (DOY 152 until 243) and autumn from September to November (DOY 244 

until 334). 
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Figure 4-2 Mean temperature for Moorepark Farm in 2017.  

The x-axis represents the day of the year, the y-axis on the left-hand side is mean 

temperature, and on the right side is rainfall. The mean temperature plot is shown in the red 

dotted curve, and rainfall is represented using the blue bar plot. 
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The mean temperature and rainfall for 2018 for Moorepark farm are shown in Figure 

4-3. Between 28th February and 4th March, Ireland was affected by Storm Emma, a 

significant snowfall event bringing the low temperatures that delayed the start of 

spring. The lowest rainfall months in 2018 were May until October, with high mean 

summer temperatures indicating drought conditions. November, December and 

January were wet months. The highest maximum temperature in June was 26.9ºC in 

2017 and 30.1ºC in 2018. The mean highest daily temperature was 20.5ºC in 2017 

and 21.5 ºC in 2018. The highest total accumulation of rainfall for 2017 was 115.80 

mm in March and was 174.80 mm in April 2018. The accumulated total rainfall was 

219.70 mm for the summer of 2017 (June, July and August) and was 118.6 mm for 

2018. The temperatures were higher during the summer of 2018 (16.36 ºC) than in 

2017 (15.03 ºC). 

 

 

Figure 4-3 Mean temperature for Moorepark Farm in 2018.  

Temperature is the red dotted line. Rainfall is the blue bar plot. 

The x-axis represents the day of the year, the y-axis on the left-hand side is mean 

temperature, and on the right side is rainfall. The mean temperature plot is shown in the red 

dotted curve, and rainfall is represented using the blue bar plot. 
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4.2.2.1 Effect of SMD on GDD 

Figure 4-4 presents the rainfall and SMD for 2017. The rainfall is represented in blue 

bar plots, and SMD is shown in the dotted red curve. The descriptive statistics for 

2017 and 2018 were compared with the 10-year average from 2006-2016, which 

included mean, standard deviation, median, minimum and maximum values as 

shown in Table 4-1. There were 365 observations for 2017 and 2018. For ten years 

of data, there were 4013 observations except for potential evapotranspiration, 

evaporation and soil moisture deficit, which had data from 2011 until 2016. The 

relative percentage difference from the 10-year average for minimum and mean 

temperature was higher for 2017 (11.80% and 5.5 %) than 2018 (6.23% and 4.84%), 

showing that despite the long, warm summer of 2018, the previous year had a higher 

annual mean temperature. The SMD for 2018 was 113.30% higher than the 10-year 

average, whereas for 2017, SMD was 17.07% higher than average.  
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Table 4-1 Summary of the daily meteorological variables for Chapter 4. 

Maximum, minimum and mean temperature, rainfall, solar radiation, air temperature, SMD, evaporation and potential evapotranspiration (PE) for 

2017, 2018 and 10-year average (2006-2016) 

 

Daily variables N Mean Standard deviation Median Minimum Maximum 

 2017 2018 
10-

yr 
2017 2018 10-yr 2017 2018 10-yr 2017 2018 10-yr 2017 2018 10-yr 2017 2018 10-yr 

Max temp (°C) 

365 

4013 

14.29 14.48 13.89 4.49 5.66 4.72 14.20 13.70 13.90 3.60 -0.70 -4.70 26.90 30.10 28.90 

Min temp (°C) 6.63 6.30 5.93 4.57 5.02 4.91 7 6.80 6.20 -5.70 -5.90 -12.3 15.90 16.90 17.80 

Mean temp (°C) 10.46 10.39 9.91 4.26 5.04 4.54 10.70 9.95 10.15 -0.90 -3.30 -7.7 20.50 21.50 22.70 

Rainfall (mm) 2.78 2.95 2.85 4.91 4.91 5.21 0.60 0.60 0.50 0.00 0 0 41.40 30.70 44.80 

SMD (mm) 

2166 

9.60 17.49 8.20 16.12 27.12 14.35 1.70 2.80 2.70 -10 -10 -10 58.80 82.90 77.00 

PE (mm) 1.48 1.58 1.39 1.05 1.25 0.99 1.30 1.20 1.20 0 0 0 4.60 5.40 5.10 

Evaporation (mm) 2.02 2.15 1.92 1.44 1.66 1.37 1.70 1.60 1.60 0.10 0.10 0 6 7 6.60 

Radiation (MJ/m2) 4012 930.35 994.87 919.83 686.66 776.69 677.96 756.00 780 753.50 44.00 39.00 20.00 2910.00 3065 3007 
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Figure 4-4 Soil Moisture Deficit for 2017.  

SMD shown in red dotted line curve and rainfall shown in the blue bar plot for 2017. 

The x-axis is the day of the year, the y-axis on the right side is rainfall, and on the left side is 

soil moisture deficit. 

 

Figure 4-5 presents the rainfall and SMD for 2018. The average values for 

maximum, minimum, and mean temperature, rainfall, potential evapotranspiration 

and evaporation were lower than the 10-year average. The SMD values are much 

higher for 2018 (17.49 mm) than the 10-year average (8.2 mm). The average daily 

global radiation value for 2018 was 994.87 MJ/m2, which is 8.15% higher than the 

10-year average values (919.83 MJ/m2).  
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Figure 4-5 Soil Moisture Deficit for 2018.  

SMD shown in red dotted line curve, and rainfall shown in the blue bar plot. 

The rainfall is represented in blue bar plots, and SMD is shown in the dotted red curve. The 

x-axis is the day of the year, the y-axis on the right side is rainfall, and the one on the left 

side is soil moisture deficit. 

 

According to Murphy (2020), agricultural drought refers to no crop growth due to 

increased soil moisture deficit. Daily SMD values between 50 to 75 mm indicate 

restricted growth, and SMD of more than 75 mm indicate drought conditions. The 

daily SMD values for 2017 and 2018 and the 2012 to 2016 average for Moorepark 

Farm are shown in Figure 4-6. The y-axis represents SMD in mm, and the x-axis is 

the day of the year. The SMD for 2017 is shown in a blue colour plot and 2018 in a 

cyan colour line plot, and the average as a red line plot. Compared to 2017, there are 

high SMD values in 2018 (>75mm), indicating drought conditions for 18 days from 

7th July - 25th July 2018.  
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Figure 4-6 Inter-annual comparison of SMD (mm)  

Comparison of 2017 (blue) and 2018 (cyan) versus average SMD from 2012-2016 (red) 

 

4.2.3 Validation data 

Grass growth rate (kg dry matter hectare-1 day-1) values were used from PBI, 

discussed in more detail in Section 3.4.4. The data were collected weekly at 

Moorepark Farm during 2017 and 2018 using an RPM.  

 

4.3 Methodology  

4.3.1 Modified GDD equation 

In this study, the GDD equation adopted from (Fealy and Fealy, 2008) was modified 

to include the upper and lower temperature thresholds as shown in Equation 4-6 and 

4-7.  For the onset of grass growth, the base temperature (Tbase) used in this research 

was 5.5° C (Green, 2019). Above 15° C, grass growth starts to slow down, and 

temperatures above that threshold do not significantly contribute to grass growth 

development (Equation 4-7). Therefore, any maximum temperature above 15° C was 

set to 15° C. At 30° C, the grass-root starts to experience heat stress, which 

negatively contributes to the development. Ireland rarely experiences temperatures of 

30° C and Moorepark had 30.1°C on 28th July 2018. At a temperature above 30° C, 
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the grass growth stops, and therefore GDD was set to zero (Equation 4-6). Moreover, 

if there is limited moisture in the soil, there is no growth of grass. Therefore, on days 

where SMD exceeds 70 mm, GDD was set to zero (Equation 4-6). Equations 4-8 to 

4-11 are from (Fealy and Fealy, 2008)and the modification conditions added to the 

GDD calculations are in Equation 4-6 and 4-7.  

 

Where Tmax≥30 ºC or SMD≥70.0 mm 

 GDD = 0 Equation 4-6 

Where Tmax>15 ºC  

 Tmax=15 ºC Equation 4-7 

Where Tmin>Tbase  

 
GDD = (

Tmin + Tmax

2
) − Tbase 

Equation 4-8 

Where Tmax<Tbase  

 
GDD = Tbase − (

Tmin + Tmax

2
) 

 

Equation 4-9 

Where, Tmax > Tbase, Tmin < Tbase and Tmean > Tbase 

 
GDD = (

Tmax − Tb

2
) − (

Tb − Tmin

4
) 

 

Equation 4-10 

Where, Tmax > Tbase, Tmin < Tbase and Tmean < Tbase 

 
GDD = (

Tb − Tmin

2
) − (

Tmax − Tb

4
) 

Equation 4-11 
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4.3.2 Statistical analysis 

Python 3.8 was used to calculate the correlations between all available 

meteorological variables and grass growth. The packages used were ‘Numpy’, 

‘Matplotlib’, ‘Pandas’, ‘sklearn.metrics’ and ‘scipy.stats’. Correlation analysis was 

performed to identify the variables highly associated with each other and with grass 

growth. The Pearson’s coefficient of variation was calculated by dividing the 

standard deviation divided by the mean and expressing as a percentage. The ordinary 

least square (OLS) analysis model was implemented in Python using the 

‘linear_model’ library from ‘sklearn’ package. In the models, grass growth was the 

dependent variable, and independent variables were air temperatures, rainfall, solar 

radiation, evaporation, and potential evapotranspiration. Separate regression models 

were developed for each year.  
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4.4 Results & discussion 

4.4.1 Grass growth rate & GDD 

The 10-day moving average of grass growth rate for 2017, 2018 and average from 

2013-2016 are compared in Figure 4-7. The 2018 grass growth was well below 2017 

values for Moorepark Farm, between DOY 20 and 110. For DOY 121-128, there 

was a dip in grass growth values because of silage cutting in 2018 and for average 

values. For DOY 130-150, the grass growth in 2018 was in excess of 2017 (mid to 

end May). The grass growth rate reduced from DOY 160 until 200 (June and July). 

The lowest grass growth rate during summer was 22 kg DM ha-1day-1 at DOY 202 

(21st July 18) and 51.64 kg DM ha-1day-1 for 2017 at DOY 198 (17th July 17). At 

DOY 262, the grass growth rate values for 2018 reached close to the values of 2017, 

and the values remained very similar for the last two months of the year. 

 

 

Figure 4-7 Grass growth rate for Moorepark farm (kg DM ha-1day-1). 

Curve for 2017 (blue), 2018 (green) versus 2013-2016 average (red). 

The x-axis is the day of the year, and the y-axis is the grass growth rate in kg DM ha-1 

day-1. The grass growth rate for 2017 is shown in a blue curve, for 2018 is shown in a 

green curve, and the average grass growth from 2013-2016 is in red.  
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Figure 4-8 shows the 7-day moving average of grass growth rate for 2017 and GDD 

as calculate using both the standard and modified equations. For 2017, a similar 

GDD trend is identified using both standard and modified formulae. GDD does not 

match growth in spring and summer, only in autumn because GDD is a function of 

only temperature and other factors such as rainfall, potential evapotranspiration and 

management effects are missing which are prominent during spring and summer. For 

spring (DOY 61- 152, i.e. 1st March- 31st May) average spring grass growth rate at 

Moorepark Farm for 2017 was 62.22 kg DM ha-1day-1. The modified GDD follows 

the same pattern as the standard GDD, but the values using the modified equations 

are lower by approximately 11.66% than using the standard method. The average 

GDD value from DOY 150-260 (30th May-17th September) for 2017 is 7.05 

compared to 8.80 for 2018. From DOY 310 until 350, the GDD values were the 

same using both methods. 

 

 

Figure 4-8 Comparison of the 7-day moving average of grass growth rate & GDD (2017).  

Grass growth (blue line). Standard GDD (red dotted) and modified GDD (green dotted). 

The modified GDD includes the impact of high SMD values. The x-axis is the day of the 

year, the left-hand y-axis is the grass growth rate, and the right-hand side y-axis is GDD. 
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Figure 4-9 shows a comparison of the 7-day moving average grass growth rate (blue 

plot) and GDD calculated using the standard (red dotted plot) and modified methods 

(green dotted plot) for 2018. The GDD values from DOY 50- 143 (19th February-

22nd May) using both the methods had the same values. At the end of the grass 

growing season, i.e. from DOY 271 to 365, the GDD values using both the methods 

were the same. From DOY 184 to 207, the value calculated using the standard GDD 

method was 12.22, whereas GDD was 0 using the modified method because the 

SMD values were more than 75 mm and therefore defined as drought conditions. 

The GDD values increased from 0 to 10 for the modified method, and the values 

reduced from 12.22 to 10 using the standard method from DOY 208 to 247.  

 

 

Figure 4-9 Comparison of the 7-day moving average of grass growth rate & GDD (2018).  

Grass growth (blue line). Standard GDD (red dotted) and modified GDD (green dotted). 

The modified GDD includes the impact of high SMD values. The x-axis is the day of the 

year, the left-hand y-axis is the grass growth rate, and the right-hand side y-axis is GDD.  

 

  



89 

4.4.2 Correlation between meteorological variables & grass growth rate  

Pearson correlation coefficients were used to quantify the relationship between 

meteorological data and ground-based grass growth rate from PBI and identify the 

best performing variables. There were 63 values of weekly data for 2017. Seven out 

of the eight meteorological variables had statistically significant correlations 

with grass growth rate (Figure 4-10, Table 4-2), with rainfall being the only non-

significant variable. The grass growth rate was positively correlated with all the 

independent variables except rainfall and cumulative GDD. Potential 

evapotranspiration and evaporation had the highest correlation with grass growth 

rate (r = 0.65, p<0.01) (Figure 4-10). The standard GDD (r=0.59, p<0.01), modified 

GDD (r=0.58, p<0.01), mean temperature (r=0.60, p<0.01), and solar radiation 

(r=0.57, p<0.01) had a similar correlation trend with grass growth rate. SMD 

(r=0.50, p<0.01) was statistically significant but with a lower correlation coefficient 

than the other variables. These results agree with Han et al. (2003), in which herbage 

growth was highly correlated with evaporation, temperature, and solar radiation.  

 

There were 82 weekly values for 2018. Six out of eight meteorological variables had 

statistically significant (p<0.01) correlations with grass growth rate (Figure 4-11, 

Table 4-2), the exceptions being SMD and rainfall. The highest correlation of grass 

growth rate was with global solar radiation (r = 0.43, p<0.01), evaporation (r=0.42, 

p<0.01) and potential evapotranspiration (r=0.42, p<0.01) (Figure 4-11). Notably, 

these values are all lower than the 2017 values. 
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Table 4-2 Correlations between grass growth and meteorological data. 

Pearson correlation coefficients (r) and p-values between meteorological data (n=63) and 

grass growth rate for 2017 and 2018. 

Meteorological variables 
r 

2017 2018 

1 Potential evapotranspiration (PE) 0.65, p≤ 0.01 0.42, p≤ 0.01 

2 Evaporation (evap) 0.65, p≤ 0.01 0.42, p≤ 0.01 

3 Modified Growing degree days (GDD) 0.59, p≤ 0.01 0.38, p≤ 0.01 

4 Standard growing degree days (GDD) 0.59, p≤ 0.01 0.26, p≤ 0.01 

5 Mean temperature 0.60, p≤ 0.01 0.33, p≤ 0.01 

6 Solar radiation 0.57, p≤ 0.01 0.43, p≤ 0.01 

7 Soil moisture deficit (SMD) 0.50, p≤ 0.01 0.05, p=0.64 

8 Rainfall -0.07, p= 0.60 -0.14, p=0.22 

 

 

 

 

 

 

 



91 

 

Figure 4-10 Grass growth rate vs. meteorological data (2017) 

All values except rainfall are significant at p<0.01. GDD is growing degree-days, SMD is 

soil moisture deficit, ‘pe’ is potential evapotranspiration, and ‘evap’ is evaporation



92 

 

Figure 4-11 Grass growth rate vs. meteorological data (2018) 

All values except rainfall, SMD and standard GDD are significant at p<0.01. GDD is 

growing degree-days, SMD is soil moisture deficit, ‘pe’ is potential evapotranspiration, and 

‘evap’ is evaporation  
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4.4.3 Ordinary least square regression (OLS)  

The 2017 OLS model was trained using the seven significant variables from Table 4-

2. Figure 4-12 displays the scatterplots between measured and predicted grass 

growth rate values, and the points are coloured according to the season (winter is red, 

spring is orange, summer is green, and autumn is blue). The R2 and RMSE based on 

a regression analysis of grass growth rate against meteorological data were 0.53 and 

18.90 kg DM ha-1day-1. The predicted grass growth rate correlated strongly with the 

actual grass growth rate.  

 

 

Figure 4-12 Actual vs. predicted grass growth rate at Moorepark (2017).  

Only those significant variables from OLS were used. The red line is the 1:1 line, while the 

black line is the modelled regression line. The points corresponding to winter are red, 

spring is orange, summer is green, and autumn is blue. 
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The model over-predicts between 0 and 40 kg DM ha-1day-1 and is more variable 

above 40 to 80 kg DM ha-1day-1 and underestimates above 80 kg DM ha-1day-1, 

which is evident from the dispersion of the samples around the 1:1 line. The grass 

growth values for winter were concentrated in the lower end of the plot and were 

over-predicted, and for summer, the values were also over-predicted. There was no 

apparent overestimation or underestimation for autumn. The values during spring 

were over-estimated for an actual grass growth rate of less than 55 kg DM ha-1day-1, 

whereas values above 55 kg DM ha-1day-1 were under-predicted. A scatterplot 

between actual and predicted grass growth rates for summer from June (DOY=152) 

until August (DOY=243) with seven significant variables is shown in Figures 4-13 

with R2 of 0.16 RMSE of 12.49 kg DM ha-1day-1.  

 

 

Figure 4-13 Actual vs. predicted grass growth rate (June-Aug 2017). 

The red line is the 1:1 line, while the black line is the modelled regression line. 
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The same analysis was done for 2018 (Figure 4-14 and 4-15) with the six significant 

variables identified in Table 4-2. The R2 and RMSE based on a regression analysis 

of grass growth rate against meteorological data were 0.36 and 27.02 kg DM ha-1day-

1. The grass growth during winter (red) mainly was over-predicted. The data for 

spring covered the whole range of values with the scatter around the regression line. 

The autumn values were close to the 1:1 line with some under-predicted outliers. The 

summer values were scattered around 1:1 line with some over-predicted outliers. The 

values for summer were analysed separately in Figure 4-15. The plot shows that the 

grass growth for summer was over-predicted with R2 of 0.57 and RMSE of 15.48 kg 

DM ha-1day-1.  

 

 

Figure 4-14 Actual vs. predicted grass growth rate at Moorepark (2017).  

The significant variables from OLS were used. The red line is the 1:1 line, while the black 

line is the modelled regression line. The points corresponding to winter are red, spring is 

orange, summer is green, and autumn is blue. 
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Figure 4-15 Actual vs. predicted grass growth rate (Jun-Aug 2017). 

The red line is the 1:1 line, while the black line is the modelled regression line.  

 

The results for 2017 and 2018 are summarised in Table 4-3. Two types of input 

combinations were presented – the whole year and the data from June until August. 

The summer DOY from 152 to 243 were explored in more detail with R2 and RMSE. 

The R2 and RMSE for June until August were 0.16 and 12.79 kg DM ha-1day-1 for 

2017 and 0.57 and 15.48 kg DM ha-1day-1 for 2018. 

 

Table 4-3 Results for 2017 and 2018 showing R2 and RMSE (kg DM ha-1day-1) 

 R2 RMSE  

2017 2018 2017 2018 

Significant variables 0.53 0.36 18.90 27.02 

Significant variables for June to August  0.16 0.57 12.79 15.48 
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4.5 Discussion 

4.5.1 Effect of meteorological data on grass growth rate  

Grass growth responds more strongly to temperature early than late in the season, 

resulting in a peak in spring and probably explaining why the GDD models cannot 

model this peak (Wingler and Hennessy, 2016). The mean temperature for 2017 and 

2018 was compared with the 10-year average from 2006-2016, as shown in Figure 4-

16, with months on the x-axis and mean temperature on the y-axis. The average from 

2006-2016 is in red, 2017 in blue and 2018 in green. In February and March, the 

average temperature for 2018 was lower than average by 29.94% and 29.89%, 

whereas from April until August, the temperatures for 2018 were higher than 

average (by 2.48% for April, 10.26% for May, 14.70% for June, 10.51% for July and 

4.51% for August).  

 

 

Figure 4-16 Mean monthly temperature at Moorepark Farm. 

Data averaged for 2006 to 2016 (red plot), for 2017 (blue plot) and 2018 (green plot).  
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The total monthly precipitation for 2017 and 2018 was compared with the 10-year 

average from 2006-2016, as shown in Figure 4-17, with months on the x-axis and 

precipitation on the y-axis. The average from 2006-2016 is in blue, 2017 in orange 

and 2018 in a green bar plot. In April, the precipitation values are high by 103.31 

mm than average for 2018, whereas for 2017, the rainfall was lower than average by 

52.18 mm. From May until October, the rainfall for 2018 was below average (lower 

by 20.86% for May, 58.92% for June, 37.89% for July, 46.98% for August, 14.06% 

for September and 27.63% for October). Consequently, the high temperatures along 

with low accumulated rainfall led to poor grass growth in 2018.  

 

 

Figure 4-17 Total monthly precipitation at Moorepark Farm. 

Data averaged for 2006 to 2016 (blue bar plot), for 2017 (orange bar plot) and 2018 (green 

bar plot). 
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The effect of poor weather conditions can be seen from the grass growth rate curve 

for 2017 and 2018 and its comparison with the average grass growth from 2013 until 

2016 in Figure 4-18 (data before 2013 was not available on PBI). During 2017, the 

grass growth was lower than average in November and December, and there were 

poor ground conditions, which affected the grazing of cattle and led to early housing. 

As a result, the animals had to rely on fodder during that period, which affected the 

fodder availability for the beginning of 2018 and led to an increased need for animal 

feed (Dillon et al., 2018b). 

 

During May, the grass growth rate for 2018 reached a peak and exceeded the average 

values due to high solar radiation and temperatures. The rainfall was not correlated 

with the grass growth rate (p-value of 0.60 for 2017 and 0.22 for 2018) in both years, 

suggesting that the combination of meteorological factors are responsible for grass 

growth variability rather than a single variable. Although SMD does not show a 

strong correlation with the grass growth rate, it is an essential factor affecting the 

grass growth during 2018, especially from DOY 152 (1st June) to DOY 243 (31st 

August), as shown previously in Figure 4-5.  

 

The drought of 2018 affected the whole country but the local effects varied from 

farm to farm depending on the soil type (Falzoi et al., 2019). The soil at Moorepark 

Farm is well-drained and therefore does not hold water for long, leading to low grass 

growth rates.  

 

When the grass growth curve was compared with the standard and modified GDD 

outputs, it was noticed that the modified method accumulated fewer days during 

summer than the standard method for 2017. For 2018, the grass growth rate is higher 

in May and June than in 2017 because of higher temperatures and higher solar 

radiation. The daily average temperature for July and August was 16.5 °C in 2018 

and 15.16 °C in 2017, and the total monthly average rainfall was 63.2 mm and 43.1 

mm, respectively. As a result, the SMD values were much higher for 2018 (66.50 

mm) than in 2017 (30.30 mm) in July and August.  
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4.5.2 Regression models to predict grass growth rate 

The OLS regression model was developed between the significant variables and 

grass growth. The model included both the standard GDD values and the modified 

ones, and the individual effect of each GDD was not included in the analysis as both 

were positively correlated (p value≤0.01) with the grass growth rate. The model for 

2017 could explain 53% of the variance in the predicted grass growth rate. By 

contrast, the model for 2018 could explain only 36% of the variability in the grass 

growth rate. 

 

The highly correlated variables for grass growth rate prediction for 2017 were 

potential evapotranspiration and evaporation with r of 0.65, whereas, for 2018, the 

most important variables were solar radiation and evaporation with an r of 0.43 and 

0.42. Evapotranspiration is the combination of evaporation and transpiration 

accounting for the movement of water to air. The potential evapotranspiration is the 

amount of evaporation occurring if a sufficient amount of water is available to the 

grass. If there is not enough water in the soil when the temperature and radiation are 

high, the grass plants experience difficulty extracting water from the soil and 

reducing the transpiration (Keane and Collins, 1986). These factors are important 

during the summer, which can limit the water available for grass growth.  

 

The results presented here are for a single experimental farm with constant 

management intervention such as grazing and cutting of grass. Developing a national 

model for Ireland means including more farms in the model that do not have such a 

high level of grassland management but inevitably also a reduction in data 

availability. Earth observation data could be incorporated into the model to 

overcome this limitation, as they provide additional information on the actual 

conditions on the ground, such as the effects of management (grazing and silage 

cutting) and drainage that are lacking in the meteorological data model (Green, 

2019).  
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Another limitation of this method is the use of a linear regression model, which 

assumes that there is a linear relationship between the dependent and independent 

variables. Several variables were demonstrated to have a low correlation with grass 

growth in 2018 in particular, indicating a non-linear relationship between them. 

Machine-learning algorithms can better detect and accommodate the non-linear 

relationships between variables (Schwalbert et al., 2020). In the next chapter, the 

potential for using machine-learning models with Earth observation data for grass 

growth estimation will be explored. 

 

4.6 Conclusions 

There is a direct relationship between grass development and GDD (a scalar value 

proportional to temperature), which explains 53% of the variability in the model in 

2017, but only 36% of variability for 2018, which had more extreme weather 

conditions. Moreover, the error in the 2017 model was 30% lower than in the 2018 

model, with RMSE values of 18.90 kg DM ha-1day-1 and 27.02 kg DM ha-1day-1 

respectively. This chapter developed a method that better captures real world grass 

growth conditions by including high temperature thresholds and SMD into the GDD 

model. Both the standard and modified GDD were equally significant factors in 

terms of their correlation to the grass growth rate in 2017, but both had a much 

reduced correlation in 2018 although the modified GDD performed slightly better 

than the standard GDD calculation. Since 2018 was an exceptional year, the summer 

(DOY 152 - 243) was analysed separately. The 2017 model performed poorly with 

R2 of 0.16 and RMSE of 12.79 kg DM ha-1day-1 and R2 of 0.57, and RMSE of 15.48 

kg DM ha-1day-1 for 2018. The predicted grass growth rate for the summer of 2018 

was 57% along the 1:1 line with some over-predicted values. The grass growth rate 

for 2017 was over-predicted compared to actual grass growth rates of less than 60 kg 

DM ha-1day-1 and under-estimated for values of more than 60 kg DM ha-1day-1. 

There were no management information available that relates to grazing and silage 

cutting which could help explain why the weather driven grass growth rate differed 

from the actual values. The model in this chapter demonstrated that meteorology 

alone cannot reliably predict how the grass will grow, but in conjunction with 

additional information is a useful input to better understanding grass management.   
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5 
Chapter 5 Development of a Machine-learning Model for the 

Estimation of Grass Growth Rate in Ireland 

 

5.1 Introduction 

This chapter explores how machine-learning (ML) can improve grass growth 

prediction by combining agro-meteorological data with synoptic satellite data from 

two current EO satellites, Landsat 8 and Sentinel 2.  

 

This chapter outlines a performance assessment of the empirical biophysical 

“Brereton model” and ML models for Moorepark farm (Section 3.3.1, Figure 3-1 in 

Chapter 3). The ML algorithms assessed are an adaptive-neuro fuzzy inference 

system (ANFIS) and random forest (RF), as described in Section 5.2.4. These 

models include satellite vegetation indices and agro-meteorological data for eight 

research farms in the south of Ireland (Munster province) (Section 3.3.2, Figure 3-4 

of Chapter 3).  

 

5.1.1 Decision support system 

In Section 1.3, the high spatial and temporal variability of grass growth in Ireland 

was discussed. This inherent natural variability in growth can result in poor grass 

utilisation (where the grass is not grazed or harvested on time) and can be 

exacerbated if farms are not well managed (i.e. grass is not routinely measured and 

proper paddock allocation to the animals maintained). Section 3.4.4 explained how 

measuring grass growth could help farmers quantify the volume of grass available in 

individual fields or paddocks. By measuring grass, farmers can synchronise on-farm 

demand with fresh grass supply and address supply imbalances quickly. With 
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dedicated grass budgeting services, farmers can quickly see where surpluses or 

deficits exist and help them understand what intervention may be necessary (grazing, 

harvesting for winter fodder, fertilizing and reseeding) (Murphy et al., 2018). There 

are several grassland decision support systems (DSS) currently available that can 

help farmers with fodder budgeting, for example, PastureCoach in New Zealand 

(Dalley and Geddes, 2012), DSS-Ecopay in Germany (Sturm et al., 2018) and 

PastureBase Ireland (PBI) here in Ireland (Hanrahan et al., 2017). An essential part 

of all DSS is providing accurate and reliable predictions of grass growth over a 

period.  

 

Section 1.5 outlined several methods of estimating the grass growth rate on Irish 

farms. In summary, these include in-situ methods such as the cut and dry method, 

eyeballing and rising plate meters. They also include biophysical models such as the 

Johnson & Thornley model (Johnson and Thornley, 1983), the Jouven model 

(Jouven et al., 2006), the Brereton model (Brereton et al., 1996b) and the MoSt 

model (Ruelle et al., 2018b). The Irish farmers that use the PBI DSS typically use in-

situ methods, which are simple measurements of the actual growth rate. Ideally, data 

are recorded weekly for individual paddocks, but in reality, there are often 

insufficient or missing data, which impacts data quality (Gargiulo et al., 2020, 

Schirmel, 2021). Furthermore, weekly data entry for several paddocks may be time-

consuming and burdensome for the farmer. 

 

For predicting growth, biophysical simulations can model increasingly complex 

interactions between crop physiological processes, environmental conditions such as 

weather and soil, and management style (Feng et al., 2020). Such models are 

typically used by researchers and can be very accurate, but they are dependent on the 

accuracy of input data and, crucially, lack a spatial context (Kasampalis et al., 2018). 

 

5.1.2 Biomass estimation using Earth observation  

Increasingly, satellite images are being used to overcome the shortcomings in in-situ 

measurements and in biophysical simulation models to provide spatially continuous 

information on biomass over large geographical areas. Accurately estimating grass 
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growth rate using EO sensors requires a consistent, longitudinal archive of imagery 

to be able to capture seasonal phenology and temporal changes in biomass over time, 

for example, as a result of mowing or grazing. The United States’ National 

Aeronautics and Space Administration (NASA) has led the way in providing long-

term EO data, with the Moderate Resolution Imaging Spectroradiometer (MODIS) 

sensor providing imagery since 1999. A low spatial resolution but high spectral and 

temporal resolution sensor as compared to Sentinel 2 (10-20 m), MODIS captures 36 

visible and infrared bands every 1-2 days at 250 m to 1 km spatial resolution. 

MODIS 8-day composites at 250 m resolution are widely used to map land cover 

(Baeza and Paruelo, 2020) or biomass (Gao et al., 2020a) and mitigate against the 

impact of missing data due to cloud cover. Ali et al. (2017) used MODIS composites 

to estimate grass growth at two locations in Ireland (Moorepark, Co. Cork and 

Grange, Co. Meath) from an ANFIS regression model. The spatial scale of MODIS 

is ideal for large-scale biomass estimation but is less well suited to farm-, field- and 

paddock-scale estimates of growth where the low spatial resolution means multiple 

fields can be captured within one pixel, alongside non-grassland land cover, for 

example, hedgerows, buildings and surface water (Ali et al., 2017). Higher spatial 

resolution imagery is required, such as the USGS Landsat 8 mission at 30 m or the 

ESA Copernicus Sentinel 2 data (10 m to 20 m) to achieve more detailed estimates 

of grass growth. 

 

 

Like MODIS, the Landsat mission is a well-known, widely accessed archive of 

global EO imagery with continuous data collection since 1972. The joint NASA and 

United States Geological Survey (USGS) program  currently has two satellites in 

orbit, with a third planned for launch in September 2021 (Wulder et al., 2016, 

Markham et al., 2016). Landsat 7 was launched in 1999 but has operated with a 

permanent failure of the scan line corrector since 2003, resulting in banding within 

images (Markham et al., 2004). Landsat 8, launched in 2013, has two sensors- the 

Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS) that provide 

nine visible and infrared bands at 30 m spatial resolution and two thermal bands at 

100 m resolution. The Landsat mission has a higher spatial resolution than MODIS 

but a return period of 16 days. The planned launch of Landsat 9 into a 
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complementary orbit will reduce the revisit time to 8 days, doubling the volume of 

data available and increasing the chances of cloud-free scenes. The ESA Copernicus 

Sentinel 2 mission is a two-satellite constellation launched in 2015 (Sentinel 2A) and 

2017 (Sentinel 2B). The Sentinel satellites represent a massive shift in the 

availability of high-resolution EO data. The improved spatial, spectral and temporal 

resolution relative to Landsat 8 provides new opportunities for grassland mapping 

and biomass estimation globally (Kolecka et al., 2018, Wang et al., 2019). 

 

As discussed in Section 1.5.3, multispectral bands in EO imagery may be combined 

into data products, called spectral or vegetation indices, to map vegetation fraction or 

plant health (Marti et al., 2007). The Normalised Difference Vegetation Index 

(NDVI), for example, relies on low reflectance in red wavelengths (due to 

chlorophyll absorption) and high reflectance in near-infrared (NIR) wavelengths 

(due to scattering of light within the leaf structure) (Xie et al., 2018). NDVI is a 

unitless measure commonly used in crop biomass studies (Lai et al., 2018, Guan et 

al., 2019). Todd et al. (2010) demonstrated how vegetation indices (VI) were 

essential predictors of rangeland biomass in the United States and how the choice of 

VI should be based on consideration of the specific reflectance characteristics of 

grass canopy and underlying soil. The rangelands were in a semi-arid area with a 

high proportion of bare soil, unlike managed temperate grasslands where there is no 

exposed soil, but nevertheless the large number of VI that have been derived remain 

testament to the better performance of some VI under particular conditions.  

5.1.3 Machine-learning for biomass estimation 

When estimating biomass using EO or ancillary data and regression modelling, the 

choice of algorithm can considerably impact the estimate's accuracy. Traditional 

regression methods, such as those introduced in Section 1.5.3, have been used 

widely in the past; however, machine-learning regression models are increasing in 

popularity. Traditional parametric methods are widely used and are straightforward 

to implement using various fitting functions, for example, linear (Zeng and Chen, 

2018), nonlinear (Gourley et al., 2017), polynomial (Demanet et al., 2015), power 

(Ma et al., 2019) and exponential (Ge et al., 2019). However, these models have 

significant limitations rendering them unsuitable for complex, multidimensional 
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datasets common for different farm management scenarios (Chen et al., 2021). 

Machine-learning (ML) is a branch of artificial intelligence (AI) that can learn to 

recognise patterns in input data based on previous experience without being 

specifically programmed to do so (Attaran and Deb, 2018). ML algorithms can 

overcome limitations in parametric regression models, particularly for non-linear 

relationships (Solyali, 2020). Through open-source software such as Python and R, 

access to machine-learning algorithms has widened. Several algorithms have become 

popular in Earth observation, for example, random forest (RF) for crop yield (Jeong 

et al., 2016), support vector machine (SVM) for grassland biomass (Clevers et al., 

2007), or adaptive neuro-fuzzy inference system (ANFIS) for grass growth (Ali et 

al., 2017b).  

 

Many studies have demonstrated how effective ML regression models can be for 

grassland applications. Berger et al. (2020) used random forest regression to estimate 

grassland biomass in savannas with Landsat 8 and Sentinel 2 separately. Three 

models were developed with spectral bands and NDVI using Landsat 8 for 2016 and 

Sentinel 2 data for 2017 and 2018. Using spectral bands and NDVI, the models 

performed the poorest for Landsat 8 data with a relative RMSE of 38.91% and 

38.24%, compared to Sentinel 2 with relative RMSE from 22.37% to 26.27%. The 

poor performance of the Landsat 8 model could be because of the lower resolution 

and drought effect in 2016 (Berger et al., 2020). Chen et al. (2021) used an artificial 

neural network model to estimate pasture biomass using Sentinel 2 and daily climate 

variables (rainfall, mean temperature and vapour pressure deficit) at a 5 km 

resolution with an R2 of 0.6 (Chen et al., 2021). Grass biomass can be estimated 

indirectly using various biophysical parameters such as Leaf Area Index (LAI) 

(Punalekar et al., 2018) and grass height (Zhang et al., 2021b). Nickmilder et al. 

(2021) tested a broad range of ML algorithms to estimate grass height to calculate 

grass biomass using Sentinel 1 and Sentinel 2, as well as meteorological data (daily 

rainfall and degree-days) and reference data from a rising plate meter (RPM). The 

Sentinel 2 raw bands and vegetation indices (Enhanced Vegetation Index-EVI and 

Soil and Atmospherically Resistant Vegetation Index 2 –SAVI2) were the most 

significant variables, and Sentinel 1 was the least significant. The model with the 

combination of all three variables had the lowest RMSE with 19 mm of the grass 
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height. While several studies have demonstrated the potential of ML regression, only 

a few have compared ML estimates of biomass with biophysical models. Schwieder 

et al. (2020) compared random forest (RF) and a soil-leaf-canopy (SLC) radiative 

transfer model with Sentinel 2 bands for estimating aboveground biomass and LAI. 

Both performed equally well with average biomass estimates of 2.23 t/ha (RF) and 

2.49 t/ha (SLC). Similar results were obtained in a study by Quan et al. (2017), 

where a biophysical model (R2 of 0.64 and RMSE = 42.67 g/m2) performed better 

than three empirical methods for grass biomass retrieval using vegetation indices 

from Landsat 8: exponential regression (R2 of 0.48 and RMSE = 41.65 g/m2), partial 

least squares regression (PLSR) (R2 of 0.55 and 37.79 = g/m2) and ANN (R2 of 0.43 

and RMSE 46.26 = g/m2). The regression models with NDVI data suffered from 

saturation problems at high biomass values (resulting in a very high RMSE of 

250g/m2). 

 

It has been established that ML algorithms can be used to estimate biomass, and 

these methods have already been applied in Ireland, albeit at coarse spatial 

resolutions and for a limited number of sites. This chapter expands previous research 

by Ali (2016) to explore how accurately ML algorithms can estimate grassland 

biomass on Irish farms using Landsat 8 and Sentinel 2 VI and ancillary 

meteorological data as predictor variables. Two ML algorithms (RF and ANFIS) 

were assessed. Furthermore, ML models were juxtaposed with a leading biophysical 

simulation model for grass biomass estimates, the Brereton model. Specifically, the 

research presented in this chapter seeks to:  

• Explore the influence of EO and meteorological variables on grass biomass 

estimation;  

• Compare Brereton model and machine-learning models for estimating 

biomass; and  

• Compare the accuracy of the RF and ANFIS algorithms for estimating the 

grass growth rate. 
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5.2 Materials & Methods  

5.2.1 Study area 

The study area is described in detail in Chapter 3. To recap, this experiment used 

data from eight farms situated in different parts of Ireland (Figure 3-4 and Table 3-

2). Between the eight farms, the annual average temperature ranges from 14.80–

18.50 °C, with mean annual rainfall between 1200–1800 mm, and sunshine duration 

of 1238.7-1868.7 h (Met Éireann 2013). These values are each farm’s annual mean 

and can be higher than the national average.  

 

5.2.2 Datasets 

This study used satellite VI imagery from Landsat 8 and Sentinel 2 and agro-

meteorological data from Met Éireann synoptic weather stations from 2017-2018 

(see Figure 3-8 in Chapter 3). The ground truth data for this experiment were in-situ 

grass growth rates inputted to PastureBase Ireland for each of the eight farm 

locations. The variables used for this study are listed in Table 5-1 below. All the 

input variables used in the Brereton model are presented in Table 5-2.  
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Table 5-1 Input variables used for the ML regression models 

Variables Description Unit 

Tmin Daily minimum temperature °C 

Tmax Daily maximum temperature °C 

Tmean Daily mean temperature °C 

G Global radiation J/cm sq 

P Potential evapotranspiration mm 

smd soil moisture deficit mm 

E evaporation mm 

R Rainfall mm 

GDD Growing degree days °C 

NDVI Normalised vegetation index Unitless 

NDRE 
Normalized Difference Red Edge 

Index 
Unitless 

Growth Grass growth rate (reference data) 
Kg DM ha-

1day-1 

 

 

Table 5-2 Input variables used for the Brereton model 

Variables Description Unit 

Tmean Daily mean temperature °C 

G Global radiation J/cm sq 

P Potential evapotranspiration mm 

smd Soil moisture deficit mm 

A Actual evapotranspiration mm 

R Rainfall mm 
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5.2.2.1 Vegetation indices 

Cloud-free Landsat 8 surface reflectance level-2 (Collection 2) images (path 205 to 

208 and row 22 to 24) were downloaded from the USGS Earth Explorer website2 

and converted into an NDVI. The Sentinel 2 data were downloaded from the 

Copernicus Open Access Hub platform from ESA website3 and converted into 

surface reflectance in SNAP (version 7.0). The 20 m reflectance bands were 

resampled using bilinear interpolation to 10 m. NDVI (Tucker, 1979) and NDRE 

(Fernández-Manso et al., 2016) were produced from the resampled Sentinel 2 bands 

(Equations 5-1 and 5-2). A zonal statistics function in ArcGIS was used to generate 

mean VI values for each of the eight farms.  

 

 NDVI = 
(BNIR−BRed)

(BNIR+BRed)
 Equation 5-1 

 NDRE  = 
(BNIR−BVeg red edge)

(BNIR+BVeg red edge)
 Equation 5-2 

 

Where, BNIR is the near-infrared band (band 5 for Landsat 8 and band 8 for Sentinel 

2), BRed is the red band (band 4 for both Landsat 8 and Sentinel 2). Veg red edge is 

vegetation red-edge band, which is band 5 for Sentinel 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 http://earthexplorer.usgs.gov. Accessed 12th October 2018 

3 https://scihub.copernicus.eu/dhus/#/home. Accessed 28th October 2018 

http://earthexplorer.usgs.gov/
https://scihub.copernicus.eu/dhus/#/home
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5.2.2.2 Temporal matching of satellite data with ground data 

Extensive cloud cover over Ireland often limits the amount of optical EO imagery 

available, with only a small number of images being available for each of the 

specific farm locations. The number of Landsat 8 and Sentinel 2 images for each 

farm and corresponding PBI data measurements are shown in Table 5-3. PBI grass 

growth rates were matched with available satellite images. As the satellite imagery 

was temporally sparse, a 7-day window before and after each PBI entry was 

considered for Landsat 8 and Sentinel 2 imagery. If an image fell within seven days 

of a satellite image, then PBI growth rate and VI values were matched. If a satellite 

image was greater than seven days from a PBI entry, it was rejected. To perform this 

matching, a rolling join function carried seven days backwards and forwards was 

implemented in R Statistical Software using the ‘roll’ function in the ‘data.table’ 

package (version 1.14.0). The bespoke script used to perform this join is included in 

the archive of scripts in Appendix 5.1.   

 

Table 5-3 Number of cloud-free Landsat 8 and Sentinel 2 images (2017-2018) & available 

PBI data 

Farm Landsat 8 Sentinel 2 PBI measurements 

Moorepark, County Cork 19 23 148 

Curtins, County Cork 17 18 82 

Kilworth, County Cork 16 16 135 

JC, County Wexford 34 19 77 

Kildavin, County Wexford 27 14 61 

Tuohy, County Galway 15 14 78 

INZAC, County Galway 16 14 75 

Newford, County Galway 16 13 79 
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5.2.3 Brereton model 

The Brereton model, also known as Johnstown Castle Grass Model, is a static, 

empirical model that uses meteorological conditions to predict grass growth 

(Equation 5-3). As listed in Table 5-2, the inputs to this model are rainfall, solar 

radiation, mean daily temperature, potential evapotranspiration, actual 

evapotranspiration, and soil moisture (Brereton et al., 1996a). The model estimates 

the grass growth rate based on solar radiation received at the surface. The growth 

rate depends on the efficiency of grass to convert incoming radiation into energy, 

which is a factor of mean temperature and rainfall at a given location. Both positive 

and negative soil moisture deficits (SMD) are also limiting factors as they can 

hamper the grass growth if soils are saturated or too dry. The output from the model 

is a prediction of the grass growth rate over a given period. For this study, the 

Brereton model was scripted using Python 3.7. This script is included in Appendix 

5.2.  

 Ya

Yp
= a + b

Ea

Ep
 

Equation 5-3 

 

Where, a = 0.20 and b = 0.80  

 𝑌𝑎= Actual grass growth rate without irrigation 

𝑌𝑝= Actual grass growth rate with irrigation 

𝐸𝑎= Actual evapotranspiration 

𝐸𝑝= Potential evapotranspiration 
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5.2.4 Machine-learning algorithms 

The ML algorithm requires clean and normalised data. Cleaning of data involves 

removing the missing values and removing the duplicate rows. Cleaning was 

followed by feature selection. When training an ML model, not all the variables will 

be relevant, and therefore, the optimal variables relevant to the prediction are chosen. 

Scaling is used to standardise the data between zero and one as the range of input 

data varies widely. The input data are split into two parts, namely training data and 

testing data. Training data are used to train the ML model, and the model is 

evaluated using the testing data, which has not previously been used in the model.  

 

5.2.4.1 Adaptive neuro-fuzzy inference system 

ANFIS takes advantage of artificial neural network (ANN) and fuzzy logic (Jyh-

Shing and Jang, 1993). ANFIS has been implemented for many remote sensing 

applications, for example, landslide susceptibility mapping (Aghdam et al., 2017), 

drought monitoring (Khosravi et al., 2017), flood susceptibility mapping (Tien Bui et 

al., 2018), and crop photosynthetic rate estimation (Valenzuela et al., 2017). For 

grasslands applications, ANFIS was previously used to estimate pasture biomass in 

Ireland (Ali et al., 2017b) and has also been used to map grazing intensity (Salski 

and Holsten, 2006). ANFIS is a type of fuzzy systems, which uses feed-forward 

network with five significant layers- input fuzzification, fuzzy rules, method, output 

aggregation, and output defuzzification.  

 

 

Figure 5-1 Architecture of Adaptive Neuro-Fuzzy Inference System (ANFIS).  
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A generalised ANFIS architecture is presented in Figure 5-1, where there are two 

inputs, X and Y, and one output, f.  

Layer 1: This is the fuzzy layer that performs fuzzification of inputs X and Y. 

Layer 2: This is a product layer with fixed nodes. It multiplies the node function to 

the input signals to get the output signal.  

Layer 3: This is the normalisation layer that normalises the output from Layer 2.  

Layer 4: This is an adaptive node.  

Layer 5: The defuzzification layer, which has fixed nodes. It gives the overall output. 

 

5.2.4.2 Random forest  

RF is a non-parametric supervised classification and regression algorithm that has 

become very popular in EO studies (Breiman, 2001). RF is an ensemble decision tree 

algorithm that builds many trees independently from randomly sampled variables 

and uses a majority vote to determine the final label. As each tree is independent of 

the others, there is little correlation between trees. Therefore, RF is superior to a 

single decision tree as the final prediction is an aggregation of predictions from each 

tree. RF is relatively simple to parameterise, requiring only two parameters, the 

required number of trees (ntree) and the number of variables randomly sampled at 

each split (mtry). Both can be fine-tuned using a grid search function. The script was 

written in R statistical software using “caret” (v 6.0-88) packages for RF and tuned 

hyper-parameters random grid-search methods (see Appendix 5.4). The RF model 

was optimised by tuning hyper-parameters using random grid-search methods. 

 

5.2.4.3 Feature selection  

Feature selection is a method in machine-learning that reduces the number of input 

variables, leaving only those model variables most useful for prediction. Essentially, 

feature selection removes redundant predictors from a model, reducing training and 

processing time, and improving efficiency (Cai et al., 2018). Feature selection 

algorithms help to get the optimal number of variables required to train the model. 

RF has an internal method of calculating variable importance using out-of-the-bag 
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(OOB) error. While making the samples, data points were chosen randomly and with 

replacement, and the data points which fail to be a part of that particular sample are 

known as OOB points. In the package “caret”, the VarImp function (for variable 

importance) was used to find the input variables with the most significant impact on 

mean squared error (MSE) by observing the effect on accuracy as variables are left 

out of models. ANFIS does not have an internal feature selection, therefore the 

Boruta package in R Statistical Software was used. Boruta is a wrapper model built 

around the RF algorithm. Comparative studies of different feature selection functions 

in R found that Boruta was computationally efficient with the lowest OOB error and 

low computational time (Speiser et al., 2019). Boruta duplicates an input dataset and 

randomly mixes values. These features are used to train an RF classifier, and Z 

scores are computed for each variable. The variables having a significantly higher Z 

score than the maximum Z score (MZ) among shadow features are “confirmed 

attributes”. Attributes with a significantly lower Z score than MZ are “rejected 

attributes”. Features (variable importance) that are neither confirmed nor rejected are 

called “tentative features”. Confirmed attributes were used to train the regression 

models.  

 

5.2.4.4 Error metrics  

Five standard error metrics were calculated (detailed in Equations 5-4 to 5-8). 

• Mean squared error (MSE) is the mean of the squared differences between 

predicted and expected target values in a dataset. The units of MSE are 

squared units, and often the root mean squared error is reported (Equation 5-

4). 

MSE= 
1

n
∑(Yi-Ŷi)

2

n

i=1

 Equation 5-4 

• Mean absolute error (MAE) is the average of the absolute error values. 

Unlike MSE, the units of the error match the units of the predicted target 

value. While MSE (and RMSE) weight larger errors more than smaller errors 

(due to the square of the error value), MAE does not give more or less 

emphasis to different types of errors (Equation 5-5).  
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MAE= 
∑ |Ŷi-Yi|

n
i=1

N
 Equation 5-5 

• Root mean squared error (RMSE) is an extension of MSE where the square 

root of the error is calculated. The units of RMSE are the same as the original 

units of the value being predicted (Equation 5-6).  

RMSE=√∑ (Yi-Ŷi)
2N

i=1

N
 Equation 5-6 

• Symmetric mean absolute percentage error (SMAPE) is an accuracy metric 

based on relative error (Equation 5-7).  

SMAPE =  
1

N
∑

|Yi − Ŷi|

(|Yi| + |Ŷi|)/2

N

i=1

 Equation 5-7 

• The coefficient of determination (R2) is a measure of how well the 

predictions fit the data (Equation 5-8). 

𝑅2 = 1 − ∑
(𝑌𝑖 − 𝑌̂𝑖)

2

(𝑌𝑖 − µ)2

𝑁

𝑖=1

 Equation 5-8 

 

In each of the equations above, Y is the actual grass growth value, Ŷ is the predicted 

grass growth value, N is the number of observations, i is the iterations, and µ is the 

mean value of the actual grass growth values.  
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5.2.5 Methodology 

The methodology for the models described in this chapter is illustrated in Figure 5-2.  

 

Figure 5-2 Methodology for Brereton, ANFIS and RF model 

 

Individual databases were compiled for Landsat 8 and Sentinel 2 VI containing the 

weather data, modified GDD and the respective VI for both years (2017 and 2018). 

The Landsat 8 database comprised 131 rows (corresponding to image acquisition 

dates) and 11 individual columns. The Sentinel 2 database comprised 160 rows 

(dates) and 12 individual columns. The discrepancy between the number of rows 

between the Landsat 8 and Sentinel 2 databases is because of cloud cover and 

different revisit times (16 days for Landsat 8 and 5 days for Sentinel 2).  

 

The data from 2017 and 2018 were randomly split into non-overlapping training 

(70%) and testing (30%) datasets. The same training data were used for both ANFIS 

and RF models. The error metrics listed in Section 5.2.4.4 were used to indicate the 

reliability of each model. A seed value is a defined starting point for random number 

generation and was set for all the models to ensure the reproducibility of results. 

Using a seed value ensures the model reproducibility.  
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The input data to ANFIS is in the form of a matrix (m × n), where m is the number 

of observations and n is the number of variables. Various combinations for the 

parameters were tested, and the parameters with the lowest RMSE were selected. 

Maximum iterations were set to 100, and the step size was chosen as 0.1, which are 

the default values.    

 

A repeated k-fold cross-validation process was used to determine the optimal value 

of ‘mtry’. Repeated k-fold cross-validation is a resampling procedure to evaluate 

how an ML model is likely to perform on data not used to train the model. The 

general procedure for k-fold cross-validation is to split the dataset into k groups 

randomly. Data are further split into k groups for each unique group, using one group 

as a test set and the remaining groups as training data. A model is fit and evaluated 

multiple times, and a mean result from all folds is determined. The ‘mtry’ value with 

the lowest RMSE was selected. k values from 1 to 15 were tested, and the one with 

the lowest RMSE selected (k-values and RMSE are given in Appendix 5.5). 

 

The ‘ntree’ parameter can be any value, and increasing the number of trees will 

result in better accuracy up to a point. If the number of trees is increased beyond this 

threshold, there will be no significant impact on model accuracy, but the computing 

time will be increased. Each tree is constructed using a subset of the original training 

data (bootstrapping), leaving some observations “out-of-bag” (OOB) (Breiman, 

2001, Lee et al., 2020). These OOB observations are used to calculate the model's 

prediction error (Janitza and Hornung, 2018). OOB error is plotted against the 

number of trees to estimate the optimal number of trees, and the value with the 

lowest error was chosen.  
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5.3 Results 

5.3.1 Brereton model 

The Brereton model was implemented in Python 3.8 and was developed for three 

sites in Ireland: Moorepark, Co. Cork, Athenry in Co. Galway, and Johnstown 

Castle, in Co. Wexford. The model was run for each site for two years separately, i.e. 

2017 and 2018, as the model can only be run for a single year with daily parameters. 

The grass growth rate from the Brereton model was compared with the data from the 

PBI.  

 

5.3.1.1 Moorepark 

The grass growth rate from PBI with the predictions from the Brereton model for 

2017 and 2018 are shown in Figure 5-3 A and C, and the corresponding scatter plot 

is shown in 5-3 B and D, respectively.  

 

In 2017, the Brereton model over-predicted for winter (January, February and 

December, i.e. DOY 1 to 59 and from 335 to 365) and for spring (March until May, 

i.e. DOY from 60 to 151) by approximately 6.58 kg DM ha-1day-1 and 35.51 kg DM 

ha-1day-1. The model under-predicted by 11.43 and 20.01 kg DM ha-1day-1 for 

summer (June, July and August, i.e. DOY from 152 to 243) and autumn (September, 

October and December, i.e. DOY from 244 to 334). The Brereton model captures the 

same overall trend as the PBI data. In 2018 also, the Brereton model over-predicted 

for winter, spring and summer by approximately 15.78, 42.0 and 6.43 kg DM ha-

1day-1. On the other hand, the model under-predicted 15.73 kg DM ha-1day-1 for 

autumn. 

 

The relationship between the Brereton model and PBI values in each of the years 

were explored using scatterplots. For 2017 and 2018, the R2 was 0.26 (p<0.05) and 

0.33 (p<0.05), respectively. For 2017, the model had variability in the predictions, 

whereas for 2018, there was a cluster of values between 0 and 50 kg DM ha-1day-1 

with few outliers. The error metrics for all the farms for 2017 and 2018 are given in 
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Table 5-4. The RMSE value for Moorepark for 2017 (41.68 kg DM ha-1day-1) was 

lower than 2018 (50.74 kg DM ha-1day-1). 

 

Table 5-4 Grass growth rate (kg DM ha-1day-1) output from the Brereton model (2017-

2018). 

Five accuracy metrics are presented- R2, MSE, RMSE, SMAPE and MAE. Key: Mp = 

Moorepark farm, Jc = Johnstown Castle farm and Ath = Athenry farm. Lowest RMSE and 

highest R2 value in each year in bold.  

Metric 2017 2018 

Mp Jc Ath Mp Jc Ath 

R2 0.26 

p< 0.05 

0.03 

P = 0.3 

0.06 

P = 0.16 

0.33 

p< 0.05 

0.17 

p< 0.05 

0.16 

p< 0.05 

MSE 1737.87 6772.33 3643.57 2575.05 2580.02 3106.26 

RMSE 41.68 82.29 60.36 50.74 50.79 55.73 

SMAPE 74.14 77.36 77.84 82.14 75.33 83.13 

MAE 31.04 52.65 37.26 32.42 29.92 34.79 
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Figure 5-3 Predicted grass growth at Moorepark using the Brereton model (2017-2018).  

A and B represent the results for 2017, and C and D are those for 2018. The corresponding scatter plot between predictions from the Brereton 

model -Predicted (B) and PBI data - Actual (PBI) is shown. The grass growth rate values from the Brereton model are shown as a blue line, and red 

triangles represent the reference data from PBI, where the x-axis is the day of the year (DOY) and the y-axis is the grass growth rate values in kg 

DM ha-1day-1. The 1:1 line is shown in the scatter plot in red. 
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5.3.1.2 Johnstown Castle 

Analysis for Johnstown Castle is illustrated in Figure 5-4 A and C, and the 

corresponding scatter plot is shown in B and D, respectively. In 2017, the model 

over-predicted for winter and spring by 36.45 kg DM ha-1day-1 and 107.82 kg DM 

ha-1day-1 approximately. Conversely, the model under-predicted by 1.58 and 15.08 

kg DM ha-1day-1 for summer and autumn. In 2018 also, the Brereton model over-

predicted for winter, spring and summer by 11.45, 52.16 and 3.05 kg DM ha-1day-1 

on an average. On the other hand, the model under-predicted by 13.47 kg DM ha-

1day-1 for autumn. For 2017 and 2018, the R2 value between the grass growth rate 

from PBI and Brereton model is 0.03 (p = 0.3) and 0.17 (p = 0.01), respectively. 

There is a positive relationship between the predictions and the reference data for 

2017 and 2018. There is a linear relationship between the two variables except for a 

cluster of outliers values between 25 and 55 kg DM ha-1day-1 grass growth rate for 

2017. There is a weak linear relationship between variables for 2017 as the slope is 

0.57, whereas, for 2018, there is a strong relationship as the slope is closer to 1 

(0.98), which is similar to Moorepark but a different offset. The 2017 predictions 

have p values of less than 0.05, meaning that the relationship is not statistically 

significant. 2018 has a statistically significant relationship with a p-value of less than 

0.05. The RMSE value for 2017 (82.29 kg DM ha-1day-1) was higher than in 2018 

(50.79 kg DM ha-1day-1).  
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Figure 5-4 Predicted growth at Johnstown Castle from Brereton model (2017-2018) 

A and B represent the results for 2017, and C and D are those for 2018. The corresponding scatter plot between predictions from the Brereton 

model -Predicted (B) and PBI data - Actual (PBI) is shown. Key: Brereton model (blue line) and PBI (red triangles), and DOY. 
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5.3.1.3 Athenry 

The results for Athenry for 2017 and 2018 are shown in Figure 5-5. The grass 

growth curves are shown in Figure 5-5 A and C, and scatter plots are shown in B and 

D. In 2017, the model under-predicted for winter by 5 kg DM ha-1day-1. The model 

over-predicted by 11.43 kg DM ha-1day-1 for spring. For summer and autumn, the 

model under-predicted by 3.13 and 19.80 kg DM ha-1day-1. In 2018 also, the model 

under-predicted for winter and autumn by approximately 1 and 6.80 kg DM ha-1day-

1. For spring and summer, the model over-predicted by 56.13 and 3.37 kg DM ha-

1day-1. 

 

The R2 values for Athenry farm for 2017 and 2018 are 0.06 (p-value = 0.15) and 

0.16 (p-value < 0.05), respectively. There is a very weak relationship between the 

predictions and the actual values as the correlation coefficient was 0.23, whereas, for 

2018, the relationship was weak with a correlation coefficient of 0.4. The direction 

of the relationship for both 2017 and 2018 is positive. The shape of the scatter plot of 

grass growth rate values for both 2017 and 2018 are linear, with some outliers. The 

relationship between the predictions for 2017 is not statistically significant as the p-

value is more than 0.05, whereas the predictions for 2018 are statistically significant 

as the p-value is less than 0.05. The RMSE (60.36 kg DM ha-1day-1) and MAE 

(37.26 kg DM ha-1day-1) values for Athenry farm for 2017 were higher than in 2018 

(RMSE=55.73 kg DM ha-1day-1, and MAE=34.79 kg DM ha-1day-1).  

 

Moorepark farm had the lowest overall RMSE of 41.68 kg DM ha-1day-1 in 2017 and 

50.74 kg DM ha-1day-1 than Johnstown Castle (82.29 for 2017and 50.79 kg DM ha-

1day-1 for 2018) and Athenry farm (60.36 for 2017 and 55.73 kg DM ha-1day-1 for 

2018). 

 

 

 



125 

 

Figure 5-5 Predicted grass growth at Athenry using Brereton model (2017-2018).  

A and B represent the results for 2017, and C and D are those for 2018. The corresponding scatter plot between predictions from the Brereton 

model -Predicted (B) and PBI data - Actual (PBI) is shown. Key: Brereton model (blue line) and PBI (red triangles) and DOY. 
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5.3.2 Machine-learning models 

5.3.2.1 Feature selection 

The Boruta and VarImp functions were used for feature selection for Landsat 8 

(Figure 5-6 and 5-7) and Sentinel 2 databases (Figure 5-8 and 5-9). The optimal 

variables for the Landsat 8 model were global radiation, potential evapotranspiration 

(pe), rainfall, soil moisture deficit, evaporation, GDD, maximum (max), minimum 

(min), and mean (mean) temperature (green box plots). Both the Boruta and VarImp 

functions rejected NDVI as an essential predictor variable (red box plot). The pe was 

the most important variable using both Boruta plot and VarImp function. The blue 

box plots randomly duplicate original variables called “shadow” variables, which 

acts as a threshold to select the attributes. Boruta calculates the Z score for each 

input variable and their shadow variables. If the Z-score of the variables is more than 

the shadow attributes, the variables are labelled as necessary, whereas if the Z-score 

is lower than the shadow variables, those variables are marked unimportant and are 

rejected. 

 

Figure 5-6 Boruta plot for the Landsat 8 database.  

NDVI is a rejected variable (red boxplot), whereas the meteorological variables are all 

important (green boxplots), the blue boxplots indicate the threshold of importance. Mean 

and min refers to mean and minimum temperature, pe refers to potential evapotranspiration, 

evap refers to evaporation, rain is rainfall, and GDD is growing degree days. 
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Figure 5-7 Landsat 8 VarImp output from the ‘Caret’ package 

NDVI has zero importance value, which means that it is rejected. Mean and min refers to 

mean and minimum temperature  

 

For the Sentinel 2 database, the plots in Figure 5-8 and 5-9 show that potential 

evapotranspiration, evaporation, GDD, SMD, NDVI, NDRE, mean (mean), 

maximum (max) and minimum (min) temperature were the most critical factors. 

Rainfall was designated as tentative, as shown in the yellow box-plot, which means 

that Boruta cannot confirm its significance with the desired confidence within the 

default number of random forest runs. For VarImp, rainfall was the rejected variable. 

The ‘pe’ is very similar to ‘evap’ in Sentinel 2 database, unlike for Landsat 8.  
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Figure 5-8 Boruta plot for Sentinel 2 database. 

Mean and min refers to mean and minimum temperature.  

 

 

Figure 5-9 Sentinel 2 ‘Varimp’ output plot showing the importance of all the variables. 

Rainfall has zero importance value, which means that it is rejected. Mean and min refers to 

mean and minimum temperature  
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Based on the outputs from the feature selection algorithms, six sets of parameters 

were defined, and each used with the ANFIS and RF models (Table 5-5). For the 

Landsat 8 database, two different combinations were evaluated – one with all 

variables and another with all the variables excluding NDVI. For the Sentinel 2 

database, four combinations were formed- one using all the variables, a second 

model excluded rainfall, a third model excluded NDRE and rainfall, and a fourth 

model excluded NDVI and rainfall. 

 

Table 5-5 Twelve models based on optimal variables from feature selection 

Model Sub-models 

ANFIS- Landsat 8 Model 1- All variables 

Model 2- All variables except NDVI 

ANFIS- Sentinel 2 Model 3- All variables 

Model 4- All variables except rainfall 

Model 5- All variables except NDVI and rainfall 

Model 6- All variables except NDRE and rainfall 

RF- Landsat 8 Model 7- All variables 

Model 8- All variables except NDVI 

RF- Sentinel 2 Model 9- All variables 

Model 10- All variables except rainfall 

Model 11- All variables except NDVI and rainfall 

Model 12- All variables except NDRE and rainfall 
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5.3.2.2 Models 1 & 2 (ANFIS Landsat 8) 

The tuned ANFIS model was used to predict the grass growth values from testing 

data. The scatter plots for training (A and C) and testing data (B and D) are shown in 

Figure 5-10 with actual grass growth values from PBI on the x-axis and the predicted 

values from ANFIS on the Y-axis. R2 values for training and testing data were 0.28 

and 0.55 for model 1. Model 2, using only meteorological data, had a lower R2 of 

0.32 and 0.49 for training and testing stages than Model 1. The scatter plots for 

testing data for both years are similar in terms of the spread of the points along the 

1:1 line. The values between 55-85 kg DM ha-1day-1 are over-predicted for testing 

data in 2017 and 2018. Model 1 (RMSE of 22.14 kg DM ha-1day-1) performed 

slightly better than model 2 (RMSE of 24.76 kg DM ha-1day-1). A similar outlier for 

testing data for both the model at an actual value of 130 and a predicted value of 90 

kg DM ha-1day-1. The error metrics for all the models are given in Table 5-7. 
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Figure 5-10  Actual vs. predicted grass growth for models 1-2. 

Model 1: Training is Panel A.  Testing is Panel B. Model 2: Training is Panel C. Testing is Panel D.  

Grass growth in kg DM ha-1day-1. 
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5.3.2.3 Models 3-6 (ANFIS Sentinel 2) 

The scatter plots for training and testing data for all four models are shown in 

Figures 5-11 and 5-12, with actual grass growth values from PBI on the x-axis and 

the predicted values from ANFIS on the Y-axis. The scatter plot for training data are 

in Figure 5-11 A and C and testing data in B and D. The R2 for the training data 

(0.41-0.44) for all the models (4-6) is lower than the testing data (0.47-0.52) except 

model 3 in which the R2 for training data (0.33) is higher than the testing data (0.32).  

 

The R2 was lowest (0.32 for test data) when all the variables were used as input to 

the model. Models 5 and 6 had similar performance with R2 of 0.51 for model 5 and 

0.52 for model 6, and both the models are without rainfall. Model 5 with 

meteorological with NDVI (15.32 kg DM ha-1day-1) performed slightly better than 

model 6 with meteorological data and NDRE (15.04 kg DM ha-1day-1). The model 

with all the variables performed the worst among all models with an RMSE of 18.11 

kg DM ha-1day-1.  
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Figure 5-11 Actual vs. predicted grass growth for models 3-4. 

Model 3: Training is Panel A.  Testing is Panel B. Model 4: Training is Panel C.  Testing is Panel D.  

Grass growth in kg DM ha-1day-1. 
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Figure 5-12 Actual vs. predicted grass growth for models 5-6. 

Model 5: Training is Panel A.  Testing is Panel B. Model 6: Training is Panel C.  Testing is Panel D.  

Grass growth in kg DM ha-1day-1. 
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5.3.2.4 Models 7 & 8 (RF Landsat 8) 

For tuning of RF, the essential parameters are- mtry and ntrees. To estimate the 

optimal number of trees, we plotted OOB error against several trees and the trees 

with the lowest error was chosen. The plot of OOB error with many trees with the 

mtry tables is shown in Appendix 5.6. The optimal number of trees with the lowest 

error is 219 trees with an average grass growth error of 22.28 kg/DM/ha/day. RF 

model uses cross-validation and chooses an mtry value with the lowest RMSE value. 

The mtry value of 10 was chosen in the final model, which has an RMSE value of 

20.60 kg DM ha-1day-1. The difference between RMSE values for various mtry 

values was small. The comparison of Model 7 (all the variables) and 8 (without 

NDVI) optimal trees, grass growth rate value at an optimal tree and ‘mtry’ are shown 

in Table 5-6. 

 

Table 5-6 Comparison of RF models 7 & 8.  

R2 for training and testing, optimal trees, grass growth rate value at optimal tree and mtry 

are shown for Model 7 (all the variables) and Model 8 (without NDVI). 

Model ntree Grass growth rate value at optimal tree mtry 

7 219 22.28 10 

8 130 21.72 9 

 

The scatter plot for training, and testing data is shown in Figure 5-13, respectively, 

with actual grass growth values from PBI on the x-axis and the predicted values from 

RF on Y-axis. Figure 5-13 A and C are training data scatter plot for Model 7 and 8, 

and the testing data scatter plot are shown in B and D. R2 was 0.92 for training data 

and 0.73 for testing data using model 7. For test data, the low values were predicted 

accurately. For model 8 the optimal number of trees with the lowest error was 130 

trees with an average grass growth error of 21.72 kg/DM/ha/day, and an mtry value 

of 9 was chosen for the final model. R2 was 0.90 for training data and 0.72 for 

testing data for model 8. It can be seen that the values of accuracy metrics are similar 

for both models. However, the RMSE for Model 7 (14.70 kg DM ha-1day-1) is lower 

than for model 8 (15.33 kg DM ha-1day-1). 

 



136 

 

Figure 5-13 Actual vs. predicted grass growth for models 7-8. 

Model 7: Training is Panel A.  Testing is Panel B. Model 8: Training is Panel C.  Testing is Panel D.  

Grass growth in kg DM ha-1day-1. 
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5.3.2.5 Models 9-12 (RF Sentinel 2) 

For model 9-12, the optimal number of trees with the lowest error are 69, 103, 209 

and 96 trees with an average grass growth error of 16.94, 17.28, 17.19 and 17.31 

kg/DM/ha/day for model 9-12. For model 9, 10, 11 and 12 mtry value of 2 was 

chosen in the final model with an RMSE of 16.46, 16.47, 16.51 and 16.54 kg DM ha-

1day-1.  

 

The scatter plot for training and testing data for all the models are shown in Figures 

5-14 and Figure 5.15. R2 was 0.90 and 0.55, respectively, for model 9 and 10, R2 was 

0.91 and 0.56 for model 11, and R2 was 0.91 and 0.55 for model 12, respectively. 

Although it was observed that R2 values are significantly high for the testing stage 

using Landsat 8 data (0.72-0.73) than using Sentinel 2 (0.55-0.56) and the RMSE of 

the Sentinel 2 model (14.65-14.94 kg DM ha-1day-1) is lower than Landsat 8 (14.70-

15.33 kg DM ha-1day-1). The R2 for training data was similar for all the models 

(0.90-0.91). For all the four models for testing data, the values below 40 kg DM ha-

1day-1 were close to the actual data with the values along the 1:1 line. The values 

above 40 kg DM ha-1day-1 had more variability in the data with under-prediction. 

  

The error metrics for all the models for testing data is shown in Table 5-7. The 

lowest R2 of 0.47 for testing data was for model 6, and the highest value of 0.73 is 

for model 7. For training data, the lowest R2 of 0.28 was for model 1, whereas 

models 7 until 12 had the highest R2 from 0.90-0.92. Model 2 had the highest (24.76 

kg DM ha-1day-1), and model 10 had the lowest RMSE (14.65 kg DM ha-1day-1) of 

all the models.  
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Figure 5-14 Actual vs. predicted grass growth for models 9-10. 

Model 9: Training is Panel A.  Testing is Panel B. Model 10: Training is Panel C.  Testing is Panel D.  

Grass growth in kg DM ha-1day-1.  
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Figure 5-15 Actual vs. predicted grass growth for models 11-12. 

Model 11: Training is Panel A.  Testing is Panel B. Model 12: Training is Panel C.  Testing is Panel D.  

Grass growth in kg DM ha-1day-1. 

 



140 

Table 5-7 Error metrics for machine-learning models 

Showing R2, MSE, MAE, RMSE, SMAPE (all in kg DM ha-1day-1) for all the models 1-12 arranged in ascending order by RMSE. 

Model 

R2 

Training data 

R2 

Testing data MSE MAE RMSE SMAPE 

10 0.91 0.55 214.79 11.23 14.65 8.28 

9 0.90 0.55 215.68 11.01 14.68 7.95 

7 0.92 0.73 216.35 10.93 14.7 11.6 

12 0.91 0.55 219.96 11.08 14.83 8.11 

11 0.91 0.56 223.31 11.26 14.94 8.35 

6 0.44 0.52 226.47 11.19 15.04 8.32 

5 0.44 0.51 234.79 11.82 15.32 9.16 

8 0.9 0.72 235.16 11.31 15.33 11.75 

4 0.41 0.47 254.4 12.55 15.95 9.5 

3 0.33 0.32 327.99 14.53 18.11 11.38 

1 0.28 0.55 490.34 16.49 22.14 Nan 

2 0.32 0.49 473.58 16.49 24.76 Nan 
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5.4 Discussion 

5.4.1 Limitations of ANFIS model 

For ANFIS model, the testing data had higher R2 and better error statistics than the 

training data, which is unusual. The possible reason for this could be data leakage 

which means unintentional use of testing data into the training data (Just et al., 

2020). There could be two reasons for the data leakage specifically for this work. 

The first one is that the dataset from 2017-2018 was divided randomly into training 

and testing data. This creates a problem in time-series data because the data from 

2018 are used to predict for 2017 creating a bias. A solution for this is cross-

validation by dividing the data into k-folds and using k-1 data for training and 1 for 

testing the model. Cross-validation is not available for ANFIS in R. Secondly, the 

data were normalized before splitting into training and testing data. While 

normalizing, the data are divided by the mean value of the whole dataset including 

the test data, which can influence the training data. One possible solution for this is 

to normalize the training and testing data separately. Another solution to avoid 

leakage is to keep a validation data to test the trained model for a completely unseen 

dataset, which was followed in Chapter 6. In Chapter 6, the data from 2107-2019 

were divided into training and testing data and the data for 2020 were used to 

validate the model which were completely unseen by the trained random forest. 

 

To test this data leakage effect, the data were divided into 2 parts - 2017 for training 

and 2018 for testing the ANFIS model. It was seen that training data had better error 

metrics than the testing data. The results shown in Section 5.3.2.2 and 5.3.2.3 were a 

case of data leakage and therefore the testing data had better R2 than the training 

data. In this example, training data had better R2. 

 

The RMSE for model 1 was 29.17 kg DM ha-1 day-1 and for model 2 RMSE was 

34.36 kg DM ha-1 day-1. The scatter plots for training (A and C) and testing data (B 

and D) are shown in Figure 5-16 with actual grass growth values from PBI on the x-

axis and the predicted values from ANFIS on the Y-axis. R2 values for training and 

testing data were 0.28 and 0.55 for model 1. Model 2, using only meteorological 

data, had a lower R2 of 0.32 and 0.49 for training and testing stages than Model 1.  
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The RMSE for model 3 was 20.71 kg DM ha-1 day-1 and for model 4 RMSE was 

19.44 kg DM ha-1 day-1. The scatter plots for training (A and C) and testing data (B 

and D) are shown in Figure 5-17. R2 values for training and testing data were 0.28 

and 0.55 for model 1. Model 2, using only meteorological data, had a lower R2 of 

0.32 and 0.49 for training and testing stages than Model 1.  

 

The RMSE for model 5 was 19.75 kg DM ha-1 day-1 and for model 6 RMSE was 

17.76 kg DM ha-1 day-1. The scatter plots for training (A and C) and testing data (B 

and D) are shown in Figure 5-18. R2 values for training and testing data were 0.28 

and 0.55 for model 1. Model 2, using only meteorological data, had a lower R2 of 

0.32 and 0.49 for training and testing stages than Model 1. The scatter plots for 

testing data for both years are similar in terms of the spread of the points along the 

1:1 line. 
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Figure 5-16 Actual vs. predicted grass growth for models 1-2. 

Model 1: Training is Panel A.  Testing is Panel B. Model 2: Training is Panel C. Testing is Panel D.  

Grass growth in kg DM ha-1day-1  
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Figure 5-17 Actual vs. predicted grass growth for models 3-4. 

Model 1: Training is Panel A.  Testing is Panel B. Model 2: Training is Panel C. Testing is Panel D.  

Grass growth in kg DM ha-1day-1  
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Figure 5-18 Actual vs. predicted grass growth for models 5-6. 

Model 1: Training is Panel A.  Testing is Panel B. Model 2: Training is Panel C. Testing is Panel D.  

Grass growth in kg DM ha-1day-1  
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5.4.2 Model performance 

The Brereton model was developed at the individual farm level (Moorepark, 

Johnstown Castle and Athenry), and its performance was compared for 2017 and 

2018. The Brereton model worked better on Moorepark farm than on the other two 

for both the years. The R2 was higher for Moorepark was 0.26 in 2017 and 0.33 in 

2018 than the other two farms (0.03-0.17). During summer (June-August), the model 

under-predicted for 2017 and over-predicted, the grass growth rate for 2018 for all 

the farms (Table 5-8) as the model works by using the solar radiation values and 

converting it into dry matter. The difference between the actual and predicted values 

for Moorepark was the highest among all the farms with 11.43 kg DM ha-1day-1 of 

under-prediction in 2017 and 6.43 kg DM ha-1day-1 of over-prediction in 2018. 

Moorepark is a highly managed farm in which the grass growth can vary in paddocks 

but in this work, the average values of the whole farm were used to compare the 

predicted values.  

 

Table 5-8 Difference in actual & predicted growth for three farms (2017-2018).  

Figures in kg DM ha-1day-1. In 2017 the growth was under-predicted, while in 2018, it was 

over-predicted (negative values). 

Farm 2017 2018 

Moorepark 11.43 6.43 

Johnstown Castle 1.58 3.05 

Athenry 3.13 3.37 

 

The Brereton model is an empirical, and it tends to perform poorly when applied to 

new data. This would be a significant drawback in developing the Brereton model as 

a national model. The model also produces the same growth rate for farms sharing a 

meteorological station, which is also true for the ML models that exclude the EO 

data. The grass growth is variable depending on factors such as meteorological and 

management such as grazing and silage for winter. There were some concerning 

errors within the model, for example, for Moorepark it over-estimated the peak 

season growth rate by 18.24 kg DM ha-1day-1 for 2017 and by 45.15 kg DM ha-1day-1 

in 2018 in May (DOY = 121 to 151). Hurtado-Uria et al. (2012) reported similar 

accuracy and found that the model over-predicted the summer grass growth values.  
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Barrett et al. (2004) used the Brereton model over two sites with contrasting grass 

growing conditions and observed that the model performed differently in both sites. 

It performed better at the site with drought conditions than without drought. 

However, in this work, the model performed slightly better for 2018 with drought 

conditions for Johnstown Castle (RMSE=50.79 for 2018 and 82.29 kg DM ha-1day-1 

for 2017) and Athenry than in 2017 (RMSE=55.73 for 2018 and 60.36 kg DM ha-

1day-1 for 2017). There were two machine-learning models (model 2 and 8) which 

used only meteorological data without EO data, and both of them performed better 

than the Brereton model. These models had higher R2 (0.49 and 0.72) and lower 

RMSE (24.76 and 15.33 kg DM ha-1day-1) than the Brereton model (R2 from 0.02-

0.33 and RMSE from 41.68-82.29 kg DM ha-1day-1). 

 

The issues with Brereton can be mitigated by introducing the EO imagery. The SMD 

is included in the Brereton model, but it is not a grass growth-limiting factor at more 

than 70 mm SMD. In contrast, the effect of extreme conditions like drought as 

experienced in 2018 was included in the ML models. The result was introduced in 

the growing degree-day variable with no growth for over 30 ºC maximum 

temperature and more than 70 mm of soil moisture deficit.  

 

The ANFIS model performed poorly for all the farms. Model 2 (ANFIS), with all the 

variables except NDVI from Landsat 8, had the highest RMSE of 24.76 kg DM ha-

1day-1. The lowest RMSE (15.04 kg DM ha-1day-1) was for model 6 (ANFIS) with all 

the variables from Sentinel 2 database except NDRE and rainfall. For the RF model, 

model 8 (with all the variables except Landsat 8 NDVI) had the highest RMSE of 

15.33 kg DM ha-1day-1 and model 10 (all the variables from Sentinel 2 database 

except rainfall) had the lowest RMSE of 14.65 kg DM ha-1day-1.  

 

For the machine-learning models using EO data, an error might have been reduced if 

consistent satellite imagery occurred between years. Ireland experiences extensive 

cloud cover all year, limiting the number of multispectral data available. The RMSE 

of all the models is plotted in Figure 5-16. A comparison of error metrics showed 

how RF outperformed ANFIS using both Landsat 8 and Sentinel 2 data for all the 
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farms. The RMSE for RF (14.65-15.33 kg DM ha-1day-1) was lower than ANFIS 

(15.04-24.76 kg DM ha-1day-1).  

 

 

Figure 5-19 RMSE for testing data of all the Brereton, ANFIS and RF models. 

Model 1 to 12 are ML models, and B_model are Brereton models 

 

The plot also shows that the Brereton model performed poorly with the highest 

RMSE values for all the farms. The experiments described in the previous section 

have shown how ML models provide greater accuracy in predicting grass growth 

rate than the Brereton Model. The ML models consistently had higher R2 and lower 

RMSE (R2=0.32-0.73 and RMSE=14.65-24.76 kg DM ha-1day-1) and better results 

than the Brereton model (R2=0.03-0.33 and RMSE=41.68-82.29 kg DM ha-1day-1). 
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5.4.3 Variable importance 

When using Landsat 8 database, NDVI was the rejected variable by both ANFIS and 

RF. The reason is the revisit time of Landsat 8, which is 16 days. If there is a cloudy 

day on the day of acquisition, there is a gap of over a month in the subsequent image 

acquisition. The data gaps due to the cloudy images can affect the model’s ability to 

capture the management events. Therefore, the models with NDVI from Sentinel 2 

performed better than the NDVI from Landsat 8. Although Landsat 8 NDVI was a 

rejected variable, the model performance using all the variables and the models with 

NDVI performed with similar accuracy.  

 

For Sentinel 2 database, NDVI and NDRE were significantly important, and the 

rainfall was the least significant variable. The rainfall was a tentative variable, which 

means that the Boruta algorithm could not decide its importance. The rainfall 

decreases as the season changes from spring to summer. The variation in rainfall 

affects the grass growth rate. For example, low rainfall with high temperature and 

high solar radiations can lead to drought-like conditions, such as in 2018. The impact 

of rainfall is reduced when there are no extreme conditions such as high 

temperatures, radiation and evapotranspiration. The rainfall can affect a farmer’s 

decision to turn out the animals for grazing (Green, 2019).  

 

NDVI was more important in the variable importance than NDRE (a red edge 

vegetation index). However, the model performance with NDVI (RMSE 14.83 kg 

DM ha-1day-1) and NDRE (14.94 kg DM ha-1day-1) was similar. Sibanda et al. (2015) 

found that the vegetation indices using red-edge bands were more important than the 

raw bands of Sentinel 2 using variable importance scores in estimating grassland. In 

their study, there was a strong correlation between grass biomass and red edge bands 

from Sentinel 2, such as band 5 (0.705 µm), 6 (0.740 µm) and 7 (0.783 µm). We 

used 0.705 µm wavelength as a red-edge band for the calculation of NDRE. The red-

edge spectrum's reflectance provides a better and higher value than the low 

reflectance values in the red region. 
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5.4.4 Sensor performance  

Landsat 8 and Sentinel 2 satellites provide an opportunity for grass biomass 

modelling. Landsat 8 has been operational since 2013 with Operational Land Imager 

(OLI) sensor providing 30 m multispectral images and 16 days revisit time. The 

Sentinel 2A was launched in 2015 and Sentinel 2B in 2017, providing 10 m and 20 

m multispectral images with 5 days revisit time. The different spatial resolution of 

both the satellites limits their combined use. Although they have similar spectral 

characteristics, the difference in radiometry can make it difficult to use them 

together. The variation in radiometry is due to the different acquisition time affecting 

the illumination conditions (Mandanici and Bitelli, 2016). In addition, the cloud 

cover and shadow effects can reduce the number of images acquired in a month 

because of the different revisit time of satellites.  

 

Sentinel 2 has red-edge bands – band 5, 6, 7 and 8 A, which offers a great potential 

for grass biomass estimation, and is missing in Landsat 8. Red-edge bands are 

correlated to vegetation chlorophyll, which can be an indication of healthy 

vegetation. In a study by Ramoelo et al. (2015), the essential variables from the 

random forest were red-edge at 0.705 µm followed by short-wave infrared at 1.610 

µm and 2.190 µm. In the vegetation spectral response, the red-edge band at 0.705 

µm has high reflectivity.  

 

5.4.5 PBI as a source of ground truth data  

PBI is a web and mobile application based database providing farm data such as 

weekly grass growth rate, grass cover, dates for grazing and silage cutting at farm 

and paddock scale (Hanrahan et al., 2017). More details are given in Section 3.4.4. 

The farmers collect the data, which can lead to the operator error affecting the final 

measurements. In addition, visual assessment can have a bias, which can skew the 

final grass growth entered into PBI. Another method to estimate grass growth rate is 

RPM, which measures the grass height and can be entered into the PBI database. PBI 

predicts grass growth rate from height measurements using a linear relationship 

between biomass and height. Since the grass growth is estimated indirectly, a model 

prediction error is related to RPM apart from operator error.  
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In a study by Hanrahan et al. (2017), the visually estimated data from PBI for 

Moorepark farm was evaluated against the data from the cut and dry method in 2014. 

The RMSE for experiments with silage cuts between PBI and ground data was 2270 

kg DM/ha and R2 of 0.58, whereas the RMSE was 2266 kg DM/ha and R2 was 0.88 

for the data without silage. Murphy et al. (2021) compared linear regression and 

machine-learning (random forest) to estimate grass growth using height from RPM. 

There were 17 inputs to the models, such as management data- grass height, fertilizer 

application, grazing rotation and meteorological data. The RF performed the best 

with and without meteorological variables with an RMSE of 262 and 243 kg DM/ha. 

The addition of meteorological data to both the models reduced error by 0.9% for 

linear regression and 1.5% for RF. 

 

5.4.6 Grass growth curve 

An example of the grass growth curve from Model 10 (one of the best models) using 

RF with all the inputs except rainfall is shown in Figure 5-17. The farm shown is 

Moorpark farm. The actual grass growth from PBI is shown using black points, and 

RF output is shown in red points. As it is clear from Figure 5-17 that there are many 

missing data points. For May, at the peak season, the RF model over-predicted the 

values. There were not enough satellite images during the winter. The start and end 

of grass growth measurements vary for the same farm every year. There is a 

variability of grass growth rate between 2017 and 2018, which can be due to the 

meteorological conditions, management and soil type. For 2018, there were no 

satellite data available, due to which the peak values are missing from the curve. The 

model had data points mostly in autumn. The predictions are affected by the lack of 

satellite data. The rest of the farm’s grass growth curves are shown in Appendix 5.7.  
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Figure 5-20 Grass growth curve for Moorepark (2017-2018) using RF Model 10. 

The actual grass growth from PBI is shown using black points, and RF output is shown in 

red points 

Another example of a grass growth curve from Model 10 for Johnstown Castle farm 

is shown in Figure 5-18. The actual grass growth from PBI is shown using black 

points, and RF output is shown in red points. There are two curves one for 2017 and 

the other for 2018. For 2017, in May, the first primary peak is predicted accurately 

by the model. However, from September until December, the grass growth values 

were under-estimated. In 2018, the model over-estimated the values in May and 

autumn; the values were under-estimated. RF’s performance increases with the 

increasing sample size. Therefore, the model with Johnstown Castle farm data 

performed better than the model with Moorpark farm data, as more data points were 

available for Johnstown Castle. 
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Figure 5-21 Grass growth curve for Johnstown Castle (2017-2018) using RF Model 10. 

The actual grass growth from PBI is shown using black points, and RF output is shown in 

red points 

 

The grass growth curve from Model 10 for Athenry farm is shown in Figure 5-19. 

The actual grass growth from PBI is shown using black points, and RF output is 

shown in red points. There are two curves, one for 2017 and the other for 2018. 

There were no satellite images before May 2017 and before April 2018. The model 

over-predicted for May-July, whereas it under-predicted from August-October in 

2017. For 2018, for April and May, the values were under-predicted, whereas the 

values were over-predicted for the rest of the year.  
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Figure 5-22 Grass growth curve for Athenry farm (2017-2018) using RF Model 10. 

The actual grass growth from PBI is shown using black points, and RF output is shown in 

red points 

 

5.4.7 Uncertainties & sources of error  

Several error sources and uncertainties in the model can arise because of locations 

and number of farms, satellite, meteorological, and field data. For optical satellite 

data, clouds and shadows are a major constraint limiting the number of data points in 

a year. There is missing data during the primary grass-growing season, and the 

satellite data capture dates are uncoordinated with the field data collection. The 

farmers collect the field data stored in the PBI database, which is based on citizen 

science. The ground data can have error while collecting and entering PBI data. The 

data collection instrument also plays an important role, as some farmers opt for a 

visual estimation, which is not as accurate as RPM measurements. There is a 

systematic error related to RPM and the cut and dry method. All these errors are 

inevitable. In this study, Sentinel 2 was used, 10 m, to match the farm scale as 

possible. The temporal matching of satellite data and ground data is performed to 

overcome the mismatch, as the grass growth does not change within 7 days. The 

advantages and disadvantages of using different modelling strategies are not fully 

demonstrated because the sample size is small. ANFIS model requires repeated 
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training to obtain an optimal neural network, which requires more computer time. 

The RF model can be applied to large dataset because of its ability to resist 

overfitting and deal with high-dimensional data. 

 

5.4.8 Applications & future developments 

The grass-growth prediction model has many applications, such as grazing 

management and avoids fodder shortage due to extreme climate events such as 

floods and droughts (discussed in Section 1.4.1). Accurate and timely measurement 

of grass biomass has a potentially significant role in helping farmers achieve 

effective grazing management practice. One of the different issues with various grass 

growth models is their actual application, hindering their real-time farm usage. The 

models need to be simple and easy to use. For DSS, the fundamental requirement is 

moderate accuracy for efficient farm management.  

 

Currently, there are eight farms in the model. This work will be expanded to include 

more farms from PBI, which needs further work. The uncertainty in the model can 

be reduced by including other satellite images to fill the gap due to cloud cover, such 

as microsatellites. The microsatellite can provide on-demand data, but it is not free. 

The Vegetation and Environment monitoring on a New Micro-Satellite (VENμS) is a 

microsatellite launched in 2017 with a 2-day revisit time and 5m spatial resolution. 

Liao et al. (2019) used the VENμS data to fill the gaps in Sentinel 2 data to estimate 

corn biomass. With the launch of Landsat 9, the volume of data used for training the 

model will increase, which will improve prediction accuracy, as ML models are 

data-driven, which means that the more the training data, the more will be the 

model's predictive power. The UAV data provides high spatial and temporal 

resolution, which can be used for biomass modelling at paddock and farm scale. 

UAV can help to understand the variability of grass growth between paddocks. De 

Rosa et al. (2021) used NDVI from UAV with random forest to estimate grass 

biomass with R2 of 0.68 and RMSE of 17.40%. However, the processing of UAV 

data is complex, which might need high computing power.   
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5.5 Conclusion 

Accurate measurement of grass growth rate is an integral part of optimising the 

efficiency of a farm. This chapter compared an empirical biophysical simulation 

model, the Brereton model, and two ML algorithms, ANFIS and RF, for predicting 

grass growth on eight Irish farms. This analysis demonstrated that ML models with 

RMSE in the range 14.65-24.76 kg DM ha-1day-1 outperformed the biophysical 

simulation model with RMSE in the range 41.68-82.29 kg MD/ha/day for predicting 

grass growth on these selected farms. The ML models were developed for three 

different regions- West, South and Southeast of Ireland, indicating that the model 

can be applied across different farm locations in different geographical locations. 

The Brereton model is site-specific and needs to be developed for each site with their 

respective input parameters.  

 

The RF model yielded the best results with low RMSE (around 14.65 kg DM ha-

1day-1) and a variance of 0.55% than ANFIS with RMSE of 15.04 kg DM ha-1day-1, 

explaining 52% of the variance in grass growth rate. Vegetation indices played an 

essential role in estimating the grass growth rate at the farm scale. Random Forest 

was the most accurate machine-learning technique in grass growth rate estimation, 

with R2 values reaching 0.55 for test data. The model establishes a good foundation 

for developing this method to predict grass yield across a more extensive area. In the 

next chapter, a methodology to expand this work to a national level will be 

discussed.  
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6 
Chapter 6 A National Model for Biomass Estimation 

 

6.1 Introduction 

In previous chapters, the importance of grass as a fodder source has been outlined. 

While grass growth is abundant in Ireland, utilisation of grown grass by farmers is 

low. Routine grass measurements allow farmers to make informed and timely 

decisions about their grass resource to match their feed available and their livestock 

demand, for example, whether it should be grazed or cut for silage, whether fertiliser 

is required or whether the grazing interval could be increased/decreased (see Section 

1.3.2) (French et al., 2006, O'Brien et al., 2015). Grass measurement as a grassland 

management tool can help farmers improve their grass production and utilisation and 

build some resilience into their farming system to mitigate the impact of extreme or 

unseasonal weather such as flooding or drought, which can lower the grass 

production and lead to lower utilisation rates.  

 

In 2018, a summer heatwave caused a prolonged drought that resulted in reduced 

grass yields across Ireland (Falzoi et al., 2019). As a direct result of the drought, 

there was a 52% increase in expenditure on fodder and supplemental feeds, which 

increased the price of milk by 11% per litre (Dillon et al., 2018b). Similarly, in 2012, 

below-average temperatures and above-average rainfall in summer, followed by 

extended winter conditions in 2013, resulted in more significant expenditure on 

fodder (Green, 2019). With expected climate change scenarios, mean annual 

temperatures are expected to increase by 1.3-1.6 ºC and lower rainfall (0-11%) for 

summer months, grass and silage production will be affected, requiring farmers and 

stakeholders to plan accordingly (Nolan and Flanagan, 2020). 
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Grass growth is highly variable, spatially and temporally, both within and between 

farms but Ireland currently does not have a system to estimate pasture growth using 

satellite images on a national scale. Tools such as PBI help farmers record the 

weekly grass growth and feed in an online database system, but for a selection of 

farms (albeit a large and increasing selection).  

 

Sentinel 2A and Sentinel 2B were launched in 2015 and 2017, respectively, each 

having 10-20 m spatial resolution with a five-day repeat period. The improved 

spatial resolution compared to the MODIS data means Irish fields can be mapped in 

greater detail. One 10 m pixel of Sentinel 2 covers an area of 0.01 ha, and 625 (10m) 

pixels of Sentinel 2 can fit into one 250 m pixel of MODIS. Chen et al. (2021) used 

Sentinel 2 imagery and climate variables in a multilayer perceptron (MLP) neural 

network to estimate grass biomass for five dairy farms. The study used eight bands 

in the visible and near-infrared region, two short-wave infrared (SWIR) wavelengths, 

and the red-edge NDVI. The satellite data and ground data measurements were 

paired if they were less than 3-days apart. The meteorological data used were 

precipitation, maximum and minimum temperature, solar radiation and vapour 

pressure deficit. Two models were developed using satellite data and satellite data 

with climate data. When the climatic variables were added to the model, the RMSE 

decreased from 406 to 356 kg DM ha-1, and R2 increased from 0.51 to 0.62. Some 

factors were not included in these models, such as management on farm (grazing, 

tilling) and field-based error, which is a limitation of their work. 

 

The objective of the present study was to develop and evaluate the accuracy of 

national farm-scale grass growth predictions using EO imagery and weather 

variables, with a focus on identifying the strengths and weaknesses of Sentinel 2 

imagery for modelling grass growth under Irish conditions. A random forest model 

was used with satellite data from Sentinel 2, meteorological data from Met Éireann, 

and grass growth data as a reference from PastureBase Ireland (PBI).  
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6.2 Materials & study area 

6.2.1 Study area  

Before developing a national model, several models were tested for a group of 10 

commercial farms in the County Limerick, Tipperary and Cork, as discussed in 

Section 3.3.3. The dataset will hereafter be referred to as the ‘Commercial dataset’, 

and the model will be called the ‘Commercial model’.  

 

For the national model, calibration data were collected for farms distributed across 

four Irish counties, Co. Cork, Co. Donegal, Co. Galway and Co. Sligo (see Figure 3-

7 in Section 3.3.4). The farms were extracted from PBI, and their location 

anonymized by providing each farm with a random number without spatial location. 

The exact locations and boundaries of these farms are not known because of the 

EU’s GDPR law of data privacy.  

 

6.2.2 Data acquisition and pre-processing 

6.2.2.1 Sentinel 2 

Two vegetation indices were used for the model, a normalised difference vegetation 

index (NDVI) and a normalised difference red-edge index (NDRE). These indices 

were derived from 10 m spatial resolution, atmospherically corrected Level-2A 

Bottom of Atmosphere (BOA) reflectance Sentinel 2 images (as discussed in Section 

3.4.2). Each farm consisted of several paddocks, and NDVI and NDRE values for 

each paddock were provided as a vector with randomly assigned farm numbers. Due 

to the nature of grass production, as outlined in Section 1.3.2, some paddocks 

performed better than the others depending on the grazing pattern, fertilizer 

application, drainage and soil type. A hypothesis was developed in which the 

vegetation indices could be divided into three parts based on quartile values to reflect 

growth patterns. The low performing paddocks were those in the lower quartile (25th 

percentile), medium-performing paddocks fell in the second and third quartiles 

(between the 25th and 75th percentiles), with high performing paddocks in the fourth 

quartile (75th percentile). According to this hypothesis, lower vegetation index 

values would relate to lower grass growth rate, with higher vegetation index values 
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corresponding to higher grass growth rates. This hypothesis was tested for the 10 

commercial farms and then applied to the 179 farms of the national dataset.  

Hereafter the lowest-performing paddocks are referred to in the text as NDVI1 and 

NDRE1 depending on the vegetation index. Medium performing paddocks are 

referred to as NDVI2 and NDRE2, with high performing paddocks referred to as 

NDVI3 and NDRE3. The mean and standard deviation of all categories of paddocks 

were calculated. Mean, standard deviation, median, minimum and maximum values 

of NDVI and NDRE and Sentinel 2 bands 2, 3, 4, 5, 6, 7, 8, 8A, 11, 12 were 

calculated and are listed in Table 6-1.  

 

Table 6-1 Input variables from satellite data for the national data.  

NDVI 1/NDRE 1, NDVI 2/NDRE 2 and NDVI 3/NDRE 3 are values for low, medium and 

high values paddocks, respectively.  

Variable 

NDVI 1: mean, std. dev. 

NDVI 2: mean, std. dev. 

NDVI 3: mean, std. dev. 

NDRE 1: mean, std. dev. 

NDRE 2: mean, std. dev. 

NDRE 3: mean, std. dev. 

NDVI: Mean, median, std. dev, min, max 

NDRE: Mean, median, std. dev, min, max 

Band 2, 3, 4, 5, 6, 7, 8, 8A, 11, 12: Mean, median, std. dev, min, max. 
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6.2.2.2 Meteorological data 

Rainfall data (in mm) were obtained at daily time-steps using the nearest synoptic 

station to each farm. The rainfall values were amalgamated into three variables 

according to the number of days of rain accumulation; Rain 3, Rain 5 and Rain 7 

refer to rain accumulation over three, five and seven days, respectively.  

 

6.2.2.3 PastureBase data 

179 farms in PBI with four full years of data from 2017 to 2020 were chosen for this 

work and cleaned into an analysis-ready format: 

1. Missing values were removed. 

2. Records, where cover and grass growth rate equalled zero, were removed. 

3. Records less than or equal to 100 kg DM ha-1day-1 were selected because 

some records had unrealistically high grass growth values due to data entry 

error. 

4. Records with all the years 2017-2020 were extracted.  

After cleaning, the data were stored in a CSV file used in the random forest 

regression model in R statistical software. 

 

6.3 Random forest model development 

The methodology for the proposed model is illustrated in Figure 6-1. First, three 

CSV files of the satellite, rainfall and PBI data were created- one containing all the 

data for the national model called Agmodel, the second CSV file had the data from 

January to June for Agmodel 1, and the third file had the data from July until 

December for Agmodel 2. As explained in Section 5.2.2.2, a technique was 

developed to select the nearest PBI data within seven days of the date of the satellite 

data. The difference of days between the PBI and satellite data acquisitions was also 

calculated.  

 

The input dataset was scaled to bring all the values between 0 and 1. The data from 

2017 to 2019 were split (70:30) into training data and testing data using 5-fold cross-
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validation (CV). CV shuffles the data randomly and the training data set are split into 

5 folds with k-1 (4) folds used for training and the fifth subset for testing. In the first 

iteration, the first subset is retained for testing, and the rest of the folds are used for 

training the model. The splitting continues until all the folds are used as training and 

testing data. The 5-fold CV was performed to ensure that data are split evenly with 

no spatial or temporal bias. The data from 2020 were used as a validation of the 

trained model. The accuracy of the model was described using the coefficient of 

determination R2, MAE, MSE, and RMSE as described in Section 5.2.4.4.  

 

There are two peaks in grass growth in Ireland. In the primary peak in May, growth 

can reach ~100 kg DM ha-1day-1. In the second peak in August, maximum grass 

growth rates values can be ~60 kg DM ha-1day-1. There is a gradual decrease in 

growth thereafter and over winter. An example grass growth curve from Moorepark 

is illustrated in Figure 6-2 for 2017. In building a national model, the data were split 

into two halves- January to June and July to December to exploit these two peaks.  

 

A model was developed for each half of the year. Agmodel 1 was used from January 

until June, and Agmodel 2 was used from July until December. For the first half of 

the year, the grass growth rate values were high, and as the weather is better than the 

second half, there were many cloud-free satellite images. During the second half of 

the year, the grass growth values started decreasing, and the number of cloud-free 

satellite images were typically lower.  
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Figure 6-1 Methodology flowchart 
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Figure 6-2 Grass growth curve from Moorepark, Co. Cork (2017).  

The solid red vertical line is a demarcation between the two models.  

Agmodel 1: DOY 1 until 182 (i.e. January to June).  

Agmodel 2: DOY 183 to 365 (i.e. July to December). 

 

 

6.3.1 Feature selection 

As discussed in Section 5.2.4.3, feature selection is an essential pre-processing step 

to identify the features that contribute the most to the predictions from the model. 

The package used to get the importance values for each variable in the national 

model is ‘ranger’, a fast implementation of the random forest using the 

‘variable.importance’ function in R, which also calculates the accuracy metrics for 

each feature. The 77 satellite and rainfall variables were input into the random forest, 

and the most important for each of the three models identified.  

Agmodel 1 Agmodel 2 
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6.3.2 Hyper-parameter tuning & data splitting 

The hyper-parameters required for training the random forest, ‘ntree’ and ‘mtry’ 

described in Section 5.2.4.2, were selected using 5-fold cross-validation. At the end 

of the five iterations, the results were averaged to select the best parameters for the 

model, which were then used with the complete training data.  

 

6.3.3 Model evaluation 

To test the power of the model to predict the grass growth for years outside the 

calibration period, the model was developed using data from 2017-2019 and then 

used to predict the 2020 growth. The model was evaluated using the metrics 

previously discussed in Section 5.2.4.4.  

 

6.4 Results 

The random forest model developed for the10 Commercial is described first, 

followed by the national model.  

 

6.4.1 Commercial dataset 

The Commercial farms had 19 variables, as shown in Table 6-1. The feature 

importance of all the variables is shown in Figure 6-3. DOY had the highest 

importance. The red-edge vegetation index (referred to as NDRE_re in the plot) had 

a higher importance value than NDVI. The lowest importance variables were the 

daily rainfall values.  
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Figure 6-3 Feature importance for Commercial dataset 

1/2/3 refers to low/medium/high performing paddocks 

 

The scatter plot for predicted grass growth rate from training data is shown in Figure 

6-4 A and testing data in Figure 6-4 B. The R2 for training data was 0.94 and for 

testing data it was 0.61 with p<0.01.  

 

Values of less than 25 kg DM ha-1day-1 formed one cluster, with values greater than 

40 kg DM ha-1day-1 formed another cluster for test data. The values with more than 

40 kg DM ha-1day-1 had more spread and variation than the values less than 25 kg 

DM ha-1day-1. The residuals were calculated between the actual and predicted grass 

growth rate for the Commercial farms are shown in Appendix 6-1. The MAE for 

testing data was 13.40 kg DM ha-1day-1, MSE was 281.43 kg DM ha-1day-1, and the 

RMSE was 16.77 kg DM ha-1day-1. 
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Figure 6-4 Actual vs. predicted growth on commercial farms. RF with all variables. 

Graph shows training (A) and testing datasets (B). The red line is a 1:1 line. 

 

6.4.2 Agmodel- National dataset 

Variable importance for the 77 variables in the national dataset was calculated. The 

DOY, which represents the phenology of the grass through the year, had the highest 

importance, therefore, the feature importance shown in Figure 6-5 is calculated after 

excluding DOY. The importance is shown in decreasing order, with the most 

important variables at the top being Mean_08, which is the mean value of NIR band 

8, and Median_11, the median value of SWIR band 11.  
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Figure 6-5 Variable importance in national model. 

Feature importance using the ‘ranger’ library 
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Random forest models were developed for the top two to twenty most important 

variables, including DOY, with accuracy metrics calculated at each iteration (Table 

6-2 with the lowest RMSE and highest R2 in bold). The model with the lowest 

RMSE was chosen as the final model. The model with twenty variables had the 

lowest RMSE of 15.005 kg DM ha-1day-1 and MSE of 225.16 kg DM ha-1day-1, and 

only a slightly higher MAE compared to the lowest value, of 11.34 kg DM ha-1day-1. 

The overall RMSE value of all the variables was similar.  

 

Table 6-2 Accuracy metrics for the national test dataset  

R2, MAE, MSE, RMSE. The metrics are shown from 20 to 2 significant variables with lowest 

RMSE and highest R2 in bold. 

No. variables R2 MAE MSE RMSE 

20 0.63 11.34 225.16 15.00 

19 0.63 11.35 225.52 15.017 

18 0.63 11.32 225.51 15.01 

17 0.62 11.43 228.67 15.12 

16 0.63 11.34 226.49 15.04 

15 0.62 11.46 228.87 15.12 

14 0.62 11.51 231.60 15.21 

13 0.62 11.43 228.85 15.12 

12 0.62 11.50 229.87 15.16 

11 0.61 11.61 235.02 15.33 

10 0.62 11.50 231.83 15.22 

9 0.61 11.65 236.57 15.38 

8 0.61 11.78 237.52 15.41 

7 0.60 11.96 241.52 15.54 

6 0.60 11.82 240.75 15.51 

5 0.60 11.82 242.65 15.57 

4 0.60 11.85 241.49 15.54 

3 0.59 12.17 245.73 15.67 

2 0.56 12.30 268.23 16.37 
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The scatterplot for the training data with top 20 variables is shown in Figure 6-6 A 

and for testing data in B. The x-axis represents the predicted grass growth rate from 

Agmodel using the national data, and the actual grass growth values from PBI are 

shown on the y-axis. The 1:1 is shown as a red line, and the black line is the 

regression line. The training data R2 was 0.96 with low variability around the 1:1 

line. The points are coloured according to the year 2017 (orange), 2018 (green) and 

2019 (blue). The values for all the years are distributed equally throughout.  

 

The R2 for test data was 0.63. The model could predict the lower range grass growth 

values with higher accuracy than the values of more than 50 kg DM ha-1day-1 for 

which the variability in the prediction increases. The 2017 values were mostly under 

25 kg DM ha-1day-1 and more than 55 kg DM ha-1day-1. The residual plots are 

provided in Appendix 6-1.  

 

To compare with Agmodel 1 and Agmodel 2, Agmodel results were divided into two 

parts- data from January until June and from July until December. The R2 for 

Agmodel from January until June was 0.91 and RMSE was 8.36 kg DM ha-1 day-1. 

For second half of Agmodel 2, the R2 was 0.86 and RMSE was 8.22 kg DM ha-1day-

1.  
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Figure 6-6 Actual vs. predicted grass growth in the national model. 

Training data with 20 significant variables. 2017 points (orange), 2018-(green) and 2019 

(blue). Panel A represents the model with training data and panel B represents the model 

with testing data. 
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6.4.3 Agmodel 1-First part (January- June) 

The features and their importance in terms of MSE are plotted in Figure 6-7. The 

highest importance variable was the maximum value of band 11, and the lowest 

importance variable was the median value of NDVI. The model was trained from 20 

variables to two variables one by one to see how much the RMSE changes. The error 

metrics for input variables from twenty until two are given for test data in Table 6-3. 

The accuracy metric values for all the input combinations were similar. The final 

model was with the top 18 variables and had the highest R2 (0.74), MAE (11.30 kg 

DM ha-1day-1), MSE (241.15 kg DM ha-1day-1) and RMSE (15.52 kg DM ha-1day-1) 

for the test data.  

 

The scatterplot for training data (Figure 6-8 A) and test data (Figure 6-8 B) between 

grass growth rate from PBI and Agmodel 1 output is shown in Figure 6-8. The actual 

grass growth rate are on the y-axis, and the modelled output are on the x-axis. The R2 

was 0.97 between actual and predicted values for training data and 0.74 for the test 

data. There were three clusters for the year 2017 for test data- one under 20 kg DM 

ha-1day-1, the second one at around 35 kg DM ha-1day-1 and the third cluster above 50 

kg DM ha-1day-1. There were no values for 2017 between 30-50 kg DM ha-1day-1 for 

2018 and 2019. The values for 2018 below 25 kg DM ha-1day-1 were over-predicted, 

whereas the values above 50 kg DM ha-1day-1 had large variability. The 2019 values 

below 30 kg DM ha-1day-1 were on the 1:1 line, and some values were under-

predicted, whereas the values above 50 kg DM ha-1day-1 were over- and under-

predicted equally. This model had a similar behaviour as the Agmodel with over-

prediction of more than 50 kg DM ha-1day-1. The values of less than 40 kg DM ha-

1day-1 were closely following the regression line.  

 

As explained in Section 5.2.2.2, PBI data were paired with satellite data if it falls 

within seven days. The difference of days between PBI and satellite data acquisitions 

was calculated, and a histogram was plotted as shown in Figure 6-9. It was observed 

that the maximum amount of data had a difference of zero which means that satellite 

and PBI data collection was on the same day. 
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Figure 6-7 Feature importance for Agmodel 1 
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Table 6-3 Accuracy metrics for test data for Agmodel 1 

R2, MAE, MSE, RMSE. The metrics are shown from top 2 to 20 significant variables. The 

lowest RMSE (kg DM ha-1day-1) was for the top 18 significant variables. The final model 

with lowest RMSE and highest R2 is highlighted in bold. 

 

No. of 

Variables 

R2 MAE MSE RMSE 

20 0.73 11.33 243.80 15.61 

19 0.73 11.30 243.41 15.60 

18 0.74 11.30 241.15 15.52 

17 0.73 11.32 243.26 15.59 

16 0.73 11.34 246.95 15.71 

15 0.74 11.42 241.53 15.54 

14 0.72 11.46 245.81 15.67 

13 0.73 11.49 243.80 15.61 

12 0.72 11.69 250.47 15.82 

11 0.72 11.65 250.51 15.82 

10 0.71 11.65 254.30 15.94 

9 0.72 11.59 252.53 15.89 

8 0.70 12.28 268.06 16.37 

7 0.71 11.84 257.07 16.03 

6 0.70 12.04 262.86 16.21 

5 0.71 11.88 256.74 16.02 

4 0.72 11.80 251.31 15.85 

3 0.68 12.54 286.38 16.92 

2 0.69 12.07 279.21 16.70 
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Figure 6-8 Actual vs. predicted grass growth for Agmodel 1 national model. 

Training data with 18 significant variables. 2017 points (orange), 2018-(green) and 2019 

(blue). Panel A represents the model with training data and panel B represents the model 

with testing data. 
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Figure 6-9 Histogram of difference of days between Sentinel 2 and PBI. 
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6.4.4 Agmodel 2-Second part (July-Dec) 

Agmodel 2 used the data by dividing the national data from July until December, the 

second half of the grass-growing season. The feature importance of all the variables 

is calculated as shown in Figure 6-10. The median value of band 8 had the highest 

importance, whereas the minimum value of NDVI had the lowest importance. The 

model was run for all the variables and leaving the least important variable each 

time. The RMSE for the variables from 77 to 22 was similar and not shown in Table 

6-4. The RMSE for all the variables was similar, with the lowest RMSE of 13.74 kg 

DM ha-1day-1 for the top 17 variables. For the top 17 variables for test data, the R2 

was 0.58, MAE was 10.81 kg DM ha-1day-1, MSE was 188.80 kg DM ha-1day-1, and 

RMSE was 13.74 kg DM ha-1day-1, which was the final model. 

 

The scatterplot for training data is shown in Figure 6-11 A and test data in Figure 6-

11 B. The training and testing data had an R2 of 0.95 and 0.58 between the actual and 

predicted grass growth rate. The grass growth values for less than 40 kg DM ha-1day-

1 had less variability and the values of more than 40 kg DM ha-1day-1 had higher 

variability. Unlike Agmodel 1, there was no clear clustering of the data for 2018 and 

2019. The year 2017 had few values at around 10 kg DM ha-1day-1 and highly 

variable values for more than 40 kg DM ha-1day-1. There was just a single value for 

2017 between 25 and 40 kg DM ha-1day-1. The 2018 values were scattered 

throughout without any clear pattern. The 2019 values were around 1:1 line for less 

than 40 kg DM ha-1day-1 and were under-predicted for more than 40 kg DM ha-1day-

1. 
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Figure 6-10 Variable importance for Agmodel 2 
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Table 6-4 Accuracy metrics- R2 for test data for Agmodel 2 

R2, MAE, MSE, RMSE. The metrics are shown from the top 2 to 20 significant variables. The 

lowest RMSE (kg DM ha-1day-1) was for the top 17 significant variables and is highlighted in 

bold. 

 

No. variables R2 MAE MSE RMSE 

20 0.56 10.97 192.75 13.88 

19 0.57 10.84 189.37 13.76 

18 0.57 10.83 189.65 13.77 

17 0.58 10.81 188.80 13.74 

16 0.56 10.97 197.60 14.05 

15 0.56 10.95 196.35 14.01 

14 0.55 11.01 198.31 14.08 

13 0.55 11.01 198.57 14.09 

12 0.55 10.86 198.93 14.10 

11 0.56 10.86 195.01 13.96 

10 0.56 10.87 196.42 14.01 

9 0.57 10.80 191.90 13.85 

8 0.55 11.03 198.97 14.10 

7 0.54 11.11 206.22 14.36 

6 0.53 11.05 210.52 14.50 

5 0.52 11.18 213.70 14.61 

4 0.51 11.40 217.83 14.75 

3 0.52 11.32 215.03 14.66 

2 0.50 11.55 222.08 14.90 
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Figure 6-11 Actual vs. predicted grass growth for Agmodel 1 national model. 

Training data with 17 significant variables. 2017 points (orange), 2018-(green) and 2019 

(blue). Panel A represents the model with training data and panel B represents the model 

with testing data. 
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6.5 Validation of final model 2020 data 

The three national models were developed in Section 6.4.2 to 6.4.4 were run for the 

data from 2020 which was kept aside as validation data to validate the models.   

 

6.5.1 Agmodel- National model 

The trained Agmodel from Section 6.4.2 was used to predict the grass growth rate 

for 2020 data. The scatterplot for the data is shown in Figure 6-12. As the grass 

growth rate values cease, the variability in prediction increases. There were three 

clusters of data points in the plot, which could be because of the hypothesis of 

dividing the NDVI data into 3 quartiles. The values less than 20 kg DM ha-1day-1 

were clustered together and are closer to the regression line; the grass growth rate 

values between 25 to 45 kg DM ha-1day-1 formed another cluster with higher 

variability than the values lower than 25 kg DM ha-1day-1. The grass growth rate 

cluster above 55 kg DM ha-1day-1 1 had the highest variability. The R2 for the testing 

data was 0.63, MAE was 12.55 kg DM ha-1day-1, MSE was 283.28 kg DM ha-1day-1, 

and RMSE was 16.83 kg DM ha-1day-1.  

 

The difference of days of ground and satellite data acquisition is plotted as a 

histogram in Figure 6-13. The majority of the values are between -4 and 4, which 

means the grass growth rate values were collected 4 days before or after the Sentinel 

2 images. The difference of days was plotted against the mean residual values from 

the Agmodel in Figure 6-14. The standard deviation values are plotted as error bars. 

The mean residual values are the highest for the higher difference in days such as -7 

and +7 days. That means the residuals are affected by the difference in data 

acquisition dates. The difference of days was also plotted against the absolute values 

of residuals in Figure 6-15. A massive cluster of values is between -4 and +4 days 

with few outliers.  
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Figure 6-12 Actual vs. predicted grass growth rate for 2020 data using Agmodel 

 

 

 

Figure 6-13 Difference of acquisition days between Sentinel 2 & PBI (Agmodel) 
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Figure 6-14 Residuals vs. difference of data acquisition days (Agmodel) 

The standard deviation values are plotted as error bars. 

 

 

Figure 6-15 Difference of acquisition days between Sentinel 2 & PBI vs. residuals 
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6.5.2 Agmodel 1- First part (January-June) 

The Agmodel 1 trained in Section 6.4.3 is used to predict the values for 2020 

validation data. The scatter plot for the predicted and ground values is shown in 

Figure 6-16. Similar to the Agmodel results, this plot has three clusters. The lower 

grass growth rate values were predicted with higher accuracy than the higher grass 

growth values of more than 40 kg DM ha-1day-1. The model under-predicted values 

more than 40 kg DM ha-1day-1. The R2 of the testing data was 0.7, MAE was 12.49 

kg DM ha-1day-1, MSE was 318.01 kg DM ha-1day-1, and RMSE was 17.83 kg DM 

ha-1day-1. 

 

When the mean values of residuals were plotted against the difference of days in 

Figure 6-17, the overall model under-predicted grass growth to see the influence of 

the difference of days on the prediction values rate. The mean residual values were 

high for the highest difference of days, i.e. ±7 days. The absolute values of residuals 

were plotted against the difference of days in Figure 6-18. The residuals are mostly 

centred on ±2 days, but there are some outliers with high residuals for ±7 days. 

 

The histogram of the difference of days is plotted in Figure 6-19. As the first half of 

the grass-growing season has more images due to better weather conditions in spring 

and summer, most images were found within ±3 days of the ground data. 
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Figure 6-16 Actual vs. predicted grass growth (2020) using Agmodel 1.  

Redline is the 1:1 line, and the black line is the regression line. 

 

 

Figure 6-17 Residuals for Agmodel1 vs. difference of days between Sentinel 2 & PBI. 

The standard deviation is shown as error bars. 
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Figure 6-18 Residual values (kg DM ha-1day-1) for Agmodel 1 vs. difference of days between 

Sentinel 2 & PBI. 

 

 

Figure 6-19 Histogram of difference of acquisition days between Sentinel & PBI (Agmodel 

1) 
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6.5.3 Agmodel 2- Second part (July-December) 

The scatterplot for the validation data is shown in Figure 6-20. The R2 was 0.36, 

MAE was 13.14 kg DM ha-1day-1, MSE was 273.50 kg DM ha-1day-1, and RMSE 

was 16.53 kg DM ha-1day-1. The predictions were equally distributed under and 

above the regression line without any clear clustering of data. The mean residual 

values were plotted against the difference of days, as shown in Figure 6-21. The 

difference of days between ±4 days had low average residual values, whereas the 

high mean residual values were observed for 5 and 7 days of difference.  

 

The absolute residual values were plotted against the difference of day, as shown in 

Figure 6-22. The majority of the residual values lies between ±4 days; as the 

difference of days increases, the residual values increases. The histogram of the 

difference of days was plotted as in Figure 6-23. The majority of the data had grass 

growth from PBI collected a day after satellite data acquisition. Very few data points 

had more than ±4 days of difference.  

 

The overall results for validation of the three models are shown in Table 6-5. The 

validation data were from the 2020 year until the end of October.  

• RMSE for Agmodel was 16.83 kg DM ha-1day-1. 

• RMSE for Agmodel (first half) was 17.27 kg DM ha-1day-1. 

• RMSE for Agmodel (second half) was 16.08 kg DM ha-1day-1. 

• RMSE for Agmodel 2 was 16.53 kg DM ha-1day-1.  

• RMSE for Agmodel 1 higher at 17.83 kg DM ha-1day-1. 

 

 



188 

 

Figure 6-20 Actual vs. predicted grass growth rate (2020) using Agmodel 2.  

Redline is the 1:1 line, and the black line is the regression line. 

 

 

Figure 6-21 Mean residuals for Agmodel1 vs. difference of days between Sentinel & PBI. 

The standard deviation is shown as error bars. 
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Figure 6-22 Residual values from Agmodel 2 vs. difference of days between Sentinel 2 & 

PBI. 

 

 

Figure 6-23 Histogram of difference of acquisition days between Sentinel 2 & PBI (Agmodel 

2)  
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Table 6-5 Comparison of accuracy metrics for the national model 

R2, MAE, MSE and RMSE (kg DM ha-1day-1) for 2020 validation data using (p<0.01 in each 

case) 

 R2 MAE  MSE  RMSE  

Agmodel 0.63 12.55 283.28 16.83 

Agmodel (First half)    0.68 12.36 298.58 17.27 

Agmodel (Second half) 0.41 12.84 258.88 16.08 

Agmodel 1 0.70 12.49 318.01 17.83 

Agmodel 2 0.36 13.14 273.50 16.53 

 

 

6.6 Discussion  

A machine-learning model was developed to estimate the grass growth rate for 179 

farm sites distributed across Ireland. The model was using the only Sentinel 2 

satellite imagery and daily rainfall data. A shortage of satellite data because of cloud 

cover prevented expanding this model for all the farms registered with the PBI.  

 

The approach adopted here builds on the machine-learning modelling approach of 

Ali et al. (2017b), where satellite data from two farms were used to estimate grass 

growth rate. In this study, there was access to an extensive network of farms in 

County Donegal, Galway, Sligo and Cork in Ireland. The 179 farms covered 

geographically north to south of Ireland, covering various enterprises, soil type, 

drainage and different management on farms. The model was developed using data 

from 179 farms registered with PBI from 2017 to 2020.  

 

The current model is a significant step towards developing national grass modelling 

capability here in Ireland. However, when complete data becomes available, this 

model's accuracy should improve, as the machine-learning models are data-driven. 

Unlike conventional crop biomass models, such as the Brereton (Brereton and 

Keane, 1992), the Johnson & Thornley (Johnson and Thornley, 1983), the Jouven 
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(Jouven et al., 2006) and Moorepark St Gilles model (MoSt GG model) (Ruelle et 

al., 2018b), the EO-based model outlined here does not require site-specific 

information on soil type, initial conditions, topography, or farm management data. 

All these factors vary spatially in a heterogeneous environment. The main 

disadvantage of such models is that they lack the spatial element and need to be 

calibrated for each location with varying soil type, weather and management 

conditions. It is challenging to use biophysical models at all points as they are 

difficult to parameterise (Donohue et al., 2018).  

 

The machine-learning models presented here have an advantage over the 

conventional models in that once trained on an extensive training set, they can 

predict growth for unseen data in subsequent years. Another advantage of Agmodel 

is that it is scalable, from paddock/farm-scale to countrywide scale. The models used 

in the present study were not calibrated for a specific farm. All the farms were 

divided randomly for training and testing the model. The national model here is 

extensive and can be used for any farm in the country with good performance 

(RMSE between 13.74 and 15.52 kg DM ha-1day-1).  

 

6.6.1 National model limitations 

The first limitation for the national model is the use of optical data. The models 

using vegetation indices tend to saturate at high grass growth values and the 

uncertainties in the predictions will be high when grass growth rates are high. The 

satellite data also suffers from cloud contamination leading to few useful images per 

year. For this work, Sentinel-2 was used and when the satellite data was not 

available, the corresponding ground observation was not used in the model. Such 

unavailability of data can lead to uncertainties and errors in the model. The time 

when Sentinel-2 will be unavailable due to clouds, the gap can be filled using UAV 

datasets, which can be flown on demand and can be incorporated in the future work. 

The SAR data can be used to capture the management events with the Sentinel-2 

data and can help to fill the gaps when cloudy images occur.   
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The model presented in this work is not a final product and cannot be used by the 

farmers directly. This model is an attempt towards development of a national model 

to estimate grass growth, which can be challenging. This worked can be improved in 

the future by incorporation of the points as discussed in Section 8.2.  

 

6.6.2 Model performance 

The Commercial model performed satisfactorily with an R2 of 0.61 for the test data. 

The model had DOY and NDRE as the top two variables. The approach followed for 

this model formed as a basis for the national model.  

 

According to the feature importance for the national dataset, the variables were used 

to assess the effect of each variable on model output. The accuracy for all the models 

for test data does not change drastically while moving from the top 77 significant 

variables to two. The models with the top 20 variables were the best models with the 

lowest RMSE- Agmodel (15.00 kg DM ha-1day-1), top 18 variables for Agmodel 1 

(15.52 kg DM ha-1day-1) and top 17 variables for Agmodel 2 (13.74 kg DM ha-1day-

1) for testing data. Agmodel 2 had the lowest RMSE and lowest R2 showing that data 

has high variability and is noisy. The trend indicates that the predictor variables still 

provides information about the grass growth rate even though data points fall further 

from the regression line.  

 

The three trained models were applied to the data from 2020 for validation. Agmodel 

for 2020 data had an RMSE of 16.83 kg DM ha-1day-1. Agmodel for first half of 

2020 data had an RMSE of 17.27 kg DM ha-1day-1. Agmodel for second half of 2020 

data had an RMSE of 16.08 kg DM ha-1day-1. Agmodel 1 had the highest RMSE of 

17.83 kg DM ha-1day-1, whereas Agmodel 2 had an RMSE of 16.53 kg DM ha-1day-

1. The difference in RMSE between the models was not significant. The training 

accuracy was consistently higher for all the models because training data were seen 

by the random forest while training the models. The RMSE for the validation model 

with the year 2020 data was between approximately 16.08-17.83 kg DM ha-1day-1.  
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6.6.3 Variable importance 

The most important variable for all the models was DOY. The second most 

important variable for the Commercial model was NDRE, a red edge vegetation 

index and sensitive to the chlorophyll content in grass. The essential variables for 

Agmodel were the near-infrared (NIR) band (Sentinel 2, band 8). The least essential 

variables were the median value of NDRE. For Agmodel 1, the best predictor was 

the maximum SWIR band (Sentinel 2, band 11 while the least important was the 

median value of NDVI. The median value of the NIR band was the most significant 

in estimating grass growth rate using Agmodel 2, whereas; median of NDVI was the 

least important variable. In all the models, NIR band was the most crucial variable. 

The reason for NIR and SWIR to be the most important predictors in grass growth 

estimation is because NIR and SWIR are sensitive to grass water content, which is 

correlated to chlorophyll content (Shoko et al., 2018). Random forest creates ‘n’ 

number of trees using out-of-bag samples with available input features as discussed 

in Section 5.2.4.2. It randomly shuffles the data and calculates feature importance for 

permuted out-of-bag samples and therefore for each model, variable importance can 

differ which is a case here.  

 

Rainfall was the rejected variable for all three models as the grass growth represents 

the previous accumulation rather than the same-day rainfall which is the result was 

in Chapter 5. Rainfall accumulation for 3-, 5- and 7- days was in the top twenty 

variables for Agmodel and Agmodel 1. For Agmodel 2, rainfall accumulation for 3 

days was in the top twenty, whereas; accumulation of rainfall for 5- and 7-days were 

rejected. The SWIR band is correlated to crop biomass and is not affected by 

saturation due to increasing biomass which can form a significant predictor variable 

in grass growth modelling (Jenal et al., 2021). The Sentinel 2 bands- NIR and SWIR 

were the most important predictors for estimating grass biophysical parameters such 

as canopy chlorophyll content and a fraction of absorbed photosynthetically active 

radiation (FAPAR), which can help in grass growth monitoring (Sakowska et al., 

2016). 
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6.6.4 PBI as a source of ground truth data  

The reference data used in the machine-learning model was taken from PBI which is 

based on citizen science. PBI is a web- /mobile- based DSS where farmers sign up 

and upload their farm data such as grass growth rate, grass available on a farm, 

grazing and silage cutting dates. The methods to collect farm information is either by 

using an RPM or by visual assessment. Hanrahan et al. (2017) conducted a study in 

which PBI estimates were compared with the actual grass biomass values calculated 

using a cut and dry method used as a benchmark. The study was conducted for two 

years, 2014-2015, in Moorepark Farm. The analysis showed an RMSE of 409 kg 

DM/ha and an R2 of 0.84. There could be potential sources of error while estimating 

grass biomass visually or using a plate meter on a farm. The errors from these 

methods can be propagated into the machine-learning model, and its impact should 

be considered while assessing the accuracy of the national model.  
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6.6.5 Grass growth curve visually 

 

For analysis of the grass growth curve, a farm is chosen for representation. The grass 

growth curve using Agmodel for Farm 9 is shown in Figure 6-24. The predicted 

values match the actual grass growth rate very well from February to April and for 

October. The values from July until August were under-predicted by the model. The 

grass growth values corresponding to a lower difference in days were more accurate 

than the high difference in days. The more the difference in days of acquisition of 

data from satellite and PBI, the less is the accuracy of prediction.  

 

 

 

Figure 6-24 Grass growth curve for 2020 using Agmodel.  

The grass growth rate from PBI is shown in a dotted orange curve. The predicted grass 

growth rate is shown as blue triangles, and the difference of days of acquisition between PBI 

and satellite data is represented in black triangles. The difference of days is shown on right 

hand axis.  
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The plot for predictions from Agmodel 1 and actual data from PBI for 2020 are 

shown in Figure 6-25. The model predicts the start of grass growing season well with 

predicted values closer to the actual values. There was no satellite data available in 

May for this farm, and it affected the overall prediction accuracy of the model. The 

accuracy of predictions is proportional to the difference in days between PBI and 

Sentinel 2.  

 

 

Figure 6-25 Grass growth curve for 2020 using Agmodel 1.  

The grass growth rate from PBI is shown as an orange dotted curve. The predicted grass 

growth rates are shown as blue triangles. The black triangles represent the difference in 

days of acquisition between satellite and PBI data. The difference of days shown on right-

hand axis. 
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The 2020 data from Agmodel 2 is shown in Figure 6-26. The actual grass growth 

rate values from PBI is shown using an orange dotted curve, and the modelled values 

are represented using blue triangles. The difference of days between PBI and 

Sentinel 2 is plotted on right axis. From July until August, the Agmodel 2 under-

predicted the grass growth rate values. For October, the predictions are much 

accurate.   

 

 

Figure 6-26 Grass growth curve for 2020 for Agmodel 2. 

An orange dotted curve shows the PBI data. The difference of days is represented by black 

triangles and shown on right axis. The predicted grass growth rate values from Agmodel 2 

are shown in blue triangles. 
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6.6.6 Variability in grass growth rate between individual paddocks  

To analyse inter-paddock variability of grass growth rate, a subset of 20 farms were 

selected randomly from PBI. For all the farms, the grass growth rate from March 

2019, which is the start of the grass growing season, was selected. The mean, 

standard deviation and median of grass growth rate values were calculated for a 

month. The mean values with standard deviations for each farm for March 2019 are 

shown in Figure 6-27. The figure not only shows the inter-paddock variability but 

also shows inter-farm variations for the same month.  

 

Some farms had high standard deviations, such as farm number 495, 600, 6184, 

6231, 6282, 6279, 6298, 6327, 6368, 70 and 919. There were four farms- 6235, 72, 

74 and 973 with only one observation in March 2019. In March, the lowest mean 

grass growth rate was for farm number 132 (10 kg DM ha-1day-1), and the highest 

mean grass growth rate values were for farm number 6327 (40 kg DM ha-1day-1). 

There was a 30 kg DM ha-1day-1 difference between the lowest and highest grass 

growth rate values. These differences could be because of location, soil, weather and 

management. 

 

 

Figure 6-27 Grass growth variability in 20 farms selected from PBI.  

The grass growth rate was for May in 2019. Error bars represent standard deviation. 
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The farm summary is shown in Table 6-6 with the area, average growth (kg DM ha-

1day-1), stocking rate, start and end date of grazing, grazing season length and the 

peak growth date and value. There is a considerable variability in the area of the 

farms, the highest area is for farm number 6268 with 121.47 ha, and the lowest area 

is farm 600 with 21.94 ha. The average grass growth rate also varies on the farm, 

with the highest value of 78 kg DM ha-1day-1 (Farm 6235), and the lowest was 19 kg 

DM ha-1day-1 (Farm 973). Stocking rate is an essential factor on the farm, which can 

help to balance the feed supply and demand. Stocking rate means number of 

livestock units per hectare (LU ha-1). Each farm had a different stocking rate. Farm 

973 had the lowest stocking rate of 1.65 LU ha-1, and the highest rate was 3.81 LU 

ha-1 for farm 6268. The grazing season was more than 300 for 5 farms- number 26, 

6184, 919, 495 and 72, and for the rest of the farms, grazing season length was more 

than 229. The inter-farm differences in grass growth are due to differences in 

location, soil type, weather, and the start date of grazing, which can be observed in 

Table 6-6. It is important to note that Farm 6235 has a peak grass growth of 978.19 

kg DM ha-1day-1 which is an example of human error while entering the data in PBI. 

  



200 

Table 6-6 Farm summary for the 20 randomly selected farms from PBI for 2019 

Growth rate and peak growth in kg DM ha-1day-1. Stocking rate in LU/ha 

Farm ID Area 

(ha) 

Average 

Growth 

Stocking 

Rate 

Start 

Grazing 

Finish 

Grazing 

Length 

(days) 

Peak 

growth 

(date) 

Peak 

growth 

Farm_26 43.79 41 3.64 10-Feb 10-Dec 303 20-Jul 106 

Farm_15 75.46 49 2.92 05-Feb 20-Nov 288 24-May 104 

Farm_66 61.2 46 2.3 02-Feb 10-Nov 281 01-May 123 

Farm_70 100.24 39 2.77 09-Feb 21-Nov 285 02-Jul 85 

Farm_72 28.82 35 2.6 08-Jan 23-Dec 349 12-Aug 78 

Farm_74 83.39 49 3.12 08-Feb 14-Nov 279 01-May 102 

Farm_132 37.2 39 2.5 28-Feb 15-Nov 260 31-May 93 

Farm_495 111.70 47 2.83 15-Jan 09-Dec 328 26-Jun 98 

Farm_600 21.94 54 3.08 02-Feb 12-Nov 283 26-Jun 102 

Farm_919 57.05 47 3.53 15-Jan 19-Nov 308 31-May 102 

Farm_973 35.09 19 1.95 24-Jan 05-Nov 285 10-Mar 116 

Farm_6184 75.73 44 3.03 08-Feb 09-Dec 304 22-May 97 

Farm_6231 44.99 44 3.36 21-Jan 27-Oct 279 21-May 91 

Farm_6235 54.25 78 3.41 01-Mar 14-Nov 258 01-May 978.19 

Farm_6268 121.47 55 3.81 19-Mar 03-Nov 229 30-Jun 111 

Farm_6279 58.94 48 2.96 06-Feb 04-Nov 271 27-Jun 169 

Farm_6298 52.87 51 2.86 10-Feb 02-Nov 265 31-May 131 

Farm_6327 46.12 28 2.99 04-Feb 05-Nov 274 20-May 94 

Farm_6336 28.81 63 3.37 13-Feb 29-Oct 258 15-May 137 

Farm_6368 98.99 44 2.76 10-Feb 12-Nov 275 17-Jul 104 
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6.6.7 Uncertainties & sources of model error  

There can be several sources of uncertainties in the model, which are unavoidable. 

For this model, the only meteorological variables available were the rainfall data. 

There are over 500 rainfall stations in the country, whereas there are four manned 

and 20 automatic weather stations. To develop a national grass growth model for 

Ireland, it is optimal that weather stations are located in close proximity to the farms. 

In Chapter 5, a machine-learning model was developed using meteorological 

variables such as temperature, rainfall, global solar radiation, evaporation, soil 

moisture deficit, potential evapotranspiration and GDD. Temperature is more 

important in Ireland than rainfall. For national model, temperature data were not 

available and only rainfall data were available which could have led to uncertainties 

in the model.  

 

This missing data can act as a source of error in the model. Ireland is cloudy for most 

of the days in a year, and Sentinel 2 used in this work can be affected by clouds and 

shadows. There was missing Sentinel 2 data because of clouds and shadows. The 

date of acquisition of satellite and ground grass growth data is not the same, which 

can be a source of error and ambiguity.  

 

A significant limitation is the unavailability of the farm locations, the number of 

paddocks per farm and the farm boundaries. The satellite data for the farms were 

available as a vector. A hypothesis was made to get the paddocks with low, medium 

and high grass growth rate by dividing the NDVI vector into 3 quartiles- lower, 

middle and upper quartile. The NDVI values lower than the lower quartile were 

paddocks with low grass growth rate, and values higher than the third quartile were 

the highest grass growth rate paddocks. The medium grass growth rate values were 

between the first and third quartile.  

 

The unavailability of farm information can produce uncertainty in the model. 

Knowing the farms' locations can help identify similar soil type, weather and 

management conditions, drainage, and paddock information. In Ireland, the Spring 

Rotation Planner (SRP) is a management tool discussed in Section 3.4.4, in which a 
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farm is divided into paddocks using a strip wire (Roche et al., 2017). Each paddock 

is grazed per week to ensure that sufficient grass is grazed according to the demand 

by livestock. The information about paddocks, such as area and grass growth rate, 

can help get a detailed model with paddock-level predictions. The paddock-level 

model can help allocate sufficient grass for grazing and allow other paddocks for 

grass regrowth.  

 

6.6.8 Applications & future developments 

An EO-based grass growth model could be used in grassland management DSS 

which can be used by the famers for feed budgeting strategies. The model developed 

covers a large geographical area in Ireland, covering four counties- Donegal, 

Galway, Sligo and Cork. These farms represent different enterprises in the country, a 

mix of soil types, systems, landscapes and topography. As more data is available 

from PBI and Sentinel 2, new farms can be added to the random forest training 

dataset by optimising hyperparameters of random forest. If the paddock grass growth 

rate is available, it can be incorporated into the model to give paddock-scale 

predictions. The MoSt GG model developed by Ruelle et al. (2018b) gives paddock-

scale predictions, and to get the whole farm predictions, the paddock estimations 

have to be averaged. The model in this work can easily be scaled up to get paddock-

scale predictions.  

 

Machine-learning models are data-driven, relying on historical data for predictions, 

and their accuracy improves with a high number of input training data (Renault, 

2019). The weather data availability such as temperature, rainfall, global solar 

radiation, evaporation, SMD and PE can help to improve the accuracy of the model. 

Internet of things (IoT) is a technology that can help collect weather data using 

proximal sensors on farms. IoT sensors can send the data wirelessly to phones or 

laptop, which can be used directly for analysis (Salam, 2020). 

 

The synergistic use of Sentinel 1 and Sentinel 2 has been successfully used to 

discriminate pasture species in an active grazing farm using machine-learning 

models (Crabbe et al., 2020). The collaborative study helps to take advantage of each 
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sensor. Sentinel 1 can help capture textural information such as before and after 

grazing, which can affect the polarimetric scattering and Sentinel 2 capture the 

spectral information of the grass. Sentinel 1 can be included for future work, which 

could help identify defoliation events such as grazing and silage cutting. 

 

6.6.9 Applications & future developments 

An EO-based grass growth model could be used in grassland management DSS 

which can be used by the famers for feed budgeting strategies. The model developed 

covers a large geographical area in Ireland, covering four counties- Donegal, 

Galway, Sligo and Cork. These farms represent different enterprises in the country, a 

mix of soil types, systems, landscapes and topography. As more data is available 

from PBI and Sentinel 2, new farms can be added to the random forest training 

dataset by optimising hyperparameters of random forest. If the paddock grass growth 

rate is available, it can be incorporated into the model to give paddock-scale 

predictions. The MoSt GG model developed by Ruelle et al. (2018b) gives paddock-

scale predictions, and to get the whole farm predictions, the paddock estimations 

have to be averaged. The model in this work can easily be scaled up to get paddock-

scale predictions.  
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6.7 Conclusions 

The national grass growth model can be used as a DSS to help farmers take on-farm 

decisions. Such models help to understand grass growth from a national perspective 

and manage grass in feed deficit. For example, extreme climatic conditions such as 

floods or drought can affect the grass growth rate leading to a feed deficit for 

livestock. For Irish grasslands, a machine-learning model to estimate grass growth 

exists, which was developed for two independent farms, which cannot be used as a 

national model.  

 

This chapter developed a farm-scale national model using Random Forest to estimate 

the grass growth rate known as Agmodel. The model was developed using minimal 

inputs, i.e. descriptive statistics of rainfall and satellite data. To analyse the effect of 

spring and summer on the grass growth rate, the grass growth curve was divided into 

two parts to get two models. Agmodel 1 was developed from the rainfall and satellite 

data from January to June, and Agmodel 2 was used from July to December. The 

three models were validated using data from 2020. For farms across Ireland, 

Agmodel for first half of 2020 data had an RMSE of 17.27 kg DM ha-1day-1. 

Agmodel for second half of 2020 data had an RMSE of 16.08 kg DM ha-1day-1. 

Agmodel 1 had an RMSE of 17.83 kg DM ha-1day-1, whereas; Agmodel 2 had an 

RMSE of 16.53 kg DM ha-1day-1. Agmodel 1 performed better with R2 of 0.70 than 

Agmodel 2 with R2 of 0.36 because, during the first half of the grass-growing 

season, the grass growth rate is high and, as the weather is better than autumn and 

winter, more satellite images are available.  

 

The strength of this model is that it is straightforward and more farms can easily be 

added to the existing dataset. The machine-leaning algorithms are data-dependent; 

therefore, as more data will be available in the future, such as from PBI and future 

satellite mission - Landsat 9 can easily be incorporated into this model (Li and Chen, 

2020).   
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7 
Chapter 7 Discussion  

 

As the world population grows, there is increasing pressure on food growers to 

provide a greater volume of food. At the same time, there is a heightened awareness 

that industrialised agricultural production is economically and environmentally 

unsustainable. The wide availability of cheap and high-quality grass gives Ireland an 

advantage in sustainable food production economically. A key component in 

efficient utilisation of available grass is to increase the proportion of grass in the 

animals’ diet. This involves first growing more grass and better utilising the grazed 

grass in a timely fashion or harvested as silage. To understand where there are 

surpluses or deficits in grass growth, farmers are encouraged to measure sward 

height to estimate available biomass regularly. 

 

There are currently several methods of measuring grass, with various shortcomings. 

This thesis commenced with an in-depth review of pasture biomass estimation from 

in-situ on-farm methods commonly used by farmers to numerical models and EO-

based remote sensing methods. It was evident from existing published literature that 

a combination of in-situ methods and EO imagery is now widely used for estimating 

grassland biomass at different scales (Wang et al., 2019, Zumo et al., 2021). EO-

based methods using satellite imagery are commonly used, largely due to the strong 

relationship between vegetation indices and biomass and data availability. In the 

past, research has primarily had to use coarse spatial resolution imagery (typically 

MODIS with a ground sampling distance of 250 m). More studies that are recent 

have had access to higher spatial resolution data, including NASA’s Landsat 8, but 

particularly ESA’s Sentinel 2. The availability of higher spatial resolution of 

Sentinel 2 and its return period of 2-3 days at mid-latitudes has made detecting 
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grassland management interventions and pasture biomass estimation at paddock 

scale (<1 ha area) a possibility. At the same time, there have been ongoing 

developments in machine-learning algorithms that are suited to high dimensional 

data, such as time series EO and meteorological data.  

 

This study examined the role of this new generation EO imagery for predicting grass 

growth nationally, comparing machine-learning regression models against 

conventional biophysical modelling methods. Previous research by Ali et al. (2017) 

showed an EO approach suited to Irish conditions. The current project built on this 

earlier research, experimenting with variables and algorithms over increasing scale, 

from a farm-scale model for Teagasc Research and commercial farms nationally to a 

broader model using a national network of farms providing data to the pasture 

management tool known as PBI.  

 

In the wake of the extensive drought in 2018, an important element of the study was 

to understand the impact of extreme weather events on grass growth estimation. The 

summer of 2018 was characterised by lower than average rainfall and higher than 

average mean temperature, resulting in a high SMD. This resulted in a lower than 

average grass growth rate over the period, which is well illustrated in grass growth 

curves from the period. The analysis outlined in Chapter 4 indicated that in 2017 

grass growth rate for Moorepark Farm, Co. Cork was significantly correlated with 

several meteorological variables but not rainfall. In 2018, growth was not 

significantly correlated with rainfall and SMD in correlation analyses. It is the 

combination of low rainfall and high temperature that led to low grass growth in 

2018. Previous research has shown that rainfall in Ireland does not limit the grass 

growth rate (Green, 2019). However, in low rainfall/ high evapotranspiration 

periods, soils can become dry, creating water stress in plants. The soil at Moorepark 

is generally well-drained, which means soil water above the field capacity will drain 

quickly. Persistent periods of water stress will reduce grass growth rates, as will 

persistent excess soil moisture (Schulte et al., 2012).  
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The model developed in Chapter 4 found that in 2017 the GDD model explained 

53% of the variability in grass growth, but in 2018 it only explained 36%. The model 

accounted for all meteorological variables likely to have an impact, and these data 

were both site-specific and timely as there is a meteorological station on-site. These 

results are very promising but suggest variables are missing from the model that 

could explain the remaining variability. This might include better characterisation of 

soil type between paddocks. There may be an error within the EO data, where non-

grass reflectance contributes to vegetation index values. For example, road 

infrastructure between paddocks will lower NDVI values. The way pasture 

measurements were collected on the ground using an RPM may contribute to the 

unexplained variability. By only using a small sample of grass measurements 

aggregated by the paddock, there is no account for the spatial variation in growth 

that occurs within paddocks. It may also be that the linear regression model used 

does not adequately fit the data to the best model.  

 

The ML algorithms are well suited to non-parametric, multidimensional data, and 

ensemble methods like RF are suitable because of their low bias, uncorrelated trees. 

GDD could be a useful variable in modelling growth nationally. However, detailed 

meteorological data for the majority of most Irish farms are limited. Currently, there 

are only 20 climatological stations in the Republic of Ireland. The problem of low 

number of climatological stations can be improved by building more stations or 

educating and enabling farmers to install on-site weather stations or sensors on farms 

nationally to collect detailed weather data for different soil types under different 

management systems.  

 

A leading grass growth model, developed under Irish conditions and used widely in 

grassland research, is the Brereton model. The model predicts the grass growth using 

temperature, SMD, rainfall, and actual and potential evapotranspiration. In Chapter 5 

it was observed that the Brereton model over-estimated growth during the 

phenological peak season (spring generally, but May in particular). The over-

estimation could be because the Brereton model is based on converting solar 

radiation into dry matter without considering the leaf area index or leaf formation, 
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which contribute to the dry matter (Brereton and Keane, 1992). During the spring 

and summer, the amount of radiation is more than in autumn and winter and 

therefore, the Brereton model maybe be over-predicting. A previous comparative 

study by Hurtado-Uria et al. (2012) also reported that the Brereton model over-

predicted grass growth. However, they found that all of the three models assessed 

(Brereton, Jouven and Johnson & Thornley) underperformed in Irish conditions. The 

issue is again the spatial resolution and distribution of climatological data in Ireland. 

Although there are vastly different management regimes, soil type, drainage and 

enterprise within a region, farms using the same climatological data from a local 

station will predict the same outcomes for all farms. The Brereton model also fails to 

account for farm management, how recently they might have occurred, or underlying 

environmental factors such as soil type. Data on soil type or the frequency or extent 

of management interventions were not available for the study to explain why the 

predicted rate differed from the actual rate. If these data were widely available, it 

could be incorporated into machine-learning models easily as encoded categorical 

data.  

 

Where the Brereton model fails to represent continuous conditions on the ground, 

EO data can capture the effect (VI reflectance) of actual environmental, 

meteorological and management conditions on grass growth. As noted above, 

Sentinel 2 data has sufficient spatial resolution to detect variation in grass growth 

within and between paddocks or fields. Building on the previous research of Ali et 

al. (2017), ANFIS and RF machine-learning models were developed Sentinel 2 

imagery and available meteorological data. It was found that RF using a range of 

meteorological data except rainfall was the best predictor of grass growth. This 

supported the findings of Hurtado-Uria et al. (2014), who also reported no strong 

relationship between rainfall and grass growth, but did find growth was correlated 

with temperature, solar radiation and evapotranspiration from January to March and 

from September to December. The research described in Chapter 5 explored the 

ability of Sentinel 2 and Landsat 8 imagery to estimate grass growth. With 30 m 

spatial resolution, the Landsat mission was the benchmark in moderate resolution, 

publicly-available EO data before 10 m resolution imagery became available when 

Sentinel 2A was launched in 2015. The machine-learning models developed using 
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Sentinel 2 imagery consistently outperformed those developed with Landsat 8 data, 

both for ANFIS and RF. The spatial resolution of Landsat 8 is a limiting factor, for 

example, where different land cover types are covered by a single pixel, therefore 

introducing error into the models. This was likely an issue where pixels cross the 

paddock boundaries. Another source of error is the lower temporal resolution. With a 

revisit time of 16 days, and the high likelihood cloud cover in Ireland on any given 

acquisition date, there is a greater chance that Landsat 8 does not accurately record 

grass growth, due to large temporal gaps arising from cloudy conditions on 

acquisition days. 

 

The improved sensor specifications of Sentinel 2 improved the models. The 

additional red-edge bands in Sentinel 2 are reported to better characterise vegetation 

and biomass (Ramoelo et al., 2015). The 10 m spatial resolution of Sentinel 2 is 

much better at mapping paddocks than Landsat 8 as for every Landsat pixel, Sentinel 

2 has 9 corresponding pixels. This is critical for mapping grassland in Ireland, where 

fields are generally small (average field size is ~2.5 ha) and irregularly shaped. The 

higher resolution makes it easier to demarcate and mitigate mixed pixels at field 

boundaries. The variation in grass growth rates due to the changes in management 

regimes between paddocks is challenging to monitor using Landsat 8, for example, 

where a pixel captures both high grass cover in one paddock and low cover in an 

adjacent paddock. However, Sentinel 2 is missing a thermal band that makes cloud 

detection more challenging and potentially introduces some error into Sentinel data 

where clouds are not completely removed (Tarrio et al., 2020). 

 

The lowest RMSE attained by RF in initial tests on single farm data and 

incrementally increased with additional farms made it the algorithm of choice for 

developing a national model. By exclusively using remotely sensed or data, the 

number of training sites was increased to 179 representative farms using PBI data. 

This was the maximum number of sites available for the study. At the time of the 

experiment increasing the number of farms could significantly improve model 

accuracy, particularly in years that don’t have extreme weather. However, as more 

farm data were added to the model, there was a concomitant reduction in the 
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availability of meteorological data. As noted previously, there are only 20 

climatological stations distributed around Ireland, so the national model could not be 

built with the same range of meteorological variables. In the national model, both 

DOY and season impact the grass growth (Edirisinghe et al., 2012). The relationship 

between the DOY and biomass can affect the surface reflectance and, in turn, 

vegetation indices. The high temperatures and solar radiation result in greater grass 

growth and the corresponding NDVI values will also be high. In winter, soil 

temperatures are low and likely wet, leading to low grass growth and the 

corresponding NDVI values will be low. The amount of biomass determines 

management strategies, influencing grazing rotation or silage cutting schedules. 

Despite the differences in R2 and the variability in outcomes using different subsets 

of data, RMSE was less than 18 kg DM ha-1day-1 for all models.  

 

A national model of grass growth rate is very desirable for Irish farmers. Variable 

meteorological conditions and soil conditions, farm enterprise, and management 

conditions change rapidly from farm to farm. The heterogeneity in all these factors 

and the ability to measure them accurately is likely to be a considerable source of 

error in the models developed within this study. The sensors installed in the farms to 

measure meteorological data can give accurate measurements and help to improve 

the model. If there are more climatological stations, they could provide more 

meteorological data and incorporate it into the model. On certain soils, the effect of 

rainfall will be significant depending on the soil drainage. Soils with impeded 

drainage will respond differently to well and moderate drained soils during heavy or 

persistent rainfall. Fitzgerald et al. (2008) discussed how water deficit and excess 

water could limit grass growth. In excess water conditions, well and moderately 

drained soils performed better than the poorly drained soils, which can experience 

persistent waterlogging (Schulte et al., 2012). Water stress situations due to high 

temperatures and low rainfall can limit the grass growth for well-drained soils as 

their water holding capacity is lower than the poorly drained soil. A range of farms 

with varying soil type in Irelands and the effect of rainfall can affect the grass 

growth differently. 

Another obstacle to modelling grass growth was data unavailability, both for 

meteorological data and EO imagery. The first limitation was the unavailability of 
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meteorological data in Chapter 6 for the national model. Without the correct data on, 

for example, soil temperature and evapotranspiration, it is not possible to estimate 

growing degree-days accurately for farms nationally. Consequently, only rainfall 

was available for modelling. For example, this research and previous research, for 

example Hurtado-Uria et al. (2014), found rainfall is not an important meteorological 

variable for grass growth rate as temperature and evapotranspiration are. These 

variables were present in the models discussed in Chapter 5 where they were the 

most significantly model inputs. For the national model, these factors are missing, 

which is very likely to have lowered model accuracy. However, another limitation 

that cannot be avoided is a systematic error introduced by farmers while collecting 

grass height data using RPM. These errors can be propagated into the model leading 

to low accuracy. This was compounded by the fact that national data were 

anonymised, making it difficult to assess potential local issues impacting accuracy.  

 

PBI is a useful resource but could be better used. All models consistently had a 

variability that was not explained by the available variables. This may be because of 

interventions such as grazing, silage cutting, or environmental factors such as soil 

type and soil drainage. For example, a certain level of management data, for 

example, grazing and silage cutting, is available in PBI. If this level of data could be 

better integrated into machine-learning models, it might mitigate the shortage of 

meteorological data. However, the necessity to anonymise the data is a further 

complication that also needs to be addressed,  

 

The results in this thesis highlighted the importance of the factors governing the 

grass growth in Ireland-climate and EO data. When this PhD was started, there was 

not much data available in PBI. Furthermore, the meteorological data were available 

for only a few farm sites. This research highlights the issues caused by data sparsity 

with regards to accurately modelling grass growth. However, it also shows the 

potential of newly available data sources, such as Sentinel 2 satellite imagery 

through the Copernicus platform (which provides free images every with a revisit 

time as short as five days). These data have an immense potential improve national 

models. Currently, there are 3500 farms registered with PBI, which can be included 
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into the model. The modelling process can be automated by automatic downloading 

of satellite images, pre-processing and integrating them into the model to estimate 

grass growth and detect the management events. Such approach can help farmers by 

transforming the raw data into information, which is valuable to the farmers.  
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8 
Chapter 8 Conclusion & Future Research  

 

This research aimed to investigate whether machine-learning regression of optical 

EO satellite imagery in conjunction with meteorological data could accurately 

estimate grass growth rate across the whole of the Republic of Ireland. Previous 

research by Ali (2016) suggested that machine-learning models with vegetation 

indices from MODIS data can estimate the grass growth rate for Irish grasslands. 

The models were developed for two independent sites - the Teagasc research farms 

in Moorepark in Co. Cork and Grange in Co. Meath. It was suggested that the 

satellite data with machine-learning is a promising tool for grass biomass modelling. 

Available EO data has been growing since then with the launch of Sentinel 2A in 

2015 and Sentinel 2B in 2017  

 

The work presented in this thesis was aimed at developing a national model with 

Sentinel 2 and meteorological data to estimate grass growth rate with three specific 

objectives: 

(i) Evaluate the role of growing degree-days (GDD) and climate data in simple grass 

growth rate models at a farm scale for one farm-  

(ii) Compare the performance of the conventional grass growth model estimating 

grass growth rate at 8 farm locations against RF and ANFIS regression models  and  

(iii) Transfer the machine-learning model developed in (ii) above to a broader 

national scale using 179 representative farms which contribute grass measurements 

to PBI and explore the importance of spatial variation across Ireland  

Each of these objectives was carried out at an increasing scale and used different 

combinations of data. The following chapter examines the outcomes of these 
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individual experiments and how collectively they have furthered our understanding 

of the strengths, opportunities and weakness of EO-based pasture biomass estimation 

in Ireland.  

 

The work started with exploring the influence of meteorological datasets on grass 

growth rate. A Pearson correlation analysis was performed between grass growth 

data and meteorological including standard and modified GDD for Moorepark, 

County Cork for 2017 and 2018. The statistically significant variables from 

correlation analysis were used for ordinary least square regression for 2017 and 

2018, respectively. The results were relatively poor, showing an R2 of 0.53 in 2017 

but did confirm that a range of meteorological data were significant even in simple 

linear models of Irish grass growth 

 

The GDD terms were generally more important in the model output than individual 

meteorological data such as evaporation and PE. However, the models only 

explained half of the variability in growth rate over the two years, highlighting the 

importance of other factors such as management (recalling that Moorepark is a 

research farm and, as such, is subject to experimental changes). This model 

attempted to include the effect of extreme weather conditions such as high 

temperature and SMD in 2018, which led to fodder crisis due to low grass growth 

rates. The major limitation of this model is that it is based just on meteorological 

data is not enough to model the grass growth rate on intensively managed grasslands 

with variability between paddocks. The other factors such as spatial variation, soil 

variability, management on farms and actual environmental conditions are missing 

from the model, which might help to explain the rest of the variability in grass 

growth rate.  

 

Another empirical model, which uses only meteorological data for grass growth 

estimation is the Brereton model. Brereton model was developed for a number of 

farms in Ireland. The relatively poor performance can be ascribed to the recording of 

meteorological data at sites distant from the grass measurements and the absence of 

soil and management terms in the Brereton model.  
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The Brereton model was compared to an initial machine-learning approach on the 

same data but now including EO data and meteorological data. The EO observation 

is essentially an empirical term that captures the local growing conditions (soil type 

and management). The inputs to ANFIS and RF were vegetation indices (Landsat 8 

NDVI, Sentinel 2 NDVI and Sentinel 2 NDRE), modified GDD and meteorological 

data. The ANFIS model performed poorly for all the farms but better than the 

Brereton Model. The RF model using Sentinel 2 data performed the best. Better 

results were obtained using Sentinel 2 vegetation indices than Landsat 8. This is 

because of the low revisit time of Landsat 8 (16 days) compared to Sentinel 2 (5 

days), which leads to the lower number of images acquisitions and a longer gap 

between acquisition and grass measurement. Another reason that Landsat 8 had a bit 

lower spatial (30 m) resolution than Sentinel 2 (10-20 m). During the study, farms 

with a higher number of satellite images estimated growth better than those farms 

with fewer points. For example, growth estimation at Johnstown Castle (34 Sentinel 

2 images for 2017 and 2018) was better than that at Moorepark (19 Sentinel 2 

images for 2017 and 2018) visually, as discussed in Section 5.4.5. Overall, the 

machine-learning algorithms performed better than the Brereton model. The random 

forest model from this study was further used to develop a national model for 

Ireland. 

 

The national model was developed using RF with Sentinel 2 NDVI and NDRE along 

with rainfall. However, GDPR regulations required anonymising the farm data, so 

satellite data were provided without x, y coordinates. The absence of location data 

for these farms affected the final analysis as the data such as location, soil type, farm 

type, number of paddocks and management information could not be included but 

could be assumed to have improved the outcome. The random forest inputs were 

daily rainfall, 3-, 5- and 7- day rainfall accumulations, descriptive statistics of 

individual Sentinel 2 bands, NDVI and NDRE. When moving to national model, 

there was a major limitation of data unavailability. Only rainfall data were available 

for the farms in national model. 
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On comparing Agmodel 1 and Agmodel for the data from January until June, it was 

found that both the models performed equally well with RMSE of 17.83 and 17.27 

kg DM ha-1 day-1 respectively. Similarly, Agmodel 2 and Agmodel with second half 

of the year data performed equally well with RMSE of 16.53 and 16.08 kg DM ha-1 

day-1. 

 

Overall, Agmodel 1 and Agmodel for first half performed better than the Agmodel 2 

and Agmodel for the second half as the number of data points are more than the 

autumn and winter period because the grass growth rate is high during the summer. 

A likely reason for poor predictive ability in winter and autumn is that grass growth 

and the sward density is lower than in spring/summer. Therefore, the model 

estimated poorly during these months. The study demonstrates the importance of 

location in grass growth. To understand grass growth, the observation data for that 

particular place and time is needed. It also highlights the importance of high-quality 

ground truth in machine-learning EO analysis as often in the literature. This was a 

relatively data-rich study compared with much of the literature with weekly data 

from 179 farms over 3 years, and yet the model could explain only 70% of the 

variance, and this is partly due because the 2017-19 ground truth did not (could not) 

capture all the potential variation in grass productivity in 2020. This issue will 

increase if it is intended to increase the model output to a wall-to-wall national 

weekly grass growth estimate. In the following section, possible research avenues to 

potentially expand and improve these estimates are discussed.  
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8.2 Future work 

This research has demonstrated the potential in using EO and meteorological data for 

estimating grass growth in Ireland. While there is currently widespread availability 

of suitable EO data through the Sentinel 2 mission, some developments are still 

required before grass growth can be routinely estimated for operational application 

on Irish farms.  

 

The key to accurate prediction of growth in the development of these machine-

learning models is large volumes of cloud-free data and from the right time of the 

year. The cloudy data can cause gaps in the satellite data acquisition and lead to 

uncertainties in the model as discussed in Section 5.4.6. With the launch of new 

satellites in the coming years, the potential to model grass biomass will continue to 

increase with high accuracy. This can be supplemented with imagery from other 

sources, UAV or proximal sensors attached to vehicles or fixed within the field. 

Precision agriculture (PA) technologies continue to develop and are integrated into 

decision support systems to help farmers optimize their systems and maximize their 

resources (Higgins et al., 2019). The PA technologies involve integrating multiple 

sensors for monitoring grass and livestock grazing, which can help farmers manage 

the farm efficiently. 

 

8.2.1 Upcoming satellites 

The machine-learning models are data-driven, which means that their accuracy 

increases with the increase in data availability (Reichstein et al., 2019). With the 

launch of new satellites, more EO data will be available in the future, which can 

meet the growing demand for data. The major drawback for optical data in grassland 

management is unreliability due to cloud contamination. A method to solve this issue 

is the increased temporal frequency of the available satellites.  

 

Landsat 9 will be launched as a joint programme of NASA and USGS with two 

sensors similar to Landsat 8 - Operational Land Imager 2 (OLI-2) imaging in visible, 

near, and shortwave infrared region of the electromagnetic spectrum, and the 
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Thermal Imaging Sensor 2 (TIRS-2) for thermal imaging providing 8-day global 

revisit cycle (Masek et al., 2020). The temporal resolution plays an important role, 

especially in countries with cloud cover issues, by providing more images per 

month. With the launch of Landsat 9, the revisit time will be reduced to 2.3 days.  

 

Hyperspectral sensors can provide optimal spatial-spectral and temporal resolutions, 

which can be helpful for grassland applications as they provide narrow continuous 

spectral bands. A hyperspectral satellite known as Hyperspectral Precursor and 

Application Mission (PRISMA) was launched in March 2019 by an Italian space 

agency. It has a spatial resolution of 30 and 12nm spectral resolution from 400-2500 

nm. There are some satellite data not available yet, but their simulated bands are 

used for vegetation applications. A satellite known as EnMAP (environmental 

mapping and analysis program) will be launched in 2021/2022 by the German space 

industry. It will have 230 spectral bands from 420-2450 nm of wavelength and a 

spatial resolution of 30m. It will have a repeat cycle of 4 days, which will be helpful 

in frequent grassland modelling. Another similar sensor is NASA's Hyperspectral 

Infrared Imager (HyspIRI) instrument covering spectral wavelength from 380-

2510nm providing visible to infrared data at 30m resolution and thermal data at 60m 

resolution. There has been some work using simulated EnMAP and HyspIRI data. 

Sibanda et al. (2019) simulated the spectral response of EnMAP and HyspIRI 

sensors using a ground-based hyperspectral sensor to understand the water content in 

grasslands under different fertilizer regimes using regression models. The 

hyperspectral data can be used to derive narrow-band vegetation indices, which can 

be helpful in applications such as biomass estimation (Kong et al., 2019) and plant 

diversity mapping (Peng et al., 2019). 

 

Another way is to use commercially available high temporal and spatial resolution 

microsatellite, which provides images daily. Recently there is a growing trend of 

commercially available satellite constellations consisting of micro, nano and cube 

satellites (Farrag et al., 2019). Micro, Nano and Cube satellite are small satellite with 

less than 500 kg weight. The main advantages are that they consist of three or more 

satellites imaging the same target from different angles simultaneously and are of 
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low launching cost and high resolution. Radkowski et al. (2021) presented the 

preliminary results with the Plantelab’s Dove satellite images available at spatial 

resolution from 3-5 to map changes in managed grazed areas.  

 

8.2.2 Unmanned aerial vehicle (UAV) 

In this study, Sentinel 2 was used which has 10 m spatial resolution, whereas the 

ground data are very high-resolution point data. The use of UAV at very high 

resolution can match better with the ground data than satellite data. The increasing 

availability of unmanned aerial vehicles (UAV) systems provides an opportunity to 

monitor grassland farms frequently and with precise data. The UAV’s can captured 

data from visible to infrared region to estimate grass height. Michez et al. (2019) 

used UAV to get 3D information- height and spectral information to monitor grazing 

on a farm. UAV can also monitor the pasture quality, in theory, which helps in 

targeted fertilization for paddocks with low grass growth. 

 

The farmers can be trained to use the UAV on their farms and can monitor their 

farms regularly. The data can be transferred to cloud storage for analysis. However, 

there are few limitations to the use of UAV in Ireland. The regulation of maximum 

flying altitude from the Irish Aviation Authority (IAA) has hindered the use of 

UAVs on farms. The UAVs are limited by the windy and rainy conditions and by 

battery power. 

 

Another type of UAV technology is the swarm UAV, a state of the art method 

involving a set of drones that work together and synchronise with other UAVs in the 

swarm (Carbone et al., 2018). The swarm UAVs can help to monitor large areas with 

precision. The concept of the swarm is inspired by nature, such as the flying pattern 

of birds and ant colonies. It can reduce the time to collect and reduce labour, which 

can play an important role in developing the national model. The swarm UAV is a 

promising technology but can be limited by cost and the time to deploy the drones. 

The number of drones for a swarm will depend on the cost, maintenance factor, and 

application type.    
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8.2.3 Proximal sensors 

As discussed in Section 5.4.4, there can be some uncertainties in the ground data 

from PBI such as error in RPM, operator error, error while entering the data in PBI. 

One solution for this could be the use of proximal sensors on farms. The on-farm 

sensors can also reduce the uncertainties in the model due to the unavailability of 

meteorological data as discussed in Section 6.6.6. Meteorological data can be 

collected on farm such as temperature, solar radiation, potential evapotranspiration 

and evaporation. The proximal sensors are installed in the farms close to the object 

being sensed and can be fixed or on a moving vehicle as part of the so-called 

“Internet of Things” (IoT) (Sanjeevi et al., 2020). The automation of the farm can 

help in improved data collection, storage and analysis. The IoT can help farmers in 

managing their resources efficiently and improve productivity. The IoT system 

involves a wireless sensor network to monitor temperature, precipitation, humidity, 

and soil.  

 

There can be various types of sensors such as optical, electrical and sonic. Such 

sensors can provide paddock-scale information and can help to identify inter-

paddock grass variations. An example of a commercial internet of things approach is 

provided by the Irish Company Anuland (anuland.ie). They have many sensors 

collecting the data for soil and using a video camera to measure grass growth, 

transmitting the data to the cloud for processing. The data can be viewed on an app 

to help the farmers. 

 

Another common sensor in development is a smartphone for grassland monitoring. 

Skovsen et al. (2019) developed a dataset using three cameras mounted on different 

platforms- two static platforms for plot trials and a moving platform for the field 

level image acquisition. A deep neural network segmentation algorithm was trained 

using synthetic images to classify into five labels- grass, clover (white and red), 

weed and soil. These models were further used on real images collected in the field 

to predict biomass.  
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Multiple proximal sensors on a farm can be connected and automated, known as the 

‘Internet of Things’ (IoT) (Sanjeevi et al., 2020). The automation of the farm can 

help in improved data collection, storage and analysis. The IoT can help farmers in 

managing their resources efficiently and improve productivity. The IoT system 

involves a wireless sensor network to monitor temperature, precipitation, humidity, 

and soil.  

 

The methods discussed are more efficient than the destructive method- clipping and 

weighing. The cameras can be deployed on smartphones and UAVs to capture 

demand-basis images to take field measurements. The images can be added to the 

machine-learning or deep learning models to relate the biophysical parameters and 

the biomass. 

 

8.2.4 Synthetic Aperture Radar 

Cloud-cover is a serious problem while using optical satellite data in Ireland as 

discussed in Section 5.4.6 and 6.6.6. The synergistic approach using both synthetic 

aperture radar (SAR) and optical data should be explored. SAR satellites (such as 

sentinel 1) can penetrate through the cloud but get affected by the background soil 

information and interfere with the grass growth data. With the increasing altitude, the 

SAR data is less accurate because of layover and shadow effects. The combination of 

both the sensors’ data can overcome each of their limitations. SAR and optical 

satellites provide complementary information which can be used for grass biomass 

estimation (Wang et al., 2019). The combination of both the satellite data will allow 

frequent grass growth estimations (Ali et al., 2017a). 

A project called GrassQ4 by Teagasc and Maynooth University used a multi-sensor 

approach combining satellite imagery, UAV, ground and weather data (Murphy et 

al., 2019). GrassQ is a decision support system that provides real-time management 

information to farmers and researchers. The ground data were recorded using a rising 

plate meter (RPM) and near-infrared spectroscopy (NIRS). The multispectral images 

were captured using UAV and from Sentinel 2.  

 

4 www.grassq.com. Accessed 25th June 2021 

http://www.grassq.com/
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8.2.5 Combination of biophysical models with machine-learning 

Grass biophysical simulation models use physiological processes such as conversion 

of solar radiation into dry matter and capture the interaction between weather, grass 

and soil, and an example is the MoST model developed by Teagasc. The biophysical 

models are unable to model extreme weather conditions such as heat stress. These 

models also oversimplify the grass growth estimations over large areas with similar 

conditions such as soil type and weather, affecting the accuracy of estimation.  

 

A hybrid approach can overcome the limitations of both crop model and remote 

sensing methods and improve accuracy. Recently, the use of a hybrid approach 

combining biophysical simulation models and machine-learning models has 

increased. For example, (Feng et al., 2020) used a hybrid model by integrating 

Agricultural Production System sIMulator (APSIM), climate data, NDVI from 

MODIS to estimate wheat yield. The satellite observations can help the actual 

conditions on the ground, which can act as a correction factor to the biophysical 

simulation models.  

 

For grass growth estimation, the scale and frequency of measurement play an 

important role in deciding which sensor platform to use - satellite, aerial, UAV, 

proximal sensors, or the multi-sensor approach. The methods discussed above vary 

in spectral and spatial resolution. If the grass growth model is needed at paddock-

scale, then proximal sensors and UAV with the high spatial and temporal resolution 

is required. The farm-level grass modelling needs frequent but medium-resolution 

imagery. In connecting Irish grasslands, a multi-sensor approach could help and 

improve the modelling accuracy because of the cloud cover issues. The upcoming 

new spaceborne can ensure the data availability, and the model could be trained for 

more datasets from and additional year’s data could be included in the model. The 

on-farm sensors such as meteorological data and NDVI Sensors could also be used 

to get a high temporal resolution dataset to train the model.  
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The data assimilation techniques to include the EO data into the biophysical 

simulation models allow to improve the model and include the spatial information 

into the model. When the EO data is affected by clouds, the simulation model will 

give the estimations, and when the images will be available, they will be 

incorporated into the model. Apart from the optical data, the Sentinel 1 data can be 

incorporated into the model in the form of backscatter ratios and radar index, which 

can be useful for grass biomass and cutting detection (Holtgrave et al., 2020).  

 

The PBI data could be modified to include the farm and paddock boundaries. The 

data retrieval could be improved as now a farm can be searched using the farmer’s 

name and county. The overall farm data such as grass growth rate and grass cover 

cannot be exported, as there is no option available. The interface could be improved 

to include the location and number of paddocks and their information. 3500 farms on 

PBI are measuring grass every week. Many farmers are not measuring the grass 

growth on their farm and rely on their memory for decision-making. The farmers 

daily need to measure grass, calculate the demand according to the livestock. They 

need to utilise the amount of grass grown on their farms and plan forward for any 

unanticipated extreme climatic conditions. Grass measurement daily helps to identify 

surplus and deficit on paddocks, and timely action can be taken in such events. 

However, walking the farm weekly and uploading the data into a decision support 

system software can be daunting.  

 

The management strategies need to be changed according to the changing farm 

conditions. There is a gap in understanding of the grass growth using the models 

with meteorological data. The EO data has the potential to fill that gap by providing 

valuable spatial and temporal information about grass growth and actual conditions 

on the ground, such as grazing, cutting and fertilizer application. The satellite data 

provides synoptic data covering a large geographical area. The temporal resolution 

of satellite data allows us to model the seasonal variation of grass growth due to 

climate and management factors.  
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This study's final RF regression model used EO and meteorological data for 179 

farms nationally to estimate grass growth rate. The RMSE in grass growth estimation 

for the validation data using the year 2020 was 16-17 kg DM ha-1day-1 with peak 

growth rates of up to 110 kg DM ha-1day-1.  

 

More satellite data and more farms in the model will lead to an improved accuracy 

model. The addition of paddock information can also give paddock-scale estimates 

available in PBI but restricted access. The national model developed can act as a 

decision support system for farmers. A grass wedge using satellite estimates can help 

give the best and worst performing paddocks or farms that can help farmers make 

decisions and manage their livestock sustainably. Moreover, due to changing climate 

conditions (extreme weather conditions), grass productivity is affected, which can be 

monitored using grass growth models. The model presents an opportunity to provide 

grassland spatial and temporal information, which can be valuable for national policy 

development.   
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Appendices 

 

5.1 Matching grass growth rate from PBI to image acquisition dates 

 

library(dplyr) 

library(data.table) 

 

NDVI <-read.csv(file.choose(), header=T) 

PB <-read.csv(file.choose(), header=T) 

PB<-PB %>% mutate(Growth_2 = Growth) 

PB<-PB %>% mutate(Farm_2 = Farm) 

PB<-PB %>% mutate(Date_2 = Date) 

 

joined<-NDVI %>% left_join(PB, by = c("Growth","Date")) 

joined<-NDVI[PB,roll = TRUE, on = .(Date, Farm)] 

write.csv(gf,"H:/National_model_new/test.csv", row.names = TRUE) 

 

dplr <-left_join(NDVI,PB , by=c("Date","Farm")) 

setDT(NDVI) 

setDT(PB) 

 

NDVI$Date <- as.Date(NDVI$Date, format = "%d-%b-%y") 

PB$Date <- as.Date(PB$Date, format = "%d-%b-%y") 

gf<-PB[NDVI, on = .(Farm = Farm, Date =Date), roll = 7]  

gf<-na.omit(gf) 

write.csv(gf,"PB_NDVI.csv", row.names = TRUE) 

 

mingf<-PB[NDVI, on = .(Farm = Farm, Date = Date), roll = TRUE]  

mingf<-na.omit(mingf) 

write.csv(mingf,"H:/National_model_new/2020.csv", row.names = TRUE) 
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5.2 Script for Brereton model 

from scipy.stats import pearsonr 

from sklearn.metrics import mean_squared_error  

import sklearn.metrics as sk 

import scipy as sp 

from scipy import stats 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

import string 

 

data=pd.read_csv(‘path to your folder’)   

data_g=pd.read_csv(‘path to your folder’)   

 

k=1.26   

alpha=0.23     

Q=18.81   

G_biomass=np.asarray(list(data_g.ground)) 

''' Extract date''' 

date=list(data.date) 

l=len(date) 

R=list(data.radiation)     

Rs=np.asarray(R)    

T=np.asarray(list(data.mean_temp))   

E_p=np.asarray(list(data.pe))                       

#E_a=np.asarray(list(data.evap)) 

smd=np.asarray(list(data.smd_md)) 

Sa=smd[0]              

SMD_max=110 

SMD_c=0 

E_a=np.zeros(l) 

for i in range(l): 

    E_a[i]=E_p[i]* ((SMD_max-smd[[i-1]])/(SMD_max-SMD_c)) 

e=np.zeros(l) 

for i in range (l): 

    if T[i]<5.5: 

        e[i]=0 

    elif T[i]>5.5 and T[i]<9.5: 

        e[i]=0.00893+(0.00204*T[i]) 

    elif T[i]>5.5: 

        e[i]=0.00349+(0.00070*T[i]) 

x=np.zeros(l)         

for i in range(l): 

    if i<=167: 

        x[i]=1.0 

    elif i>167: 

        x[i]=0.4 

 

Y_p=np.zeros(l) 

for i in range(l): 

    Y_p[i]=(e[i]*Rs_mj[i]*x[i])/Q 

 

Ya_Yp=np.zeros(l) 
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for i in range(l): 

    Ya_Yp[i]=0.20+0.80*(E_a[i]/E_p[i]) 

     

Y_a=np.zeros(l) 

for i in range(l): 

    Y_a[i]=Y_p[i]*Ya_Yp[i] 

    

df = pd.DataFrame(Y_a) 

cb3=df.rolling(window=3).mean() 
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5.3 Script for ANFIS model 

## Load package 

library(caret) 

library(ggplot2) 

library(ggpubr) 

library(ggpmisc) 

library(frbs) 

library(GGally) 

library(dplyr) 

library(data.table) 

library(ggcorrplot) 

library(Boruta) 

 

## Reading data and standardization 

dataset <- read.csv(file.choose(), header=T) 

pp_boxcox <-preProcess(dataset[,-1],method=c("BoxCox","center","scale")) 

AllFeatures<-predict(pp_boxcox,dataset[,-1]) 

 

## Select predictors using RFE algorithm 

boruta_output <- Boruta(Growth ~ .,data=(AllFeatures[,6:17]),  doTrace=2)   

boruta_signif <- names(boruta_output$finalDecision[boruta_output$finalDecision %in% 

c("Confirmed", "Tentative")])   

plot(boruta_output, cex.axis=0.8, cex.lab=1,las=2, xlab="Variables", main="Variable 

Importance")   

Dataset1<-dplyr::select(dataset[,],variables)  

set.seed(76418)  

as.data.frame(table(unlist(Dataset1))) 

row_count <- nrow(Dataset1) 

shuffled_rows <- sample(row_count) 

trainSets1 <- Dataset1[head(shuffled_rows,floor(row_count*0.60)),] 

tests1<- Dataset1[tail(shuffled_rows,floor(row_count*0.40)),] 

trainSets<-trainSets1[,3:14] 

testSets<-tests1[,3:13] 

gr<-tests1[,14] 

range.data<-apply(Dataset1[,3:14], 2, range) #2 indicate columns 

 

## ANFIS 

## set the method and its parameters 

method.type <- "ANFIS" 

control <- list(num.labels = 10, max.iter =100, step.size = 0.1,  type.tnorm = "YAGER", 

type.snorm = "YAGER", type.implication.func = "ZADEH", name = "biomass") 

## generate fuzzy model 

object <- frbs.learn(trainSets,range.data, method.type, control) 

 

## Fit model using data training. 

anfisTrainY <- predict(object, trainSets[,-12])  

anfisTestY<- predict(object, testSets[,]) 

anfis.train <- cbind.data.frame(trainSets$Growth, anfisTrainY) 

anfis.test <- cbind.data.frame(gr, anfisTestY) 

residuals <- (gr - anfisTestY) 

MSE <- mean(residuals^2) 

MAE <- mean(abs(residuals)) 

RMSE <- sqrt(mean(residuals^2)) 

SMAPE <- mean(abs(residuals)/(abs(gr) + abs(anfisTestY))/2)*100  
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5.4 Script for RF model 

## Load package 

library(caret) 

library(ggplot2) 

library(ggpubr) 

library(dplyr) 

library(GGally) 

library(ggcorrplot) 

library(randomForest) 

 

## Reading data and standardization 

dataset <- read.csv(file.choose(), header=T) 

dataset<-subset(dataset, Growth >0) 

pp_boxcox <-preProcess(dataset[,-1],method=c("center")) 

AllFeatures<-predict(pp_boxcox,dataset[,-1]) 

 

# Select predictors using RFE algorithm 

rfeCtrl<-rfeControl(method="repeatedcv", 

                    repeats=10,number=10, 

                    verbos=TRUE, 

                    functions=rfFuncs) 

 

Dataset1<-dplyr::select(dataset[,],Date,Farm,NDVI,NDVI_re1,evap,gdd,Growth)  

set.seed(76418)  

pre<-preProcess(Dataset1[,-10],method = "center") 

Dataset<-predict(pre,newdata=Dataset1[,]) 

as.data.frame(table(unlist(Dataset))) 

row_count <- nrow(Dataset) 

shuffled_rows <- sample(row_count) 

trainSets <- Dataset[head(shuffled_rows,floor(row_count*0.60)),] 

tests<- Dataset[tail(shuffled_rows,floor(row_count*0.40)),] 

testSets<-tests[,-10] 

gr<-tests[,10] 

ctrKFCV<-trainControl(method="repeatedcv",repeats=10,number=10,search="grid") 

 

## Hypertuning parameter 

set.seed(76418) 

m1 <- randomForest( 

  formula = Growth ~ ., 

  data    = trainSets 

) 

m1 

# number of trees with lowest MSE 

which.min(m1$mse) 

# RMSE of this optimal random forest 

sqrt(m1$mse[which.min(m1$mse)]) 

################# 

set.seed(76418) 

rfModel<-train(Growth~., data=trainSets, 

               method="rf", 

               tuneLength=5, 

               n.trees=130, 

               importance=TRUE, 

               trControl=ctrKFCV) 
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rfModel 

rfTestY <- predict(rfModel, testSets[,]) 

rfTrainY <- predict(rfModel, trainSets[,-10]) 

rf.train <- cbind.data.frame(trainSets$Growth, rfTrainY) 

rf.test <- cbind.data.frame(gr, rfTestY) 

 

residuals <- (gr - rfTestY) 

MSE <- mean(residuals^2) 

MAE <- mean(abs(residuals)) 

RMSE <- sqrt(mean(residuals^2)) 

SMAPE <- mean(abs(residuals)/(abs(gr) + abs(rfTestY))/2)*100 

err <- c(MSE,MAE, RMSE, SMAPE) 
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5.5 RMSE for different values of ‘k’ for cross-validation 

Table 5.5A The error metrics- RMSE (kg DM ha-1day-1) for all the models 1-12 from k=1-15. 

k RMSE for model 7  RMSE for model 8 RMSE for model 9 RMSE for model 10 RMSE for model 11 RMSE for model 12 

1 14.88 16.01 15.71 15.04 15.24 15.03 

2 14.86 15.80 15.04 14.78 15.32 15.01 

3 14.80 15.85 15.73 14.76 15.63 15.00 

4 14.82 15.74 15.63 14.80 15.00 14.97 

5 14.77 15.71 15.60 14.94 15.98 14.94 

6 14.80 15.80 15.84 14.77 15.90 14.92 

7 14.78 15.93 15.53 14.75 15.56 14.90 

8 14.76 15.40 14.83 14.89 15.84 14.85 

9 14.73 15.45 14.72 14.70 15.04 14.85 

10 14.70 15.33 14.68 14.65 14.94 14.83 

11 14.72 15.90 14.93 15.58 15.23 15.00 

12 14.80 15.80 15.01 15.43 15.59 15.05 

13 15.20 15.66 15.33 15.46 15.67 15.57 

14 15.55 15.68 15.38 15.80 15.69 15.70 

15 15.58 15.79 15.04 15.85 15.06 15.29 
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5.6 Plot of OOB error with many trees with the ‘mtry’ tables 

 

 

Figure 5.6A Plot of out-of-bag (OOB) error vs many trees (ntree) for ntree in random forest. 

Out-of-bag error is the mean prediction error on the sample that was not used in the random 

forest training. The tree with the lowest RMSE is chosen for the final model. At 219 trees 

RMSE is the lowest. 

 

Table 5.6A mtry values with their respective RMSE.  

mtry of 10 has the lowest RMSE of 20.60 kg DM ha-1day-1 

mtry   RMSE (kg DM ha-1day-1) 

2 21.77  

4 21.04  

6 20.73  

8 20.63  

10 20.60  
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Figure 5.6B Plot of out-of-bag (OOB) error vs several trees (ntree) for ntree in random 

forest. Out-of-bag error is the mean prediction error on the sample that was not used in the 

random forest training. The tree with the lowest RMSE is chosen for the final model. 

 

 

 

 

Table 5.6B mtry values with their respective RMSE.  

mtry of 9 had lowest RMSE of 20.49 kg DM ha-1day-1 

mtry RMSE (kg DM ha-1day-1) 

2 21.36 

3 20.96 

5 20.60 

7 20.49 

9 20.49 
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Figure 5.6C Plot of out-of-bag (OOB) error vs a number of trees (ntree) for ntree in random 

forest. Out-of-bag error is the mean prediction error on the sample that was not used in the 

random forest training. The tree with the lowest RMSE is chosen for the final model. 

 

 

 

 

Table 5.6C mtry values with their respective RMSE. mtry of 2 has the lowest RMSE of 16.46 

kg DM ha-1day-1 

mtry RMSE (kg DM ha-1day-1) 

2 16.46 

4 16.60 

6 16.74 

8 16.87 

11 17.01 
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Figure 5.6D Plot of out-of-bag (OOB) error vs a number of trees (ntree) for ntree in random 

forest. Out-of-bag error is the mean prediction error on the sample that was not used in the 

training of the random forest. The tree with the lowest RMSE is chosen for the final model. 

At ntree=103, the RMSE is the lowest and is chosen for the RF model in the plot. 

 

 

 

 

Table 5.5D mtry values with their respective RMSE. mtry of 2 has the lowest RMSE of 16.47 

kg DM ha-1day-1 

mtry RMSE (kg DM ha-1day-1) 

2 16.47 

4 16.60 

6 16.79 

8 16.87 

10 16.98 
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Figure 5.6E Plot of out-of-bag (OOB) error vs a number of trees (ntree) for ntree in random 

forest. Out-of-bag error is the mean prediction error on the sample that was not used in the 

training of the random forest. The tree with the lowest RMSE is chosen for the final model. 

In the plot, at ntree=209, the RMSE is the lowest and is chosen for the RF model. 

 

 

 

 

Table 5.6E mtry values with their respective RMSE. mtry of 2 has the lowest RMSE of 16.51 

kg DM ha-1day-1 

mtry RMSE 

2 16.51 

3 16.60 

5 16.69 

7 16.76 

9 16.89 
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Figure 5.6F Plot of out-of-bag (OOB) error vs a number of trees (ntree) for ntree in random 

forest. Out-of-bag error is the mean prediction error on the sample that was not used in the 

training of the random forest. The tree with the lowest RMSE is chosen for the final model.  

 

 

 

 

Table 5.6F mtry values with their respective RMSE. mtry of 2 has the lowest RMSE of 16.54 

kg DM ha-1day-1 

mtry RMSE 

2 16.54 

3 16.62 

5 16.71 

7 16.81 

9 17.00 
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Table 5.6G Comparing four models with R2 for training and testing, optimal trees, grass 

growth rate value at optimal tree and mtry are shown. Model 9 contains all the variables; 

model 10 contains all the variables except rainfall; model 11 contains all the variables 

except NDRE and rainfall; model 12 contains all the variables except NDRE and rainfall. 

 

Model Tree Value mtry 

9 69 16.94 2 

10 103 17.28 2 

11 209 17.19 2 

12 96 17.31 2 
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5.7 Grass growth curve plots from model 10 (RF) (Chapter 5) 

 

 

Figure 5.7A Grass growth curve from PBI (Black) and predictions from RF model 10 (red) 

for 2017 and 2018 for Curtin farm (Cork cluster) 

 

 

Figure 5.7B Grass growth curve from PBI (Black) and predictions from RF model 10 (red) 

for 2017 and 2018 for Kilworth farm (Cork cluster) 
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Figure 5.7C Grass growth curve from PBI (Black) and predictions from RF model 10 (red) 

for 2017 and 2018 for Kildavin farm (Wexford cluster) 

 

Figure 5.7D Grass growth curve from PBI (Black) and predictions from RF model 10 (red) 

for 2017 and 2018 for INZAC farm (Galway cluster) 
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6.1 Residuals of grass growth rate from PBI & model predictions (Chapter 6) 

 

 

Figure 6.1A Residual plot between residual and predicted grass growth rate values from 

random forest (Commercial model) 

 

 

Figure 6.1B Residual plot for the model with lowest RMSE and highest R2 for Agmodel (test 

data) 
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Figure 6.1C Residual plot for predicted and actual grass growth rate for test data for 

Agmodel1 

 

 

Figure 6.1D Residual plot for predicted grass growth rate from Agmodel 2 for test data 
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Figure 6.1E Residual plot for prediction from Agmodel for 2020 data. The x-axis represents 

the predicted grass growth rate from Agmodel, and the y-axis is the residuals (kg DM ha-

1day-1) 

 

 

Figure 6.1F Residual plot for predicted grass growth rates values for 2020 data using 

Agmodel 1 
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Figure 6.1G Residual plot for predicted grass growth rate (kg DM ha-1day-1) from Agmodel 

2 for 2020 data.  
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6.2 Random Forest for national model 

## Load package 

library(ranger) 

library(ggplot2) 

library(ggpubr) 

library(dplyr) 

library(GGally) 

library(ggcorrplot) 

library(ggpmisc) 

 

## Reading data and standardization 

dataset <- read.csv(file=Path to the file) 

dataset<-subset(dataset, Growth >0 & Growth <=100) 

pp_boxcox <-preProcess(dataset[,-1],method=c("BoxCox","center","scale")) 

AllFeatures<-predict(pp_boxcox,dataset[,-1]) 

 

Dataset1<-dplyr::select(dataset[,],Variables)   

 

nrFolds <- 5  

set.seed(76418) 

# generate array containing fold-number for each sample (row) 

folds <- rep_len(1:nrFolds, nrow(Dataset1)) 

# actual cross validation 

for(k in 1:nrFolds) { 

  # actual split of the data 

  fold <- which(folds == k) 

  trainSets <- Dataset1[-fold,] 

  tests <- Dataset1[fold,] 

  # train and test your model with data.train and data.test 

} 

testSets<-tests[,-20] 

gr<-tests[,20] 

 

hyper_grid <- expand.grid( 

  mtry       = 1:19, 

  node_size  = 1:4, 

  num.trees = seq(50,500,50), 

  OOB_RMSE   = 0 

) 

 

system.time( 

  for(i in 1:nrow(hyper_grid)) { 

    # train model 

    rf <- ranger( 

      formula = Growth ~ ., 

      data= trainSets, 

      num.trees= hyper_grid$num.trees[i], 

      mtry = hyper_grid$mtry[i], 

      min.node.size  = hyper_grid$node_size[i], 

      importance = 'impurity') 

    # add OOB error to grid 

    hyper_grid$OOB_RMSE[i] <- sqrt(rf$prediction.error) 

  }) 

 



265 

nrow(hyper_grid) 

position = which.min(hyper_grid$OOB_RMSE) 

head(hyper_grid[order(hyper_grid$OOB_RMSE),],5) 

 

# fit best model 

rf.model <- ranger(Growth ~ .,data = trainSets, num.trees = hyper_grid$num.trees[position], 

importance = 'impurity', probability = FALSE, min.node.size = 

hyper_grid$node_size[position], mtry = hyper_grid$mtry[position]) 

 

rf.model 

b<-rf.model$variable.importance 

trainSets$prediction<- predict(rf.model,trainSets)$predictions 

 

testSets$prediction<- predict(rf.model,testSets,se.method ='infjack' )$predictions 

d_test = gr-testSets$prediction 

mse_test = mean((d_test)^2) 

mae_test = mean(abs(d_test)) 

rmse_test = sqrt(mse_test) 

df <- data.frame(gr,testSets$prediction) 

R2_test =cor(x = df$gr, y = df$testSets.prediction, method = "pearson")^2 

set.seed(76418) 

 

residuals <- (gr - df$testSets.prediction) 

 

 


