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Abstract

With the rise of chip multiprocessors (CMPs), it is necessary to use parallel
programming to exploit computational power of CMPs. Traditionally, lock-based
mechanisms have been used to synchronize shared variables in parallel programs.
However, with the complexity associated with locks, writing a correct parallel
program is a huge burden for programmers. As an alternative, Transactional
Memory (TM) is gaining momentum as a parallel programming model for multi-core
processors. TM provides programmers with an atomic construct (transaction),
which can be used to guarantee atomicity of accesses to shared variables, as the
synchronization is handled through the underlying system. Transactional memory
comes in two variants: Software transaction memory (STM) and Hardware
transaction memory (HTM). Both STM and HTM systems have advantages and
disadvantages that either enhance or penalize performance in transactional
applications.

In this thesis, the focus is on implementing an adaptive system that exploits
both STM and HTM at transaction granularity. The goal is to achieve performance
gain by incorporating the benefits of both TM systems. A synchronization technique
is developed to seamlessly switch between HTM and STM based on the
characteristics of a transaction. We exploit decision tree to predict the optimum
system for each transaction in a given application. The decision tree is a form of
supervised machine learning to classify transactions based on parameters such as
transaction size, transaction write ratio, etc. From the evaluations using STAMP,
NAS, and DiscoPoP benchmark suites, the proposed adaptive system is able to

improve speed of transactional applications by 20.82% on average.
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Chapter 1

Introduction

Over the past several decades, the performance of general-purpose processors has
increased rapidly. This rapid improvement has come both from advances in the
technology used to build processor chips and also innovations in architecture of
processors. Over the years, improvements in VLSI technology led to smaller and faster
transistors and this helped computer architects to increase clock frequency of processors.
Furthermore, the number of transistors integrated on a single die is expected to grow
according to Moore’s law [11] for the foreseeable future. This provides an ample
opportunity for processor designers to incorporate more resources in architectural level

and boost performance of processors.

The conventional way of processor design was single core processor in which all
hardware resources were dedicated to a single processing core. Each generation of
processor had larger and more sophisticated components such as caches and reorder
buffers. However, by 2005 the performance of single-core processors started to
slowdown in computation performance due to “3 Walls”: Power Wall, Memory Wall and

instruction level parallelism (ILP) Wall [8].

As the single-core processor became more complex, certain limitations made it
technologically impossible to achieve better performance. The power wall limitation is
met due to increased clock frequency which results in significant heat dissipation. This
means that the single-core processor has reached the practical power limit in commodity
microprocessors. As for the memory wall, the limitation exists in the gap between the
processor and the memory speeds. This gap is increasing over time, requiring the cache
sizes inside the processor to be larger in-order to mask the latency of memory. The third
wall is related to the dependency of instructions. Single-core processors search stream of
sequential instructions and execute independent instructions in parallel. However, the
amount of independent instructions found in sequential programs is limited, causing the
third wall: ILP wall. The 3 walls together ultimately led to the rise of chip
multiprocessors (CMP).



The architecture of a CMP consists of having 2 or more processors integrated
onto a single circuit die. This overcomes the limitations of the power wall, memory wall
and IPL wall. For Power wall, CMPs are energy efficient and silicon-area efficient due
to smaller and less complex cores incorporated into a single chip. For Memory-wall, the
computations amongst the cores are overlapped with memory accesses, resulting in better
performance. For ILP-wall, there is an increased performance throughput by exploiting
parallelism between the cores. Due to these several advantages, the CMP architecture

has been the choice of semiconductor manufacturers.

For the last few years, CMPs have taken over the industry by storm. In our
present day, CMPs are becoming a necessity in all of our everyday electronics. The
cheapest PC/laptop in the market today all consist of at least a dual-core processor.
Smart-phones nowadays all have dual-core, quad-core or even octa-core processors.
Multi-core processors do not stop there. New cars of today are equipped with multicore
systems due to the excessive amount of technologies such as adaptive cruise control, lane
departure assistance, self-parking, etc. In present day, new CMPs have transistors of
14nm wide, and the industry is now hitting physical limits. Circuits are now so small that
escaping heat is a major problem. While Moore’s law may survive another few processor
generations, chip manufacturers are starting to change their views on frequency scaling
and applying it to core-scaling. This means that instead of focusing on increasing the
clock frequency to increase performance of processors, it is now necessary to apply the
concept of parallel programming and utilize computational power of multiple cores to
boost performance. By utilizing all processing cores of CMPs, it is possible to achieve

further performance gain in applications.

1.1 Parallel Programming/Computing

In general terms, parallel programming is the simultaneous use of cores to execute
a computational application. Figure 1.1 displays a parallel program consisting of four

threads.
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Figure 1.1: Block diagram of a parallel program with four threads

First, the application is broken down into sections that can be executed in parallel

(concurrent). Second, each section is broken down further into a series of instructions.

Third, these instructions from each part execute concurrently on different threads.

Although, this procedure may look simple, it actually consists of a complex order of steps

in order to successfully exploiting parallelism in an application. However, there are

certain problems that a programmer may face when developing parallel programs. Paul

E. McKenny [32] discusses 4 categories that a programmer must take into account while

developing parallel programs.
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Figure 1.2: Ordering of Parallel-Programming Tasks [32]

1) Work Partitioning — is the task of splitting the code or algorithm into discrete

sections that can be distributed to be run in parallel across all threads.

2) Resource Partitioning — this ensures that the required resources are partitioned

for the parallel tasks.

3) Hardware Interactions — identifying the resources associated with parallel tasks,
such as the operating system, the compiler, number of cores/threads, and other

software infrastructures

4) Control of Parallel Accesses — is the task of avoiding conflicts such as race
conditions on shared memory resources. The programmer needs to synchronize
the sequence of the parallel tasks, and often requires serialization (locks) for
certain parts of the program. The programmer must also take into account of data
dependencies where the order of executions can affect the final results of the
program. In shared memory, data dependence occurs from multiple use of the

same-shared location accessed by different threads/cores.

Due to these steps and constraints, parallel programming has known to be difficult in
applying, or in other terms it is very difficult to get a sequential program and making it

parallel.



1.2 Shared Memory Architecture (SMA)

For this thesis, the focus was on Shared Memory Architecture [20] as this is the
architecture used in CMPs. SMA is a platform where all threads within a
program/application work in a shared space meaning that the memory address space is
shared between the threads. In contrast, Distributed Memory (DM) is a method where all
threads working in parallel do not share a unified memory address space. Instead, DM
uses private memory space for each thread and must communicate with each other

explicitly [18].

THREAD THREAD

THREAD THREAD

Figure 1.3: Block diagram of Shared Memory

With shared memory, there are some constraints in which a programmer must
take into consideration. In SM, threads execute independently but they share the same
memory address. It is necessary to have synchronization between the threads that are
reading from and writing to SM. This is mainly due to the constraint of only one thread

can access the shared memory locations at a time.

SM’s major advantage is fast and efficient data sharing amongst the threads as all
threads can communicate through a shared memory. One of the major disadvantages of

SM is limitation of memory bandwidth where an increased number of threads will require



a higher memory bandwidth or else it will cause a bottleneck in performance. Another
disadvantage of SM is that it is very prone to data races in which the programmer is

responsible for correct synchronization using locks, mutex, semaphores, etc.

1.3 Lock based Synchronization

With shared-memory, there is a high probability that race occurs in programs.
This happens when two or more threads are accessing the same address in shared
memory. These data races can be classified as dependences: read-after-write (RAW),
write-after-write (WAW) or write-after-read (WAR). To avoid these types of data races,
a synchronization control mechanism (SCM) must be used. There are many SCMs that
can be implemented such as locks, mutexes and semaphores. Locks are the most
frequently used SMC in parallel programming. Locks allow a single thread to lock a
variable which initiates ownership of a specific shared variable. Once the thread has
completed its operation on that shared variable, it unlocks the variable allowing other
threads to access the variable. If a lock is being held, other threads cannot access or
attempt to acquire the same lock and must wait until it becomes unlocked. There are two
types of lock structures that are commonly used: Fine grained locking and Coarse-grained

locking.

Fine-grained Locking is used to achieve greater parallelism which leads to better
performance. Each fine-grained lock will lock a single shared variable (or very few).
Instead of holding a lock for a long time, each thread will hold the lock for a small
amount of time while providing protection. Even though fine-grained locking achieves
better performance, it has its own drawbacks. Firstly, parallel programming using fine-
grained locking is complicated for average programmers. Another major disadvantage of
fine-grained locking is high overhead due to the amount of traffic activity taking place

with many locks being locked and unlocked.

On the other side, coarse-grained locking is used to lock an entire section of a
code instead of a single shared variable. This allows programmers to write correct
parallel programs with less complexity because there is only one lock to deal with which

means there is less chance of synchronization error. The drawback of coarse-grained



locking is less parallelism (low concurrency), which in return leads to low performance.
Figure 1.3 shows the general depiction of performance vs. ease of programmability

between fine-grained locking and coarse-grained locking.

A
Fast
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[® ]
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«
£
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—
Easy i Complex ~
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Figure 1.4: Programmability analogy of lock mechanisms

The main challenge in lock-based programming (in particular fine-grained) is
tricky synchronization bugs such as deadlock, live-lock and priority inversion. Deadlock
occurs when multiple threads stall/wait for each other to release the locks corresponding
to the shared variables. This results in a stall, as there is no possibility of forward
progress until the lock has been released. For example, thread A holds a lock on resource
X and is waiting for resource Y. While thread B holds a lock on resource Y and is
waiting for resource X. Both thread A and thread B are waiting and neither of them can

proceed.

Live-lock is similar to deadlock as the threads are unable to make forward
progress. In deadlock the threads are blocked while in live-lock the threads are not
blocked, rather they are busy responding to each other. Priority inversion takes place
when a high priority process is blocked (waiting) while a low priority process is

executed. Due to these circumstances, this system can become unbalanced and



eventually crash. Fine-grained lock-based synchronizing mechanism does promote
performance gains but the constraints caused by complex programmability and

synchronization bugs prevent it from becoming mainstream.

1.4 Transactional Memory

Transactional processing is not a new discovery; it has been around since the
early 1960’s known as transactional processing system (TPS). The first TPS was used on
American Airlines SABRE computing system, which automated the way the airlines
booked reservations for flights [13]. The main idea of TPS was to provide a database of

transactions that followed ACID properties:

ACID - Atomicity, Consistency, Isolation and Durability [12]

Atomicity — Each Transaction is atomic which means that if any part of the transaction

fails then the entire transaction fails while the state of the system is unchanged.

Consistency — It is necessary in TM where the memory must remain in a consistent state
while a transaction is executing. In the case a transaction exits in an inconsistent state,

then the transaction is not allowed to complete and will be aborted.

Isolation — Other transactions cannot access data that has been changed by a transaction
currently in progress. Isolation is necessary in order to avoid invalid results during

execution of a transaction.

Durability — Once a transaction has successfully committed, it cannot be lost in the event

of a system crash.

This led to the discovery of Transactional Memory (TM). TM is a parallel
programming model, which achieves comparable performance to fine-grained locking
while providing ease of programmability of coarse-grained locking [27]. With TM, a
programmer only specifies the critical sections of the code to run atomically, while the
underlying system will take care of correct execution of the program, reducing the

complexity of parallel programming. Transactional memory consists primarily of two



types: software transactional memory and hardware transactional memory. In present
day, there has been countless amount of research done in this field, due to the fascinating

amount of potential it consists of.

1.4.1 Software Transactional Memory (STM)

In software transactional memory, transactions are strictly implemented in
software. Shavit and Touitou [30] introduced the first implementation of software
transactional memory. STM works by providing a programming model where code is
executed in a series of read-sets and write-sets in shared memory. While these reads and
writes are being executed their intermediate state is not visible to other transactions. This
decreases the probability of conflicts as the window in which transactions execute

simultaneously is reduced.

Since the mid-2000, the research in STM has evolved with numerous amounts of
concepts and optimizations. These concepts were introduced to further enhance
performance of STM systems and also to enhance the ease of programmability. For
example in STM, programmers no longer have to handle the case where a transaction
aborts. The underlying system of STM will guarantee that the system would eventually
commit every transaction by retrying and executing aborted transactions. In present day,
there is still ongoing research on STM which shows that there is still potential for further

improvements on practical implementations.

There are numerous implementations of STMs. Among those, two are more
popular than the rest. The first implementation is Transactional Locking IT (TL2) by Nir
Shavit et al. [6]. The second implementation of software transaction memory is
TinySTM by Pascal Felber et al [31]. TinySTM follows the same structure as TL2 but
with enhanced design strategies that achieve even greater performance. Further analysis

of TL2 and TinySTM is found in Chapter 2.



1.4.2 Hardware Transactional Memory (HTM)

Hardware transactional memory is the concept of executing transactions in
hardware. The primary advantage of HTM is low overhead since it only relies on
hardware resources. Recently, HTM has become largely available in commodity
processors. Although these implementations have always been best effort meaning that
there is no guarantees for forward progress. Some examples of HTM supported by
commodity processors include, AMD’s advanced Synchronization Series [5], IBM’s Blue
Gene/Q [1], and Sun’s ROCK processor [33]. The recent release of Haswell processor
with Intel’s TSX (Transactionally Synchronized Extensions) results the widespread

availability of HTM on the mass consumer market.

In this thesis, the focus has been on Intel’s implementation of HTM called
Restricted Transaction Memory (RTM) [15]. Further analysis of RTM is found in
Chapter 2.

1.5 Motivation and Purpose

Both STM and RTM have benefits and limitations that either improve or penalize
performance in certain applications. One of the most important differences between
RTM and STM is transactional overhead. In RTM, the processor is responsible for
transactional execution and this reduces timing overhead and better overall performance.
On the other side, in STM, there is extra overhead for software based conflict detection
and data versioning (such as initiating a transaction, validating transactional data,
transactional commits, etc. [30]). This greatly hampers the overall performance in STM
systems. Another important difference between the two systems is flexibility. In RTM,
the processor oversees all memory accesses, which in-hand provides strong isolation but
relies solely on hardware resources (not scalable). This results in complexity issues
(fallback policy is needed) that lead to a higher probability of transactional aborts and in
certain cases a performance slowdown when compared to STM. On the other hand, STM
delivers a flexible system in which there is no resource constraint and the underlying
system deals with majority of the complex synchronization issues, leading to less

transactional aborts and a better overall performance in some cases when compared to

10



RTM.

In this thesis, the focus is on implementing an adaptive system that exploits both
STM and HTM at transaction granularity. The goal is to achieve performance gain by
incorporating the benefits of both systems. Typically, in parallel applications, the
number of transactions can vary, anywhere from a single transaction to a large number of
transactions. It is important to note that not all transactions are identical. Each
transaction has its own characteristics in terms of transaction size, read-set size and write-
set size. Depending on these characteristics of a transaction, either HTM or STM can be
a better choice for implementation. We exploit the decision tree [22] to predict whether
HTM or STM is faster for a given transaction. The decision tree receives input
parameters (such as transaction size, transaction write ratio, etc.) and predicts the
optimum TM system for a transaction. Then, a programmer or a compiler modifies the
source code of the application based on predictions made by the decision tree. Our
adaptive system supports both HTM and STM with the aim of reducing execution time of

transactions with different characteristics.
In summary, we make the following contributions:

= We show that there is no single TM system that works well across all applications.
Depending on applications’ characteristics, one system might be better than the other.

= We propose an adaptive system, which predicts the optimum TM system for a given
transaction, statically. The adaptive system relies on the prediction of the decision
tree to select either HTM or STM.

= Qur evaluations using STAMP [2], NAS [4], and DiscoPoP [37] benchmark suites
reveal that on average, the adaptive system is able to improve speed of transactional

applications by 20.82%.

11



1.6 Thesis Outline

The rest of the thesis is organized as follows. Chapter 2 reviews background
information as well as research studies relating to TM. Chapter 3 explains design of the
proposed adaptive system. Chapter 4 presents the experimental work including
methodology and results. Finally, Chapter 5 concludes the thesis and discusses future

work.

12



CHAPTER 2

Background and Related Work

This chapter reviews background information on existing STM systems, Intel’s
restricted transaction memory (RTM) and the decision tree prediction module. This

chapter also examines related literature work focusing on optimization techniques for

both HTM and STM.
2.1 Software Transactional Memory

In this section, we explain two popular implementations of software transactional
memory. The first implementation is Transactional Locking II (TL2) by Nir Shavit et. al
[6]. The second implementation of software transactional memory is TinySTM by

Pascal Felber et. al [30].

2.1.1 Transactional Locking Il [6]

TL2 is a state-of-the-art word-based Software transaction memory system that
uses notion of time to impose order among transactions and guarantee consistency of
transitional data. The main feature of TL2 is the ability to handle read and write
operations in separate fashion. In TL2, the read operations are invisible; this means that
when a transaction reads a shared variable, it will not indicate other transactions that a
read operation is taking place. For write operations, TL2 postpones the update to the
commit time. This means that TL2 does not perform the update as soon as it executes a
transactional write operation; instead, the write operation updates are logged into a local
list. Once the transaction is ready to commit, the operation will attain the instruction
from the local list. Performance of a STM system is sensitive to the write operations as
write operations are the major source of conflicts. By deferring the write operation to the
commit time, TL2 reduces the total amount of transactional conflicts in an application.
TL2 also utilizes conventional locks and a global-versioning counter (GVC) to validate
transactional data. A lock is associated with each shared variable. When a transaction
attempts to commit, it obtains the lock corresponding to the variable. GVC is a global

counter and is used as timestamp for shared variables. When a transaction starts it copies

13



the current value of GVC into a local variable called read version (rv). The transaction
uses rv to validate transactional reads. When a transaction commits it performs an
increment-and-fetch on GVC and uses the new value of GVC to tag lock entries
corresponding to transactional writes. TL2 is proven to have similar performance to fine-

grained locking [6].

2.1.2 TinySTM

The second implementation of software transaction memory is TinySTM. This
thesis integrates TinySTM’s open source implementation of STM and incorporates it for
switching between hardware and software transactions. TinySTM was chosen because it

is currently the best performing STM system [31].

TinySTM shares many similarities with TL2. It is also a word-based STM
implementation that uses conventional locks to protect the shared memory locations from
simultaneous accesses. TinySTM uses the same time-based implementation as TL2,
which guarantees transactional consistency. On the contrary, TinySTM contains a

different design strategy that differentiates itself from the other STM implementations.

TinySTM uses encounter-time locking which is beneficial for detecting conflicts
earlier (increasing transaction throughput). When compared to commit-time locking,
conflicts that are detected during commit phase cannot be solved without at least one
transaction being aborted. Also, encounter-time locking allows efficient handling of read
and write operations without requiring complex mechanisms. For transactional write
operations, TinySTM implements two new strategies: Write-through and Write-back.
For write-through policy, a transaction writes directly to memory and keeps the old
values in a log to reverse updates in the case of an abort. For Write-back policy, a
transaction updates memory in the commit phase. TinySTM also provides memory-
management functions, which allow transactions to use dynamic memory. This allows
the ability to keep track of memory that has been freed (not disposed until commit) or
allocated (not disposed until abort). From these design tweaks, TinySTM has become

one of the most efficient implementations of software transaction memory [31]

14



2.2 Hardware Transactional Memory

Hardware transactional memory is the concept of speculative transactions being
executed using hardware resources. The primary advantage of HTM is low overhead,
since it only uses hardware resources such as level 1 cache, level 2 cache, etc. Recently,
HTM has become broadly available in commodity processors. Some examples of HTM
supported commodity processors include, AMD’s advanced Synchronization Series [5],
IBM’s Blue Gene/Q [1], and Sun’s ROCK processor [33]. Amongst these
implementations, the recent release of Haswell processor with Intel’s TSX
(Transactionally Synchronized Extensions) [15] results the widespread availability of

HTM on the mass consumer market.

HTM implementations have always been best effort meaning that they do not
provide forward progress. In other words, there is no guarantee that a transaction will
successfully commit in hardware; essentially requiring a fallback path to successfully
execute an application in the event of an abort. Generally, a fallback path is an
alternative software policy to guarantee successful execution. This software policy can

be as simple as acquiring a lock and executing it non-transactionally.

In 2013, Intel released the first commercially available chip-multiprocessor with
HTM support, named Haswell [15]. Along with it, Intel released TSX (Transactionally
Synchronized Extensions) to their processor’s instruction set. These extensions provide
two software interfaces Hardware Lock Elision and Restricted Transaction Memory.
[b.6].

* Hardware Lock Elision: a legacy compatible instruction set that provides
instructions to lock/unlock shared variables using hardware resources.

* Restricted Transaction Memory: A new instruction set interface, where a
programmer identifies a region of code to be executed transactionally. RTM
provides no forward progress. Therefore, a program must always provide
fallback code to handle a transactional abort that can either restart a transaction or

take a non-transactional path (such as locks).
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2.2.1 Restricted Transaction Memory

For this thesis, the focus is on Intel’s Restricted Transactional Memory (RTM).
The proposed Adaptive system uses RTM’s intrinsics along with TinySTM, which is
used to switch between the two systems. The programming model of Intel’s RTM is
fairly straightforward to use. In RTM, a transaction is commenced with the instruction
XBEGIN. Inside of the transaction, read-sets and write-sets are constructed while other
computation operations (branching, arithmetic operations, etc.) can also be executed
inside of a transaction. The consistency of read and write sets are maintained in the

granularity of cache lines.

If a transaction’s read-set/write-set is modified by another transaction, then
conflict occurs. In the event of conflict, all the transactions are aborted and only one can
proceed. In RTM, a fallback path is needed to guarantee forward process in order to
avoid the application or program to stall. To initiate the end of a transaction, the
instruction XEND is used. The XEND instruction commits any changes to the shared
memory and thus successfully executes the transaction in RTM. RTM provides four
transactional instructions:

* XBEGIN initiates the start of a transaction.
* XEND completes a transaction and successfully commits changes to memory
* XABORT aborts the current transaction using an explicit failure code.

* XTEST determines if it is executing within a transaction or not.

1. while(1{ /Nloop

2. int status = XBEGIN; //set status bit and start Txn

3. if(status == _XBEGIN_STARTEDX /Istatus == _XBEGIN_STARTED
4. (*g)++; /lincrement shared global variable
5. XEND; /lend transaction

6. break; /lbreak on success

7. }

8. else{

9. /Isoftware fallback code is executed on Txn abort
10. }

11.}

Figure 2.1: RTM Pseudo code example
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Figure 2.1 shows a sample RTM pseudo code sequence in which all the important
instructions are implemented. Inside of the RTM header file, it contains the intrinsics
that are used to enable hardware transactional execution. Line 1 starts with a while loop.
Inside the loop, there is a status variable that is equal to XBEGIN. In line 3, there is an ‘if
statement’ to check if the status variable == xbegin started. if this is true, then the
transaction is initiated. Inside the transaction (line 4), there is a shared global variable
that is incremented. In line 5, the instruction XEND is used to end the transaction. In line
8, in the case of a transactional abort, a fallback path is necessary since RTM does not

guarantee forward progress (further information can be found in Section 2.2.3).

2.2.2 RTM Conflict detection and EAX register bits

RTM uses the CPU caches (L1 cache) to track read-sets and write-sets. The
conflict detection is handled through the existing cache coherence protocol of the chip
multiprocessors. RTM uses eager conflict detection as it keeps transactions in a
consistent state by detecting conflicts when a read/write operation to memory has been
performed. In RTM, transaction aborts are flagged in the EAX register. The EAX
register carries an 8-bit code that specifies the cause of the transactional abort. When a
transaction is aborted, all the changes made to the memory are discarded and a flag is

sent to the EAX register with an abort code. Table 2.1 states the abort codes with brief

explanation.
Table 2.1: RTM Abort status using EAX abort codes
EAX Status Bit ABORT Description
0 XABORT_EXPLICIT Explicit instruction to abort transaction
1 XABORT_RETRY Transaction is likely to succeed if retried
2 XABORT_CONFLICT Interference from another TX
3 XABORT_CAPACITY Overflow of cache and hardware buffers
4 XABORT_DEBUG Debug breakpoint
5 XABORT_NESTED Transaction aborted within nested transaction
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Conflict and capacity aborts take up the majority of transactional aborts in RTM. Conflict
aborts occur when a transaction interferes with concurrent memory operations
(read/write) performed by another transactions. Once this abort is triggered, the
processor will abort the transaction by discarding all the updates done to the shared
memory. Capacity aborts occur where there is an overflow of buffers and the capacity of

the cache has been reached which results in an automatic transaction abort.

2.2.3 Cache Coherency Conflict Detection

In RTM, the conflict detection is handled through the cache coherency protocol. If two
transactions access a shared memory location and if at least one of them writes into the
same location, the cache coherency protocol detects the conflict. In the event of conflict,
only one transaction can proceed, while the rest should abort. RTM follows the eager
policy [17] to resolve conflicts. In eager policy, as soon as a transactional write operation
results in conflict, RTM will then abort the conflicting transactions and allows only one
transaction proceed. Eager policy improves utilization of processor resources as a
conflicting transaction is aborted immediately and is not postponed to the commit time.

RTM follows the MESI protocol for cache coherency.

2.2.3.1 MESI protocol [34]
MESI is a type of invalidation-based protocol, which supports write-back caches.
MESI is the acronym for the four states that each cache line can transition to:

* Invalid — This is considered the non-valid state. This means that the data is
not located in the cache or the local copy of the data is incorrect due to
another process updating the memory.

* Shared — This state is used for those cache blocks that are not changed by any
processor.

* Exclusive — The state is exclusive when a cache is the only one that has the
correct value of the block.

* Modified — This state is used for those cache blocks that are written by

Processors..
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Figure 2.2 depicts MESI state diagram. The following is a brief explanation of how the
MESI protocol works. The initial state of a cache block is invalid. When a processor
writes to a cache block for the first time, the state changes to modified as there are no
copies of the block in other caches. If a processor reads a block for the first time, it
broadcasts BusRd command on the interconnection network. The cache that has the block
sends it to the requester. Also, the state of the block changes to shared in both requester
and the sender as more than one cache hold the data. If processor reads a block and no
other cache has the block, then the memory provides the corresponding data and state

changes to exclusive.

—
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Figure 2.2: State diagram of MESI protocol [34]

2.2.4 RTM Restrictions and Limitations

Intel’s Restricted Transactional Memory has the term ‘restricted’ because it is
very prone to transactional conflicts, which are primarily due to both hardware and
software operations. There are many operations in RTM that are labeled as restricted and
if a restricted operation is attempted then the transaction is aborted and the fallback path

1s executed.
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These are some restrictions in RTM:
= Debugging tools are not supported meaning that if any breakpoints are located inside
of a transaction, it will be automatically aborted.
= Interrupts located inside of a transaction will cause an abort before the calling of the
interrupt handler
= [nput/output statements will cause an automatic transaction abort. For example, a
‘printf” statement will causes RTM to abort.
= Software/System operations such as context switching and page faults cause
transactional aborts.
= Hardware resources that exceed the capacity of the cache will cause a transaction
abort. If a transaction’s read-set or write-set does not fit in the CPU cache, it will
result in a transaction abort due to the overflow of the internal processor buffers.
= (ache size in Haswell is 32KB with 8-way associativity.
= Unnecessary aborts due to false sharing of cache lines.
= [f two transactions share a cache line and one of them aborts due to conflict

over a shared variable in the cache line, the other transaction is aborted too.

2.2.5 RTM’s Fallback Path

Commodity chip multiprocessors (such as Haswell processor) that support
hardware transactional memory, use the ‘best-effort’ mechanism. This basically means
that there is no guarantee for a transaction to succeed even if there is no conflict. In
RTM, a fallback policy is necessary to provide forward progress. A fallback policy is
typically executed after the threshold of RTM’s retry count has been met. The retry
count is the number of times an aborted transaction retries execution. This is important
since transactions in RTM have an abundant reasons to abort (refer to section 2.2.4). By
retrying an aborted transaction ‘X’ number of times, there is a possibility that the
transaction can eventually commit in hardware. Once the retry threshold is reached, the
fallback policy is applied. Further information on fallback path can be found in Section
3.3.1.
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2.3 Decision Tree

For this thesis, the focus is on switching between hardware transactional memory
and software transactional memory at transaction granularity. By using Decision Tree
C4.5 [23], we are able to predict which system is the best choice for a given transaction.

Decision tree uses groups of input datasets and generates a tree as output that
resembles a tree diagram where each branch is a decision. Ross Quinlan developed the
early stages of the Decision Tree in 1979 (ID3 algorithm) [22]. In 1993, the C4.5
algorithm was developed to increase accuracy of Decision Tree. The C4.5 builds
decision trees from a set of training dataset using information entropy. The decision tree
consists of three nodes which are root, branch and leaf. At each branch of a tree, the C4.5
algorithm attains the attribute of the data that effectively splits the set of samples into
sub-group in each specific class. This splitting process is referred to as information gain
(differences in entropy). The input dataset contains the parameters of a function. In this
thesis, the focus is targeted on transactional parameters such as transaction size, read-set
size, etc. The output of the decision tree results in a binary value of 0 or 1, which
represents the predicted outcome. For this thesis, the outcome of the decision tree

represents whether RTM or STM will be used to execute a transaction.

2.4 Related Work

Irina Calciu et al. [14] presented Invyswell, a hybrid transactional memory system
that incorporates RTM and InvalSTM. InvalSTM is a modified STM system that was
created [21] previously. One of the key differences between InvalSTM and other STMs
is that it performs commit-time invalidation. This approach identifies conflicts with other
concurrently executing transactions during its commit-phase. InvalSTM also implements
bloom filters for conflict detection between HTM and STM. For Invyswell, each
transaction is first tried in hardware. If the hardware abort status suggests that a
transaction is unlikely to succeed in hardware, then it is retried in InvalSTM. They also
investigate RTM’s limitations and restrictions and provide InvalSTM as a fallback policy
instead of using lock mechanism. They also incorporate optimizations such as failfast.

This optimization is used for an application with high contention, which results in a
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higher probability of hardware resources reaching capacity limit. It is used to identify
certain cases when RTM is wasting work with too many retries which eventually calls the
fallback policy once the retry threshold has been met.

In our study, we do not use STM as a fallback policy for RTM; instead, we
implement independent switching between RTM and STM. Also, our adaptive system is
static and its runtime overhead is low. Furthermore, Invyswell is not evaluated from
energy point of view. On the other side, we examine energy efficiency of our adaptive
system and compare it with both HTM and STM.

M. Wang et al. [29] exploited Intel’s restricted transaction memory to implement
a molecular dynamics simulator called Moldyn. They explore several important
relationships between transaction size and write ratio inside transactions as well as retry
count and transaction abort rate. They investigate how these parameters affect the overall
performance of an application. They introduce code transformations such as computation
splitting and privatization for improving performance. Computation splitting/merging is
the basis of transactional aborts caused by the size of a transaction, which can lead to low
performance. In this paper, they identify a ‘sweet-spot’ in the Moldyn application where
they compute each pair of molecule updates inside a single transaction as opposed to
thousands of molecules or single molecule in a transaction. This ‘sweet-spot’ in
transaction size increases performance in RTM.

For this thesis, we incorporated this paper’s notion of the correlation between the
transaction’s characteristics and the performance impact. We exploited the parameters of
a transaction such as transaction size, read-set size, write-set size, etc. and provided a TM
system based on both HTM and STM. This is important because these parameters give
information on a system’s behavior and constraints. By using these factors, we are able
to switch between HTM and STM at transaction granularity to achieve performance gain.

Pereira et al. [28] presented an extensive evaluation of Haswell’s Transaction
Memory performance. They focused on RTM’s forward-progress polices since Intel’s
TSX does not guarantee that a transactional execution will commit. This technique
retries the execution of a transaction with or without a time delay and attempts
completing the transaction execution speculatively. They introduced three policies for

forward progress: Maximum retry, Back-off and SerControl. Maximum retry is the
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simplest approach as it limits the number of times a transaction can be retried. Once a
transaction reached the retry threshold, it will commence the fallback policy with a global
lock. Back-off policy is based on a time delay in which an aborted transaction will wait
for a time delay before restarting. The duration of this time delay is uniform as the time
delay increases exponentially for every restart. Once again, there is a threshold for
number of transactional retries and once it has reached the limit, the transaction will be
executed using global lock. The next policy that was introduced in this paper is
SerControl. This policy focuses on the type of transactional abort in RTM by using the
EAX register status bit. If the transaction is aborted due to conflict or capacity
consecutively, SerControl will serialize the transaction by using a lock. If the cause of
abort is not conflict or capacity, then the maximum retry policy is applied. There are also
other aborts that are considered such as page-fault that may occur again if the transaction
is immediately retried so the back-off policy is applied after the threshold has been
reached. It is important to note that this paper focuses on increasing the probability of
executing transactions successfully in RTM.

In our thesis, we incorporate the ideas of the potential performance benefits of
forward progress policies. Although, the notion of having an efficient forward progress
policy is important, the actual performance gains are negligible. In this research paper
[28], they do not show the comparisons between the proposed RTM forward progress
policy and another TM system such as TinySTM. This would have clearly indicated the
impact of this paper’s proposed policies on performance. For our study, we conducted
many experimental tests with a variety of retry counts for transactional aborts. By
retrying an aborted transaction ‘X’ number of times, there is a possibility that the
transaction can eventually commit in hardware. Once the retry threshold is reached, the
fallback policy is applied. The fallback policy that is used is a global lock mechanism.
In our adaptive system, the retry count is set at 4. Based on experimental simulations, the
retry count of 4 is the best option that produces optimal performance. It is possible to
have a higher retry count, but it can hurt performance as retrying a transaction that aborts
over and over increases execution time. Also, having a low retry count can cause the
fallback policy to be executed too early. Furthermore, in our work, we investigated the

behavior of a transaction that best suits each TM system. If a transaction consists of a
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very large transaction size as well as a very large working set size, having an optimized
forward progress policy will not change the fact that RTM will perform poorly. In this
case, our adaptive system will automatically execute the optimal system based on the
parameters of a transaction.

M. Castro et al. [26] presented a dynamic approach to do efficient thread mapping
using machine learning. This technique relies on matching the behavior of an application
with the system characteristics. This technique is a dynamic approach and gathers
information from the application and the STM system at specific time intervals. They
compared dynamic approach with static thread mapping approach based on machine
learning. For the Static approach, they used the decision tree learning method which was
trained using datasets of input parameters. It will then output a decision tree that will
predict a thread mapping strategy. The predictor chooses one of four different strategies:
round-robin, scatter, compact and Linux. For dynamic Thread mapping, there are three
phases: hardware topology analyzer (HTA), thread mapping predictor and transaction
profiler. The HTA uses hardware locality library to get information from the underlying
platform topology (hierarchy of caches and how they are shared among caches). The
transaction profiler gets information from hardware counter and from the TM underlying
system all during runtime at specific time intervals. The thread mapping predictor gets
the data from the profiler and feed the data to a decision. Then, the predicted thread
mapping strategy is applied. Whenever a TM operation starts, aborts or commits, the
transaction profiler will be executed during these intervals and calls the thread mapping
predictor to switch strategies when necessary. For the transaction profiler, only one
concurrent running thread will be chosen for that task because it reduces stress on the
system and there isn’t any need for extra synchronization mechanisms for all threads.
The experimental results shows that thread mapping strategies do have a major impact on
performance. Out of the 56 TM applications, only 3 applications show no performance
gain and 8 applications had performance loss. The maximum performance loss was 8%
due to wrong predictions of the decision tree.

In our thesis, we incorporated the decision tree to predict the optimum system for
a given transaction. This paper proves that by incorporating a decision tree, we are able to

classify a transaction’s parameters in order to predict the optimum system that achieves
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the best performance. The decision tree algorithm used in the paper is ID3 while in this
thesis, the focus was on the C4.5 algorithm. C4.5 is an enhanced version of ID3, as it also
supports continuous attribute that results in better performance. This paper also follows a
procedure of attaining a training set of benchmarks and a testing set of benchmarks. By
separating the training and testing, it is possible to achieve results based on the prediction
of the decision tree itself. For our study, a training set of benchmarks consists of low,
medium and large transaction sizes as well as low, medium and large working set size.

C. Wang et al. [3] presented optimizations for limiting overhead in software
transaction memory. They focus on supporting transactional code in unmanaged
languages such as C. Optimization of STM overhead in unmanaged languages is a
challenging task as it requires implementing validation in the granularity of the cache
block rather than an object. In this paper, they proposed techniques to allow programmers
to initiate blocks to be executed atomically. They also exploit compiler-based
optimization techniques such as in-lining (necessary for fast paths), eliminating
redundant barriers and register checks. Our work is orthogonal and can be combined with
this paper [3] to enhance performance further.

Z. Li et al. [37] presented a compiler-based tool, called DiscoPoP, to
automatically identify regions of code that can be executed in parallel. It is designed to
be able to find code regions with arbitrary granularity. It is important to note that
DiscoPoP finds regions of a code in which data dependency does not exist. This is called
CU (computational unit). In the next step, dependency graphs are then built. The nodes
in the graph represent CUs and the edges represent the dependency between the CUs. By
exploiting the dependency graph, DiscoPoP determines the potential parallelism that is
available on different levels of the sequential code.

For this thesis, the DiscoPoP parallel benchmark suite was used to evaluate
adaptive system. This Benchmark suite consisted of small and medium sized transactions
that consisted of medium sized working set. For the decision tree training phase, it is
important to have a wide range of transactional parameters to achieve greater accuracy in
predictions.

D. Didona et al. [8] presented a self-tuning optimization technique to dynamically

adjust the concurrency level in STMs. The purpose of this paper is to automatically
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identify the optimal degree of parallelism which will maximize the throughput of the
applications.  They introduced self-tuning methods for both shared-memory and
distributed STMs. The performance of a TM application varies based on different factors
such as duration of transactions, level of data contention, ratio of update vs. read-only
transactions, etc. By changing the number of threads at runtime, it can improve the
performance of some applications instead of having a fixed number of threads. In this
paper, they used the self-tuning method that combines exploration-based and model-
driven approaches. Shared-memory STMs use the exploration-based approach which
consisted of three phases. The first phase is measurement phase. In this phase, the
application runs with fixed number of threads and measures the number of commits and
aborts. The second phase is decision phase. This phase decides whether to increase or
decrease the number of threads until the maximum is reached. The third phase is
transition phase. This phase is an external controller thread which either adds or removes
threads from an application depending on the results from the decision phase. Distributed
STM uses an analytical-based performance model which relies on a set of assumptions
based on transaction conflict patterns.

For this thesis, a similar approach is taken regarding the evaluation phases that are
introduced in this paper. The decision tree consisted of two phases, training and testing.
This was done similar to this paper in order to have discrete evaluations based on the
decision tree prediction module.

Y. Rughetti et al. [35] proposed a technique which automatically tunes the degree
of parallelism in HTM. To achieve automatic tuning, the authors incorporated a machine
leaning algorithm. This work focuses on a two-layered approach where the first-layer is
the correction functions which is used to predict values of time. The second-layer
consists of the performance predictor model that predicts the level of concurrency. There
are existing STM approaches such as Hill-climbing techniques [24] and transaction
scheduler [9] that optimize degree of parallelism. The hill-climbing technique changes
the parallelism degree by reacting to throughput or abort rate. Transaction Scheduling is
the basis of mapping transactions to threads dynamically to minimize data contention,
and then the rescheduled threads are removed from the execution for that time interval.

This approach gives different types of information from abort ratio to the details on a
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transaction read/write set. In these approaches, the predicted value of the transaction
wasted time is used to find the system throughput. This allows predicting the optimal
value to achieve the expected maximum throughput. In STM, it is easier to access via
software instrumentation to monitor specific parameters. However, these parameters are
not supported in HTM, and implementing it in HTM via software would create overheads
and lower the performance severely, especially since an advantage of HTM is supposed
to avoid any costly additional software instrumentation (overhead). The techniques are
not compatible for HTM since all of these models for STM do not take into account the
transaction aborts in which HTM is very vulnerable to conflicts. In this study, the authors
implement a classification approach comparing two different machine-learning methods:
Decision tree and Neural Networks. This approach consists of constructing a training set
for a specific application. The training set is constructed by executing a few runs of the
application with different inputs of configuration parameters. For each input, the
application is executed for a range of threads. By implementing this for each workload
tested during the training phase, it becomes possible to determine the best performing
concurrency level. The major benefit of this approach is that it follows the one-step
layered approach meaning that it does not require the usage of correction functions.

In this thesis, we use machine learning to determine which TM system is
appropriate for a transaction. This paper also shows the importance of overheads
associated with HTM systems in which careful analysis must be taken or else it will
cause performance penalties. Furthermore, our adaptive system does not execute both
HTM and STM, simultaneously. As this process incurs extra overhead. Thus, the
adaptive system avoids this performance penalty by allowing a transaction to execute in
either hardware or software. (Further information can be found in section 3.3)

Y. Xiao et al. [36] proposed an optimization technique that statically decides on
transactional parameters to improve performance of STM in parallel applications. By
focusing on a transaction’s characteristics (such as transaction size, read set size and
write set size), it is possible to achieve speedup in applications. The transaction size is a
crucial parameter that can have significant impact on performance and it is important to
have an optimum size to achieve speedup. If the transaction size is too small, it can lead

to overhead that exceeds the performance gain of parallel execution (results in slowdown
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when compared to sequential programs). If the transaction size is too large, it can lead to
an excess amount of rollbacks due to a higher probability of transactional aborts in
applications. Thus, it is important to have the optimum ‘sweet spot’ of transaction size.
This approach of optimizing each parameter manually can be a tedious and time
consuming process. To overcome this issue, the authors propose two optimization
techniques that are designed to automatically determine the optimal transaction size. The
first technique exploits Linear Regression (LR) to predict the transaction size. The LR
works by attaining the transaction parameters such as transaction size, read-set size,
write-set size and predicts the optimum transaction size. However due to the simplicity
of implementing LR, the accuracy is quite low. In order to improve the accuracy,
multiple LR models are used to predict transaction size. In addition, a decision tree
prediction model determines which LR model is appropriate for a given transaction.
Overall, these optimization techniques improved the performance of STM based
applications.

For this thesis, the adaptive system incorporates both HTM and STM to enhance
performance of parallel applications. A decision tree is implemented to predict the
optimum system based on a transaction’s characteristics. With the optimization
techniques proposed by Yang et al. [35], there is an opportunity to enhance the adaptive
system by optimizing STM and RTM separately based on the transactional characteristics

(such as transaction size, read-set size, write-set size, etc.).
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Chapter 3

Adaptive System Design
This chapter describes the design of the proposed Adaptive system. Section 3.1
explains the importance of transaction granularity for the proposed adaptive system.
Section 3.2 analyses the programmability aspects of RTM. Section 3.3 revolves around
the synchronization technique that is used to seamlessly switch between RTM and
TinySTM. Section 3.4 depicts how the adaptive system is implemented into a specific
source code. Finally, section 3.5 explains the implementation of the decision tree

prediction module.
3.1 Transaction Granularity

One of the features of the adaptive system is that it switches between HTM and
STM in transaction granularity. In parallel computing, the term granularity is defined as
the amount of real work in a parallel task. With transaction granularity, the focus is on
the basis of individual transactions rather than an entire application. This fine-grained
granularity system increases performance gains while a coarse-grained granularity system
misses many opportunities for speedup. However, to avoid overhead, the adaptive
system does not execute HTM and STM simultaneously. Simultaneous execution of
HTM and STM requires communication between in-flight hardware and software
transactions. A metadata should record transactional data and each transaction should
check the metadata when it accesses a transactional variable. Doing so significantly
increases execution time and hurts performance, especially in applications with low
conflict rate. To avoid this performance penalty, we allow a transaction to execute in
either hardware or software, but not both.

In order to achieve transaction granularity, program counter (PC) was used to
distinguish each and every transaction. While executing an application/benchmark, we
are able to attain the parameters of each transaction. These parameters include elapsed
execution time, the static size of transaction, transactional data, the number of aborts, etc.
From these parameters, it is possible to further understand the behaviors of both RTM
and TinySTM.
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1. uint32_t eip1 = 0;

2. __asm__ __volatile__("movl $., %0" : "=r"(eip1));

Figure 3.1: Program counter Code sequence

Figure 3.1 shows the code sequence used to read PC. When a transaction is initiated this
code returns address of the first instruction in the transaction. Line 1 initializes eip/ (a
local variable). Line 2 retrieves the value of the program counter to identify each
transaction. This is crucial for the adaptive system as it switches TM systems from one

transaction to another.

3.2 Restricted Transaction Memory (RTM)

The implementation of RTM programs was based on the programmability
references from Intel’s TSX manual [17]. The key factors of an RTM program is the
following:

* Retry count
* Fallback policy
* Transactional abort status

The retry count is the maximum number of times an aborted transaction is rolled
back and retries execution. This is important in RTM since transactions have an abundant
reasons to abort (refer to Section 2.2.4). By retrying an aborted transaction ‘x’ number of
times, there is a possibility that the transaction can eventually commit in hardware. Once
the maximum retry threshold is reached, the fallback policy is applied. It is important to
be able to execute a transaction using hardware resources as often as possible in order to
use the performance benefits of RTM. In our adaptive system, the retry count is set to 4.
Based on our experimental simulations, the retry count of 4 is the best option that
produces optimal performance. It is possible to have a higher retry count, but it can hurt
performance as retrying a transaction that aborts over and over increases execution time

due to wasted work. For example, if the retry count is 12 and the application triggers
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capacity aborts, the program will keep retrying the execution until the threshold of retires
is met. This wastes processor cycles and the outcome is performance slowdown. Also,
having a low retry count can cause the fallback policy to be executed too prematurely.
This means that RTM does not have a chance to be executed, which is detrimental for
performance gain. By conducting experimental test cases, having a retry count of 4 is a
‘sweet-spot’ for optimal performance.

In RTM, it is necessary to incorporate a fallback policy to guarantee that an
application will successfully execute. A sample code sequence of RTM’s fallback policy
is found in figure 3.2. This code sequence is placed inside a header file (tm.h in STAMP)
and is executed when RTM is called upon. The tm.h file contains the APIs necessary for
transactional execution for both software and hardware transactions. For this thesis, these
APIs are modified to support TinySTM and RTM.

This code sequence in figure 3.2 only focuses on the lock mechanism that is used
in the case of an RTM transactional abort. This fallback policy consists of a global
pthread lock. In line 4, if the number of tries is less than 0, then the fallback path is
initialized by acquiring a lock. This sequence happens during 7TM BEGIN RTM. Once
the TM END RTM is called, the code sequence will try to commit a transaction in RTM
only if the number of tries is greater than 0. Otherwise, in line 11, the pthread lock that
was held previously is released and the transaction is executed using locks. This
guarantees forward progress as the transaction will eventually commit after the threshold

of retires has been met and eventually executes the transaction using locks.

31



1. #define TM_BEGIN_RTM()

2. ..

3 tries --;

4 if (tries <= 0)

5.  pthread_mutex_lock(&global_rtm_mutex);
6. ..

7

8

. #define TM_END_RTM()

9. if (tries > 0)

10.

11. else

12.
pthread_mutex_unlock(&global_rtm_mutex);
13.

Figure 3.2: RTM fallback policy

In RTM, there are many constraints that result in a transactional abort. To track
these aborts, RTM uses the EAX status register to specify the exact cause of an abort.
Once a transaction aborts, the EAX register will send an abort code with the reason of
abort (further information on EAX abort codes can be found in Section 2.2.4).

To measure the cause of aborts, we use an array to keep track of all the different
kinds of transactional aborts inside an application. Once the application executes, the
total number and type of aborts will be printed out. This feature is an important aspect for
understanding the behaviors of RTM. From initial evaluation of RTM, the benchmarks
that perform poorly tend to have a higher abort rate with the majority being capacity
aborts. While the benchmarks that show performance gain have minimal abort rate,
along with minimal capacity aborts. Capacity aborts are detrimental to RTM’s
performance as the hardware resources are bounded with constraints. A benchmark that
consists of a large working set size, and/or large transaction size, has a higher probability
of getting capacity aborts in RTM, thus decreasing performance. Figure 3.3 depicts the
EAX status bits located in the RTM header file.
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/* Status bits */

#define XABORT_EXPLICIT_ABORT ( )
#define XABORT_RETRY ( )
#define XABORT_CONFLICT (1<<?)
#define XABORT_CAPACITY ( )
#define XABORT_DEBUG ( )
#define XABORT_STATUS(x) (

NoorON =

Figure 3.3: EAX status bits found in RTM header file

1.

2.

3. (tx->num_abort)++;

4.

5. if((eax_regg & 0x01) == 0x01)
6. (tx->abort_explicit)++;

7. if((eax_regg & 0x02) == 0x02)
8. (tx->abort_retry)++;

9. if((eax_regg & 0x04) == 0x04)

10.  (tx->abort_conflict)++;

11.  if((eax_regg & 0x08) == 0x08)
12. (tx->abort_capacity)++;

13.  if((eax_regg & 0x10) == 0x10)
14. (tx->abort_debug)++;

15.  if((eax_regg & 0x20) == 0x20)
16. (tx->abort_nested)++;

17.

Figure 3.4: Implementation of EAX status register

The EAX status bits are implemented in conjunction with RTM’s header file that
consists of the definitions of the aborts. This code sequence is placed inside RTM_stats
function to attain all the metadata of a transaction. In line 3 (figure 3.4), the total number
of aborts is accumulated. From line 5 to line 16, there are if statements to check whether
EAX status bit are initialized. For example, if there is an abort, it will check each status
bit and once the status bit is found, it will determine the cause of abort. These abort
metadata is then accumulated in the array structure to attain all the aborts of a transaction

within an application.
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3.3 Synchronization of RTM and STM

This section explains how RTM and STM are synchronized. We need to
guarantee that in-flight hardware and software transactions do not execute
simultaneously. This is very crucial because if there are any issues it can stall an
application from executing correctly or crash entirely. It can also lead to incorrect updates
to shared memory by either one of the systems. To enable mutual-exclusion of RTM and
STM, we exploit a conditional variable. The pseudo code in Figure 3.5 and 3.6 shows
how synchronization is handled between the two systems.

The synchronization occurs inside the functions #x_start() and tx_commit() which
depict the start and commit phases of a transaction, respectively (please refer to figure 3.5
and 3.6). These functions have other code sequences but are taken out in order to only
focus on the synchronization portion. The input arguments of the two functions show
whether the corresponding transaction is executed in hardware or software. A hardware
transaction first checks if there is any in-flight software transaction (line 7). If a software
transaction is executing, then the hardware transaction waits (line 8). Then, the hardware
transaction increments num_in_flight rtm which is a counter and shows the number of in-
flight hardware transactions (line 9). A global lock (rtm_stm_sync _mutex) is used to
guarantee atomicity of accesses to the shared variables in txstart() and tx_commit(). It is
important to note that the overhead of the global lock is very low as it is held by
transactions for a short period of time. The code for software transaction (lines 14-22) is
similar. When a hardware transaction commits, (lines 28-35), it decrements
num_in_flight rtm counter (line 31). If the counter is zero, then it broadcasts a signal to
all software transactions waiting for in-flight hardware transactions to finish. The same

procedure is followed for software transactions (lines 37-44).
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1:  tx_start(int rtm_n_stm)

2: {

3. ..

4:  if(rtm_n_stm == 1)

5:

6: pthread_mutex_lock(&rtm_stm_sync_mutex);

7: while (num_in_flight_stm > 0)

8: pthread_cond_wait(&sync_cond_rtm, &rtm_stm_sync_mutex);
9: num_in_flight_rtm++;

10:

11: pthread_mutex_unlock(&rtm_stm_sync_mutex);
12: }

13:

14: if(rtm_n_stm == 0)

15:  {

16: pthread_mutex_lock(&rtm_stm_sync_mutex);
17: while (num_in_flight_rtm > 0)

18: pthread_cond_wait(&sync_cond_stm, &rtm_stm_sync_mutex);
19: num_in_flight_stm++;

20:

21: pthread_mutex_unlock(&rtm_stm_sync_mutex);
22: '}

23: ...

24:}

Figure 3.5: Pseudo code for synchronization of RTM and STM in tx_start().

25: tx_commit(int rtm_n_stm)

26: {

27: ...

28: if(rtm_n_stm == 1)

29:  {

30: pthread_mutex_lock(&rtm_stm_sync_mutex);

31: num_in_flight_rtm--;
32: if(num_in_flight_rtm == 0)

33: pthread_cond_broadcast(&sync_cond_stm);

34: pthread_mutex_unlock(&rtm_stm_sync_mutex);
35 }

36:

37: if(tm_n_stm == 0)

38: {

39: pthread_mutex_lock(&rtm_stm_sync_mutex);

40: num_in_flight_stm--;
41: if(num_in_flight_stm == 0)

42: pthread_cond_broadcast(&sync_cond_rtm);

43: pthread_mutex_unlock(&rtm_stm_sync_mutex);
44: }

45: ...

46: }

Figure 3.6: Pseudo code for synchronization of RTM and STM in tx_commit().

35



In this synchronization step, there are important lock functions to promote atomicity. In
line 8, the instruction pthread cond wait() is called. If a transaction is being executed in
STM mode, then this function blocks the calling transaction. When the last transaction in

STM mode commits, it broadcasts a signal (line 42) and wakes up all blocked transaction.
3.4 Implementing Source Code

The main goal of our adaptive system is to have a uniform design of incorporating
both systems. Typically, in TM applications/benchmarks, there are macros that enable
transactions to begin and end as well as macros for data access such as reads and writes.
For our adaptive system, there are new instructions dedicated to RTM and TinySTM. For
a given TM application/benchmark, by substituting the source code with RTM and
TinySTM macros, our adaptive system is able to seamlessly switch between systems for
different transactions. These macros are defined in header files which consist of the
entirety of the RTM and TinySTM codes. Figure 3.7 shows sample code of how RTM
and TinySTM work alongside each other using the proposed macros.

To start and end a transaction in RTM, we use the macro TM BEGIN RTM and
TM END RTM. The same structure of macros is used to start and end a transaction in
STM: TM BEGIN STM and TM END STM. There are two macros for transactional data
access in RTM: TM SHARED READ RTM and TM SHARED WRITE RTM. Similar
structure is used for STM: TM SHARED READ STM and TM SHARED WRITE STM.

1. TM_BEGIN_STM();

2. TM_SHARED_READ_STM();
3.

4, /ltransactional area...
5.

6. TM_SHARED_WRITE_STM();
7. TM_END_STM();

8.

9.

10. TM_BEGIN_RTM();
11. TM_SHARED_READ_RTM();

13. /ltransactional area...

15.  TM_SHARED_WRITE_RTM();
16.  TM_END_RTM():

Figure 3.7: Pseudo code for implementing RTM and STM.
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3.5 Implementation of Decision tree

Decision tree is an effective method of supervised machine learning that exhibits
an accurate prediction based on a group of datasets [22]. The goal of implementing a
decision tree is to create a model that predicts a value based on a set of input parameters.
Our Adaptive system exploits a decision tree prediction module (C4.5 algorithm [23]) to
be able to predict which TM system is the better choice for a given transaction. The C4.5
algorithm was chosen because of the stability and good accuracy when compared to other
prediction model algorithms [22]. The basic functionality of C4.5 is to build a tree from a
set of training datasets and the resulting tree is used to predict the optimum TM system
(further information can be found in Section 2.3). This process can be broken down into

two phases: training phase and testing phase.

3.5.1 Training Phase

The training phase is conducted to attain a prediction model based on the decision
tree. The input datasets are constructed using the following transaction parameters:
* Transaction size
* Read-set size
*  Write-set size
*  Write-ratio
Transaction size refers to the operations that are present inside a transaction.
Typically, a transaction is initialized with 7M BEGIN and a transaction is committed
with TM END. In between these instructions lie different operations, such as arithmetic
operations, read-sets, write-sets, ‘for’ loops, etc. One way to measure transaction size is
counting the number of C code lines in transactions. However, execution time of C
programs changes from one line to the other by a large margin. We need a fine
granularity metric for the transaction size. Since all C codes are compiled to assembly
instructions, we use the number of assembly instructions to measure transaction size. In
general, transaction size is important when conducting evaluations for RTM. This is

primarily due to the hardware resource constraints. Once the cache capacity of RTM has
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been reached, there is a higher probability of the transaction resulting in an abort, thus
resulting in overall performance slowdown.

Another important transactional parameter is the working set size which is
defined as the number of distinct memory locations accessed. This includes both the read
and write sets inside of a transaction.

Transaction conflict is more likely to occur in applications with large working set
size. In RTM, such conflicting accesses force an abort to ensure that atomicity of the
transaction is preserved, yet this will result in performance slowdown. The write-ratio is
the ratio between the number of shared writes and the total number of shared accesses.
The write-ratio is used as another parameter that is included in the training set of the
decision tree, in order to improve the accuracy of prediction.

Overall, these parameters are important in terms of the behaviors of both RTM
and TinySTM. RTM favors small sized transactions as well as small working set size.
While in STM, there is much more flexibility and offers better performance than RTM
for large transaction sizes and large working set sizes.

The training phase consists of a set of benchmarks that are chosen based on small,
medium and large transaction sizes and working set sizes from all the 3 benchmark suites
(STAMP, NAS and DiscoPoP).

The following are the benchmarks used for the training phase:

* GENOME
e LABYRINTH
* YADA

* Embarrassingly Parallel

* Montercarlo Pie

* Light Propogation

The benchmarks are executed twice: once using RTM and the other using

TinySTM. The Decision tree is trained based on statistics generated by RTM and
TinySTM. This procedure was done separately for 2, 4 and 8 number of threads because
the characteristics of a transaction can vary as the thread count increases. The output of
the decision tree is a binary bit that indicates whether RTM or STM is better for a given

transaction.
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Figures 3.8, 3.9 and 3.10 represent the decision tree predictions for 2-, 4- and 8-
thread, respectively. Based on these predictions, an evaluation was conducted on a
separate set of testing benchmarks. The result of the decision tree follows an if/else
procedure. Figure 3.8 corresponds to the prediction for 2 threads. First, it checks
transaction size. If the transaction size is less than 155, then the optimum TM system is
predicted to be RTM. Else, if the transaction size is greater than 155, it enters the next set
of base parameters to be examined. Now, if the write-set size is less than 2.05 x10° then
the TM system that should be used is STM. Else, if the transaction has a larger write-set
size then it will check the next base parameter. Once again, the decision tree checks if the
transaction size is less than 580, then RTM will be used; otherwise, STM system will be
used. As the thread count increases, the transactional execution time can change and
ultimately the predicted system can change. In order to overcome this issue, the decision

tree is implemented separately for threads 2, 4 and 8 to improve accuracy.

TransactionSize <= 155 : RTM 2 (3.0)
TransactionSize > 155 :

| WriteSetSize <= 2,05842e+06 : 5TM 1 (3.0)
| WriteSetSize > 2.05842e+06 :

| | TransactionSize <=580: RTM 2 (2.0)

| | TransactionSize >580:STM 1 (1.0)

Figure 3.8: Decision tree output for 2 Threads

TransactionSize <= 155: RTM 2 (4.0)
TransactionSize > 155 :

| Write-Ratio <= 0.325901 : STM 1 (2.0)

| Write-Ratio > 0.325901 :

| | ReadSetSize <=115211:STM 1 (2.0/1.0)
| | ReadSetSize >115211:RTM 2 (2.0)

Figure 3.9: Decision tree output for 4 Threads
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TransactionSize <= 155 : RTM 2 (2.0)
TransactionSize > 155 :

| ReadSetSize <=115260:5TM 1 (4.0)

| ReadSetSize > 115260 :

| | ReadSetSize <=2.23623e+07 : RTM 2 (2.0)
| | ReadSetSize »2.23623e+07: STM 1 (2.0)

Figure 3.10: Decision tree output for 8 Threads

Table 3.1 shows an example of benchmark YADA and the parameters associated with its
transactions. These parameters were used for training due to specific behaviors of each

system. Benchmark YADA contains 5 transactions in which each transaction has its own

unique set of characteristics.

Table 3.1: Characteristics of benchmark YADA consisting of five transactions

TX# STM RTM Read-set Write-set | TX Size | Write
Time(ms) Time(ms) Size Size Ratio
TX1 291 113 2525298 1219387 101 0.3256
TX2 523 48 580197 0 115 0
TX3 39833 51061 10396152 24145158 626 0.1884
TX4 52 24 0 464996 95 1
TX5 144 66 1127133 505601 109 0.3096

In large transactions, STM performs better than RTM primarily due to capacity

overload of hardware resources. Another critical behavior of a transaction is working set

size (read/write accesses). RTM performs well for transactions that consist of low to

medium working set size, while STM performs well for large working set size. This is

due to the hardware constraints associated with RTM which caps the threshold for

performance gain in transactions with large working set sizes. In YADA, there are 4

transactions with transaction sizes that range from 95-115. For these transactions, RTM

executes faster than STM. The remaining transaction has a size of 626 and contains a

very large working set size in which STM greatly outperforms RTM. By training the

decision tree using all parameters of the training benchmarks, it is possible to achieve
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accurate predictions.

3.5.2 Testing Phase

The testing phase is conducted to predict whether RTM or STM is better for a
given transaction. The testing phase consists of 6 different benchmarks, which are:
* Conjugate-Gradient
*  Multi-Grid
* KMEANS
* SSCA2
* Ann_Training
*  Mandelbrot

The reason why there was no inclusion of the training benchmarks for evaluation
is due to having a discrete analysis based on the decision tree prediction. Therefore, the
focus was on attaining a prediction based on the training benchmarks then applying the
prediction to another set of benchmarks (testing benchmarks).

The C4.5 algorithm of the decision tree applies pruning to increase the accuracy
of the prediction. Pruning is the basis of increasing the accuracy of unseen groups of data.
The decision tree is designed to give an accurate prediction, which means that there is no
guarantee that the prediction is correct all the time. This is due to the parameters that
impact the execution time of transactions. These parameters vary from one benchmark to
another. Table 3.2 is an example of the prediction of the decision tree for benchmark CG
(Conjugate-Gradient). D. T prediction in the table stands for decision tree prediction.

The decision tree prediction is based on the dataset of the training phase.

Table 3.2: Decision tree prediction based on Transaction Granularity for Benchmark CG

TX # STM Time(ms) | RTM Time(ms) | D.T prediction Optimum
prediction
X1 4 21 RTM STM
TX2 83391 9664 RTM RTM
TX3 97 809 STM STM
TX4 14 2 STM RTM
TX5 4 20 RTM STM
TX6 172 1873 STM STM
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This table indicates that the decision tree predicted the best system at a rate of
50% (3/6 transactions). Even though 50% accuracy seems poor, it is actually very
accurate in terms of transaction execution time greater than 100ms. Approximately, 3 out
of the 6 transactions have an execution time greater than 100ms (for both RTM and
STM), in which the decision tree accurately predicted the correct system to use. The
miss-predictions for the transactions with an execution time less than 100ms are not
important as small transactions have insignificant impact on performance. Our adaptive
system works alongside the predictions made by the decision tree. Based on the
prediction, either a programmer or a compiler will statically change the source code for
the adaptive system. The adaptive system will then run the benchmark, which consists of
both hardware and software transactions to achieve a performance gain.

In summary, the primary goal of the adaptive system is improve performance of
parallel applications by incorporating the notion of switching between hardware and
software transactions within a given application. A decision tree is incorporated to predict

the optimum system for each transaction based on its characteristics.
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Chapter 4

Experimental Results

The motivation to develop the proposed adaptive system is originated from the
benefits and limitations of both TM systems. Depending on an application’s transaction
characteristics, either RTM or STM can outperform each other. This chapter focuses on
the experimental analysis of the adaptive system based on the testing benchmarks. In
Section 4.1, we explain experimental framework and benchmark specifications used to
evaluate the adaptive system. Section 4.2 analyzes both RTM and TinySTM on the basis
of performance and energy-delay. Section 4.3 reports performance and energy-delay of

both RTM and TinySTM.
4.1 Experimental Framework and Benchmark Specifications

In this thesis, the focus is on simulating both STM and RTM on the same
commodity processor. The experimental setup consisted of 4™ generation of Intel Core i7
processor comprising of four physical cores that can run up to eight threads
simultaneously (hyper-threading). Each core consists of two 8-way 32KB L1 cache
(instruction and data), 256 KB L2 cache, and 8 MB of L3 cache. The operating system
used is 64-bit Ubuntu Linux with 3.4.5-40 kernel. In order to access Intel’s TSX intrinsic,
-mrtm flag was used. All benchmarks are compiled using gcc 4.8.1. Sections 4.1.1 to
4.1.3 describe the general characteristics of each benchmark suite that was used for

evaluation.

4.1.1 Stanford Transactional Applications for Multi-Processing (STAMP)

STAMP [2] is a well known and widely used benchmark suite for parallel
computing. The input variables for each benchmark in STAMP can be configured. For
all evaluations conducted on these benchmarks, the input variables consist of the

maximum allowed parameters (non-simulated input parameters).

KMEANS: This benchmark represents a K-means algorithm that groups objects into ‘K’

number of clusters. The basis of this algorithm is to partition data into subsets. In this
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benchmark, there are three transactions. The transaction sizes in KMEANS are relatively

small and so are the read and write sets.

GENOME: This benchmark represents reconstructing and matching DNA segments. The
structure of this benchmark consists of five transactions that range from medium to large

transactional sizes. The working-sets (read/write) in this benchmark have moderate size.

LABYRINTH: This benchmark represents the structure of a three-dimensional maze.
Each thread essentially attains a start and an end point of the maze, and connects a path
through all grid points. The structure of this benchmark consists of three transactions in
which the execution time of one transaction dominates the other two. The transaction

sizes range from medium to large and the working set size is large.

SSCA2 (Scalable Synthetic Compact Applications 2): This benchmark represents the
construction of an array data structure for security based applications. The structure of
this benchmark consists of only one small sized transaction as well as a small working set

size.

YADA (Yet Another Delaunay Application): This benchmark represents Ruppert’s
algorithm [24] for mesh refinement data structure. The structure of this benchmark
consists of five transactions ranging from small to large sizes. The working set size also

ranges from medium to large sizes.

4.1.2 NAS Parallel Benchmarks

This benchmark suite was introduced in 1994 by Ames Research Center of NASA
and was developed for performance evaluation of highly parallel supercomputers [4].
These benchmarks mimic the computation and data structures of CFD (computational
fluid dynamics) applications [19]. This benchmark suite was used in this thesis to further

enhance the spectrum of transactional memory applications.

Conjugate-Gradient: This benchmark represents gird computations for unstructured
eigenvalues. The structure of this benchmark consists of six transactions ranging from

small to large sizes. The working set size is fairly small throughout the six transactions.
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Multi-Grid: This benchmark represents the testing of short and long distance data
communications. The structure of this benchmark consists of two transactions in which
one of the transactions is very small and the other is medium sized. The working set size

is fairly small for both transactions.

Embarrassingly Parallel: This benchmark represents calculation of floating-point data
structures without significant inter-processor communication. The structure of this
benchmark consists of three transactions. The transaction sizes range from medium to

large. The working set size remains fairly moderate in size.

4.1.3 DiscoPoP Benchmark Suite

This benchmark suite was developed for a tool to automatically find potential
parallelism in sequential programs [37]. This tool is called DiscoPoP which is able to
find parallelism between code regions with subjective granularity. The set of benchmarks
introduced in DiscoPoP is also used for the evaluation of the proposed adaptive system.

The benchmarks used are the following:

* Mandelbrot
* Light Propagation
*  Monte Carlo

* Artificial Neural Network Training

Each of these benchmarks only consists of one transaction. The transaction size however
ranges from small to medium. The working set size is considerably small when
compared to both NAS and STAMP benchmarks. These sets of benchmarks were used to
further enhance the prediction of the decision tree. The adaptive system must be able to
work with a wide variety of transactional applications, including applications that have

minimal transaction sizes and minimal working set sizes.
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Normalized (RTMISTM)

4.2 RTM vs. STM Performance Evaluation

The first set of experiments are based on evaluation of RTM and TinySTM on 12
benchmarks taken from Stamp [2], NAS [4], and DiscoPop [37] benchmark suites. This
evaluation is primarily conducted to compare the performances of the two systems.
Figure 4.1 represents a normalized comparison graph between RTM and TinySTM. In
each benchmark, the number for threads varies between two and eight. In Figure 4.1,
measurement reading greater than one favors TinySTM while less than one favors RTM.
There is a vast discrepancy between both systems, primarily due to the transaction
characters within a given benchmark such as transaction size, write-set size and read-set
size.
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Figure 4.1: Normalized Transactional Execution time of RTM relative to TinySTM.

In small benchmarks where working set of the benchmark fits in the L1 cache, i.e.
Montecarlo, Light Propagation, KMEANS, SSCA2, Conjugate-Gradient, RTM
outperforms TinySTM. In contrast, TinySTM outperforms RTM in benchmarks

consisting of larger transaction sizes, i.e. Labyrinth, Genome, YADA, Ann_Training,
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Mandalbrot. The number of transactions within a benchmark varies and the
characteristics from one transaction to another also vary. By introducing our adaptive
system, we will be able to switch between RTM and TinySTM within a benchmark and

achieve better performance.

4.3 RTM vs. STM Energy Expenditure Evaluation

An important aspect of computational performance is energy efficiency. With
modern technology (laptops, cellphones, tablets, etc.) relying heavily on battery power, it
is essential to expend an efficient amount of energy as possible. Energy expenditure was
accurately measured using Intel’s runtime average power limit monitor (RAPL) [16],
calculated in milli-joules (mJ). RAPL relies on a set of hardware counters inside the
processor, which provides energy and power consumption information.

The energy measurements are first taken for each TM system and an analysis is
made. One of the major advantages of RTM over TinySTM is energy efficiency. RTM
is more energy efficient than TinySTM as RTM exploits hardware resources and
does not incur the software overhead of TinySTM. This experiment was conducted
to see the extent of how energy efficient RTM is over TinySTM. The same 12

benchmarks from STAMP, NAS and DiscoPoP are used for this evaluation.
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Figure 4-2 represents energy-delay comparison between RTM and TinySTM. The
energy delay measurement is calculated by the energy consumption multiplied by the
transactional execution time. To take into account the impact of both energy and
performance, we use energy-delay to compare adaptive system with RTM and TinySTM.
RTM is much more energy efficient than STM for all benchmarks except for benchmarks
GENOME and LABYRINTH. This is primarily due to the benchmarks characteristics as
well as the structure of RTM. Although, RTM is generally much more energy efficient
compared to STM, the structure of RTM can lead to excess wasted work. When RTM
aborts, the retry sequence is initiated where it will keep retrying the aborted transaction.

Once the retry threshold is reached, the transaction will be executed using the
fallback policy (global lock). This results in wasted work as the abort prone transaction is
retried unsuccessfully. Another important limitation of RTM is capacity induced aborts.
No matter how many times the transaction is retried, the hardware limitations restrict it
from successfully committing. By implementing our adaptive system, there is a possibility
that by switching to RTM (when possible), it may be more energy efficient than STM.
Furthermore, the adaptive system incorporates STM meaning that the energy efficiency
readings compared to RTM does not result in efficiency. Table 4.1 and 4.2 depict the
characteristics of benchmark Genome and Labyrinth, respectively. (Further analysis of all

benchmarks is in Appendix-A).

Table 4.1: Characteristics of Benchmark LABYRINTH at two threads

TX # STM RTM Read- | Write- Tx Abort Abort Write | Capacity
Time(ms) | Time(ms) | set Size | set Size | Size | Ratio(STM) | Ratio(RTM) Ratio Abort-
Ratio
TX1 0 0 4108 512 134 0 0 0.1109 0
X2 77851 150512 1151846 | 1810368 | 254 0.04119 0.7470355731 | 0.6112 0.9596560
TX3 0 0 12 8 61 0 0 0.3636 0
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Table 4.2: Characteristics of Benchmark GENOME at two threads.

TX # STM RTM Read-set | Write- | Tx Abort Abort Write | Capacity
Time(ms) | Time(ms) Size set Size | Size | Ratio(STM) | Ratio(RTM) | Ratio Abort-
Ratio
TX1 6064 7359 41992177 | 32652 259 2.14575E-006 | 0.2037975743 | 0.0077 0.5876806
X2 2 1 21728 16321 116 0 0.0001837785 | 0.4289 0.3666666
TX3 2493 2774 40543510 2057244 | 536 0.0097530404 | 0.2562808218 | 0.0482 0.3399366
TX4 4 3 52050 32642 133 0 0.1450497643 | 0.3854 0.0003611
TX5 8 2 107612 81600 154 0 0.0037543224 | 0.4312 0.1315789

From these tables, the results show that all transactions are different from one

another in terms of transaction size and working set size. In benchmark GENOME, the

average capacity abort ratio (only for TX1 and TX2, due to majority of transactional load)

is approximately 46.8% out of the total number of aborts. The capacity abort results in

slowdown for RTM when compared to STM. For benchmark Labyrinth, only one of the

three transactions has the majority of the transactional load. The capacity abort ratio for

that transaction is 95.9% of the total number of aborts. This severely hampers RTM’s

performance, as it wastes a lot of work by retrying unnecessarily and executing the

fallback path. On the other side, for STM, the total abort ratio is very small at 4.11%.

Figure 4.3 depicts the distribution of transactional aborts for benchmark GENOME.

Generally, as the thread count increases from 2 to 8, the capacity aborts increase from

46.4% to 74.6%.

100%
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# of Threads

Figure 4.3: Distribution of Transactional Aborts for Benchmark GENOME
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4.3 Evaluation of Adaptive system

The experimental analysis of the adaptive system is to compare the results with
baseline TinySTM and baseline RTM. This evaluation consists of both transactional
execution time as well as energy delay measurements. For evaluation, the benchmarks
from the testing phase are used. This includes benchmarks Conjugate-Gradient,
Multi-Grid, KMEANS, SSCA2, Ann_Training and Mandalbrot. The primary objective
of the testing benchmarks is to strictly use the decision tree predictions. Therefore,
the focus was on attaining a prediction based on the training benchmarks then

applying the prediction to another set of benchmarks (testing benchmarks).

4.3.1 Adaptive system vs. TinySTM

This section provides experimental analysis between the proposed adaptive
system and TinySTM. Figure 4.4 depicts Normalized transactional execution time
(speedup) between the adaptive system and TinySTM. A benchmark that consists of
a value less than 1 shows speed-up for the adaptive system. The benchmarks
Conjugate-Gradient, Kmeans and SSCA2 have a significant speedup over STM. The
rest of the benchmarks, Multi-Grid, Ann_Training and Mandalbrot have a normalized
speedup value of 1 which indicates that the prediction used for the adaptive system
heavily favored TinySTM. Overall, as the thread count increases, there is little
difference in speedup. On average, speed-up is 34.31%, 34.44%, and 34.35% for 2,
4 and 8 threads, respectively. It is important to note that the decision tree prediction
is not always correct, as a few predictions are inaccurate. Yet, the performance gains
of the proposed adaptive system are very promising when compared to TinySTM. A
thorough analysis of the decision tree prediction for each testing benchmark is

found in Appendix B.
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Figure 4.4: Normalized Speedup comparison between adaptive system and TinySTM.

The next evaluation is based on the energy delay measurements. Figure 4.5
depicts Normalized energy-delay comparison between the adaptive system and
TinySTM. Once again for this evaluation, only the benchmarks in the testing
benchmarks are used in order to have a realistic evaluation based on the decision
tree predictions. Since this is a normalized graph, values less than 1 depict energy
efficiency and a value greater than one depicts energy deficiency. In all the testing
benchmarks, our adaptive system is 42.11% more energy efficient than TinySTM.
This is a significant difference of energy consumption when compared to baseline
TinySTM. The reason for this substantial energy efficiency is that for certain
benchmarks that consist of low/medium sized transactions and working set sizes,
by implementing these transaction in RTM, the adaptive system is able to save
energy. The benchmarks that show significant energy efficiency are (portrays
overall energy efficiency percentage):

* Conjugate-Gradient = 94.78%
* KMEANS = 91.76%
* SSCA2 - 55.81%
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The rest of the benchmarks relatively have low to moderate energy
efficiency. This is because for certain benchmarks that consist of low/medium
transaction and working set sizes, by implementing these transactions in RTM, we
are able to save energy. If all the transactions are implemented in STM, then there
will be additional overhead for each transaction initiated. (Further analysis of

energy expenditure for all benchmarks is found in Appendix D.)
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Figure 4.5: Normalized Energy-delay comparison between adaptive system and TinySTM.

4.3.2 Adaptive system vs. RTM

This section provides experimental analysis between the proposed adaptive
system and RTM. Figure 4.6 depicts Normalized transactional execution time
(speedup) between the adaptive system and RTM. The benchmarks that have a
normalized speedup less than one indicate that the adaptive system achieves

speedup.
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Figure 4.6: Normalized Speedup comparison between adaptive system and RTM.

At 4 and 8 threads, benchmark Multi-Grid indicates a slowdown when
compared to the baseline RTM. This is due to the decision tree prediction that
incorrectly predicted the wrong system to execute for that specific benchmark.
Table 4.3 shows transaction parameters of Multi-Grid. At 4 threads, Multi-Grid has a
better execution time for RTM, but due to the decision tree's prediction, the STM
system was used. Multi-Grid benchmark consists of two transactions in which the
decision tree predicts correctly for only one of the two transactions. The other
transaction (TX2) is incorrectly predicted and this results in slowdown of the

adaptive system compared to the baseline RTM.

Table 4.3: Transaction parameters and execution time for Multi-Grid benchmark when the
number of threads is four.

TX# | STM Time(ms) | RTM Time(ms) | Read-set | Write-set | TX Size| Write | Decision | Optimum
Size Size Ratio tree System
Prediction|
X1 120 60 64 64 130 0.5 RTM RTM
TX2 18818 16990 8008 8008 276 0.5 STM RTM
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There are a few reasons why RTM executes better than STM even though the
transaction and working set sizes are very large. The primary reason is the abort
ratio of this benchmark. In RTM, capacity induced aborts dramatically hamper the
performance of transactional executions. Yet, for benchmark Multi-Grid, there is a
total abort ratio of 11.46% and out of that, only 9.54% consists of capacity aborts
(please refer to appendix A.2). This means that there is a low abort rate as this
benchmark has a higher percentage of successfully committing transactions. Also,
since the capacity abort rate is very low, this benchmark executes efficiently in RTM
thus achieving a better performance. On the contrary, at 8 threads, benchmarks
Conjugate-Gradient, Ann_Training and Mandalbrot demonstrate good speedup
when compared to the baseline RTM. On average, the proposed adaptive system has
speedup of 5.88%, 5.16% and 11.79% for 2, 4 and 8 threads, respectively.

The next evaluation is based on the energy-delay measurements. Figure 4.7
depicts normalized energy-delay comparison between the adaptive system and
RTM. The proposed adaptive system is not energy efficient when compared to RTM.
This is primarily due to the overhead associated with switching into STM. There is
extra overhead when initiating and overseeing a transaction in STM which expends
extra energy. Thus, since our adaptive system incorporates both systems, the energy

efficiency drops when compared to RTM.
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4.3.3 Decision Tree Predictions for Testing Benchmarks

This section reviews the decision tree prediction that was used for each of the testing
benchmarks. During the training phase, the system that executed the fastest was included
as the input parameter for the decision tree. For the testing phase, the decision tree does
not predict correctly all the time.

These tables show (4.4, 4.5, 4.6, 4.7, and 4.8) that the proposed adaptive system is
able to achieve speedup in all benchmarks (except Multi-Grid, explanation is in section
4.3) when compared to RTM or TinySTM.  These tests also show exactly which
transaction yields the majority of the application’s workload. For example, in table 4.4
(benchmark Conjugate-Gradient) TX2 takes the majority of the transactional execution
time when compared to the other transactions. If the decision tree predicts incorrectly,
this can lead to performance slowdown for the adaptive system. This shows that the
accuracy of the decision tree is crucial to achieve speedup for applications. In SSCA2
(table 4.7), there are 3 transactions in total but only one out of the tree transactions has

the application’s entire workload. (Further analysis of energy expenditure for all

benchmarks is found in Appendix D.)

Table 4.4: Benchmark Conjugate-Gradient comparing Decision Tree prediction with
Optimum system

TX# STM RTM Adap. Speedup Speedup D.T Optimum
Time(ms) | Time(ms) | Time(ms) | (Baseline_STM) | (Baseline_RTM) | prediction | prediction
TX1 4 21 19 4.75 0.9047619048 RTM STM
TX2 83391 9664 9473 0.1135973906 0.9802359272 RTM RTM
TX3 97 809 489 5.0412371134 0.6044499382 STM STM
TX4 14 2 28 2 14 STM RTM
TX5 4 20 19 4.75 0.95 RTM STM
TX6 172 1873 170 0.988372093 0.090763481 STM STM
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Table 4.5: Benchmark Multi-Grid comparing Decision Tree prediction with Optimum

system
TX# STM RTM Adap. Speedup Speedup D.T Optimum
Time(ms) | Time(ms) | Time(ms) | (Baseline_STM) | (Baseline_RTM) | prediction | prediction
TX1 39 35 36 0.9230769231 | 1.0285714286 RTM RTM
TX2 20738 13026 19919 0.9605072813 | 1.5291724244 STM RTM
Table 4.6: Benchmark KMEANS comparing Decision Tree prediction with Optimum
system
TX# STM RTM Adap. Speedup Speedup D.T Optimum
Time(ms) | Time(ms) | Time(ms) | (Baseline_STM) | (Baseline_RTM) | prediction | prediction
TX1 6422 640 642 0.0999688571 1.003125 RTM RTM
TX2 102 0 0 0 0 RTM RTM

Table 4.7: Benchmark SSCA2 comparing Decision Tree prediction with Optimum system

TX# STM RTM Adap. Speedup Speedup D.T Optimum
Time(ms) | Time(ms) | Time(ms) | (Baseline_STM) | (Baseline_RTM) | prediction | prediction
TX1 0 0 0 0 0 n/a n/a
TX2 0 0 0 0 0 n/a n/a
TX3 5584 2663 2662 0.4767191977 0.9996244837 RTM RTM
Table 4.8: Benchmark ANN_TRAINING comparing Decision Tree prediction with
Optimum system
TX# STM RTM Adap. Speedup Speedup D.T Optimum
Time(ms) | Time(ms) | Time(ms) | (Baseline_STM) | (Baseline_RTM) | prediction | prediction
TX1 42698 45335 42656 0.9990163474 | 0.9409065843 STM STM
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Table 4.9: Benchmark MANDALBROT comparing Decision Tree prediction with
Optimum system

TX# STM RTM Adap. Speedup Speedup D.T Optimum
Time(ms) | Time(ms) | Time(ms) | (Baseline_STM) | (Baseline_RTM) | prediction | prediction
TX1 18825 19207 18785 0.997875166 | 0.9780288437 STM STM
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Chapter 5

Conclusion

CMPs have become the main architecture of general-purpose computing. This
made development of efficient parallel programs a necessity in order to increase
performance. Transactional memory (TM) has been established as a simple and effective
parallel programming paradigm. TM has become progressively widespread especially
with Hardware transactional memory implementations becoming increasingly available.
This thesis proposes an adaptive system that exploits both STM and HTM at transaction
granularity. This chapter concludes the thesis and offers the potential future work that can

enhance performance of TM programs further.
5.1 Summary of Contributions

In a typical parallel application, the characteristics of a transaction vary
immensely. This leads to the discovery that there is no single TM system that works well
across all parallel applications. The primary goal of this thesis is to improve the
performance of parallel applications by combining the benefits of both RTM and
TinySTM. With the proposition of the adaptive system, it is possible to switch between
RTM and TinySTM at transaction granularity. A synchronization technique is developed
in order to seamlessly switch between RTM and TinySTM based on the characteristics of
a transaction. By exploiting the decision tree prediction module, it is possible to predict
the optimum system for each transaction in a given application. The decision tree is a
form of supervised machine learning to classify the input transaction parameters (such as
transaction size, transactional write ratio, etc.). This leads to an accurate prediction to
execute the optimum TM system. The evaluation consisted of three parallel benchmark
suites (STAMP, NAS and DiscoPoP) separated into the training phase and the testing
phase. The decision tree attains all transactional parameters from the benchmarks in the
training phase and predictions are created for varying number of threads (2, 4 and 8).
These predictions are then evaluated on the testing phase which reveal that the adaptive

system is able to improve transactional execution time and energy-delay.
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5.2 Future Work

With the development of the adaptive system, there are issues that can be

improved with further optimizations.

1)

2)

For this thesis, the training dataset of the decision tree was limited to 6
benchmarks (the other benchmarks are used for testing) that ranged from small to
large transaction sizes and working set sizes. By incorporating additional
benchmark suites for the training phase, it is possible to improve the accuracy of

the decision tree prediction module.

The other opportunity for future work is combining adaptive system with the
technique proposed by Yang et al. [36] (further information can be found in
section 2.4). By implementing the optimization techniques introduced in [36] in
conjunction with the adaptive system, it is possible to optimize STM and RTM
separately based on the transactional characteristics (such as transaction size,
read-set size, write-set size, etc.). This will further enhance the accuracy of the
predictions made by the decision tree as well as increase the performance of the

application.
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Appendix
Benchmark Abbreviations used are the following:
NAS benchmark suite
CG — Conjugate Gradient
MG — Multi-Grid
EP — Embarrassingly parallel

DiscoPoP benchmark suite
09 — MONTECARLO_ PIE
10 - LIGHT PROPAGATION
11 - ANN_TRAINING
12 - MANDALBROT
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C. Performance Comparison

# OF THREADS Benchmarks
cG
MG
EP
KMEANS
GENOME
LABYRINTH
2 THREADS SSCA2
VACATION
YADA

BREe

KMEANS
GENOME
LABYRINTH
4 THREADS SSCA2
VACATION
YADA
9

1
12
13

cG
MG
EP
KMEANS
GENOME
LABYRINTH
8 THREADS SSCA2
VACATION
YADA

BREw

RTM_ENERGY (mJ)
108.577
2532.616
732.396
82.306
115.455
1131.066
330.914
328.349
357.085

17.418

55.719
255.816

69.657

139.76
2541.445
761.633
87.711
108.246
1142 668
506.169
325.856
380.713
27.15
92.438
257.39
111.879

162.72
2552.219
792.524
102.069
111.632
1163.222
681.505
264.355
380.713
54.436
166.735
259.891
200.244

D. Energy Expenditure Comparison

# OF THREADS Benchmarks
cG

MG
EP
KMEANS
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1n
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CcG
MG
EP
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VACATION
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9
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13

RTM_exec_time
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STM_ENERGY (mJ)
430.349
2637.155
1451.93

152.68
139.757
1104.958
410.457
930.438
496.628
502.302
323.983
404.723
95.856

610.232
2800.942
2517.247

155,589

121.316
1040.032

525.457
814.888

501576
2831.791
1711.879

607.317

322.34

5627.366
2812.593
4562.191
164.942
118.371
1056.812
684.396
718.179
504.042
11706.527
4086.815
821.667
697.366

STM_exec_time

927786
18938
614280
13228.3
13159
160385
7180
92344
92807
1647025
560846
70874
54520

ADAPTIVE
132.965
2548.272
1451.93
82.306
138.785
1104.958
410.457
328.349
434.355
502.302
323.983
404.723
95.856

288.46
2708.95
2517.247
87.711
119.224
1040.032
506.169
723.502
498.483
2831.791
1711.879
607.317
32234

354.855
2721.065
4562.191

102.069

115.734
1056.812

681.505

718.179
468.281

11706.527
4086.815
821.667
697.366

Adaptive exec_time
5547

10190
108073
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