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Research Goals 

A number of publicly available resources exist that host processed ribosome profiling data. 

These resources are useful in allowing researchers to quickly investigate publicly available 

data and extract useful information such as evidence for the presence of a novel translated 

ORF. However, most of these resources have deficits in one or more areas, most notably in 

the use of static offsets and lack of reading frame colourisation for visualisation which makes 

interpretation difficult to impossible in some specific cases. The goal of this thesis was to 

create a platform that allows users to explore and analyse various aspects of ribosome 

profiling data  that would be easy to use and potentially more useful than existing resources, 

particularly when it comes to visualisation and detection of novel translated ORFs.  
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Abstract 

Ribosome profiling is a technique that allows us to capture and sequence mRNA fragments 

protected by ribosome complexes. Mapping these ribosome protected fragments or RPFs, 

back to a genome or transcriptome provides information on the precise location of elongating 

ribosomes. This data can then be used to detect novel translated regions, translational pausing 

and differentially translated genes. 

Chapter 2 describes the development of Trips-Viz, an interactive online platform for the 

exploration and visualisation of RPFs mapped to the transcriptomes of various different 

organisms. This allows users to rapidly aggregate and visualise ribosome profiling data at a 

single transcript level allowing for visual detection of translated open reading frames. Trips-

Viz also allows users to rapidly assess the quality of data through various meta-information 

plots as well as detect and visualise transcripts that are differentially expressed/translated 

between two conditions. These analyses can be carried out through a GUI, meaning users do 

not need any prior coding or command line experience to be able to use them.  

Chapter 3 describes the major updates made to Trips-Viz since its original publication. This 

includes the addition of mass spectrometry data. Several thousand human mass spectrometry 

datasets have been processed and detected peptides mapped to the human transcriptome in 

the same manner as ribosome profiling data. This allows users to corroborate the evidence 

from the ribosome profiling data and provides information on whether a translated ORF is 

capable of producing a stable protein product. The differential expression/translation 

detection has also been improved with the inclusion of the Deseq2 and Anota2seq software. 

A method for the automatic detection of translated ORFs was also included which allows 

users to find translated uORFs, nested ORFs, downstream ORFs in a relatively timely 

manner. Other improvements include the addition of help videos to guide users through the 
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navigation and interacting with the users interface of Trips-Viz. Finally, incorporating the 

relevant scripts into RiboGalaxy made it easier for users to upload their own data and 

transcriptomes to Trips-Viz without any requirement for command line expertise.   
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Chapter 1 

Computational methods for ribosome profiling data analysis. 

This chapter has been published in Wiley Interdiscip Rev RNA, Volume 11, Issue 3, 

e1577(Kiniry et al., 2020). All authors worked on writing the original draft as well as reviewing 

and editing of the manuscript.  

 

Since the introduction of the ribosome profiling technique in 2009 its popularity has greatly 

increased. It is widely used for the comprehensive assessment of gene expression and for 

studying the mechanisms of regulation at the translational level. As the number of ribosome 

profiling datasets being produced continues to grow, so too does the need for reliable 

software that can provide answers to the biological questions it can address. This review 

describes the computational methods and tools that have been developed to analyse ribosome 

profiling data at the different stages of the process. It starts with initial routine processing of 

raw data and follows with more specific tasks such as the identification of translated open 

reading frames, differential gene expression analysis, or evaluation of local or global codon 

decoding rates. The review pinpoints challenges associated with each step and explains the 

ways in which they are currently addressed. In addition it provides a comprehensive, albeit 

incomplete, list of publicly available software applicable to each step, which may be a 

beneficial starting point to those unexposed to ribosome profiling analysis. The outline of 

current challenges in ribosome profiling data analysis may inspire computational biologists to 

search for novel, potentially superior, solutions that will improve and expand the 

bioinformaticians’ toolbox for ribosome profiling data analysis.  
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1.1 Introduction 

Ribosome profiling or Ribo-Seq, involves the arrest of translating ribosomes (using 

translation inhibitors or other methods) as they traverse mRNA (Ingolia et al., 2009). A 

nuclease is then used to break down any section of mRNA not being protected by a ribosome 

(Figure 1.1a). The remaining protected fragments of mRNA (footprints) can then be isolated, 

sequenced, and mapped to a reference transcriptome or genome. These footprints are 

approximately 30 nucleotides in length and when mapped can provide both quantitative as 

well as qualitative information on translation, see (Andreev et al., 2017; Brar et al., 2015; 

Ingolia et al., 2014; Ingolia et al., 2018; Michel et al., 2013) for reviews. Common 

applications of Ribo-Seq data analysis include translated Open Reading Frame (ORF) 

detection, ribosome stalling/pause site detection, and differential gene expression analysis 

(Figure 1.1b).  
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Figure 1.1: The principle of ribosome profiling. (a) The ribosome protects mRNA from nuclease 

digestion. The sequences of the protected fragments (footprints) constitute ribosome profiling data. 

(b) A schematic example of a ribosome footprints density plot (ribosome profile). It shows positions of 

ribosome decoding centres (brown columns) inferred from sequences of ribosome footprints along an 

RNA transcript (green bar). The height of the columns reflects the number of footprints matching the 

corresponding mRNA position. The density suggests the efficient translation of an upstream Open 

Reading Frame (uORF) overlapping the annotated protein coding region (CDS) and the presence of a 

ribosome pause site in the CDS. 

 

The detection of translated regions of a genome is a task for which ribosome profiling is 

particularly well suited. Translation can be identified even at ORFs  consisting of only a start 

and a stop codon (Tanaka et al., 2016). Depending on the dataset this can be achieved at sub-

codon resolution, meaning that even overlapping translated open reading frames (ORFs) can 

be detected (Michel et al., 2012). Even though the human genome has been sequenced a 

while ago, novel protein coding ORFs continue to be discovered, e.g. an upstream ORF 

(uORF) in the human MIEF1 gene was predicted to code for a protein (Andreev et al., 2015) 

and was later found to be an assembly factor of mitochondrial ribosomes (Brown et al., 2017) 

and more recently characterized as the main product of MIEF1 mRNA (Rathore et al., 2018). 

 

Ribosome stalling/pause sites can also be characterized. A ribosome moving along an mRNA 

can pause or stall, blocking the path of other ribosomes, and thus regulate protein synthesis 

(Ivanov et al., 2018; Kurian et al., 2011; Yordanova et al., 2018) or trigger No-Go decay or 

Ribosome Quality Control pathways, see (Brandman et al., 2016; Buskirk et al., 2017; Inada, 

2013) for reviews. Since ribosomes are more likely to occupy pause sites, more footprints are 
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produced from these locations. Thus, the pause sites appear as local peaks of ribosome 

footprint density and can be detected computationally.  

 

Another popular (though not unique) application of ribosome profiling is the quantitative 

characterization of differential gene expression, as it discriminates changes in mRNA 

translation from changes in mRNA levels. Translation regulation can also be assessed with 

polysome profiling where the levels of mRNA found in heavy polysome fractions are 

compared with total mRNA levels. The Ribo-Seq advantage over polysome profiling is that it 

provides information on the translation of a specific ORF (or ORFs) within an mRNA, 

however it has its own limitations, see (Gandin et al., 2016) for a comparison of the two 

approaches. Since ribosome profiling generates millions of sequencing reads the processing 

and analysis of the data requires intensive computation. The signal produced with ribosome 

profiling is far more complex and richer in potential applications than standard RNA-seq. 

Numerous computational approaches have been developed, see (Calviello et al., 2017) for 

review. We structured this review by detailing the steps carried out for ribosome profiling 

data analysis and specific goals and overview software that has been developed for these 

tasks. The accession information for the software tools and/or its sources are provided in 

tables that are separated into categories. Many tools are multifunctional and could be placed 

in more than one category while some tools are unique. The selection of software for this 

review is based on published literature rather than on usability, since testing and 

benchmarking all published software is an onerous task that should be carried out separately.  
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1.2 Technical considerations when processing raw sequencing reads 

 

Raw ribosome profiling data are usually single-end unprocessed sequencing reads in FASTQ 

format that need to be processed and mapped to a reference genome or transcriptome. 

Processing of the reads typically involves removal of adapter/linker sequences as well as 

removal of any reads aligning to ribosomal RNA (rRNA) and/or transfer RNA (tRNA). There 

are many freely available tools for both removing adapters and aligning short reads. For 

example, cutadapt (Martin, 2011) is commonly used to remove adapters, while bowtie 

(Langmead et al., 2009) and STAR (Dobin et al., 2013) are commonly used for alignment. As 

these are not specific to ribosome profiling, they will not be discussed in detail here. 

However, there are several variable parameters involved in both processing and mapping 

which may significantly affect downstream analysis. Therefore, the initial read processing 

and alignment should be guided by how the data will be utilised downstream. 

 

To reduce the mapping of non ribosome protected fragments, footprints whose lengths are 

below a certain threshold are usually discarded. This is done under the assumption that such 

shorter reads consist of RNA fragments other than those protected by the ribosome or of 

over-digested footprints. However, such length filtering needs to be applied with caution, 

because the length of footprints may depend on their sequence and location, e.g. in bacteria, 

footprints derived from ribosomes bound to Shine Dalgarno sequences are longer (O'Connor 

et al., 2013). Indeed, Allen Buskirk and colleagues have provided strong evidence suggesting 

that the earlier claim that Shine-Dalgarno sequences cause ribosome pauses in bacteria (Li et 

al., 2012) may be an artefact of the footprint length selection (Mohammad et al., 2016). It is 

also important to note that the length of footprints varies considerably across datasets. Most 
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ribosome footprints in eukaryotes are approximately 28-30 nucleotides and this corresponds 

to the length of mRNA fragments protected by the ribosome in a specific conformation when 

its A-site is occupied with a tRNA. Such a conformation is stabilized by certain translation 

inhibitors that bind to the E-site which is empty in the pretranslocational ribosome 

conformation. This includes cycloheximide which is by far the most widely used inhibitor in 

ribosome profiling studies. However, in a posttranslocational conformation, when the A-site 

is unoccupied, eukaryotic ribosomes protect shorter (20-22 nucleotides) fragments and such 

fragments could become predominant if different inhibitors are used, such as anisomycin 

which inhibits the peptidyl transferase reaction (Lareau et al., 2014; Wu et al., 2019). 

Scanning ribosomes also leave footprints of varying length depending on their specific 

conformations (Archer et al., 2016). The heterogeneity of ribosome footprint lengths is 

further exacerbated by suboptimal nuclease digestion which may lead to over or under-

digestion of footprints.  

 

The mapping of ribosome footprints to genomic sequences poses yet another problem, 

namely the mapping across exon-exon junctions. While this is an issue for most techniques 

involving the sequencing of RNA, it is particularly acute for ribosome profiling due to the 

short length of Ribo-Seq reads. This results in a systematic bias manifested in reduced 

unambiguous mappings at exon-exon junctions. This can be clearly seen in the GWIPS-viz 

browser multiregion view (Kiniry, Michel, et al., 2018; Michel, Fox, et al., 2014). There are 

splice-aware aligners that are capable of mapping across exon-exon junctions, but the short 

length of ribosome footprints increases the chance of spurious mappings. One solution to this 

is to simply map ribosome footprints to transcriptome sequences, but this may not be desired 

when the accuracy of the transcriptome is in doubt or when its completeness is critical for 

downstream analysis, e.g. during the identification of novel translated regions.  
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PCR amplification of footprints during cDNA library generation is also a potential problem. 

While this bias is pertinent to many techniques requiring PCR amplification, it could be 

particularly acute for certain Ribo-Seq applications which rely on the accuracy of local 

footprint density measurements such as detection of ribosome pauses or estimation of codon 

decoding rates. Recent studies have started to solve this issue with the use of random 

barcodes introduced to cDNA during the first round of RT PCR reaction. Such barcodes are 

termed Unique Molecular Identifiers (UMI) and have been used in many applications (Islam 

et al., 2014; Kivioja et al., 2011). To our knowledge UMIs were first introduced to ribosome 

profiling by Miettinen and Björklund (Miettinen et al., 2015) and now are part of standard 

ribosome profiling protocol (McGlincy et al., 2017). During data processing, reads with the 

same sequence that also share the same UMI are considered to be PCR duplicates and 

counted as one. This can be done with specific software such as UMI tools (Smith et al., 

2017). As the use of UMIs in Ribo-Seq studies is still relatively recent, it is difficult to assess 

how much of a problem is PCR duplication, though some studies suggest that with sufficient 

input material and low number of PCR cycles, PCR duplicates constitute only a small 

fraction of sequencing reads in Ribo-Seq data (Lecanda et al., 2016; McGlincy et al., 2017).  

 

Accession information for software pipelines that can be used for data processing can be 

found in Table 1, however, certain software packages described later also contain pipelines 

for raw data processing and quality assessment. 
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Table 1.1:  Software environments for data processing, pipelines for quality assessment, offset 

detection and miscellaneous software. 

Name Notes URL Ref. 

mQc 

Quality assessment, part 

of PROTEOFORMER 

pipeline 

https://github.com/Biobix/m

QC 
(Verbruggen et al., 2018) 

Plastid Python based library 
https://plastid.readthedocs.io

/en/latest/ 
(Dunn et al., 2016) 

Rfoot 
Inference of RNA-

binding protein sites  

https://github.com/zhejilab/

Rfoot 
(Ji, 2018) 

Ribodeblur Offset determination 
https://github.com/Kingsford

-Group/ribodeblur 
(Wang et al., 2017) 

RiboGalaxy 
Galaxy based 

environment 
https://ribogalaxy.ucc.ie/ (Michel et al., 2016) 

Ribopip 
Ruby based processing 

pipeline 

https://github.com/stepf/Rib

oPip 
(Stefan, 2016) 

Riboprofiling 
R based processing 

pipeline 

http://bioconductor.org/pack

ages/release/bioc/html/Ribo

Profiling.html 

(Popa et al., 2016) 

RiboProp Offset determination 
http://bioserv.mps.ohio-

state.edu/RiboProP/ 
(Zhao et al., 2018) 

RiboseqR 
R based processing 

pipeline 

http://bioconductor.org/pack

ages/release/bioc/html/riboS

eqR.html 

(Chung et al., 2015) 

RibostreamR  

Web based analysis of 

user generated Ribo-Seq 

data 

https://github.com/pjperki2/r

iboStreamR 
(Perkins et al., 2019) 

RiboWaltz Offset determination 

https://github.com/LabTrans

lationalArchitectomics/ribo

Waltz 

(Lauria et al., 2018) 

Ribo-seQC Quality assessment 
https://github.com/ohlerlab/

RiboseQC 
(Calviello, Sydow, et al., 2019) 

RRS 

measures drop-off of 

ribosome footprint 

density at the end of 

ORFs  

https://rdrr.io/github/Joking

Hero/ORFik/man/ribosomeR

eleaseScore.html 

(Guttman et al., 2013) 

SystemPipeR 
R based processing 

pipeline 

https://bioconductor.org/pac

kages/release/bioc/html/syst

emPipeR.html 

(Backman et al., 2016) 

Trips-Viz 

Web based analysis of 

public and user 

generated ribosome 

profiling data  

https://trips.ucc.ie (Kiniry, O'Connor, et al., 2018) 

ShoeLaces 
Offset determination and 

visualisation 

https://bitbucket.org/val
enlab/shoelaces 

(Birkeland et al., 2018) 

XPRESSyourself 
Processing pipeline and 

visualisation 

https://github.com/XPRE
SSyourself/ 

(Berg et al., 2020) 

RiboDoc Docker based pipeline 
https://github.com/equip
eGST/RiboDoc 

(Francois et al., 2021) 

ORFik 

Bioconductor package 

that can carry out 

differential expression 

and ORF detection as 

well as analyse other 

data types such as CAGE 

http://bioconductor.org/
packages/release/bioc/ht
ml/ORFik.html 

(Tjeldnes et al., 2021) 

https://github.com/Biobix/mQC
https://github.com/Biobix/mQC
https://github.com/zhejilab/Rfoot
https://github.com/zhejilab/Rfoot
https://github.com/Kingsford-Group/ribodeblur
https://github.com/Kingsford-Group/ribodeblur
https://github.com/stepf/RiboPip
https://github.com/stepf/RiboPip
http://bioconductor.org/packages/release/bioc/html/RiboProfiling.html
http://bioconductor.org/packages/release/bioc/html/RiboProfiling.html
http://bioconductor.org/packages/release/bioc/html/RiboProfiling.html
http://bioconductor.org/packages/release/bioc/html/riboSeqR.html
http://bioconductor.org/packages/release/bioc/html/riboSeqR.html
http://bioconductor.org/packages/release/bioc/html/riboSeqR.html
https://github.com/pjperki2/riboStreamR
https://github.com/pjperki2/riboStreamR
https://github.com/LabTranslationalArchitectomics/riboWaltz
https://github.com/LabTranslationalArchitectomics/riboWaltz
https://github.com/LabTranslationalArchitectomics/riboWaltz
https://github.com/ohlerlab/RiboseQC
https://github.com/ohlerlab/RiboseQC
https://trips.ucc.ie/
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RiboToolKit 

A comprehensive web 

based platform that can 

carry out a number of 

different analyses 

including translated ORF 

detection, differential 

expression and codon 

occupancy 

http://rnabioinfor.tch.har
vard.edu/RiboToolkit 

(Liu et al., 2020) 

 

 

 

1.3 Global assessment of the data quality 

Assessing the quality of the data should be viewed as an obligatory requirement after initial 

pre-processing and mapping, as it saves wasted time trying to draw conclusions from poor 

quality data. Four relatively simple approaches are commonly utilised to achieve this; 

analysis of read length distributions, metagene profiles, a breakdown of regions to which 

Ribo-Seq reads align, and the triplet periodicity signal. Depending on the type of nuclease 

used for digestion, Ribo-Seq reads will also display a periodicity signal, with reads tending to 

map to every 3rd nucleotide. The majority of Ribo-Seq reads will also tend to map to 

annotated coding regions, this can be assessed with metagene profiles or looking at the 

amount of reads mapping to coding/non-coding regions. Deviations from these tendencies 

indicate that the Ribo-Seq data may be of poor quality. Other more general approaches 

include assessing the correlation among replicates and the number of useful mapped reads. 

The implementation of these features have become “de facto” best practice and while they are 

indicative of quality they should not be viewed as definitive. 

 

A typical ribosome profiling dataset obtained from eukaryotic cells is characterized by a 

sharp distribution of lengths with a predominant length around 28-30 nucleotides. The 
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variation depends on the nuclease digestion conditions and the inhibitors used (see above). 

The distribution is wider for ribosome profiling datasets obtained from bacterial cells due to 

the read length distribution associated with Shine-Dalgarno interactions (O'Connor et al., 

2013). The read length distribution can be analysed with a number of tools, for example, 

FastQC (Andrews, 2010), a general tool for assessing the sequence quality of reads obtained 

with high throughput sequencing. FastQC also can be used to evaluate the accuracy of base 

calls and to quantify positional nucleotide frequencies, GC content and over-represented 

sequences. These analyses can often uncover problematic features such as the frequent 

addition of untemplated nucleotides during reverse transcription, untrimmed adapter 

sequences, etc.  

 

Another important way to assess the quality of the datasets is with a metagene profile. The 

metagene profile provides the frequency of footprints relative to all annotated start and stop 

codons. There are several ways to generate metagene profiles. One is to simply count the 

frequency of all footprints (using a single footprint position, i.e. the 5’ or 3’ end) at a specific 

coordinate relative to the annotated start codons (or stops) of all transcripts. The procedure 

for building a metagene profile relative to start codons could be represented as 

D(i)=ΣK(dk(i+sk)), where D is a metagene footprint density, i is the coordinate of metagene 

profile, dk is a footprint density at a transcript k from transcriptome K with sk being the 

coordinate of the annotated start. A potential issue with such a representation is that highly 

expressed mRNAs could dramatically skew the metagene profile. To mitigate this issue, the 

frequency of footprints could be normalized across individual mRNAs, so that they have 

equal influence on the overall picture. It is also possible to normalize the CDS length and 

analyse the frequency of footprints of different lengths, producing a very informative 

translatome representation as has been done by Thomas Preiss and colleagues (Archer et al., 
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2016). A metagene profile of a high-quality ribosome profiling dataset is expected to have a 

sharp difference in footprint density at the start and stop codons, so that the density is higher 

downstream of starts and upstream of stops (Figure 1.2). For the generation of metagene 

profiles in bacteria it is important to exclude overlapping CDS regions as well as closely 

located CDS regions to avoid signal interference. In a similar vein, the generation of 

metagene profiles in higher eukaryotes necessitates selecting a single transcript isoform 

where multiple isoforms exist to avoid an artificial amplification of footprints counts by the 

number of splice isoforms. Ideally the translated transcript isoform(s) at a gene locus should 

be used. However, metagene profile generation is typically carried out early in the Ribo-Seq 

data analysis process and isoform delineation, if required, performed further downstream. 

Hence heuristic approaches are often used such as selecting “principal isoforms” from the 

APPRIS database (Rodriguez et al., 2018). Other heuristic approaches of a single 

representative transcript selection and their limitations are discussed later in relation to 

differential expression analysis. 
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Figure 1.2: Assessment of ribosome profiling data quality (a, b) Triplet periodicity plots that show 

the number of footprints aligning to one of the three subcodon positions (differentially colored) for 

each subcodon position. (a) An example of good quality data showing strong periodicity and 

desirable read length distribution. (b) An example of data showing no triplet periodicity and an 

unexpected read length distribution. (c, d) Sub-codon ribosome profile of an ENSEMBL transcript 

expressed from the human B2M locus visualized with Trips-Viz. The ORF plot at the bottom shows 

three reading frames (differentially colored) with white dashes for AUG codons and black dashes for 

stops. The annotated CDS is demarked by the vertical black lines in the main plot and corresponds to 

the second reading frame. The footprint density is shown separately depending on the sub-codon 

phase of the aligned reads as curves that are colored to match the color of the supported reading 

frames. The reading frame detection is possible in (c), but not in (d) which correspond to (a) and (b) 

respectively. In addition in (c) the vast majority of reads map entirely within the CDS, while in (d) 

there are reads which map to the 3’ trailer region that are unlikely to be derived from translating 

ribosomes. For the source of the data see text. 

 

Triplet periodicity refers to the unequal distribution of read mappings relative to subcodon 

positions due to the triplet nature of the genetic code: elongating ribosomes move along 

mRNA in discrete steps of three nucleotides. The strength of the triplet periodicity can be 

assessed using the frequency with which a single footprint coordinate (e.g. 5’ or 3’ end) 

aligns to one of the three subcodon positions. See (Figure 1.3 (a,c)) for an example of a 

dataset with strong periodicity derived from (Calviello et al., 2016) and (Figure 1.3 (b,d)) for 

an example of a dataset with poor periodicity (Kirchner et al., 2017). Strong periodicity is a 

good indicator that the data is genuinely Ribo-Seq data and it can be used for the detection of 

translated reading frames (Michel et al., 2012), although it is not definitive as even RNA-seq 

data may indicate some periodicity due to crossover of sequencing biases and GC3 skew. 

However, the periodicity is dependent on the uniformity of the digestion position relative to 
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the ribosome’s decoding centre and thus varies depending on digestion conditions 

(Gerashchenko et al., 2017) and specifics of the translation apparatus (see above). Thus, the 

absence of strong periodicity does not necessarily mean that the other useful features of the 

data are also poor. One way to express the periodicity quantitatively is to calculate the 

proportion of reads at the predominant subcodon position. Another is to assess the divergence 

from an equiprobable distribution using Shannon Entropy (-Σpilog2(pi) where pi is the relative 

frequency of footprints at the i subcodon position). Shannon Entropy is a metric used in 

information theory that is used to assess the periodicity of signals. Random signals will tend 

to have lower entropy, and more ordered signals such as those seen in Ribo-Seq data with 

strong periodicity, tend to have higher entropy. The periodicity can also be detected with 

Fourier (Calviello et al., 2016; Chun et al., 2016) and wavelets transformations (Xu et al., 

2018). Both metagene profiles and triplet periodicity visualization plots can be produced by 

many different tools such as RibostreamR (Perkins et al., 2019), Ribo-SeQC (Calviello, 

Sydow, et al., 2019), RiboGalaxy (Michel et al., 2016), Plastid (Dunn et al., 2016), riboseqR 

(Chung et al., 2015) and mQC (Verbruggen et al., 2018).   
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Figure 1.3: Examples of metagene profiles. (a) The profile was created by aggregating Ribo-Seq 

counts from a region surrounding the annotated start codon (zero coordinate) of every gene for a 

single read length. This example shows the positions of footprint 5’ ends, but 3’ ends may also be 

used. Since initiation is slower than elongation, a peak of footprint density is expected at the start 

codon. Thus the location of the 5’ end peak density indicates the distance between footprints 5’ ends 

and ribosome P-site codon where tRNA-Meti is being incorporated (offset). (b) Same as (a) but 

relative to annotated stop codons (zero coordinate). A drop of footprint density is observed upstream 

of the stop. (c) A start codon metagene profile constructed as a heatmap has the advantage of 

displaying multiple read lengths simultaneously. It can be seen that the distance between 5’ ends and 

P-site codons vary depending on read lengths suggesting that different offsets should be applied to the 

reads depending on their length. 
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1.4 Determining the position of the decoding center 

An offset is typically applied to the sequence of ribosome footprints to infer the position of 

the A- or P-site of the ribosome that produced it. This is an integer which is added to the 

coordinate of the 5' end of a mapped read or, alternatively subtracted from the coordinate of 

its 3' end. The metagene profiles are often used to determine the offset, assuming that the first 

sharp increase in footprint density corresponds to the footprints of the ribosomes at the start 

codons. Since the start codons are recognised at the P-site, the distance between this increase 

and the first nucleotide of the start codon is used as the offset for determining positions of the 

P-sites, see (Figure 1.2(a)) for a metagene profile made using data from (Calviello et al., 

2016). To determine the positions of the A-sites, 3 nucleotides are added if the metagene 

profile is based on the 5’ ends or subtracted if it is based on the 3’ ends. Typically, when 

reads are not stratified by read lengths, 5’ end mappings produce a greater triplet periodicity 

in eukaryotic organisms, while 3’ ends produce greater periodicity in bacteria 

(Woolstenhulme et al., 2015). This is most likely due to the asymmetric variability of read 

lengths relative to the decoding centre which in case of bacteria could be attributed to Shine-

Dalgarno interactions with anti-Shine-Dalgarno (O'Connor et al., 2013). Applying a 'static' 

offset regardless of read length is often sufficient to determine positions of A- or P-sites with 

an accuracy that is satisfactory for numerous Ribo-Seq applications. However, the accurate 

determination of A or P-site positions is critical for certain applications such as the 

measurement of ribosome dwell times at specific codons (e.g. estimating codon decoding 

rates). The accuracy can be further improved with setting specific offsets for each read 

length, i.e. using separate metagene profiles made for each read length, see (Figure 1.2(c)) for 

a heatmap made using data from (Albert et al., 2014). 
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This approach can provide more accurate inferred A- or P-site locations than a static offset 

and thus improve the periodicity signal. However, in any given dataset there may be read 

lengths that are not abundant compared to the predominant read length. These low-abundance 

read lengths are difficult to correctly assign an offset to. 

 RiboWaltz (Lauria et al., 2018) aims to correct this by using offset values from abundant 

read lengths to infer the optimal offsets for less abundant read lengths. More sophisticated 

methods of offset determination have also been developed, (O'Connor et al., 2016) proposed 

the determination of the offset that maximises the difference of the estimated dwell time 

between codons. This assumes that the A-site has a predominant role in influencing the 

decoding rate. Ribodeblur (Wang et al., 2017), uses an expectation maximization-like 

procedure to obtain a more accurate estimate of A-sites. RiboproP (Zhao et al., 2018) is 

specifically designed to mitigate the sequence bias introduced from Ribo-Seq data generated 

with MNase , thus improving offsetting. See Table 1 for accession information to these tools. 

1.5 Translated ORF detection 

The detection of translated ORFs is an application for which ribosome profiling is uniquely 

well suited, particularly of short ORFs, whose products cannot be easily detected with 

proteomics techniques. Detecting translation using Ribo-Seq data is not straight forward as 

the presence of a footprint in a given genomic region does not necessarily mean that that 

region is being translated. In addition to the artefacts of mapping mentioned previously, not 

all sequences found in a ribosome profiling cDNA library derive from genuine ribosome 

protected fragments within the ribosome mRNA channel. In fact, most of the cDNA reads in 

any ribosome profiling library come from the ribosome itself as its rRNA gets digested 

during the procedure. Similarly fragments of other RNAs bound to the ribosome could 

contaminate the sample (fragments of tRNAs are also very abundant). Additional sources of 

contamination are fragments of RNAs from nucleoprotein complexes that could be co-
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isolated with ribosomal complexes. Thus, the difficult aspect of translated ORF detection is 

the discrimination of the signal obtained with genuine ribosome footprints from other RNA 

fragments. 

 

Nonetheless potentially translated regions can often be easily recognized upon manual visual 

inspection of the corresponding sequence region. Several existing resources provide such 

functionality such as Svist4get (Egorov et al., 2019) SmProt (Hao et al., 2018), GWIPS-Viz 

(Michel et al., 2018), Trips-Viz (Kiniry, O'Connor, et al., 2018)  HRPDViewer (Wu et al., 

2018) and RiboViz (Carja et al., 2017). Many allow for viewing Ribo-Seq datasets from 

multiple studies simultaneously which can significantly boost the signal to noise ratio making 

translated regions easier to detect. Manual visual detection is a simple and straightforward 

method of translated ORF detection, particularly when the translated ORF is highly translated 

and does not overlap with others. However, when several ORFs overlap or are nested within 

each other, their detection based purely on the density of footprints is difficult due to the 

heterogeneity of the signal within an ORF. Manual visual detection in these cases can be 

improved when footprints are discriminated based on the phase of their triplet periodicity. 

This could be done either by generating separate subcodon profiles or using differential 

colors for the reads depending on their phase relative to subcodon positions as in RiboSeqR 

(Chung et al., 2015), RiboGalaxy (Michel et al., 2016) or Trips-Viz (Kiniry, O'Connor, et al., 

2018), see Table 1.2. The main disadvantage of manual identification of translated ORFs is 

the low throughput. Manual inspection of even a bacterial genome is impractical. Thus, 

numerous tools have been developed to enable automatic high throughput detection of 

translated ORFs using Ribo-Seq data. 
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GWIPS-viz 

Genome browser for 

visualization of Ribo-

Seq data aligned to 

genomes 

https://gwips.ucc.ie 

(Michel, Fox, et al., 2014) 

HRPDViewer A resource for 

visualization of Ribo-

Seq data aligned to 

transcriptomes 

http://cosbi4.ee.ncku.edu.tw

/HRPDviewer/ 

(Wu et al., 2018) 

Openprot Database and viewer for 

exploration of Ribo-Seq 

and mass-spec data 

supporting translation of 

non-annotated ORFs 

https://openprot.org/ (Brunet, Brunelle, et al., 2018) 

RiboSeqDB Repository of human 

and mouse ribosome 

profiling data 

https://micro.biouml.org/bio

umlweb/ 

(Liu et al., 2018) 

RiboViz Online tool for 

visualization of publicly 

available Ribo-Seq data 

https://riboviz.org/ 

(Carja et al., 2017) 

RPFdb Database of ribosome 

profiling datasets rich in 

metainformation and 

their genomic 

alignments 

http://sysbio.gzzoc.com/rpfd

b/ 

(Xie et al., 2016) 

sORFs.org Database of short ORFs 

whose translation is 

supported with Ribo-Seq 

data 

http://sorfs.org 

(Olexiouk et al., 2018) 

svist4get Command-line 

visualization tool  

https://bitbucket.org/artegor

ov/svist4get/ 

(Egorov et al., 2019) 

TranslatomeDB On-line resource for 

visualization of public 

and user generated data 

http://translatomedb.net/ 

(Liu et al., 2018) 

Trips-Viz On-line environment for 

graphical exploration of 

public and user 

generated ribosome 

profiling data aligned to 

transcriptomes. 

https://trips.ucc.ie (Kiniry, O'Connor, et al., 2018) 

 

They utilize different computational concepts including statistical tests as in Ribo-TISH 

(Zhang et al., 2017), linear regression as in ORF-RATER (Fields et al., 2015), robustness of 

triplet periodicity as in RiboTaper (Calviello et al., 2016) and RiboWave (Xu et al., 2018), 

Hidden Markov models as in RiboHMM (Raj et al., 2016) as well as machine learning 

techniques, e. g. in REPARATION for bacterial genome reannotations (Ndah et al., 2017). 

Table 1.2: Data resources and visualization environments. 
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An in-depth analysis of these approaches requires a separate dedicated review. Further we 

will summarize the most common features of translated ORFs that are often used by these 

tools to predict their translation.  

 

The similarity between the patterns of footprints in mRNA 5’ leaders and lincRNAs observed 

in early mammalian datasets provoked a suggestion that translation takes place in RNA 

transcripts (and their parts) that were normally considered non-coding (Chew et al., 2013; 

Ingolia et al., 2011). In response to this claim Gutman et al (Guttman et al., 2013) developed 

Ribosome Release Score (RRS) which measures the drop of ribosome footprint density 

downstream of ORF stop codons and have shown that a high RRS score is a signature of 

annotated protein coding ORFs, but not of ORFs found in 5’ leaders and lincRNAs. While 

RRS provides a useful metric for estimating the accuracy of translation termination, its use as 

a sole signature of translation is peculiar since it assumes that no re-initiation or leaky 

scanning takes place, while both phenomena are well documented in eukaryotic cells, see 

(Hinnebusch, 2014; Hinnebusch et al., 2016; Shirokikh et al., 2018) for reviews. Re-initiation 

often takes place after termination at short ORFs and a large fraction of ribosome scanning 

complexes bypass start codons in a poor initiation context. This leads to a complex 

organization of short overlapping translated ORFs in the beginning of RNA transcripts where 

high ribosome density is observed both upstream and downstream of stop codons leading to 

low RRS scores. While RRS can indeed be used as a signature of ORF translation, since 

isolated ORFs are expected to exhibit high RRS scores, it is important to be aware of RRS 

limitations in detecting overlapping or closely located translated ORFs. 
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Indeed, a follow up study (Ingolia et al., 2014) developed another metric, fragment length 

organization similarity score (FLOSS) that is based on the similarity of length distributions of 

footprints across different transcripts and have shown that they can successfully discriminate 

RNA fragments mapped to genuine non-coding RNAs from those observed at translated 

ORFs providing further support to the initial claim that ribosomes do translate many short 

ORFs in 5’ leaders and RNA transcripts previously annotated as non-coding. Rfoot (Ji, 2018) 

uses the same principle of analysing read length distributions to identify non-ribosomal RNA 

footprints.  

 

In addition to a characteristic distribution of read lengths in translated ORFs another feature 

that is strongly associated with translation is triplet periodicity, however, the detection of 

triplet periodicity is difficult when the ORF length is short due to the high heterogeneity of 

the signal. To mitigate this issue Calviello et al. (Calviello et al., 2016) designed RiboTaper 

which is based on the multitaper approach (Thomson, 1982) developed for signal processing 

that performs a spectral analysis on a signal that has been transformed in a number of 

different ways (tapers). SPECtre (Chun et al., 2016) is another tool for detecting periodicity 

based on spectral analysis of aligned Ribo-Seq data developed around the same time. More 

recently RiboWave (Xu et al., 2018) was developed, which makes use of wavelet 

transformation to denoise ribosome profiling signal, and claims to outperform previously 

developed tools. Changes in ribosome footprint density can also be used as signature of 

translation. In addition to a drop of ribosome density at the ends of ORFs, many datasets 

exhibit characteristic patterns with elevated ribosome density at the beginning and the end of 

ORFs and this information can be taken into account when scoring potentially translated 

ORFs as in RiboHMM  (Raj et al., 2016). The problem of this approach is that such changes 
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in footprint density are often data specific and HMM emission probabilities obtained from the 

analysis of one dataset may not suit another dataset. 

 

There are certain variations of ribosome profiling methods that enrich ribosomes at the starts 

of translation initiation using specific translation inhibitors or their combinations (Gao et al., 

2015; Ingolia et al., 2011). This information can also be utilized for the detection of translated 

ORFs as in Ribo-TISH (Zhang et al., 2017) and is especially useful for localisation of start 

codons at which ORF translation is initiated, as it is often more difficult than detection of 

translation itself since translation initiation often takes place at non-AUG codons (Ivanov et 

al., 2011) especially when close to the 5’ ends  (Michel, Andreev, et al., 2014) and sometimes 

multiple start codons are being used to initiate the same ORF as in PTEN (Tzani et al., 2016). 

Some tools such as Ribo-TISH (Zhang et al., 2017) and the recently developed DeepRibo 

(Clauwaert et al., 2019) which uses neural networks to annotate bacterial genomes, are 

capable of utilising both elongating and initiating Ribo-Seq data.  

 

While many tools for predicting translated ORFs exist (see Table 3), their predictions differ 

considerably. Moreover, it is difficult to make specific recommendations on what software to 

use in the absence of independent benchmarking studies. Such benchmarking is very difficult 

to carry out due to a lack of gold standard sets of translated ORFs and adequate methodology 

orthogonal to ribosome profiling. A set of annotated protein coding genes cannot be used as a 

gold standard dataset since it is biased towards long ORFs coding for functional proteins. 

Although mass spectrometry analysis (Van Damme et al., 2014; Vanderperre et al., 2013) and 

phylogenetic analysis  (Andreev et al., 2015; Bazzini et al., 2014) are being used as 

orthogonal methodology, neither is truly adequate. Many of the short translated ORFs are 
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unlikely to produce stable peptides that can be detected with mass spectrometry, though 

efforts have been made to combine proteomics and ribosome profiling evidence such as with 

Proteoformer (Crappe et al., 2015), Proteoformer 2 (Verbruggen et al., 2019) and OpenProt 

(Brunet, Brunelle, et al., 2018). Similarly, the signal obtained from phylogenetic conservation 

depends on the length of the ORF and the depth of its conservation. Translation of some 

ORFs may not affect fitness and would evolve neutrally. Also, a functional ORF was recently 

reported for which no evidence of evolutionary selection was found (Xie et al., 2019). 

Therefore, in the absence of benchmarking standards and appropriate orthogonal 

methodology, the software described in this section can be used for exploratory analysis only. 

Despite these limitations ribosome profiling has been used to successfully confirm novel 

translated regions (Castelo-Szekely et al., 2019; Chugunova et al., 2019; Hardy et al., 2019) 

and even to discover a novel mechanism of translation regulation (Yordanova et al., 2018).  
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Table 1.3: Software tools for automatic detection of translated ORFs. 

Name Notes URL Ref. 

DeepRibo 
Detection of translated 

ORFs in bacterial genomes 

https://github.com/Biobix/D

eepRibo 
(Clauwaert et al., 2019) 

orfRater 

Detection of translated 

ORFs based on linear 

regression 

https://github.com/alexfield

s/ORF-RATER 

(Fields et al., 2015) 

 

ORFScore 
Scoring translated ORFs 

based on triplet periodicity 

https://rdrr.io/bioc/ORFik/m

an/orfScore.html 

(Bazzini et al., 2014) 

 

PreTis 

Detection of translation 

initiation starts based on 

linear regression 

http://service.bioinformatik.

uni-saarland.de/pretis/ 
(Reuter et al., 2016) 

PRICE 
Detection of translated 

ORFs using EM algorithm 

https://github.com/erhard-

lab/price 

(Erhard et al., 2018) 

 

Proteoformer 

Detection of translated 

ORFs with support from 

mass-spec data 

https://github.com/Biobix/pr

oteoformer 

(Crappe et al., 2015; Verbruggen 

et al., 2019) 

REPARATION 
Detection of translated 

ORFs in bacterial genomes 

https://github.com/Biobix/R

EPARATION 
(Ndah et al., 2017) 

Ribocode 

Detection of translated 

ORFs based on triplet 

periodicity 

https://github.com/xryangla

b/RiboCode 
(Xiao et al., 2018) 

riboHMM 
HMM based detection of 

translated ORFs 

https://github.com/rajanil/ri

boHMM 
(Raj et al., 2016) 

RibORF 
SVM based identification 

of translated ORFs 

https://github.com/zhejilab/

RibORF 
(Ji et al., 2015) 

Ribosome 

profiling 

analysis 

framework 

Detection of translated 

ORFs based on triplet 

periodicity 

https://github.com/LUMC/ri

bosome-profiling-analysis-

framework 

(de Klerk et al., 2015) 

RiboTaper 

Detection of translated 

ORFs based on spectral 

analysis of Ribo-Seq 

signal using multitaper 

https://ohlerlab.mdc-

berlin.de/software/RiboTape

r_126/ 

(Calviello et al., 2016) 

Ribo-TISH 

Is able to use Ribo-Seq 

data enriched at starts of 

initiation in addition to 

regular Ribo-Seq. 

https://github.com/zhpn102

4/ribotish 
(Zhang et al., 2017) 

RiboWave 

Detection of translated 

ORFs based on spectral 

analysis of Ribo-Seq 

signal with Wavelet 

transformation 

https://github.com/lulab/Rib

owave 
(Xu et al., 2018b) 

Rp-Bp 
Bayesian approach for 

detecting translated ORFs. 

https://github.com/dieterich-

lab/rp-bp 
(Malone et al., 2017) 

SPECtre 

Detection of translated 

ORFs based on spectral 

analysis of Ribo-Seq 

signal 

https://github.com/mills-

lab/spectre 
(Chun et al., 2016) 

uORF-seqr 

Regression based 

detection of translated 

ORFs. 

https://github.com/pspealma

n/uorfseqr 
(Spealman et al., 2018) 

ORFLine 

Uses filters based on 

previously defined 

features, e.g 

ORFScore/RRS.  

https://github.com/boboppie

/ORFLine 
(Turner et al., 2021) 
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1.6 Differential gene expression 

Ribosome profiling analysis is probably most frequently used for the characterization of 

differential gene expression as part of a time series or control/treatment group. It is assumed 

that slowly and rapidly decoded codons are distributed somewhat equally and therefore the 

relative frequency with which footprints are mapped to a specific ORF should be proportional 

to the levels of RNA bearing this ORF and efficiency of translation initiation at this ORF. In 

other words, the ribosome profiling signal is reflective of the total protein synthesis which 

accounts for the RNA levels (synthesis and degradation) and the rate of RNA translation. 

Ribosome profiling experiments usually are carried out in parallel with RNA-seq experiments 

that allow determination of RNA levels. When RNA levels do not change, but the ribosome 

profiling signal changes, it is reasonable to attribute these changes to changes in translation 

efficiencies. Note, however, that changes in local densities could be also caused by ribosome 

pausing. In this case, the induction of a ribosome pause at a specific location may be 

misinterpreted as increased translation. For example, Lobanov et al 2017 have noticed that 

Euplotes mRNAs containing sites of ribosomal frameshifting have a higher ratio of Ribo-Seq 

to RNA-seq reads than mRNAs translated without frameshifting. They attributed this 

difference to ribosome pauses rather than higher translation rates. To mitigate the influence of 

ribosome pauses on the assessment of differential translation, coordinates with the highest 

peaks of density could be excluded from the analysis as has been done in Andreev et al 2015. 

Yet another alternative would be to do a bootstrap sampling of densities from random CDS 

coordinates. Inconsistencies in differential gene expression analysis revealed by such a 

bootstrapping procedure would indicate a potential problem associated with ribosome 

pausing.  
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Often attempts are made to measure differential translation even when RNA levels do change 

simply by dividing the number of ribosome footprints aligning to an ORF by the number of 

RNA-seq reads. Such a procedure has several problems. First, it results in ratios that, unlike 

countable data (footprints and RNA-seq reads), do not carry information on the statistical 

significance, e.g. the ratio of 2/4 equals the ratio 200/400. Second, the best fit for the 

distribution of such ratio values is believed to follow the Cauchy distribution that is hard to 

model since both its mean and variance are undefinable. Finally, Ola Larsson and colleagues 

pointed out that spurious correlation between such ratios and their components (e.g. RNA 

levels) is necessitated mathematically (Larsson et al., 2010). 

 

In principle, differential translation could be defined as a miscorrelation between the RNA-

seq and ribosome profiling signal and it can be detected with the tools designed for RNA-seq 

analysis such as DESeq2 (Love et al., 2014) and EdgeR (Robinson et al., 2010) . 

Nonetheless, several standalone tools designed specifically for the characterization of 

differential translation efficiency from ribosome profiling data have been developed recently. 

Examples include babel (Olshen et al., 2013) , RiboDiff (Zhong et al., 2017), Riborex (Li et 

al., 2017), Xtail (Xiao et al., 2016), RIVET (Ernlund et al., 2018) and Anota2Seq (Oertlin et 

al., 2019), see Table 4. Online databases such as Trips-Viz (Kiniry, O'Connor, et al., 2018) 

and TranslatomeDB (Liu et al., 2018) also provide functionalities for differential gene 

expression characterization with the former applying a simple Z-score transformation for this 

purpose (Andreev et al., 2015; Quackenbush, 2002). As the statistical frameworks of these 

tools differ, not surprisingly, the sets and the number of genes predicted by them as 

differentially regulated differ. The field is seemingly in need of objective and independent 

benchmarking. It is important to note that irrespective of the specific approaches used for the 

assessment of differential translation, the differences are relative and not absolute. 
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Measurements of absolute changes in differential translation are not possible without spike-in 

controls allowing for the normalisation of the number of reads relative to the number of cells. 

Although attempts to introduce spike-in controls in ribosome profiling experiments have been 

made, e.g. Ingolia et al 2014, Andreev et al 2015, Iwasaki et al 2016, Popa et al 2016, and 

Gorochowski et al 2019, their suitability have not yet been rigorously assessed. 

 

 

Besides difficulties in evaluating differential expression based on two countable signals, the 

task is exacerbated by the existence and translation of multiple RNA isoforms due to 

alternative splicing and transcription initiation in complex eukaryotes, such as mammals 

(Blencowe, 2006). By mapping ribosome footprints across exon-exon junctions of 

alternatively spliced isoforms it has been shown that alternative isoforms could indeed be 

Table 1.4: Software for the analysis of differential translation. 

Name URL Ref. 

Orqas http://www.cs.cmu.edu/~ckingsf/software/ribomap/ (Reixachs-Solé et al., 2019) 

Ribomap https://github.com/lcalviell/SaTAnn (Wang et al., 2016) 

SaTann https://github.com/comprna/ORQAS (Calviello, Hirsekorn, et al., 

2019) 

RPiso http://cosbi7.ee.ncku.edu.tw/RPiso/ (Wu et al., 2021) 

Table 1.5: Software for the analysis of specific isoforms. 

 

Name URL Ref. 

Anota2Seq https://bioconductor.org/packages/release/bioc/html

/anota2seq.html 

(Oertlin et al., 2019) 

Babel https://cran.r-

project.org/web/packages/babel/index.html 

(Olshen et al., 2013) 

Ribodiff https://github.com/ratschlab/RiboDiff (Zhang et al., 2017) 

Riborex https://github.com/smithlabcode/riborex (Li et al., 2017) 

Rivet https://ruggleslab.github.io/rivet/ (Ernlund et al., 2018) 

Xtail https://github.com/xryanglab/xtail (Xiao et al., 2016) 
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simultaneously translated (Weatheritt et al., 2016). However, when more than one RNA 

isoform is translated in the same sample, it is extremely difficult to compare their relative 

translation. Even when a certain cell type expresses only one predominant isoform, it is not 

apparent how to choose the one that will be used as a reference. In practice several heuristics 

are commonly applied to deal with this problem, each of which could lead to specific 

artefacts. One method is to use the longest isoform or the isoform with the longest annotated 

coding region. The rationale is that even if such an isoform differs from what is present in the 

cell, reads derived from the shorter isoform would align to the longer one allowing for 

measurement of expression differences. However, this can be problematic in cases where the 

shorter isoforms have coding exons that are missing in longer isoforms. This problem could 

be solved with creating a “union” of all transcripts by collapsing the genomic co-ordinates of 

all possible exons. While this is a sensible approach for the analysis of differential gene 

expression at the “gene level”, it may not be appropriate for the analysis of translated features 

within mRNA, e.g. uORFs, because such a union may disrupt such uORFs. When it is 

necessary to choose only a single transcript, so called “principal isoforms” could be used 

which are curated in the APPRIS database (Rodriguez et al., 2018). However, 5’ 

leaders/3’trailers are not taken into account here, meaning multiple isoforms that differ only 

in their noncoding regions would all be annotated as the principal isoform. In an attempt to 

move away from these heuristic approaches and their shortcomings, software has been 

developed which takes Ribo-Seq data into account to do transcript isoform level 

quantification, i.e. Ribomap (Wang, McManus, & Kingsford, 2016), ORQAS (Reixachs-Solé 

et al., 2019) and SaTann (Calviello, Hirsekorn, et al., 2019), see Table 5. However, these 

tools assign footprints to different isoforms under the premise that their protein synthesis 

input is directly proportional to their RNA levels, i.e. they are translated with the same 

efficiency. This, however, may not always be the case, especially when different start codons 
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are used in different isoforms. The information that can be used within the Ribo-Seq data 

itself is reads that uniquely align to a specific isoform (unique exons and exon-exon 

junctions), however, because this is often within short regions of mRNAs, the number of 

footprints mapped to them could be sensitive to differences in ribosome dwell times at these 

locations. On top of that Ribo-Seq data could not be used to discriminate between alternative 

isoforms that differ in exons that are not translated. 

 

1.7 Pause detection 

Elongation rates varies as the ribosome traverses an mRNA and ribosomes could pause or 

stall at certain locations. Ribosome stalling can be caused by factors such as the secondary 

structure (Pop et al., 2014; Somogyi et al., 1993; Tholstrup et al., 2012), the interaction of the 

nascent peptide with the ribosome peptide channel (Becker et al., 2013; Tenson et al., 2002) 

and certain combinations of codons (Woolstenhulme et al., 2015). Pause sites have been 

shown to play important roles in translation in areas such as protein folding (Fluman et al., 

2014; Tsai et al., 2008), and regulation of protein synthesis (Ivanov et al., 2018; Kurian et al., 

2011; Yordanova et al., 2018). Pause sites are reflected in the Ribo-Seq data by high peaks 

relative to the surrounding region (Figure 1.1b). Like with translated ORF detection, pauses 

in Ribo-Seq data can be identified with manual visual inspection of ribosome footprint 

density profiles of individual mRNAs, but genome or transcriptome scale detection of pauses 

requires dedicated software.  

 

PausePred (Kumari et al., 2018) is one such tool, available in both browser based and 

standalone versions that allows users to upload Ribo-Seq data and an optional annotation file. 

It then uses a sliding window approach to search for regions with high Ribo-Seq peaks 
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relative to the background density. An accompanying tool, Rfeet then allows visualisation of 

the Ribo-Seq and (optionally) corresponding RNA-Seq data. Taking RNA-Seq into 

consideration is an important step when detecting pauses in Ribo-Seq data since it controls 

for the peaks caused by alignment artefacts. For example, when ambiguous mapping is 

allowed, a short region in a lowly expressed gene that shares sequence similarity with a 

highly expressed gene will appear as a peak in Ribo-Seq data. Similarly, if allowing only 

unambiguous alignments a short unique sequence surrounded by non-unique sequence will 

appear as a peak. Finally, a region with low sequence complexity that has many reads 

mapped just by chance can also appear as a peak in Ribo-Seq data. In all of these cases RNA-

Seq data will also exhibit a pause at the same location, but not so in the case of a genuine 

ribosomal pause.  

 

1.8 Prediction of footprint density 

Ribo-Seq profiles are noticeably non-uniform, arising in part from differences in ribosome 

decoding rates in addition to the presence of sequencing biases occurring due to substrate 

sequence specificity of the enzymes used in generation and sequencing of cDNA libraries. 

Global assessment of footprint density allows for the magnitude of these biases to be 

estimated. A number of tools (see Table 6) have been developed to assess footprint density, 

including RUST (Ribo-Seq Unit Step Transformation) which allows for the measurement of 

how much various sequence features consistently influence the density of footprints at 

specific positions relative to the decoding center of the ribosome, .i.e. RUST would not detect 

features that only influence a small subset of unique locations (O'Connor et al., 2016). 

Metafootprint plots generated with RUST, (Figure 1.4), visualize these dependencies, Figure 

4a is an example of a dataset with low sequencing bias from (Eichhorn et al., 2014) and 
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Figure 1.4b is an example of a dataset with high sequencing bias from (Reid et al., 2017). It is 

expected that the influence of the sequence at the decoding centre (i.e. A- and P-sites) should 

exceed that at the regions corresponding to read ends due to sequencing biases. Using the 

parameters of theses dependencies RUST can be used to predict ribosome profiling densities 

at the sequences for which no data exist with high accuracy. 

 

Riboshape (Liu et al., 2016) is another tool which aims to understand the sequence features 

responsible for Ribo-Seqs non-uniformity. It does this using kernel smoothing to predict 

sequence features and then predicts the “shape” of ribosome profiles. The authors find that 

footprint density in Saccharomyces cerevisiae can be predicted with high accuracy. More 

recently developed tools utilise the power of deep learning to predict footprint density, such 

as ROSE (RibosOme Stalling Estimator) (Zhang et al., 2017) which is trained on transcripts 

with high ribosome profiling density to predict locations of ribosome pauses on transcripts 

with little to no signal. Finally iXnos (Tunney et al., 2018), which also uses neural networks, 

also aims to predict footprint densities. The authors compared the performance of iXnos to 

RUST and Riboshape and have shown that it outperforms them both on a single test dataset. 

They also demonstrated the utility of iXnos for optimizing the coding sequence to increase 

the translation efficiency.  
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Name Notes URL Ref. 

iXnos 

Neural network based 

model of local densities. 

Can be used to predict 

local densities and for 

sequence optimization 

for increased expression 

https://github.com/lareaulab

/iXnos 

(Tunney et al., 2018) 

Pausepred Detection of local peaks https://pausepred.ucc.ie/ (Kumari et al., 2018) 

Riboshape A kernel-smoothing 

model enabling 

prediction of local 

densities.  

https://sourceforge.net/proje

cts/riboshape/ 

(Liu et al., 2016) 

Rose An approach for 

predicting ribosome 

stalling sites using deep 

convolutional network.  

https://github.com/mlcb-

thu/rose 

(Zhang et al., 2017) 

RUST Unit-step based 

normalization of 

footprint densities for 

the analysis of sequence 

features effecting 

footprint densities, can 

be used to predict local 

densities.  

https://lapti.ucc.ie/rust/ (O'Connor et al., 2016) 

Table 1.6: Software for the analysis of local footprint densities. 
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Figure 1.4: RUST metafootprint profiles that can be used for the assessment of sequencing biases 

that are manifested by high relative entropy (measured as Kullback-Leibler divergence) at the ends of 

footprints. The decoding center of the ribosome (A-site) is denoted by the vertical red line. The blue 

line represents Kullback-Leibler divergence at an individual codon level. The green line represents 

Kullback-Leibler divergence for adjacent codons. In the absence of sequencing biases the Kullback-

Leibler divergence is expected to be the highest at the decoding center. (a) A dataset with low 

sequencing bias. (b) A dataset with high sequencing bias at the 5’ ends of footprints. For the data 

sources see the text.  
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1.9 Pipelines, libraries, environments and data resources 

In the absence of dedicated software, the early ribosome profiling analysis was carried out 

with tools developed for other high throughput sequencing applications and with ad hoc 

computer scripts. Over the past decade a number of different pipelines, computational 

environments and data resources have been developed. Researchers now have a considerable 

choice of existing freely available software to suit their needs, platform preferences and style. 

There is a large number of pipelines written in different languages for processing raw 

ribosome profiling data (see Table 1), e. g. the ruby based pipeline RiboPip (Stefan, 2016) 

and the R package systemPipeR (Backman et al., 2016) that provide full workflows for Ribo-

Seq and RNA-Seq data analysis as well as other techniques such as CHIP-Seq in the latter 

package. Since raw data processing is not specific to ribosome profiling (outside of the above 

considerations) many packages and pipelines developed specifically for ribosome profiling 

take processed aligned reads in BAM file as input and provide only additional functionality. 

An example is a rich and extensible python library Plastid (Dunn et al., 2016). Likewise R 

packages Riboprofiling (Popa et al., 2016) and RiboseqR (Chung et al., 2015) also take 

alignment files as input and enable multifunctional downstream analysis. 

 

The above software packages are operational through a command line and expect a certain 

familiarity with the Linux operating system. Moreover, setting up such software may require 

a certain effort and additional expertise for installing the software to a specific environment. 

The required skills and available time are often understandably lacking among wet lab 

researchers. The Galaxy Project (Afgan et al., 2018) offers a solution to this problem by 

providing a graphical web-based interface for data analysis, where workflows can be saved 
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and rerun making the analysis reproducible. Software packages that do not have their own 

graphical interface could easily be integrated into Galaxy. Numerous specialized Galaxy 

servers have been created that provide the tools needed for a specific type of data. 

RiboGalaxy (Michel et al., 2016) is such an instance of Galaxy that provides several pipelines 

for the analysis of ribosome profiling data. RiboGalaxy is a part of the RiboSeq.Org 

collection (Figure 1.5). 

 

 

 

Figure 1.5: The RiboSeq.Org web portal serves as an entry point to GWIPS-viz, Trips-Viz and 

RiboGalaxy. GWIPS-viz provides visualizations of publicly available ribosome footprints mapped to 

several genomes. Trips-Viz offers rich functionality for the analysis of public and user generated data 

aligned to transcriptomes. RiboGalaxy provides cross-platform graphical interface for the tools 

initially written as command line software. 
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Like other sequencing data, ribosome profiling data can be found in public databases and 

many journals make deposition of the data to public archives a prerequisite for publication. 

The availability of the raw data, however, does not mean that these data can be easily utilised. 

Processing the raw data requires software, computational power, time and most importantly a 

certain level of familiarity with ribosome profiling data and technical issues described in this 

review. To democratize the data and to make it available to a large biomedical community 

that could benefit from it, it is important to provide access not only to raw data, but also to 

processed alignments. The first such database was GWIPS-Viz (for Genome Wide 

Information on Protein Synthesis Visualized) (Michel, Fox, et al., 2014). It provides genomic 

alignments of uniformly processed ribosome footprints and corresponding RNA-seq 

fragments. The alignments can be visualized either individually for specific datasets or as 

aggregates. To date GWIPS-Viz hosts Ribo-Seq data from 23 organisms (Michel et al., 

2018). See (Kiniry, Michel, et al., 2018; Michel et al., 2015) for tutorials on how to use 

GWIPS-viz. Another large database of processed and aligned ribosome profiling data is 

RPFdb (Wang et al., 2018; Xie et al., 2016). While both GWIPS-viz and RPFdb are databases 

of genomic alignments of ribosome footprints, their functionality is markedly different, and 

their abilities overlap minimally. For example, RPFdb provides rich information on specific 

datasets such as raw counts and RPKM values for specific loci. Other databases such as the 

newly developed resource, Trips-Viz (for Transcriptome Information on Protein Synthesis 

Visualized) (Kiniry, O'Connor, et al., 2018) align data to a transcriptome as this has the 

advantage of eliminating the problem of mapping across exon-exon junctions. Trips-Viz is a 

web-based collaborative interactive environment for graphical computational analysis of 

publicly available Ribo-Seq data (although user generated data can also be uploaded). Several 

other databases have been developed that provide information derived from ribosome 

profiling analysis, see Table 1.2.  
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1.10 Conclusion 

Over the past decade, many software modules, pipelines, visualization tools and data 

resources have been developed for Ribo-Seq analysis. As outlined in this review, more than 

one solution is now available for many tasks, from raw data processing to high-end 

applications such as the detection of translated ORFs. Subsequently researchers can choose 

tools to fit their specific computational backgrounds and styles. Nonetheless, despite the 

ample availability of resources, the field is far from saturation. We predict that it will 

continue to develop, perhaps, at an accelerated pace due to the following reasons. 

The ribosome profiling protocol itself continues to develop. Specific modifications of 

experimental procedures sometimes require development of new tools. Even more 

importantly, a number of issues in ribosome profiling data analysis remain unsolved, e.g. 

differential expression analysis of allelic variants. While parallel approaches exist for the 

same tasks (e.g. translated ORF detection, differential gene expression), the results obtained 

with these approaches often poorly converge. This is largely due to the lack of gold standards 

and reliable criteria for evaluating the performance of these tools. Development of 

benchmarking approaches is expected to lead to improvement of these tools by providing the 

means for their comparison and optimization.  

Recent developments in the characterization of mRNA translation, largely fuelled by 

ribosome profiling, further revealed the complexity of the translational landscapes of 

individual mRNAs, especially of high eukaryotes and specifically human mRNAs. 

Translation initiation could take place on many codons in the same mRNA (Fritsch et al., 

2012; Lee et al., 2012) , leading to the production of proteoforms with different N-termini 

(Ivanov et al., 2011; Menschaert et al., 2013). At the same time ribosomes reading through 

the stop codons lead to the generation of proteoforms with different C-termini (Jungreis et al., 

2011; Loughran et al., 2018; Rajput et al., 2019; Schueren et al., 2014). On top of that a large 
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proportion of mRNAs contain short translated ORFs (Andreev et al., 2015; Ji et al., 2015; 

Johnstone et al., 2016),  some of which encoding functional proteins as in the human MIEF1 

mRNA (Andreev et al., 2015; Brown et al., 2017; Delcourt et al., 2018).  The currently used 

data structures for representation of RNA transcripts based on a single reference transcript 

with a single CDS are not suited for the representation of this complexity (Brunet, Levesque, 

et al., 2018). Thus, we envision the development of new, more adequate, data structures. The 

computational tools will need to adapt subsequently to these data structures. 

Ribosome profiling allows for the quantitative assessment of only a single aspect of cellular 

activity, translation of its mRNAs. Often taking advantage of these data requires integration 

with other types of data (transcription initiation sites mapping, epitranscriptomics, mass 

spectrometry, etc.), and hence the tools for ribosome profiling data analysis need to provide 

such functionality either directly or through interoperability with the computational tools 

developed for the analysis of the data obtained with other techniques.  

Yet another challenge is posed by the changes occurring in the analysis of big biodata in 

general. The volume of data in the Sequencing Data Archive doubles every 10-20 months 

(Langmead et al., 2018) which is faster than the growth of computational power. While 

ribosome profiling data currently represents only a microscopic fraction of these data, it is 

unlikely that the volume of ribosome profiling data will be growing at a slower pace. Thus, 

the computational efficiency of the algorithms will become critical. As the data volumes 

increase their physical transfer between servers is becoming increasingly less practical. This 

necessitates a paradigm shift from data-to-tools to the tools-to-data which requires the 

development of dedicated cloud infrastructure (Langmead et al., 2018). In the future tools 

will need to be adapted for these new environments. 
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Chapter 2 

Trips-Viz: a transcriptome browser for exploring Ribo-Seq data. 

This chapter has been published in Nucleic Acids Research, Volume 47, D847-D852 (Kiniry, 

O'Connor, et al., 2018). For this work I wrote the majority of the code for Trips-Viz, POC 

worked on the z-score implementation in Trips-Viz. All authors worked on writing, reviewing 

and editing the manuscript.  

 

Ribosome profiling (Ribo-Seq) is a technique that allows for the isolation and sequencing of 

mRNA fragments protected from nuclease digestion by actively translating ribosomes. 

Mapping these ribosome footprints to a genome or transcriptome generates quantitative 

information on translated regions. To provide access to publicly available ribosome profiling 

data in the context of transcriptomes we developed Trips-Viz (Transcriptome-wide 

information on protein synthesis- Visualized). Trips-Viz provides a large range of graphical 

tools for exploring global properties of translatomes and of individual transcripts. It enables 

analysis of aligned footprints to evaluate datasets quality, differential gene expression 

detection, visual identification of upstream ORFs and alternative proteoforms. Trips-Viz is 

available at https://trips.ucc.ie 

 

2.1 Introduction 

Ribosome profiling (Ingolia et al., 2009), also known as Ribo-Seq, is a technique that allows 

for large scale isolation of mRNA fragments that are being protected by actively translating 

ribosomes, see reviews (Andreev et al., 2017; Brar et al., 2015; Calviello et al., 2017; Ingolia, 

https://trips.ucc.ie/
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2014; McGlincy et al., 2017; Michel et al., 2013; Stern-Ginossar et al., 2015). Sequencing 

these fragments, mapping them to a genome or transcriptome, and visualising these mappings 

can produce a global snapshot of which regions are being translated. There are a number of 

existing web based browsers which allow users to explore the alignments of publicly 

available ribosome profiling data. GWIPS-Viz (Michel, Fox, et al., 2014) which provides 

both ribosome profiling and mRNA-seq data aligned to the genome was the first such 

browser developed for this purpose. To date, GWIPS-Viz hosts data from 23 organisms 

(Michel et al., 2018). SmProt (Hao et al., 2018) is another web based tool that aligns 

ribosome profiling data to the genomes of 8 different organisms, combined with literature 

mining and mass spectrometry data it aims to find short translated ORFs (open reading 

frames) and allows users to explore each of these data types extensively.  RPF-db (Xie et al., 

2016) also permits visualisation of ribosome profiling data aligned to 8 different organisms at 

a genomic level, as well as providing in depth information such as count tables, and meta-

information such as the number of reads mapping to exonic/intronic/intergenic regions. 

Unlike these genome based tools, RiboViz (Carja et al., 2017) provides data aligned to the 

Saccharomyces cerevisiae transcriptome. It processes the data to analyse useful 

characteristics of the datasets, e.g. readlength distribution, triplet periodicity, as well as 

translation efficiencies. TranslatomeDb also aligns Ribo-Seq data to the transcriptomes of 13 

different organisms, along with RNA-Seq and RNC-Seq data (Liu et al., 2018). 

 

 Mapping data to the transcriptome has certain advantages over mapping to the genome. 

Ribo-Seq reads are typically short (~30 nucleotides in length) and so the difficulty of 

mapping these short reads across splice junctions is relieved. The absence of long or 

numerous intronic regions makes the interpretation of the mapped reads easier from a user 

perspective when mapping to a transcriptome. However, it should be noted that aligning to 
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the transcriptome is not inherently superior to genomic alignments, transcriptomic alignments 

for example are annotation dependent, meaning alignments would have to be re-done for each 

different version of the transcriptome. Transcriptome aligned data cannot be used for the 

analysis of translation outside of exons, e.g. translation of retained introns (Zafrir et al., 

2016). As both methods have their advantages/disadvantages it would be best to make use of 

both transcriptomic and genomic alignments when analysing sequencing data.   

 

Trips-Viz presents transcriptomic alignments of Ribo-Seq and mRNA-seq data. Currently the 

number of organisms available in Trips-Viz stands at 7 (Homo sapiens, Rattus norvegicus, 

Saccharomyces cerevisiae, Mus musculus, Drosophila melanogaster, Escherichia coli, and 

Caenorhabditis elegans). At the time of writing there are 1460 Ribo-Seq datasets and 335 

mRNA-seq datasets available.  

 

Trips-Viz utilizes a number of visualization solutions, not implemented by other tools. For 

instance, reads are coloured depending on matching subcodon position, to visualize triplet 

periodicity of Ribo-Seq data. Colour coding the reads can give a clear picture of which 

reading frames of a transcript are likely being translated, particularly if using an aggregate of 

data from many studies. This is particularly useful when multiple ORFs of the same transcript 

are being translated, e.g. CDS (Coding Sequence) and overlapping upstream ORFs (Michel et 

al., 2012). 

 

Trips-Viz provides a versatile set of graphical analysis tools including the readlength 

distribution, triplet periodicity, metagene profiles and more. Trips-Viz also provides the 

ability to plot multiple datasets on the same graph for the same transcript. This allows for 
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comparison of translated features across different samples, e.g. cell lines/tissues as well as 

across conditions and in response to drug treatments. Lastly, Trips-Viz allows the user to 

detect differentially expressed genes (at the level of RNA and protein synthesis). 

 

2.2 Materials and methods 

The Trips-Viz pipeline for processing Ribo-Seq data is as follows: publicly available 

ribosome profiling and corresponding RNA-seq datasets are downloaded from the gene 

expression omnibus https://www.ncbi.nlm.nih.gov/sra/ in SRA format. These are converted 

to FASTQ format and then the adapter sequence is clipped using cutadapt (Martin, 2011), 

reads below 25 nucleotides are removed. Bowtie (Langmead et al., 2009) is then used to 

remove any reads mapping to ribosomal RNA. Bowtie is again used to map the remaining 

reads to a reference transcriptome. Samtools (Li et al., 2009) is used to convert the resulting 

SAM file to BAM file format.  Finally, the BAM file is parsed using a custom python script 

to pull out the necessary information for Trips-Viz, this includes determination of offsets for 

Ribo-Seq reads. This is a numerical value added to the position of the 5’ end of reads (or 

subtracted from the 3’ end) to approximate the A-site. This is done by creating a metagene 

profile, an aggregation of reads from all coding transcripts centred around annotated start 

codons. The distance in nucleotides between the highest peak upstream of the start codon (or 

downstream if determining a 3’ end offset) and the start codon itself (located at the P-site) is 

determined. This value is modified by adding 3 to set the 5’ end offset (or subtracting 3 to set 

the 3’ offset). Both 5’ end offsets and 3’ end offsets are determined separately for every read 

length. Offsets and other information extracted from the BAM file are stored in SQLite 

format.  

https://www.ncbi.nlm.nih.gov/sra/
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The web framework for Trips-Viz is handled using the python package Flask 

(http://flask.pocoo.org/). All plots are generated using either mpld3 (http://mpld3.github.io) 

or bokeh (https://bokeh.pydata.org/en/latest) python packages. Currently we intend to include 

all publicly available Ribo-Seq data, however this may change as the number of ribosome 

profiling studies increases.  

 

2.3 Discussion 

The primary use of Trips-Viz is the interactive visualization of an aggregate of ribosome 

profiling data at subcodon resolution in the context of single transcripts, a feature not 

provided by other existing databases. To do this the user selects an organism and 

transcriptome assembly and then selects Single transcript plot. Settings such as the gene of 

interest, minimum and maximum readlengths, ambiguous mapping filters and other settings 

can be changed at the top of the page. Ribo-Seq and mRNA-seq data files can be chosen at 

the centre of the page by selecting a sequence type, a study name and then clicking 

checkboxes next to file names. Clicking the View Plot button at the end of the page will 

produce a plot of the transcript in question. More detailed instructions on how to select data 

files and what each setting does can be found on the help pages or by clicking the link next to 

any of the settings labelled “What's this”. 

 

There are three horizontal bars below the plot coloured in red, green and blue. These 

represent the three reading frames of the transcript, with short vertical white lines 

representing start codons and longer vertical grey lines representing stop codons. The main 

window shows densities of mapped footprints as line graphs of either red, green, or blue 

colours depending on the reading frame whose translation is the best supported by the reads 

based on their alignments relative to subcodon positions. The coloured boxes on the right of 

http://flask.pocoo.org/
http://mpld3.github.io/
https://bokeh.pydata.org/en/latest
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the graph represent the control panel with coloured buttons that allow the user to hide/display 

corresponding items in the main window. There are 4 icons below the plot, the first three 

when clicked, allows users to reset/move/zoom the view in the main window. The fourth icon 

allows the user to download the nucleotides sequence and read counts from the current 

transcript in csv format.  

  

To demonstrate the utility of this plot an example is shown in Figure 2.1. Here a plot from the 

Single transcript plot page of Trips-Viz has been generated for the human KIAA0100 gene 

using an aggregate of Ribosome Profiling datasets. The annotated coding region of this 

transcript starts at position 75 in the second frame (green). As can be seen in the figure most 

of the Ribo-Seq reads after position 75 are represented predominantly by green line graphs 

(up until the annotated stop codon at position 6780 where the read density decreases 

drastically) indicating translation in the second frame, as expected. Translation of a short 

upstream ORF at the coordinates 33-72 is also evident.  Within the CDS one notable 

exception to the predominantly green reads lies between positions 235 and 454 where the 

reads are predominantly blue. This corresponds to an ORF within the third line (blue) of the 

ORF architecture, which likely means this ORF is also translated.  Detection of such nested 

ORFs in particular highlights the currently unique utility of Trips-Viz that is enabled by 

differential read density colouring.  
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Figure 2.1: Modified screenshots of the Trips-Viz single transcript plots for a Gencode transcript of 

the human KIAA0100 gene (large plot) and its 5’ area (small plot). Ribo-Seq read densities are 

displayed in the main window, colour coded according to their mapping phase relative to the reading 

frame subcodon positions. Transcript coordinates are shown on the x-axis, while read counts are 

shown on the y-axis. The ORF architecture is shown below with three different reading frames 

differentially coloured, stop codons indicated as vertical grey dashes and AUGs as white dashes.  

 

Another useful feature of Trips-Viz is the ability to plot data obtained from multiple different 

samples on the same transcript simultaneously to allow comparative analysis. This can be 

achieved using the Single transcript comparison plot. Here users can specify the transcript at 

the top of the page and choose whether to normalise the data over the number of mapped 

reads per sample, which is useful when comparing datasets with large differences in 

coverage. Users can set up groups of data using study names at the centre of the page. This is 

done by selecting a colour (by clicking on the coloured button), selecting a file and then 

clicking the Add button. The data between the groups are differentially coloured enabling 

comparison via visual inspection. 
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An example is shown in Figure 2.2 for the human CSDE1 that illustrates how its translation is 

changed during Integrated Stress Response (ISR) using data from the Andreev et al. study 

(Andreev et al., 2015). For the samples treated with sodium arsenite (a trigger of ISR), Ribo-

Seq and RNA-Seq read densities are displayed using line graphs of light red and dark red 

colours respectively. Read densities from untreated control samples are displayed in light 

green (Ribo-Seq) and dark green (RNA-Seq). It can be seen that both mRNA-Seq datasets 

have very similar densities, indicating that there is little or no RNA level changes in response 

to the arsenite treatment. In contrast, the Ribo-Seq density from arsenite treated cells is lower 

than that for the Ribo-Seq data obtained from the untreated cells, indicating that translation of 

this gene is reduced substantially during ISR in comparison with translation of other genes.  

 

Figure 2.2: A modified screenshot of a single transcript comparison plot for CSDE1 gene. The read 

densities from four datasets are shown as line graphs highlighted differentially as indicated by the 

legend in the top right corner. The other features are similar to Figure 2.1 
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Unlike the two previous plot types the Meta-Information page gets its information from an 

entire dataset, aggregating information from multiple transcripts, for example, the triplet 

periodicity plot displays information from all annotated coding transcripts. This page allows 

the user to create a number of different plots which can be selected at the top left of the page. 

File selection is handled at the centre of the page in the same manner as the Single transcript 

plot page. In general, this page can be used to assess the quality of datasets as these plots 

provide general characteristics of the datasets that could reveal dataset defects. Examples are 

shown in Figure 2.3. A detailed description of each plot type can be found on the help pages, 

https://trips.ucc.ie/help. 

 

https://trips.ucc.ie/help
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Figure 2.3: Dataset characterizations. a. Distribution of read lengths from Matsuo et al. dataset 

(Matsuo et al., 2017). b. Triplet periodicity plot for a Ribo-Seq dataset from Loayza-Puch et al. 

(Loayza-Puch et al., 2016). Here each readlength is displayed using 3 bars depending on their phase 

to the first subcodon position of three different reading frames. Only reads aligned to annotated 

coding regions are used in this plot. The difference between bars indicates the strength of triplet 

periodicity. The datasets with stronger periodicity has a greater power for detecting translated 

reading frames as in the example shown in Figure 2.1. c. A metagene profile of a Ribo-Seq dataset 

from Neri et al. (Neri et al., 2017). Here the frequency of Ribo-Seq reads is shown relative to start 

codons (0 coordinate) across all protein coding transcripts and displayed either for reads 5’ (red) or 

3’ (blue) ends. Since most ribosome footprints are expected to be found inside CDS regions, an 

increase in ribosome density is expected upstream of CDS. Metagene plots can be used for inferring 

an offsets between the decoding centre of the ribosome (A or P-sites) and the ends of ribosome 

footprints. The plot also indicates the strength and consistency of triplet periodicity. 



57 

 

Lastly there is the Differential plot page, where users can find genes whose expression is 

significantly up/down-regulated relative to others. Users can organize the data into groups 

and compare relative RNA levels or protein synthesis levels between the groups and set 

minimum/maximum Z-scores at the top of the page. Up/down-regulated transcripts will then 

be detected using the Z-score transformation approach (Andreev et al., 2015). An example of 

the resulting plot can be seen in Figure 2.4. Here transcripts are represented as points on a 

scatter plot, with yellow lines specifying the upper and lower thresholds to indicate the z-

score cut-off (as chosen by the user). Points above the upper threshold are coloured green 

(up-regulated) while points below the lower threshold are coloured red (down-regulated). 

Hovering the mouse cursor over a specific point will display the transcript ID and the number 

of reads mapped to it, while clicking on the point will open up a separate tab where the read 

densities for that gene will be displayed on the Single transcript comparison plot page.  
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Figure 2.4: A modified screenshot of Trips-Viz showing a plot from the Differential plot page for the 

datasets obtained in the Albert et al. dataset (Albert et al., 2014). Here fold change log ratios are 

shown on the y-axis while the geometric mean of the read counts in each condition is shown on the x-

axis. Transcripts are grouped into bins of size 300 based on the geometric mean. Based on 

parameters of log ratios within each bin, a z-score is calculated for each transcript. The yellow lines 

on this graph represent the positive and negative z-score threshold (as chosen by the user), and 

transcripts that fall above/below that threshold are coloured green/red. 

 

In addition to data visualizations Trips-Viz provides a platform for collaborative research and 

data sharing. For every plot created on Trips-Viz a URL is created which contains 

information such as the files and settings used to create the plot. This URL can then be sent to 

another user, where Trips-Viz will use the information in the URL to recreate the plot in their 

browser. For convenience, rather than displaying the URL directly to the user, the URL is 

given a unique short code which is visible between parentheses in the title of every plot on 

Trips-Viz, including the plots presented in this manuscript. The URL can then be sent in the 

following form https//trips.ucc.ie/short/short_code. For example to recreate the plot shown in 
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Figure 2.1 users can follow the link https://trips.ucc.ie/short/3bi and explore the plot 

interactively in a browser. These links will last for the lifetime of Trips-Viz, with the 

exception of links associated with private data.  

 

Private data can be uploaded by any user with an account on Trips-Viz, an account can be 

created using the Sign up link at the top of any page. Uploaded data must be in a specific 

format which can be created by running a python script and passing it a BAM file. Users can 

download this script from the Trips-Viz downloads page, a link to which is given at the top of 

every page and instructions on how to use it are included in the script itself. The downloads 

page also provides the relevant transcriptome fasta file and gtf file for each 

organism/assembly in Trips-Viz. Files can be uploaded using the uploads link at the top of 

every page. The user’s data will be securely hidden from all other users by default but the 

uploader can share the data with other users of their choosing via the uploads page. Signing 

up also allows users to customize the graphic display of Trips-Viz, e.g. the background 

colour of plots. This can be accessed by visiting the settings link at the top of any page while 

signed in.  

 

We plan to continually expand the number of organisms and Ribo-Seq/mRNA-Seq datasets 

available in Trips-Viz by including data as they become publicly available. However, it is 

conceivable that our computational capacities will not match the rapid pace of data growth. In 

this case we aim to develop a policy for data selection/prioritization based on data quality and 

their general scientific interest. We plan to streamline uploading of private data by providing 

a data processing workflow on Ribogalaxy (Michel et al., 2016). We also plan to generate a 

docker image of the site for users who may want to run their own instance of Trips-Viz. Also, 
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we intend to explore the possibility of providing other types of publicly available sequencing 

data that are relevant to mRNA translation, e.g. epitranscriptomics data (Jantsch et al., 2018). 

We encourage users to contact us via the contact page https://trips.ucc.ie/contactus to provide 

feedback or suggestions, Trips-Viz related comments are also welcomed at the GWIPS-viz 

forum https://gwips.ucc.ie/Forum/ . The current version of Trips-Viz was optimized and 

tested with Chrome and Firefox browsers. Its full functionality with other Internet browsers is 

not guaranteed at present. 
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Chapter 3  

Trips-Viz: an environment for the analysis of public and user-

generated ribosome profiling data 

This chapter has been published in Nucleic Acids Research, Volume 49, Issue W1, Pages 

W662–W670 (Kiniry et al., 2021). For this work I wrote the majority of the code for Trips-

Viz, CEJ worked on the pipeline for processing proteomics data. All authors worked on 

writing, reviewing and editing the manuscript.  

 

Trips-Viz (https://trips.ucc.ie/) is an interactive platform for the analysis and visualization of 

ribosome profiling (Ribo-Seq) and RNA sequencing (RNA-seq) data. This includes publicly 

available and user generated data, hence Trips-Viz can be classified as a database and as a 

server. As a database it provides access to many processed Ribo-Seq and RNA-seq data 

aligned to reference transcriptomes which has been expanded considerably since its 

inception. Here we focus on the server functionality of Trips-viz which also has been greatly 

improved. Trips-viz now enables visualisation of proteomics data from a large number of 

processed mass spectrometry datasets. It can be used to support translation inferred from 

Ribo-Seq data. Users are now able to upload a custom reference transcriptome as well as data 

types other than Ribo-Seq/RNA-Seq. Incorporating custom data has been streamlined with 

RiboGalaxy (https://ribogalaxy.ucc.ie/) integration. The other new functionality is the rapid 

detection of translated open reading frames (ORFs) through a simple easy to use interface. 

The analysis of differential expression has been also improved via integration of DESeq2 and 

Anota2seq in addition to a number of other improvements of existing Trips-viz features. 

 

https://trips.ucc.ie/
https://ribogalaxy.ucc.ie/
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3.1 Introduction 

Ribosome profiling (Ribo-Seq) is a technique that allows for large scale isolation of mRNA 

fragments which are being protected by actively translating ribosomes (Ingolia et al., 2009). 

These fragments can then be mapped to a genome or transcriptome and utilized in a number 

of different ways. This includes detection of novel translated open reading frames and pause 

sites, as well as identification of differentially translated genes, for reviews see (Andreev et 

al., 2017; Brar et al., 2015; Ingolia, 2014). To date there has been a number of different 

software packages created to explore each of these aspects of ribosome profiling (Kiniry et 

al., 2020). Many of these require some computational expertise and familiarity with 

command line usage. In addition, specific expertise and time are required to process and map 

the raw ribosome profiling reads. This too has been addressed by many packages (Dunn et 

al., 2016; H. Backman TW et al., 2016; Q. Liu et al., 2020; Michel et al., 2016; Ozadam et 

al., 2020) which aim to simplify the task of processing ribosome profiling data. Furthermore, 

many databases now exist which provide pre-processed publicly available ribosome profiling 

data (Brunet et al., 2019; Liu et al., 2018; Michel, Fox, et al., 2014; Olexiouk et al., 2018; 

Wang et al., 2018) , allowing users to carry out analysis either explicitly or implicitly through 

visualization of the data. 

 

 Among these is Trips-Viz, a transcriptome analysis platform with a focus on visualization 

and analysis of processed Ribo-Seq and RNA-Seq data. The triplet periodicity of ribosome 

profiling data allows for the detection of the translated reading frame (Michel et al., 2012).  

Trips-Viz takes advantage of this by colour coding Ribo-Seq reads according to the supported 

reading frame. This facilitates users to rapidly view Ribo-Seq profiles aggregated from 
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numerous studies, providing the functionality to visually decipher not just the location but 

also the reading frame where translation is most likely occurring for a given mRNA 

transcript. Other capabilities include the option to directly compare multiple datasets on a 

single mRNA transcript, the functionality to carry out differential expression/translation 

analysis and calculate and visualize simple meta data statistics for individual datasets such as 

the distribution of read lengths, strength of triplet periodicity and metagene profiles. These 

statistics are useful for assessing data quality. Thus, Trips-Viz provides users with a large 

amount of relevant information which they can obtain very quickly and without the need for 

computational expertise and resources. Here we will discuss the major updates to Trips-Viz 

since its original publication (Kiniry, O'Connor, et al., 2018) focusing on its server 

functionality. For a full list of updates see https://trips.ucc.ie/stats/. 

 

3.2 New and enhanced features 

3.2.1 Improved ease of use 

Since the launch of Trips-Viz users were able to process and upload their own files to be 

viewed privately and shared with collaborators. However, this required some familiarity with 

the command line and was a complex process. As one of the goals of Trips-Viz is to reduce 

users’ computational workload, this was not an ideal solution. To address this, the relevant 

scripts were streamlined and incorporated into RiboGalaxy (Michel et al., 2016). RiboGalaxy 

is a GUI based platform made for processing Ribo-Seq and RNA-Seq data, based on the 

Galaxy platform (Afgan et al., 2018), designed to streamline and standardize analysis of 

biological data while making the process transparent and reproducible. Users can now easily 

carry out all the steps necessary to process a raw fastq file for uploading to Trips-Viz, all 

within RiboGalaxy. This includes upload of custom transcriptomes to Trips-Viz, a feature 

https://trips.ucc.ie/stats/
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that was absent at the time of the Trips-Viz launch. Thus, Trips-Viz can now be used for data 

obtained from any species irrespective of whether a corresponding transcriptome is already 

available. The custom transcriptomes can also be processed using RiboGalaxy if users upload 

the relevant transcriptome fasta and GTF files.  

 

While comprehensive help pages have been available from the beginning 

(https://trips.ucc.ie/help/), Trips-Viz is a GUI based tool which makes it difficult to easily 

explain the steps needed to carry out certain analysis when compared to a command line tool. 

This, coupled with the growing functionality and diversity of Trips-Viz visualizations makes 

using it more daunting for new users. To address this, videos have been embedded in the help 

pages, one for each plot type. Videos walk new users through the use of each plot, explaining 

the meanings of various settings and parameters and effects that they make on a specific 

visualization. This makes it easier for new users to quickly become familiar with the Trips-

Viz interface and use it to its full potential. Users can now also download most plots on 

Trips-Viz in high resolution in .png format in addition to having more control over the size 

and colour of different plot elements on the settings page.  

 

3.2.2 Mass spectrometry data 

Trips-viz was originally designed solely for the analysis and visualization of Ribo-Seq and 

RNA-Seq data. Since then, we have expanded it to incorporate other data types, primarily 

mass spectrometry data. A popular application of Ribo-Seq data is to look for evidence of 

translation outside of regions annotated as protein-coding (Calviello et al., 2016; Ingolia et 

al., 2014). As mass spectrometry data also provide information on translation, it is reasonable 

to conclude that interrogating both types of data simultaneously can be greatly beneficial 

https://trips.ucc.ie/help/
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(Brunet et al., 2019; Cao et al., 2020; Martinez et al., 2020; Verbruggen et al., 2019) . While 

there are numerous useful resources to explore publicly available mass spectrometry data 

(Desiere et al., 2006; Schmidt et al., 2018), many look only for support from existing 

annotated CDS’s, diminishing their usefulness in terms of providing supporting information 

to Ribo-Seq findings. In Trips-Viz we do not limit the peptide search to CDS ORFs, opting 

instead to search all 3 reading frames across the entire transcript. This is done for all principal 

(Rodriguez et al., 2018) transcript isoforms in the transcriptome. This enables us to find 

proteomics support for translated regions regardless of location within the transcript and 

leverage the same graphs and colour scheme used to display Ribo-Seq data allowing users to 

easily see the frame and location of detected peptides.  

 

To date there are 3152 processed mass spectrometry datasets available on Trips-Viz. The 

pipeline for Trips-Viz proteomics data integration involves searching for peptides in all 3 

reading frames using MSFragger (Kong et al., 2017), then removing peptides with an FDR > 

1% using Philosopher (da Veiga Leprevost et al., 2020). The output is then parsed and results 

are uploaded to Trips-Viz, where they are coloured according to the matching reading frame, 

in a similar manner to Ribo-Seq data. Their visualization can then be used to find novel 

translated ORFs, or to corroborate results observed from Ribo-seq data. See an example in 

Figure 3.1 where peptides from a uORF can be seen for the human gene MIEF1, which has 

previously been shown to be translated and was predicted to code for a functional protein 

(Andreev et al., 2015). Subsequently, its product was identified as a part of protein complex 

involved in assembly of mitochondrial ribosome (Brown et al., 2017) and further evidence 

supported its function in mitochondrial translation (Rathore et al., 2018), the proteomics data 

also suggest that the product encoded by MIEF1 uORF is the main product of its 

mRNA(Andreev et al., 2015; Delcourt et al., 2018), while the synthesis of the MIEF1 protein 
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is activated by stress conditions. Additionally, users can now also upload custom mappings of 

mass spectrometry data to Trips-Viz. 

 

3.2.3 Detecting non-canonical ribo-seq signals 

Detecting translated open reading frames (ORFs) using ribosome profiling data has been a 

subject of much interest in recent years. While many different programs now exist that can 

detect translated ORFs (Bazzini et al., 2014; Calviello et al., 2016; Clauwaert et al., 2019; 

Crappe et al., 2015; Erhard et al., 2018; Fields et al., 2015; Ndah et al., 2017; Reuter et al., 

2016; Xiao et al., 2018), the majority of them require bioinformatic expertise as well as 

processed Ribo-Seq data, both of which may be expensive to acquire in terms of time and 

computational power. Trips-viz is now capable of automatically detecting Ribo-Seq signals 

outside annotated CDS regions in a simple but effective manner using previously processed 

Ribo-Seq data. This allows users to quickly and easily use an aggregate of data from multiple 

studies with good periodicity which can dramatically improve detection.  

Trips-viz differs somewhat in its approach from most existing translated ORF detection 

approaches. It does not use machine learning methods as these rely on the availability of a 

“gold-standard” set of translated ORFs, which can be difficult to achieve even in well 

annotated organisms. Instead, at present, Trips-Viz first discards all read-lengths with weak 

triplet periodicity and then extracts 3 to 4 Ribo-Seq features (depending on the region of 

interest) from ORFs and ranks these features individually from strongest translational signal 

to weakest. These features include the increase of Ribo-Seq density at the start codon, the 

drop in Ribo-Seq density at the stop codon, the difference in in-frame and out-of-frame Ribo-

Seq reads and the number of codons in the region of interest where the in-frame reads are 

higher than the out-of-frame reads. These individual ranks are then aggregated to determine a 
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global rank for every ORF. It will then display a list of ORFs from strongest to weakest Ribo-

Seq signal. This simplistic method does not allow for binary classification of ORFs as 

translated/untranslated as many other programs do. However, the goal of Trips-Viz differs in 

that it aims to allow users to rapidly find individual examples of high confidence non-

canonical translation via manual inspection that warrant deeper investigation.  
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Figure 3.1: The Trips-Viz single transcript plot for the human gene MIEF1 principal isoform 

(Transcript ENST00000325301) (zoomed in to show the 5’ Leader/CDS). (A) An aggregate of Ribo-

Seq reads from multiple studies. The triplet periodicity of the Ribo-Seq reads clearly shows a bias 

towards the second reading frame (green) which matches the reading frame of the annotated CDS. 

Ribo-Seq reads are mostly but not wholly confined to the CDS. Atypically there are many reads 

present in the 5’ leader which are biased towards the third reading frame (blue) matching the 

location of an ORF in the third reading frame. This is corroborated by the proteomics data in panel 

(B). Locations encoding peptides from an aggregate of mass spectrometry datasets are displayed. All 

peptides bar one in the 3’ trailer (not shown) are found either within the CDS (frame 2) or in the third 

reading frame matching the position of the uORF in the 5’ leader. The code in brackets in the title of 

the plot can be used to generate the profile in a browser, e.g following this link 

https://trips.ucc.ie/short/10tU will load the plot shown in panel A, for more information on short 

codes see the Trips-Viz help pages.  
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To aid in this manual inspection, results are displayed in the form of a table showing the top 

1000 ranked ORFs, with the option of downloading the entire table. Each ORF will have a 

link allowing the user to view the ORF in question in the corresponding transcript with the 

selected data, allowing users to rapidly visualize each ORF using only the datasets they 

selected, see Figure 3.2. Translation of ORFs that belong to noncoding RNAs can be detected 

in addition to ORFs from annotated coding transcripts which are broken down into the 

following categories depending on their location relative to the CDS: upstream ORFs, 

overlapping upstream ORFs, nested ORFs, downstream ORFs and n-terminal extensions.  
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Figure 3.2: Examples of highly ranked ORFs detected by Trips-Viz. At the bottom of each plot the 

open reading frame architecture is represented with three horizontal bars coloured red, green and 

blue to display each of the three reading frames. AUG codons are denoted by short white lines while 

stop codons are denoted by longer black lines. The CDS start and CDS stop positions are shown with 

the vertical black lines on the main plot along with counts of Ribo-Seq reads displayed in red, green 

and blue matching each of the three reading frames beneath. The “merged CDS” bar above reading 

frames bars displays a union of all annotated CDS regions in the corresponding locus. (A) An AUG-

initiated uORF of the human gene SLC20A1 (Transcript ENST00000272542) in frame 1 (the 

annotated CDS is in frame 3). (B) A nested ORF in frame 1 of the human gene DGUOK (Transcript 

ENST00000264093) where the annotated CDS is in frame 2. (C) An N-terminal extension of the 

mouse gene Morn2 (Transcript ENSMUST00000061703). (D) An overlapping downstream ORF of 

the yeast gene YFR034W_A. Here the merged CDS bar extends into the 3’ trailer of YFR034W_A 

indicating the presence of another gene at the same locus. In this case the gene in question is 

YFR035C  which is transcribed from the opposite strand, so it cannot explain the Ribo-Seq reads in 

the 3’ trailer of YFR034W_A. In addition, the reads extend beyond the merged CDS bar.  
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3.2.4 Differential expression/translation  

Since its launch, Trips-Viz provided a single option for carrying out differential expression 

analysis on principal transcript isoforms using the z-score transformation (Andreev et al., 

2015). While this performs adequately, there are more accurate and powerful approaches for 

this purpose (Zhong et al., 2017). To this end two new options were incorporated into Trips-

Viz, DESeq2 (Love et al., 2014) and anota2seq (Oertlin et al., 2019), which will allow users 

to quickly compare the results across the 3 methods. An example plot can be seen in Figure 

3.3, showing the Ribo-Seq fold change versus the RNA-Seq fold change. It allows users to 

quickly see expression of which genes are affected at the RNA and/or translation levels. 

Similarly, to the z-score plot, users can click on any point in the plot to invoke a comparison 

plot where footprint densities are compared for two condition for the corresponding 

transcript. Users can also download the inputs and outputs of DESeq2 and anota2seq for 

further exploration. It is recommended that DESeq2 and anota2seq be used over the z-score 

method, however these require a minimum of 2 and 3 replicates respectively, thus the z-score 

transformation approach remains the only option for exploring datasets lacking replicates 

which could be useful during preliminary data generation and pilot experiments.  
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Figure 3.3: An example of the differential gene expression analysis using DESeq2, using data from 

Iwasaki et al. (Iwasaki et al., 2016). Genes whose expression did not change significantly are 

coloured grey, translationally upregulated/downregulated genes are in green/red, while changes in 

mRNA levels are in purple/yellow. Hovering over any of the points on the plot triggers a pop-up 

window with information specific to the corresponding gene/transcript and fold changes. Clicking on 

any of the points invokes a separate tab showing the comparison plot for ribosome footprints mapped 

to the corresponding gene.  
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3.2.5 Transcriptome metainformation 

A new section has been added to Trips-Viz to address all queries not directly related to Ribo-

seq/RNA-Seq or other data types. This can be used to address simple questions about a 

transcriptome such as how many genes/transcripts are annotated and how many are 

coding/non-coding, what is the codon usage in CDS regions or what is the difference in GC 

content in 5’ leaders (commonly known as 5’ UTR’s)  versus 3’ trailers (commonly known as 

3’ UTR’s). It can also be used to retrieve nucleotide sequences of some or all transcripts, 

either in their entirety or for specific subsections (5’ leader, CDS, 3’ trailer).  However, most 

plots on this page can be generated using subsets of transcripts. This can be used to gain a 

deeper understanding of differential expression/translation results, for example, by comparing 

these features between groups of upregulated and downregulated genes. An example is 

presented in Figure 3.4.  
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Figure 3.4: Examples of the types of plots generated from the transcriptome info page. (A) A 

comparison of 5’ leader lengths and (B) 5’ leader GC% between upregulated/downregulated genes in 

response to RocA treatment (Iwasaki et al., 2016). (C) The codon usage occurrence within the CDS of 

all principal transcript isoforms in the human transcriptome using Gencode v25 (Frankish et al., 

2019). (D) The GC content of the human gene USP12. The same visualization can be used for 

individual nucleotide frequencies within sliding windows or for minimum free energy of potential 

RNA secondary structures as calculated by ViennaRNA (Lorenz et al., 2011).  

 

3.3 Comparison with other tools 

It has now been over a decade since the introduction of the ribosome profiling technique and 

in that time a plethora of different tools have been developed that cover almost every aspect 

of ribosome profiling data analysis (Kiniry et al., 2020). Carrying out a detailed analysis 

against all available tools would be difficult due to the sheer number of them. Instead, these 

have been broadly split into two categories. There now exists many offline tools such as 
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Plastid (Dunn et al., 2016), RiboProfiling (Popa et al., 2016), riboflow (Ozadam et al., 2020), 

and , ribotaper (Calviello et al., 2016) to name just a few, which are designed to be 

downloaded and installed locally for users to process and analyze their own data. These tools 

have considerable overlap with Trips-Viz in terms of the type of analysis that they provide 

but as these tools typically require some computational expertise the target audience differs 

from Trips-Viz which aims to provide a solution to those without such expertise. Instead, a 

more detailed comparison was made to other online databases which either provide pre-

processed data or provide an easy way to process Ribo-Seq data which does not require 

computational expertise.  These tools include RiboToolKit (Liu et al., 2020), SmProt (Hao et 

al., 2018), HRPDViewer (Wu et al., 2018), TranslatomeDB (Liu et al., 2018), RiboViz (Carja 

et al., 2017), RPFdb (Wang et al., 2018), OpenProt (Brunet et al., 2019), GWIPS-Viz (Michel 

et al., 2015), RiboGalaxy (Michel et al., 2016), and RiboStreamR (Perkins et al., 2019). The 

features of these tools are listed in Table 1.  

 

 

 

 

 

 

 

 

Table 3.1: Comparison table showing the presence (tick) or absence (x) of various features (rows) 

available in Trips-Viz and similar tools (columns) 



76 

 

 

 

 

While this table attempts to capture the main differences between Trips-Viz and similar tools 

it is difficult to simplify all differences into simple binary categories. To that end we discuss 

a specific example which shows various features of Trips-Viz which can be used in concert to 
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Web-Upload ✔ ✔ ✖ ✖ ✔ ✖ ✖ ✔ ✔ ✔ ✔ 

Batch-Uploading ✔ ✔ ✖ ✖ ✖ ✖ ✖ ✔ ✖ ✖ ✔ 

Local Install ✔ ✔ ✖ ✖ ✖ ✔ ✖ ✖ ✖ ✔ ✖ 

Pre-processed data ✔ ✖ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✖ ✖ 

Contamination checking ✔ ✔ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✔ ✔ 

Quality checking ✔ ✔ ✖ ✖ ✖ ✔ ✔ ✖ ✔ ✔ ✔ 

RPF visualisation ✔ ✔ ✖ ✔ ✔ ✔ ✔ ✖ ✔ ✔ ✔ 

RNA-Seq visualisation ✔ ✖ ✖ ✖ ✔ ✔ ✖ ✖ ✔ ✔ ✔ 

Mismatch detection ✔ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ 

Visualization of subcodon profiles ✔ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✔ ✔ 

Nucleotide sequence retrieval ✔ ✖ ✔ ✖ ✖ ✖ ✖ ✖ ✔ ✔ ✖ 

Codon Occupancy ✖ ✔ ✖ ✖ ✖ ✖ ✖ ✖ ✔ ✔ ✖ 

Pause detection ✖ ✔ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ 

Codon Frequency ✔ ✔ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ 

Meta-Codon plots ✖ ✔ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ 

mRNA expression ✔ ✔ ✖ ✖ ✔ ✔ ✖ ✖ ✖ ✔ ✔ 

RPF expression ✔ ✔ ✖ ✔ ✔ ✔ ✔ ✖ ✖ ✔ ✔ 

Translation efficiency analysis ✔ ✔ ✖ ✖ ✔ ✔ ✖ ✖ ✖ ✔ ✔ 

Differential translation analysis ✔ ✔ ✖ ✖ ✔ ✖ ✖ ✖ ✖ ✔ ✔ 

Translated ORF detection ✔ ✔ ✔ ✖ ✖ ✖ ✔ ✔ ✖ ✖ ✖ 

Proteomics Analysis ✔ ✖ ✔ ✖ ✖ ✖ ✖ ✔ ✖ ✖ ✖ 

GO/Pathway analysis ✖ ✔ ✖ ✖ ✔ ✖ ✖ ✖ ✖ ✖ ✖ 

MetaGene Plots ✔ ✔ ✖ ✖ ✖ ✔ ✔ ✖ ✖ ✔ ✔ 

Reproducibility between 

replicates ✔ ✖ ✖ ✖ ✔ ✖ ✖ ✖ ✖ ✖ ✖ 
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investigate the translation of specific RNA transcripts and quickly make interesting biological 

observations.   

 

The human gene POLG has been recently shown to encode an additional protein in an 

overlapping upstream open reading frame (ouORF) (Khan et al., 2020; Loughran et al., 

2020). Visualizing the translation of POLG mRNA using currently available public Ribo-Seq 

data in Trips-Viz makes the translation of the ouORF clear due to a number of features 

(Figure 3.5).  Most important is the ability to visualize subcodon profiles by colouring reads 

according to the reading frame in which they are found (as determined by the inferred A-site). 

This is what makes it clear that the read density in the first reading frame (red) is much higher 

within the ouORF which then decreases at the ouORF stop codon. The majority of tools used 

for visualizing Ribo-Seq data do not employ this technique making it much more difficult to 

visually identify dual coding regions. Trips-Viz also has the functionality to set a periodicity 

score, which filters out all reads with poor periodicity making the signal from the ouORF 

evident, saving users from having to identify and manually select studies with strong 

periodicity.  

 

The ORF architecture beneath the subcodon profile in Figure 3.5 (horizontal red, green and 

blue bars) displays the positions of the AUG’s (short white lines) and stops (longer black 

lines). No AUG is visible in the first reading frame (red) that could act as a potential start for 

the ouORF. Trips-Viz, however, allows users to optionally enter any nucleotide sequence to 

be highlighted in the ORF architecture. In Figure 3.5 CUG codons are shown as short black 

lines in Frame 1 making it easier to see the exact position where the ouORF initiates. The 

merged CDS bar (dark blue bar just above the ORF architecture), shows all the regions of the 
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transcript which overlap with other annotated CDS regions. As there is no dark blue bar in 

the non-overlapping region of the ouORF, it is possible to tell from this plot that the ouORF 

is not a part of the annotated (in the current annotation version) CDS in an alternative 

transcript without having to explore the exon architecture and annotation of the 

corresponding genomic locus.  

 

The short code in brackets above the plot (14HD) can be used to recreate the plot in the 

browser using the same settings and files used to create the plot initially. Navigating to 

https://trips.ucc.ie /short/14HD in a browser will recreate the plot shown in Figure 3.5 and 

show which settings and files were used to generate the plot, as well as allowing users to 

make full use of the interactive features of the plot, like the ability to pan, zoom, turn on/off 

different plot elements, download the image as a high quality .png, and download the raw 

counts. Every plot created in Trips-Viz is linked to one of these short codes allowing them to 

easily be reproduced and shared. For example, navigating to https://trips.ucc.ie/short/14SJ 

will load a plot showing the same transcript isoform for POLG but with proteomics data, 

where sequences encoding peptides that match mass spectra are found. Their presence within 

the ouORF further strengthening the confidence that this ORF is translated and likely encodes 

a stable protein product. While performing a similar analysis on other platforms is certainly 

achievable, this example highlights the power and flexibility of Trips-Viz visualization.  The 

combination of a large number of publicly available data with a versatile set of computational 

tools and visualizations makes such analyses both quick and easy.  
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Figure 3.5: The Trips-Viz single transcript plot for the human gene POLG (transcript 

ENST00000268124) using an aggregate of Ribo-Seq reads from multiple studies. The view has been 

zoomed in around the annotated CDS start. There is a Ribo-seq bias within the first reading frame 

(red) across the entirety of the ouORF supporting the translation of the correct frame. The ORF 

architecture beneath the plot (horizontal red, green and blue bars), shows the positions of AUG 

codons (short white lines), stop codons (longer black lines) and CUG codons (short black lines), 

making it easier to see the start and stop positions of the ouORF. The third CUG codon in the first 

reading frame is the translation initiation site of the ouORF (Khan et al., 2020; Loughran et al., 

2020), which has been highlighted in the figure.  
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General impact and future perspectives 

Visualisation is an important tool in the analysis of ribosome profiling data. It can be used to 

find novel translated ORFs as well as to identify both pause sites and translational recoding. 

When I began my research there existed several databases which were capable of visualising 

Ribo-Seq data. One such site, GWIPS-Viz (Michel et al., 2018), aggregates the signal from 

many different Ribo-Seq studies aligned to the genome. Aggregation of Ribo-Seq data can 

make translated ORFs on even lowly expressed genes easily visible/detectable. A screenshot 

showing a translated uORF as seen in GWIPS-Viz can be seen in Figure 4.1.  

 

Figure 4.1: A screenshot from GWIPS-Viz showing the human gene IFRD1. The open reading 

frame architecture above the plot shows start codons in green and stop codons in red. The 

Ribo-Seq density is clearly higher and localized to within the ORF in the 5’ leader. 

 

Aggregation of reads from multiple Ribo-Seq studies makes uORFs easily visible in cases 

like IFRD1. However in cases where translated ORFs overlap (Michel et al., 2012) this is 

more difficult. Visualising the Ribo-Seq reads for the human gene KIAA0100 does not show 

anything particularly unusual (Figure 4.2), apart from a short translated ORF in the 5’ Leader. 
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Figure 4.2: A screenshot from GWIPS-Viz showing aggregated Ribo-Seq data from the 

human gene KIAA0100. Apart from the increased Ribo-Seq density in the 5’ leader nothing 

else seems out of the ordinary.  

 

The use of static offsets which GWIPS-Viz and several other resources use, also tends to 

destroy the periodicity signal when aggregating from multiple studies. Determining an 

optimal offset per read length and colouring the reads according to the reading frame that the 

A/P-site aligns to, as is done on Trips-Viz, makes the profile much clearer (Figure 4.3).  

 

 

Figure 4.3: Aggregated ribosome profiling data for the human gene KIAA0100. Reads are 

coloured red, green and blue corresponding to the open reading frame architecture shown 

beneath the plot. Most reads are red which corresponds to the annotated CDS (frame 1) as 

well as a short uORF which is also in frame 1, but the colouring makes it clear that there is 

also translation of a nested or internal ORF in frame 2 (green) which would be difficult to 

see otherwise.   
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While these types of plots had been used for ribosome profiling data before, they were done 

for single studies/datasets. There was no publicly available resource that would allow for 

aggregation of publicly available processed data to generate these types of plots. Creating a 

resource that would generate coloured Ribo-Seq plots on the fly that would be useful to both 

myself and the research community in general, was the motivation behind creating Trips-Viz. 

While the usefulness of three frame colouring is obvious in the case of nested/internal ORFs, 

it can be beneficial in many other cases too, see Figure 4.4.  

 

  

Figure 4.4: An aggregated set of ribosome profiling data from multiple studies aligned to the 

human POLG gene. A zoomed in section of the 5’ Leader and partial CDS is shown. A long 

overlapping uORF that initiates at a CUG codon (short black lines in the ORF architecture) 

can be seen in Frame 1. This would be difficult to see without three frame colouring and is 

complicated further by the apparent translation of two separate uORFs in the 5’ leader in 

frame 2 (green) and frame 3 (blue).  

 

Aggregating ribosome profiling data has issues in that the strength of the periodicity can vary 

between studies and even between datasets of the same study. Trips-Viz includes a meta-

information section where users can generate periodicity plots for any dataset, these plots 
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include a periodicity score between 0 (weakest) and 1 (strongest), to allows them to pre-select 

only strong periodicity datasets. To make this process even faster a filter can be applied when 

generating plots that will discard all reads below a certain periodicity score, allowing users to 

quickly increase the periodicity signal in the plots at the expense of read depth (Figure 4.5).  
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Figure 4.5: Panel A shows aggregated ribosome profiling data from the human gene B2M 

with no filter. Panel B shows the same gene with a periodicity filter applied which removes 

read lengths with weak periodicity. This results in less reads but a better separation between 

the in-frame reads (frame 2, green) and out of frame reads (frames 1 and 3, red and blue).  

 

Another issue that can prevent discovery of novel translated ORFs is the exclusion of 

ambiguously mapped reads. Due to the typically short read lengths present in ribosome 

profiling data, ambiguous mapping is more prevalent in ribosome profiling data than it is in 

many other sequencing types. Many pipelines deal with this issue by simply discarding any 

reads that map ambiguously. This has the advantage of being able to fully trust that any 

aligned reads cannot be coming from anywhere else in the genome but can mean that some 

translated ORFs may be missed. Trips-Viz handles this by allowing users to choose whether 

to turn on or off ambiguously mapped reads on the fly. This must be used with caution but 

can make some translated ORFs detectable where otherwise they wouldn’t be (Figure 4.6).  

 

 

 

 



85 

 

 

Figure 4.6: Panel A shows aggregated ribosome profiling data for the human gene EIF4E2. Only 

unambiguous reads are shown. This results in numerous gaps within the CDS where no ribo-seq 

reads are mapped. Panel B shows the same gene but with ambiguously mapped reads permitted. This 

removes the gaps within the CDS and makes the presence of a translated internal ORF in frame 3 

(blue) clearly visible.  

 

While Trips-Viz is also capable of carrying out other types of analysis the visualization is its 

strongest and most unique feature and is likely largely responsible for its popularity. 

Currently Trips-Viz has 137 registered users and receives ~160 unique visitors per month, 
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however this number is steadily increasing. To date Trips-Viz has 25 citations and has been 

used to visualize ribosome profiling data in a number of papers including the overlapping 

uORF POLG (Loughran et al., 2020), Khan et al., 2020), lncRNA translation (Konina et al., 

2021) and uORFs (Filatova et al., 2021). 

Trips-Viz has been relatively successful in fulfilling its objective of being a useful resource 

for the community, however there is still many areas in which it can improve and expand. At 

the most basic level this simply includes plans to continue processing ribosome profiling data 

for existing organisms and addition of others. Other related data types may also be included, 

for example disome-seq (Meydan et al., 2020) and epitranscriptomic data (Jantsch et al., 

2018). Given it’s relative popularity incorporation of a method to detect pauses, using an 

existing software such as PausePred is also planned (Kumari et al., 2018). The Meta-

Information section will be expanded by the addition of fastq-screen outputs (Wingett et al., 

2018) to screen for common contaminants in sequencing data, given that this is a prevalent 

issue in RNA-Seq data (Olarerin-George et al., 2015) it is likely many of the publicly 

available Ribo-Seq studies also suffer from this issue. Lastly there are planned improvements 

to the method of transcript selection on Trips-Viz, moving toward a more data driven 

approach whereby users will be able to select transcripts based on which ones are best 

supported by the RNA-Seq data as well as better incorporation with Gwips-Viz (Michel et al., 

2018) so that users can choose to view transcripts after viewing RNA-Seq at the genome 

level.  
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