
Lakehead University

Knowledge Commons,http://knowledgecommons.lakeheadu.ca

Electronic Theses and Dissertations Electronic Theses and Dissertations from 2009

2015

Improving Performance of Transactional

Applications through Adaptive

Transactional Memory

Jeyakumaran, Thireshan

http://knowledgecommons.lakeheadu.ca/handle/2453/708

Downloaded from Lakehead University, KnowledgeCommons

Improving	 Performance	 of	
Transactional	 Applications	 through	
Adaptive	 Transactional	 Memory	

	
	
	
	

Thireshan	 Jeyakumaran	
	
	

Supervisor:	 Dr.	 Ehsan	 Atoofian	
	
	

Department	 of	 Electrical	 and	 Computer	 Engineering	
Lakehead	 University	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Thunder	 Bay,	 Ontario,	 Canada	
Sept,	 2015	

	
	
	
	
	
	
	
	
	

	 iii	

Abstract
	 With	 the	 rise	 of	 chip	 multiprocessors	 (CMPs),	 it	 is	 necessary	 to	 use	 parallel	

programming	 to	 exploit	 computational	 power	 of	 CMPs.	 Traditionally,	 lock-‐based	

mechanisms	 have	 been	 used	 to	 synchronize	 shared	 variables	 in	 parallel	 programs.	 	

However,	 with	 the	 complexity	 associated	 with	 locks,	 writing	 a	 correct	 parallel	

program	 is	 a	 huge	 burden	 for	 programmers.	 As	 an	 alternative,	 Transactional	

Memory	 (TM)	 is	 gaining	 momentum	 as	 a	 parallel	 programming	 model	 for	 multi-‐core	

processors.	 TM	 provides	 programmers	 with	 an	 atomic	 construct	 (transaction),	

which	 can	 be	 used	 to	 guarantee	 atomicity	 of	 accesses	 to	 shared	 variables,	 as	 the	

synchronization	 is	 handled	 through	 the	 underlying	 system.	 	 Transactional	 memory	

comes	 in	 two	 variants:	 Software	 transaction	 memory	 (STM)	 and	 Hardware	

transaction	 memory	 (HTM).	 	 Both	 STM	 and	 HTM	 systems	 have	 advantages	 and	

disadvantages	 that	 either	 enhance	 or	 penalize	 performance	 in	 transactional	

applications.	

	 In	 this	 thesis,	 the	 focus	 is	 on	 implementing	 an	 adaptive	 system	 that	 exploits	

both	 STM	 and	 HTM	 at	 transaction	 granularity.	 	 The	 goal	 is	 to	 achieve	 performance	

gain	 by	 incorporating	 the	 benefits	 of	 both	 TM	 systems.	 A	 synchronization	 technique	

is	 developed	 to	 seamlessly	 switch	 between	 HTM	 and	 STM	 based	 on	 the	

characteristics	 of	 a	 transaction.	 	 We	 exploit	 decision	 tree	 to	 predict	 the	 optimum	

system	 for	 each	 transaction	 in	 a	 given	 application.	 	 The	 decision	 tree	 is	 a	 form	 of	

supervised	 machine	 learning	 to	 classify	 transactions	 based	 on	 parameters	 such	 as	

transaction	 size,	 transaction	 write	 ratio,	 etc.	 	 From	 the	 evaluations	 using	 STAMP,	

NAS,	 and	 DiscoPoP	 benchmark	 suites,	 the	 proposed	 adaptive	 system	 is	 able	 to	

improve	 speed	 of	 transactional	 applications	 by	 20.82%	 on	 average.	 	

	

	

	

	

	

	 iv	

	

Table of Contents

Abstract .. ii
List of Abbreviations ... viii
Chapter 1 - Introduction ... 1

1.1 Parallel Programming/Computing ... 2
1.2 Shared Memory Architecture (SMA) .. 5
1.3 Lock based Synchronization .. 6
1.4 Transactional Memory .. 8

1.4.1 Software Transactional Memory (STM) .. 9
1.4.2 Hardware Transactional Memory (HTM) ... 10

1.5 Motivation and Purpose .. 10
1.6 Thesis Outline .. 12

Chapter 2 - Background and Related Work .. 13
2.1 Software Transactional Memory .. 13

2.1.1 Transactional Locking II .. 13
2.1.2 TinySTM ... 14

2.2 Hardware Transactional Memory ... 15
2.2.1 Restricted Transaction Memory .. 16
2.2.2 RTM Conflict detection and EAX register bits 17
2.2.3 Cache Coherency Conflict Detection .. 18
2.2.4 RTM Restrictions and Limitations ... 19
2.2.5 RTM’s Fallback Path ... 20

2.3 Decision Tree ... 21
2.4 Related Work.. 21

Chapter 3 - Adaptive System Design .. 29
3.1 Transaction Granularity .. 29
3.2 Restricted Transaction Memory (RTM) ... 30
3.3 Synchronization of RTM and STM ... 34
3.4 Implementing Source Code .. 36
3.5 Implementation of Decision tree .. 37

3.5.1 Training Phase .. 37
3.5.2 Testing Phase ... 41

Chapter 4 - Experimental Results .. 43
4.1 Experimental Framework and Benchmark Specifications 43

4.1.1 Stanford Transactional Applications for Multi-Processing
(STAMP) .. 43
4.1.2 NAS Parallel Benchmarks .. 44
4.1.3 DiscoPoP Benchmark Suite ... 45

4.2 RTM vs. STM Performance Evaluation .. 46
4.3 RTM vs. STM Energy Expenditure Evaluation 47

4.3 Evaluation of Adaptive system .. 50

	 v	

4.3.1 Adaptive system vs. TinySTM ... 50
4.3.2 Adaptive system vs. RTM .. 52
4.3.3 Decision Tree Predictions for Testing Benchmarks 55

Chapter 5 - Conclusion ... 58
5.1 Summary of Contributions ... 58
5.2 Future Work ... 59

Appendix .. 60
Bibliography .. 68

	 vi	

List of Figures
	

Figure	 1.1:	 Block	 Diagram	 of	 Parallel	 Program	 with	 four	 threads	 	 3	
Figure	 1.2:	 Ordering	 of	 Parallel-‐Programming	 Tasks	 	 	 ...	 4	

Figure	 1.3:	 Block	 Diagram	 of	 Shared	 Memory	 	 ..	 5	

Figure	 1.4:	 Programmability	 analogy	 of	 Lock	 mechanisms	 	 	 7	
Figure	 2.1:	 RTM	 Pseudo	 code	 example	 	 ..	 16	

Figure	 2.2:	 State	 diagram	 of	 MESI	 protocol	 	 ..	 19	
Figure	 3.1:	 Program	 Counter	 Code	 sequence	 	 ..	 30	

Figure	 3.2:	 RTM	 fallback	 policy	 	 ..	 32	

Figure	 3.3:	 EAX	 status	 bits	 found	 in	 RTM	 Header	 file	 	 ...	 33	
Figure	 3.4:	 Implementation	 of	 EAX	 status	 register	 	 ...	 33	

Figure	 3.5:	 Pseudo	 code	 for	 synchronization	 of	 RTM	 and	 STM	 in	 tx_start()	 	 35	

Figure	 3.6:	 Pseudo	 code	 for	 synchronization	 of	 RTM	 and	 STM	 in	 tx_commit()	
	 ...	 35	

Figure	 3.7:	 Pseudo	 code	 for	 implementing	 RTM	 and	 STM	 APIs	 	 	 36	
Figure	 3.8:	 Decision	 tree	 output	 for	 2	 Threads	 	 ..	 39	

Figure	 3.9:	 Decision	 tree	 output	 for	 4	 Threads	 	 ..	 39	

Figure	 3.10:	 Decision	 tree	 output	 for	 8	 Threads	 	 ..	 40	
Figure	 4.1:	 Normalized	 Transactional	 Execution	 time	 of	 RTM	 relative	 to	
TinySTM	 	 ...	 46	

Figure	 4.2:	 Normalized	 Energy-‐delay	 of	 RTM	 relative	 to	 TinySTM	 	 	 47	
Figure	 4.3:	 Distribution	 of	 Transactional	 Aborts	 for	 Benchmark	 GENOME	 	 	 49	

Figure	 4.4	 Normalized	 Speedup	 Comparison	 between	 Adaptive	 system	 and	
TinySTM	 	 ...	 51	

Figure	 4.5:	 Normalized	 Energy-‐delay	 comparison	 between	 adaptive	 system	
and	 TinySTM	 	 ..	 52	
Figure	 4.6:	 Normalized	 Speedup	 comparison	 between	 adaptive	 system	 and	
RTM	 	 ...	 53	
Figure	 4.7:	 Normalized	 Energy-‐delay	 comparison	 between	 adaptive	 system	
and	 RTM	 	 ...	 54	

	

	 vii	

List of Tables
	

Table	 2.1:	 	 RTM	 Abort	 status	 using	 EAX	 abort	 codes	 ...	 17	
Table	 3.1:	 Characteristics	 of	 benchmark	 YADA	 consisting	 of	 five	 transactions
	 ...	 40	

Table	 3.2:	 Decision	 tree	 prediction	 based	 on	 Transaction	 Granularity	 for	
Benchmark	 Conjugate-‐Gradient	 ...	 41	

Table	 4.1:	 Characteristics	 of	 Benchmark	 LABYRINTH	 at	 two	 threads	 	 48	
Table	 4.2:	 Characteristics	 of	 Benchmark	 GENOME	 at	 two	 threads	 	 49	

Table	 4.3:	 Transaction	 parameters	 and	 execution	 time	 for	 Multi-‐Grid	
benchmark	 ...	 53	
Table	 4.4:	 Benchmark	 Conjugate-‐Gradient	 comparing	 Decision	 Tree	
prediction	 with	 Optimum	 system	 ..	 55	

Table	 4.5:	 Benchmark	 Multi-‐Grid	 comparing	 Decision	 Tree	 prediction	 with	
Optimum	 system	 ..	 56	

Table	 4.6:	 Benchmark	 KMEANS	 comparing	 Decision	 Tree	 prediction	 with	
Optimum	 system	 	 ...	 56	

Table	 4.7:	 Benchmark	 SSCA2	 comparing	 Decision	 Tree	 prediction	 with	
Optimum	 system	 ..	 56	
Table	 4.8:	 Benchmark	 ANN_TRAINING	 comparing	 Decision	 Tree	 prediction	
with	 Optimum	 system	 ..	 56	

Table	 4.9:	 Benchmark	 MANDALBROT	 comparing	 Decision	 Tree	 prediction	
with	 Optimum	 system	 ..	 57	
	

	

	 viii	

List of Abbreviations
Abbreviation	 Meaning	
CMP	 	 	 	 Chip	 Multiprocessor	
TM	 	 	 	 Transactional	 Memory	
STM	 	 	 	 Software	 transactional	 Memory	
HTM	 	 	 	 Hardware	 Transactional	 Memory	
RTM	 	 	 	 Restricted	 Transactional	 Memory	
HLE	 	 	 	 Hardware	 Lock	 elision	
TSX	 	 	 	 Transactionally	 synchronized	 extensions	
VLSI	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Very-‐large-‐scale	 integration	 	
ILP	 	 	 	 Instruction	 Level	 Parallelism	
SMA	 	 	 Shared	 Memory	 Architecture	
WAW	 	 	 	 Write	 after	 Write	 dependency	
WAR	 	 	 	 Write	 after	 Read	 dependency	
RAW	 	 	 	 Read	 after	 Write	 dependency	
SMC	 	 	 Synchronization	 control	 mechanism	
TL2	 	 	 	 Transactional	 Locking	 2	 	
GVC	 	 	 	 Global-‐versioning	 counter	
RV	 	 	 	 Read	 version	
CU	 	 	 	 Computational	 unit	
LR	 	 Linear	 Regression	
STAMP	 	 	 Stanford	 Transactional	 Applications	 for	 Multi-‐Processing	
API	 	 	 Application	 Program	 Interface	 (APIs	 –	 plural)	 	
RAPL	 	 	 	 Runtime	 Average	 Power	 Limit	
TX#	 	 	 	 Transactional	 number	 (e.g.	 TX1)	

	 1	

Chapter 1

Introduction
 Over the past several decades, the performance of general-purpose processors has

increased rapidly. This rapid improvement has come both from advances in the

technology used to build processor chips and also innovations in architecture of

processors. Over the years, improvements in VLSI technology led to smaller and faster

transistors and this helped computer architects to increase clock frequency of processors.

Furthermore, the number of transistors integrated on a single die is expected to grow

according to Moore’s law [11] for the foreseeable future. This provides an ample

opportunity for processor designers to incorporate more resources in architectural level

and boost performance of processors.

 The conventional way of processor design was single core processor in which all

hardware resources were dedicated to a single processing core. Each generation of

processor had larger and more sophisticated components such as caches and reorder

buffers. However, by 2005 the performance of single-core processors started to

slowdown in computation performance due to “3 Walls”: Power Wall, Memory Wall and

instruction level parallelism (ILP) Wall [8].

 As the single-core processor became more complex, certain limitations made it

technologically impossible to achieve better performance. The power wall limitation is

met due to increased clock frequency which results in significant heat dissipation. This

means that the single-core processor has reached the practical power limit in commodity

microprocessors. As for the memory wall, the limitation exists in the gap between the

processor and the memory speeds. This gap is increasing over time, requiring the cache

sizes inside the processor to be larger in-order to mask the latency of memory. The third

wall is related to the dependency of instructions. Single-core processors search stream of

sequential instructions and execute independent instructions in parallel. However, the

amount of independent instructions found in sequential programs is limited, causing the

third wall: ILP wall. The 3 walls together ultimately led to the rise of chip

multiprocessors (CMP).

	 2	

 The architecture of a CMP consists of having 2 or more processors integrated

onto a single circuit die. This overcomes the limitations of the power wall, memory wall

and IPL wall. For Power wall, CMPs are energy efficient and silicon-area efficient due

to smaller and less complex cores incorporated into a single chip. For Memory-wall, the

computations amongst the cores are overlapped with memory accesses, resulting in better

performance. For ILP-wall, there is an increased performance throughput by exploiting

parallelism between the cores. Due to these several advantages, the CMP architecture

has been the choice of semiconductor manufacturers.

 For the last few years, CMPs have taken over the industry by storm. In our

present day, CMPs are becoming a necessity in all of our everyday electronics. The

cheapest PC/laptop in the market today all consist of at least a dual-core processor.

Smart-phones nowadays all have dual-core, quad-core or even octa-core processors.

Multi-core processors do not stop there. New cars of today are equipped with multicore

systems due to the excessive amount of technologies such as adaptive cruise control, lane

departure assistance, self-parking, etc. In present day, new CMPs have transistors of

14nm wide, and the industry is now hitting physical limits. Circuits are now so small that

escaping heat is a major problem. While Moore’s law may survive another few processor

generations, chip manufacturers are starting to change their views on frequency scaling

and applying it to core-scaling. This means that instead of focusing on increasing the

clock frequency to increase performance of processors, it is now necessary to apply the

concept of parallel programming and utilize computational power of multiple cores to

boost performance. By utilizing all processing cores of CMPs, it is possible to achieve

further performance gain in applications.

1.1 Parallel Programming/Computing

 In general terms, parallel programming is the simultaneous use of cores to execute

a computational application. Figure 1.1 displays a parallel program consisting of four

threads.

Figure 1.1: Block diagram of a parallel program with four threads

 First, the application is broken down into sections that can be executed in parallel

(concurrent). Second, each section is broken down further into a series of instructions.

Third, these instructions from each part execute concurrently on different threads.

Although, this procedure may look simple, it actually consists of a complex order of steps

in order to successfully exploiting parallelism in an application. However, there are

certain problems that a programmer may face when developing parallel programs. Paul

E. McKenny [32] discusses 4 categories that a programmer must take into account while

developing parallel programs.

Figure 1.2: Ordering of Parallel-Programming Tasks [32]

1) Work Partitioning – is the task of splitting the code or algorithm into discrete

sections that can be distributed to be run in parallel across all threads.

2) Resource Partitioning – this ensures that the required resources are partitioned

for the parallel tasks.

3) Hardware Interactions – identifying the resources associated with parallel tasks,

such as the operating system, the compiler, number of cores/threads, and other

software infrastructures

4) Control of Parallel Accesses – is the task of avoiding conflicts such as race

conditions on shared memory resources. The programmer needs to synchronize

the sequence of the parallel tasks, and often requires serialization (locks) for

certain parts of the program. The programmer must also take into account of data

dependencies where the order of executions can affect the final results of the

program. In shared memory, data dependence occurs from multiple use of the

same-shared location accessed by different threads/cores.

Due to these steps and constraints, parallel programming has known to be difficult in

applying, or in other terms it is very difficult to get a sequential program and making it

parallel.

	 5	

1.2 Shared Memory Architecture (SMA)

 For this thesis, the focus was on Shared Memory Architecture [20] as this is the

architecture used in CMPs. SMA is a platform where all threads within a

program/application work in a shared space meaning that the memory address space is

shared between the threads. In contrast, Distributed Memory (DM) is a method where all

threads working in parallel do not share a unified memory address space. Instead, DM

uses private memory space for each thread and must communicate with each other

explicitly [18].

Figure 1.3: Block diagram of Shared Memory

 With shared memory, there are some constraints in which a programmer must

take into consideration. In SM, threads execute independently but they share the same

memory address. It is necessary to have synchronization between the threads that are

reading from and writing to SM. This is mainly due to the constraint of only one thread

can access the shared memory locations at a time.

 SM’s major advantage is fast and efficient data sharing amongst the threads as all

threads can communicate through a shared memory. One of the major disadvantages of

SM is limitation of memory bandwidth where an increased number of threads will require

	 6	

a higher memory bandwidth or else it will cause a bottleneck in performance. Another

disadvantage of SM is that it is very prone to data races in which the programmer is

responsible for correct synchronization using locks, mutex, semaphores, etc.

1.3 Lock based Synchronization

 With shared-memory, there is a high probability that race occurs in programs.

This happens when two or more threads are accessing the same address in shared

memory. These data races can be classified as dependences: read-after-write (RAW),

write-after-write (WAW) or write-after-read (WAR). To avoid these types of data races,

a synchronization control mechanism (SCM) must be used. There are many SCMs that

can be implemented such as locks, mutexes and semaphores. Locks are the most

frequently used SMC in parallel programming. Locks allow a single thread to lock a

variable which initiates ownership of a specific shared variable. Once the thread has

completed its operation on that shared variable, it unlocks the variable allowing other

threads to access the variable. If a lock is being held, other threads cannot access or

attempt to acquire the same lock and must wait until it becomes unlocked. There are two

types of lock structures that are commonly used: Fine grained locking and Coarse-grained

locking.

 Fine-grained Locking is used to achieve greater parallelism which leads to better

performance. Each fine-grained lock will lock a single shared variable (or very few).

Instead of holding a lock for a long time, each thread will hold the lock for a small

amount of time while providing protection. Even though fine-grained locking achieves

better performance, it has its own drawbacks. Firstly, parallel programming using fine-

grained locking is complicated for average programmers. Another major disadvantage of

fine-grained locking is high overhead due to the amount of traffic activity taking place

with many locks being locked and unlocked.

 On the other side, coarse-grained locking is used to lock an entire section of a

code instead of a single shared variable. This allows programmers to write correct

parallel programs with less complexity because there is only one lock to deal with which

means there is less chance of synchronization error. The drawback of coarse-grained

locking is less parallelism (low concurrency), which in return leads to low performance.

Figure 1.3 shows the general depiction of performance vs. ease of programmability

between fine-grained locking and coarse-grained locking.

Figure 1.4: Programmability analogy of lock mechanisms

 The main challenge in lock-based programming (in particular fine-grained) is

tricky synchronization bugs such as deadlock, live-lock and priority inversion. Deadlock

occurs when multiple threads stall/wait for each other to release the locks corresponding

to the shared variables. This results in a stall, as there is no possibility of forward

progress until the lock has been released. For example, thread A holds a lock on resource

X and is waiting for resource Y. While thread B holds a lock on resource Y and is

waiting for resource X. Both thread A and thread B are waiting and neither of them can

proceed.

Live-lock is similar to deadlock as the threads are unable to make forward

progress. In deadlock the threads are blocked while in live-lock the threads are not

blocked, rather they are busy responding to each other. Priority inversion takes place

when a high priority process is blocked (waiting) while a low priority process is

executed. Due to these circumstances, this system can become unbalanced and

	 8	

eventually crash. Fine-grained lock-based synchronizing mechanism does promote

performance gains but the constraints caused by complex programmability and

synchronization bugs prevent it from becoming mainstream.

1.4 Transactional Memory

 Transactional processing is not a new discovery; it has been around since the

early 1960’s known as transactional processing system (TPS). The first TPS was used on

American Airlines SABRE computing system, which automated the way the airlines

booked reservations for flights [13]. The main idea of TPS was to provide a database of

transactions that followed ACID properties:

ACID - Atomicity, Consistency, Isolation and Durability [12]

Atomicity – Each Transaction is atomic which means that if any part of the transaction

fails then the entire transaction fails while the state of the system is unchanged.

Consistency – It is necessary in TM where the memory must remain in a consistent state

while a transaction is executing. In the case a transaction exits in an inconsistent state,

then the transaction is not allowed to complete and will be aborted.

Isolation – Other transactions cannot access data that has been changed by a transaction

currently in progress. Isolation is necessary in order to avoid invalid results during

execution of a transaction.

Durability – Once a transaction has successfully committed, it cannot be lost in the event

of a system crash.

 This led to the discovery of Transactional Memory (TM). TM is a parallel

programming model, which achieves comparable performance to fine-grained locking

while providing ease of programmability of coarse-grained locking [27]. With TM, a

programmer only specifies the critical sections of the code to run atomically, while the

underlying system will take care of correct execution of the program, reducing the

complexity of parallel programming. Transactional memory consists primarily of two

	 9	

types: software transactional memory and hardware transactional memory. In present

day, there has been countless amount of research done in this field, due to the fascinating

amount of potential it consists of.

1.4.1 Software Transactional Memory (STM)

 In software transactional memory, transactions are strictly implemented in

software. Shavit and Touitou [30] introduced the first implementation of software

transactional memory. STM works by providing a programming model where code is

executed in a series of read-sets and write-sets in shared memory. While these reads and

writes are being executed their intermediate state is not visible to other transactions. This

decreases the probability of conflicts as the window in which transactions execute

simultaneously is reduced.

 Since the mid-2000, the research in STM has evolved with numerous amounts of

concepts and optimizations. These concepts were introduced to further enhance

performance of STM systems and also to enhance the ease of programmability. For

example in STM, programmers no longer have to handle the case where a transaction

aborts. The underlying system of STM will guarantee that the system would eventually

commit every transaction by retrying and executing aborted transactions. In present day,

there is still ongoing research on STM which shows that there is still potential for further

improvements on practical implementations.

 There are numerous implementations of STMs. Among those, two are more

popular than the rest. The first implementation is Transactional Locking II (TL2) by Nir

Shavit et al. [6]. The second implementation of software transaction memory is

TinySTM by Pascal Felber et al [31]. TinySTM follows the same structure as TL2 but

with enhanced design strategies that achieve even greater performance. Further analysis

of TL2 and TinySTM is found in Chapter 2.

	 10	

1.4.2 Hardware Transactional Memory (HTM)

 Hardware transactional memory is the concept of executing transactions in

hardware. The primary advantage of HTM is low overhead since it only relies on

hardware resources. Recently, HTM has become largely available in commodity

processors. Although these implementations have always been best effort meaning that

there is no guarantees for forward progress. Some examples of HTM supported by

commodity processors include, AMD’s advanced Synchronization Series [5], IBM’s Blue

Gene/Q [1], and Sun’s ROCK processor [33]. The recent release of Haswell processor

with Intel’s TSX (Transactionally Synchronized Extensions) results the widespread

availability of HTM on the mass consumer market.

 In this thesis, the focus has been on Intel’s implementation of HTM called

Restricted Transaction Memory (RTM) [15]. Further analysis of RTM is found in

Chapter 2.

1.5 Motivation and Purpose

 Both STM and RTM have benefits and limitations that either improve or penalize

performance in certain applications. One of the most important differences between

RTM and STM is transactional overhead. In RTM, the processor is responsible for

transactional execution and this reduces timing overhead and better overall performance.

On the other side, in STM, there is extra overhead for software based conflict detection

and data versioning (such as initiating a transaction, validating transactional data,

transactional commits, etc. [30]). This greatly hampers the overall performance in STM

systems. Another important difference between the two systems is flexibility. In RTM,

the processor oversees all memory accesses, which in-hand provides strong isolation but

relies solely on hardware resources (not scalable). This results in complexity issues

(fallback policy is needed) that lead to a higher probability of transactional aborts and in

certain cases a performance slowdown when compared to STM. On the other hand, STM

delivers a flexible system in which there is no resource constraint and the underlying

system deals with majority of the complex synchronization issues, leading to less

transactional aborts and a better overall performance in some cases when compared to

	 11	

RTM.

 In this thesis, the focus is on implementing an adaptive system that exploits both

STM and HTM at transaction granularity. The goal is to achieve performance gain by

incorporating the benefits of both systems. Typically, in parallel applications, the

number of transactions can vary, anywhere from a single transaction to a large number of

transactions. It is important to note that not all transactions are identical. Each

transaction has its own characteristics in terms of transaction size, read-set size and write-

set size. Depending on these characteristics of a transaction, either HTM or STM can be

a better choice for implementation. We exploit the decision tree [22] to predict whether

HTM or STM is faster for a given transaction. The decision tree receives input

parameters (such as transaction size, transaction write ratio, etc.) and predicts the

optimum TM system for a transaction. Then, a programmer or a compiler modifies the

source code of the application based on predictions made by the decision tree. Our

adaptive system supports both HTM and STM with the aim of reducing execution time of

transactions with different characteristics.

In summary, we make the following contributions:

§ We show that there is no single TM system that works well across all applications.

Depending on applications’ characteristics, one system might be better than the other.

§ We propose an adaptive system, which predicts the optimum TM system for a given

transaction, statically. The adaptive system relies on the prediction of the decision

tree to select either HTM or STM.

§ Our evaluations using STAMP [2], NAS [4], and DiscoPoP [37] benchmark suites

reveal that on average, the adaptive system is able to improve speed of transactional

applications by 20.82%.

	 12	

1.6 Thesis Outline

 The rest of the thesis is organized as follows. Chapter 2 reviews background

information as well as research studies relating to TM. Chapter 3 explains design of the

proposed adaptive system. Chapter 4 presents the experimental work including

methodology and results. Finally, Chapter 5 concludes the thesis and discusses future

work.

	 13	

CHAPTER 2

 Background and Related Work
 This chapter reviews background information on existing STM systems, Intel’s

restricted transaction memory (RTM) and the decision tree prediction module. This

chapter also examines related literature work focusing on optimization techniques for

both HTM and STM.

2.1 Software Transactional Memory

 In this section, we explain two popular implementations of software transactional

memory. The first implementation is Transactional Locking II (TL2) by Nir Shavit et. al

[6]. The second implementation of software transactional memory is TinySTM by

Pascal Felber et. al [30].

2.1.1 Transactional Locking II [6]

 TL2 is a state-of-the-art word-based Software transaction memory system that

uses notion of time to impose order among transactions and guarantee consistency of

transitional data. The main feature of TL2 is the ability to handle read and write

operations in separate fashion. In TL2, the read operations are invisible; this means that

when a transaction reads a shared variable, it will not indicate other transactions that a

read operation is taking place. For write operations, TL2 postpones the update to the

commit time. This means that TL2 does not perform the update as soon as it executes a

transactional write operation; instead, the write operation updates are logged into a local

list. Once the transaction is ready to commit, the operation will attain the instruction

from the local list. Performance of a STM system is sensitive to the write operations as

write operations are the major source of conflicts. By deferring the write operation to the

commit time, TL2 reduces the total amount of transactional conflicts in an application.

TL2 also utilizes conventional locks and a global-versioning counter (GVC) to validate

transactional data. A lock is associated with each shared variable. When a transaction

attempts to commit, it obtains the lock corresponding to the variable. GVC is a global

counter and is used as timestamp for shared variables. When a transaction starts it copies

	 14	

the current value of GVC into a local variable called read version (rv). The transaction

uses rv to validate transactional reads. When a transaction commits it performs an

increment-and-fetch on GVC and uses the new value of GVC to tag lock entries

corresponding to transactional writes. TL2 is proven to have similar performance to fine-

grained locking [6].

2.1.2 TinySTM

 The second implementation of software transaction memory is TinySTM. This

thesis integrates TinySTM’s open source implementation of STM and incorporates it for

switching between hardware and software transactions. TinySTM was chosen because it

is currently the best performing STM system [31].

 TinySTM shares many similarities with TL2. It is also a word-based STM

implementation that uses conventional locks to protect the shared memory locations from

simultaneous accesses. TinySTM uses the same time-based implementation as TL2,

which guarantees transactional consistency. On the contrary, TinySTM contains a

different design strategy that differentiates itself from the other STM implementations.

 TinySTM uses encounter-time locking which is beneficial for detecting conflicts

earlier (increasing transaction throughput). When compared to commit-time locking,

conflicts that are detected during commit phase cannot be solved without at least one

transaction being aborted. Also, encounter-time locking allows efficient handling of read

and write operations without requiring complex mechanisms. For transactional write

operations, TinySTM implements two new strategies: Write-through and Write-back.

For write-through policy, a transaction writes directly to memory and keeps the old

values in a log to reverse updates in the case of an abort. For Write-back policy, a

transaction updates memory in the commit phase. TinySTM also provides memory-

management functions, which allow transactions to use dynamic memory. This allows

the ability to keep track of memory that has been freed (not disposed until commit) or

allocated (not disposed until abort). From these design tweaks, TinySTM has become

one of the most efficient implementations of software transaction memory [31]

	 15	

2.2 Hardware Transactional Memory

 Hardware transactional memory is the concept of speculative transactions being

executed using hardware resources. The primary advantage of HTM is low overhead,

since it only uses hardware resources such as level 1 cache, level 2 cache, etc. Recently,

HTM has become broadly available in commodity processors. Some examples of HTM

supported commodity processors include, AMD’s advanced Synchronization Series [5],

IBM’s Blue Gene/Q [1], and Sun’s ROCK processor [33]. Amongst these

implementations, the recent release of Haswell processor with Intel’s TSX

(Transactionally Synchronized Extensions) [15] results the widespread availability of

HTM on the mass consumer market.

 HTM implementations have always been best effort meaning that they do not

provide forward progress. In other words, there is no guarantee that a transaction will

successfully commit in hardware; essentially requiring a fallback path to successfully

execute an application in the event of an abort. Generally, a fallback path is an

alternative software policy to guarantee successful execution. This software policy can

be as simple as acquiring a lock and executing it non-transactionally.

 In 2013, Intel released the first commercially available chip-multiprocessor with

HTM support, named Haswell [15]. Along with it, Intel released TSX (Transactionally

Synchronized Extensions) to their processor’s instruction set. These extensions provide

two software interfaces Hardware Lock Elision and Restricted Transaction Memory.

[b.6].

• Hardware Lock Elision: a legacy compatible instruction set that provides

instructions to lock/unlock shared variables using hardware resources.

• Restricted Transaction Memory: A new instruction set interface, where a

programmer identifies a region of code to be executed transactionally. RTM

provides no forward progress. Therefore, a program must always provide

fallback code to handle a transactional abort that can either restart a transaction or

take a non-transactional path (such as locks).

	 16	

1. while(1){ //loop
2. int status = XBEGIN; //set status bit and start Txn
3. if(status == _XBEGIN_STARTED){ //status == _XBEGIN_STARTED
4. (*g)++; //increment shared global variable
5. XEND; //end transaction
6. break; //break on success
7. }
8. else{
9. .… //software fallback code is executed on Txn abort
10. }
11. }

2.2.1 Restricted Transaction Memory

For this thesis, the focus is on Intel’s Restricted Transactional Memory (RTM).

The proposed Adaptive system uses RTM’s intrinsics along with TinySTM, which is

used to switch between the two systems. The programming model of Intel’s RTM is

fairly straightforward to use. In RTM, a transaction is commenced with the instruction

XBEGIN. Inside of the transaction, read-sets and write-sets are constructed while other

computation operations (branching, arithmetic operations, etc.) can also be executed

inside of a transaction. The consistency of read and write sets are maintained in the

granularity of cache lines.

If a transaction’s read-set/write-set is modified by another transaction, then

conflict occurs. In the event of conflict, all the transactions are aborted and only one can

proceed. In RTM, a fallback path is needed to guarantee forward process in order to

avoid the application or program to stall. To initiate the end of a transaction, the

instruction XEND is used. The XEND instruction commits any changes to the shared

memory and thus successfully executes the transaction in RTM. RTM provides four

transactional instructions:

• XBEGIN initiates the start of a transaction.

• XEND completes a transaction and successfully commits changes to memory

• XABORT aborts the current transaction using an explicit failure code.

• XTEST determines if it is executing within a transaction or not.
	
	
	
	
	
	
	
	
	
	
	
	
	

Figure 2.1: RTM Pseudo code example

	 17	

EAX Status Bit ABORT Description
0 XABORT_EXPLICIT Explicit instruction to abort transaction

1 XABORT_RETRY Transaction is likely to succeed if retried

2 XABORT_CONFLICT Interference from another TX

3 XABORT_CAPACITY Overflow of cache and hardware buffers

4 XABORT_DEBUG Debug breakpoint

5 XABORT_NESTED Transaction aborted within nested transaction

	

Figure 2.1 shows a sample RTM pseudo code sequence in which all the important

instructions are implemented. Inside of the RTM header file, it contains the intrinsics

that are used to enable hardware transactional execution. Line 1 starts with a while loop.

Inside the loop, there is a status variable that is equal to XBEGIN. In line 3, there is an ‘if

statement’ to check if the status variable == xbegin_started. if this is true, then the

transaction is initiated. Inside the transaction (line 4), there is a shared global variable

that is incremented. In line 5, the instruction XEND is used to end the transaction. In line

8, in the case of a transactional abort, a fallback path is necessary since RTM does not

guarantee forward progress (further information can be found in Section 2.2.3).

2.2.2 RTM Conflict detection and EAX register bits

RTM uses the CPU caches (L1 cache) to track read-sets and write-sets. The

conflict detection is handled through the existing cache coherence protocol of the chip

multiprocessors. RTM uses eager conflict detection as it keeps transactions in a

consistent state by detecting conflicts when a read/write operation to memory has been

performed. In RTM, transaction aborts are flagged in the EAX register. The EAX

register carries an 8-bit code that specifies the cause of the transactional abort. When a

transaction is aborted, all the changes made to the memory are discarded and a flag is

sent to the EAX register with an abort code. Table 2.1 states the abort codes with brief

explanation.

Table 2.1: RTM Abort status using EAX abort codes

	 18	

Conflict and capacity aborts take up the majority of transactional aborts in RTM. Conflict

aborts occur when a transaction interferes with concurrent memory operations

(read/write) performed by another transactions. Once this abort is triggered, the

processor will abort the transaction by discarding all the updates done to the shared

memory. Capacity aborts occur where there is an overflow of buffers and the capacity of

the cache has been reached which results in an automatic transaction abort.

2.2.3 Cache Coherency Conflict Detection

In RTM, the conflict detection is handled through the cache coherency protocol. If two

transactions access a shared memory location and if at least one of them writes into the

same location, the cache coherency protocol detects the conflict. In the event of conflict,

only one transaction can proceed, while the rest should abort. RTM follows the eager

policy [17] to resolve conflicts. In eager policy, as soon as a transactional write operation

results in conflict, RTM will then abort the conflicting transactions and allows only one

transaction proceed. Eager policy improves utilization of processor resources as a

conflicting transaction is aborted immediately and is not postponed to the commit time.

RTM follows the MESI protocol for cache coherency.

2.2.3.1 MESI protocol [34]
MESI is a type of invalidation-based protocol, which supports write-back caches.

MESI is the acronym for the four states that each cache line can transition to:

• Invalid – This is considered the non-valid state. This means that the data is

not located in the cache or the local copy of the data is incorrect due to

another process updating the memory.

• Shared – This state is used for those cache blocks that are not changed by any

processor.

• Exclusive – The state is exclusive when a cache is the only one that has the

correct value of the block.

• Modified – This state is used for those cache blocks that are written by

processors..

	 19	

Figure 2.2 depicts MESI state diagram. The following is a brief explanation of how the

MESI protocol works. The initial state of a cache block is invalid. When a processor

writes to a cache block for the first time, the state changes to modified as there are no

copies of the block in other caches. If a processor reads a block for the first time, it

broadcasts BusRd command on the interconnection network. The cache that has the block

sends it to the requester. Also, the state of the block changes to shared in both requester

and the sender as more than one cache hold the data. If processor reads a block and no

other cache has the block, then the memory provides the corresponding data and state

changes to exclusive.

Figure 2.2: State diagram of MESI protocol [34]

2.2.4 RTM Restrictions and Limitations

Intel’s Restricted Transactional Memory has the term ‘restricted’ because it is

very prone to transactional conflicts, which are primarily due to both hardware and

software operations. There are many operations in RTM that are labeled as restricted and

if a restricted operation is attempted then the transaction is aborted and the fallback path

is executed.

	 20	

These are some restrictions in RTM:

§ Debugging tools are not supported meaning that if any breakpoints are located inside

of a transaction, it will be automatically aborted.

§ Interrupts located inside of a transaction will cause an abort before the calling of the

interrupt handler

§ Input/output statements will cause an automatic transaction abort. For example, a

‘printf’ statement will causes RTM to abort.

§ Software/System operations such as context switching and page faults cause

transactional aborts.

§ Hardware resources that exceed the capacity of the cache will cause a transaction

abort. If a transaction’s read-set or write-set does not fit in the CPU cache, it will

result in a transaction abort due to the overflow of the internal processor buffers.

§ Cache size in Haswell is 32KB with 8-way associativity.

§ Unnecessary aborts due to false sharing of cache lines.

§ If two transactions share a cache line and one of them aborts due to conflict

over a shared variable in the cache line, the other transaction is aborted too.

2.2.5 RTM’s Fallback Path

Commodity chip multiprocessors (such as Haswell processor) that support

hardware transactional memory, use the ‘best-effort’ mechanism. This basically means

that there is no guarantee for a transaction to succeed even if there is no conflict. In

RTM, a fallback policy is necessary to provide forward progress. A fallback policy is

typically executed after the threshold of RTM’s retry count has been met. The retry

count is the number of times an aborted transaction retries execution. This is important

since transactions in RTM have an abundant reasons to abort (refer to section 2.2.4). By

retrying an aborted transaction ‘x’ number of times, there is a possibility that the

transaction can eventually commit in hardware. Once the retry threshold is reached, the

fallback policy is applied. Further information on fallback path can be found in Section

3.3.1.

	 21	

2.3 Decision Tree

For this thesis, the focus is on switching between hardware transactional memory

and software transactional memory at transaction granularity. By using Decision Tree

C4.5 [23], we are able to predict which system is the best choice for a given transaction.

Decision tree uses groups of input datasets and generates a tree as output that

resembles a tree diagram where each branch is a decision. Ross Quinlan developed the

early stages of the Decision Tree in 1979 (ID3 algorithm) [22]. In 1993, the C4.5

algorithm was developed to increase accuracy of Decision Tree. The C4.5 builds

decision trees from a set of training dataset using information entropy. The decision tree

consists of three nodes which are root, branch and leaf. At each branch of a tree, the C4.5

algorithm attains the attribute of the data that effectively splits the set of samples into

sub-group in each specific class. This splitting process is referred to as information gain

(differences in entropy). The input dataset contains the parameters of a function. In this

thesis, the focus is targeted on transactional parameters such as transaction size, read-set

size, etc. The output of the decision tree results in a binary value of 0 or 1, which

represents the predicted outcome. For this thesis, the outcome of the decision tree

represents whether RTM or STM will be used to execute a transaction.

2.4 Related Work

Irina Calciu et al. [14] presented Invyswell, a hybrid transactional memory system

that incorporates RTM and InvalSTM. InvalSTM is a modified STM system that was

created [21] previously. One of the key differences between InvalSTM and other STMs

is that it performs commit-time invalidation. This approach identifies conflicts with other

concurrently executing transactions during its commit-phase. InvalSTM also implements

bloom filters for conflict detection between HTM and STM. For Invyswell, each

transaction is first tried in hardware. If the hardware abort status suggests that a

transaction is unlikely to succeed in hardware, then it is retried in InvalSTM. They also

investigate RTM’s limitations and restrictions and provide InvalSTM as a fallback policy

instead of using lock mechanism. They also incorporate optimizations such as failfast.

This optimization is used for an application with high contention, which results in a

	 22	

higher probability of hardware resources reaching capacity limit. It is used to identify

certain cases when RTM is wasting work with too many retries which eventually calls the

fallback policy once the retry threshold has been met.

In our study, we do not use STM as a fallback policy for RTM; instead, we

implement independent switching between RTM and STM. Also, our adaptive system is

static and its runtime overhead is low. Furthermore, Invyswell is not evaluated from

energy point of view. On the other side, we examine energy efficiency of our adaptive

system and compare it with both HTM and STM.

M. Wang et al. [29] exploited Intel’s restricted transaction memory to implement

a molecular dynamics simulator called Moldyn. They explore several important

relationships between transaction size and write ratio inside transactions as well as retry

count and transaction abort rate. They investigate how these parameters affect the overall

performance of an application. They introduce code transformations such as computation

splitting and privatization for improving performance. Computation splitting/merging is

the basis of transactional aborts caused by the size of a transaction, which can lead to low

performance. In this paper, they identify a ‘sweet-spot’ in the Moldyn application where

they compute each pair of molecule updates inside a single transaction as opposed to

thousands of molecules or single molecule in a transaction. This ‘sweet-spot’ in

transaction size increases performance in RTM.

For this thesis, we incorporated this paper’s notion of the correlation between the

transaction’s characteristics and the performance impact. We exploited the parameters of

a transaction such as transaction size, read-set size, write-set size, etc. and provided a TM

system based on both HTM and STM. This is important because these parameters give

information on a system’s behavior and constraints. By using these factors, we are able

to switch between HTM and STM at transaction granularity to achieve performance gain.

Pereira et al. [28] presented an extensive evaluation of Haswell’s Transaction

Memory performance. They focused on RTM’s forward-progress polices since Intel’s

TSX does not guarantee that a transactional execution will commit. This technique

retries the execution of a transaction with or without a time delay and attempts

completing the transaction execution speculatively. They introduced three policies for

forward progress: Maximum retry, Back-off and SerControl. Maximum retry is the

	 23	

simplest approach as it limits the number of times a transaction can be retried. Once a

transaction reached the retry threshold, it will commence the fallback policy with a global

lock. Back-off policy is based on a time delay in which an aborted transaction will wait

for a time delay before restarting. The duration of this time delay is uniform as the time

delay increases exponentially for every restart. Once again, there is a threshold for

number of transactional retries and once it has reached the limit, the transaction will be

executed using global lock. The next policy that was introduced in this paper is

SerControl. This policy focuses on the type of transactional abort in RTM by using the

EAX register status bit. If the transaction is aborted due to conflict or capacity

consecutively, SerControl will serialize the transaction by using a lock. If the cause of

abort is not conflict or capacity, then the maximum retry policy is applied. There are also

other aborts that are considered such as page-fault that may occur again if the transaction

is immediately retried so the back-off policy is applied after the threshold has been

reached. It is important to note that this paper focuses on increasing the probability of

executing transactions successfully in RTM.

In our thesis, we incorporate the ideas of the potential performance benefits of

forward progress policies. Although, the notion of having an efficient forward progress

policy is important, the actual performance gains are negligible. In this research paper

[28], they do not show the comparisons between the proposed RTM forward progress

policy and another TM system such as TinySTM. This would have clearly indicated the

impact of this paper’s proposed policies on performance. For our study, we conducted

many experimental tests with a variety of retry counts for transactional aborts. By

retrying an aborted transaction ‘x’ number of times, there is a possibility that the

transaction can eventually commit in hardware. Once the retry threshold is reached, the

fallback policy is applied. The fallback policy that is used is a global lock mechanism.

In our adaptive system, the retry count is set at 4. Based on experimental simulations, the

retry count of 4 is the best option that produces optimal performance. It is possible to

have a higher retry count, but it can hurt performance as retrying a transaction that aborts

over and over increases execution time. Also, having a low retry count can cause the

fallback policy to be executed too early. Furthermore, in our work, we investigated the

behavior of a transaction that best suits each TM system. If a transaction consists of a

	 24	

very large transaction size as well as a very large working set size, having an optimized

forward progress policy will not change the fact that RTM will perform poorly. In this

case, our adaptive system will automatically execute the optimal system based on the

parameters of a transaction.

 M. Castro et al. [26] presented a dynamic approach to do efficient thread mapping

using machine learning. This technique relies on matching the behavior of an application

with the system characteristics. This technique is a dynamic approach and gathers

information from the application and the STM system at specific time intervals. They

compared dynamic approach with static thread mapping approach based on machine

learning. For the Static approach, they used the decision tree learning method which was

trained using datasets of input parameters. It will then output a decision tree that will

predict a thread mapping strategy. The predictor chooses one of four different strategies:

round-robin, scatter, compact and Linux. For dynamic Thread mapping, there are three

phases: hardware topology analyzer (HTA), thread mapping predictor and transaction

profiler. The HTA uses hardware locality library to get information from the underlying

platform topology (hierarchy of caches and how they are shared among caches). The

transaction profiler gets information from hardware counter and from the TM underlying

system all during runtime at specific time intervals. The thread mapping predictor gets

the data from the profiler and feed the data to a decision. Then, the predicted thread

mapping strategy is applied. Whenever a TM operation starts, aborts or commits, the

transaction profiler will be executed during these intervals and calls the thread mapping

predictor to switch strategies when necessary. For the transaction profiler, only one

concurrent running thread will be chosen for that task because it reduces stress on the

system and there isn’t any need for extra synchronization mechanisms for all threads.

The experimental results shows that thread mapping strategies do have a major impact on

performance. Out of the 56 TM applications, only 3 applications show no performance

gain and 8 applications had performance loss. The maximum performance loss was 8%

due to wrong predictions of the decision tree.

 In our thesis, we incorporated the decision tree to predict the optimum system for

a given transaction. This paper proves that by incorporating a decision tree, we are able to

classify a transaction’s parameters in order to predict the optimum system that achieves

	 25	

the best performance. The decision tree algorithm used in the paper is ID3 while in this

thesis, the focus was on the C4.5 algorithm. C4.5 is an enhanced version of ID3, as it also

supports continuous attribute that results in better performance. This paper also follows a

procedure of attaining a training set of benchmarks and a testing set of benchmarks. By

separating the training and testing, it is possible to achieve results based on the prediction

of the decision tree itself. For our study, a training set of benchmarks consists of low,

medium and large transaction sizes as well as low, medium and large working set size.

C. Wang et al. [3] presented optimizations for limiting overhead in software

transaction memory. They focus on supporting transactional code in unmanaged

languages such as C. Optimization of STM overhead in unmanaged languages is a

challenging task as it requires implementing validation in the granularity of the cache

block rather than an object. In this paper, they proposed techniques to allow programmers

to initiate blocks to be executed atomically. They also exploit compiler-based

optimization techniques such as in-lining (necessary for fast paths), eliminating

redundant barriers and register checks. Our work is orthogonal and can be combined with

this paper [3] to enhance performance further.

Z. Li et al. [37] presented a compiler-based tool, called DiscoPoP, to

automatically identify regions of code that can be executed in parallel. It is designed to

be able to find code regions with arbitrary granularity. It is important to note that

DiscoPoP finds regions of a code in which data dependency does not exist. This is called

CU (computational unit). In the next step, dependency graphs are then built. The nodes

in the graph represent CUs and the edges represent the dependency between the CUs. By

exploiting the dependency graph, DiscoPoP determines the potential parallelism that is

available on different levels of the sequential code.

 For this thesis, the DiscoPoP parallel benchmark suite was used to evaluate

adaptive system. This Benchmark suite consisted of small and medium sized transactions

that consisted of medium sized working set. For the decision tree training phase, it is

important to have a wide range of transactional parameters to achieve greater accuracy in

predictions.

D. Didona et al. [8] presented a self-tuning optimization technique to dynamically

adjust the concurrency level in STMs. The purpose of this paper is to automatically

	 26	

identify the optimal degree of parallelism which will maximize the throughput of the

applications. They introduced self-tuning methods for both shared-memory and

distributed STMs. The performance of a TM application varies based on different factors

such as duration of transactions, level of data contention, ratio of update vs. read-only

transactions, etc. By changing the number of threads at runtime, it can improve the

performance of some applications instead of having a fixed number of threads. In this

paper, they used the self-tuning method that combines exploration-based and model-

driven approaches. Shared-memory STMs use the exploration-based approach which

consisted of three phases. The first phase is measurement phase. In this phase, the

application runs with fixed number of threads and measures the number of commits and

aborts. The second phase is decision phase. This phase decides whether to increase or

decrease the number of threads until the maximum is reached. The third phase is

transition phase. This phase is an external controller thread which either adds or removes

threads from an application depending on the results from the decision phase. Distributed

STM uses an analytical-based performance model which relies on a set of assumptions

based on transaction conflict patterns.

 For this thesis, a similar approach is taken regarding the evaluation phases that are

introduced in this paper. The decision tree consisted of two phases, training and testing.

This was done similar to this paper in order to have discrete evaluations based on the

decision tree prediction module.

Y. Rughetti et al. [35] proposed a technique which automatically tunes the degree

of parallelism in HTM. To achieve automatic tuning, the authors incorporated a machine

leaning algorithm. This work focuses on a two-layered approach where the first-layer is

the correction functions which is used to predict values of time. The second-layer

consists of the performance predictor model that predicts the level of concurrency. There

are existing STM approaches such as Hill-climbing techniques [24] and transaction

scheduler [9] that optimize degree of parallelism. The hill-climbing technique changes

the parallelism degree by reacting to throughput or abort rate. Transaction Scheduling is

the basis of mapping transactions to threads dynamically to minimize data contention,

and then the rescheduled threads are removed from the execution for that time interval.

This approach gives different types of information from abort ratio to the details on a

	 27	

transaction read/write set. In these approaches, the predicted value of the transaction

wasted time is used to find the system throughput. This allows predicting the optimal

value to achieve the expected maximum throughput. In STM, it is easier to access via

software instrumentation to monitor specific parameters. However, these parameters are

not supported in HTM, and implementing it in HTM via software would create overheads

and lower the performance severely, especially since an advantage of HTM is supposed

to avoid any costly additional software instrumentation (overhead). The techniques are

not compatible for HTM since all of these models for STM do not take into account the

transaction aborts in which HTM is very vulnerable to conflicts. In this study, the authors

implement a classification approach comparing two different machine-learning methods:

Decision tree and Neural Networks. This approach consists of constructing a training set

for a specific application. The training set is constructed by executing a few runs of the

application with different inputs of configuration parameters. For each input, the

application is executed for a range of threads. By implementing this for each workload

tested during the training phase, it becomes possible to determine the best performing

concurrency level. The major benefit of this approach is that it follows the one-step

layered approach meaning that it does not require the usage of correction functions.

 In this thesis, we use machine learning to determine which TM system is

appropriate for a transaction. This paper also shows the importance of overheads

associated with HTM systems in which careful analysis must be taken or else it will

cause performance penalties. Furthermore, our adaptive system does not execute both

HTM and STM, simultaneously. As this process incurs extra overhead. Thus, the

adaptive system avoids this performance penalty by allowing a transaction to execute in

either hardware or software. (Further information can be found in section 3.3)

 Y. Xiao et al. [36] proposed an optimization technique that statically decides on

transactional parameters to improve performance of STM in parallel applications. By

focusing on a transaction’s characteristics (such as transaction size, read set size and

write set size), it is possible to achieve speedup in applications. The transaction size is a

crucial parameter that can have significant impact on performance and it is important to

have an optimum size to achieve speedup. If the transaction size is too small, it can lead

to overhead that exceeds the performance gain of parallel execution (results in slowdown

	 28	

when compared to sequential programs). If the transaction size is too large, it can lead to

an excess amount of rollbacks due to a higher probability of transactional aborts in

applications. Thus, it is important to have the optimum ‘sweet spot’ of transaction size.

This approach of optimizing each parameter manually can be a tedious and time

consuming process. To overcome this issue, the authors propose two optimization

techniques that are designed to automatically determine the optimal transaction size. The

first technique exploits Linear Regression (LR) to predict the transaction size. The LR

works by attaining the transaction parameters such as transaction size, read-set size,

write-set size and predicts the optimum transaction size. However due to the simplicity

of implementing LR, the accuracy is quite low. In order to improve the accuracy,

multiple LR models are used to predict transaction size. In addition, a decision tree

prediction model determines which LR model is appropriate for a given transaction.

Overall, these optimization techniques improved the performance of STM based

applications.

 For this thesis, the adaptive system incorporates both HTM and STM to enhance

performance of parallel applications. A decision tree is implemented to predict the

optimum system based on a transaction’s characteristics. With the optimization

techniques proposed by Yang et al. [35], there is an opportunity to enhance the adaptive

system by optimizing STM and RTM separately based on the transactional characteristics

(such as transaction size, read-set size, write-set size, etc.).

	 29	

Chapter 3

Adaptive System Design
This chapter describes the design of the proposed Adaptive system. Section 3.1

explains the importance of transaction granularity for the proposed adaptive system.

Section 3.2 analyses the programmability aspects of RTM. Section 3.3 revolves around

the synchronization technique that is used to seamlessly switch between RTM and

TinySTM. Section 3.4 depicts how the adaptive system is implemented into a specific

source code. Finally, section 3.5 explains the implementation of the decision tree

prediction module.

3.1 Transaction Granularity

One of the features of the adaptive system is that it switches between HTM and

STM in transaction granularity. In parallel computing, the term granularity is defined as

the amount of real work in a parallel task. With transaction granularity, the focus is on

the basis of individual transactions rather than an entire application. This fine-grained

granularity system increases performance gains while a coarse-grained granularity system

misses many opportunities for speedup. However, to avoid overhead, the adaptive

system does not execute HTM and STM simultaneously. Simultaneous execution of

HTM and STM requires communication between in-flight hardware and software

transactions. A metadata should record transactional data and each transaction should

check the metadata when it accesses a transactional variable. Doing so significantly

increases execution time and hurts performance, especially in applications with low

conflict rate. To avoid this performance penalty, we allow a transaction to execute in

either hardware or software, but not both.

In order to achieve transaction granularity, program counter (PC) was used to

distinguish each and every transaction. While executing an application/benchmark, we

are able to attain the parameters of each transaction. These parameters include elapsed

execution time, the static size of transaction, transactional data, the number of aborts, etc.

From these parameters, it is possible to further understand the behaviors of both RTM

and TinySTM.

	 30	

Figure	 3.1:	 Program	 counter	 Code	 sequence	

Figure 3.1 shows the code sequence used to read PC. When a transaction is initiated this

code returns address of the first instruction in the transaction. Line 1 initializes eip1 (a

local variable). Line 2 retrieves the value of the program counter to identify each

transaction. This is crucial for the adaptive system as it switches TM systems from one

transaction to another.

3.2 Restricted Transaction Memory (RTM)

The implementation of RTM programs was based on the programmability

references from Intel’s TSX manual [17]. The key factors of an RTM program is the

following:

• Retry count

• Fallback policy

• Transactional abort status

The retry count is the maximum number of times an aborted transaction is rolled

back and retries execution. This is important in RTM since transactions have an abundant

reasons to abort (refer to Section 2.2.4). By retrying an aborted transaction ‘x’ number of

times, there is a possibility that the transaction can eventually commit in hardware. Once

the maximum retry threshold is reached, the fallback policy is applied. It is important to

be able to execute a transaction using hardware resources as often as possible in order to

use the performance benefits of RTM. In our adaptive system, the retry count is set to 4.

Based on our experimental simulations, the retry count of 4 is the best option that

produces optimal performance. It is possible to have a higher retry count, but it can hurt

performance as retrying a transaction that aborts over and over increases execution time

due to wasted work. For example, if the retry count is 12 and the application triggers

1. uint32_t eip1 = 0;

2. __asm__ __volatile__("movl $., %0" : "=r"(eip1));
	

	 31	

capacity aborts, the program will keep retrying the execution until the threshold of retires

is met. This wastes processor cycles and the outcome is performance slowdown. Also,

having a low retry count can cause the fallback policy to be executed too prematurely.

This means that RTM does not have a chance to be executed, which is detrimental for

performance gain. By conducting experimental test cases, having a retry count of 4 is a

‘sweet-spot’ for optimal performance.

In RTM, it is necessary to incorporate a fallback policy to guarantee that an

application will successfully execute. A sample code sequence of RTM’s fallback policy

is found in figure 3.2. This code sequence is placed inside a header file (tm.h in STAMP)

and is executed when RTM is called upon. The tm.h file contains the APIs necessary for

transactional execution for both software and hardware transactions. For this thesis, these

APIs are modified to support TinySTM and RTM.

This code sequence in figure 3.2 only focuses on the lock mechanism that is used

in the case of an RTM transactional abort. This fallback policy consists of a global

pthread lock. In line 4, if the number of tries is less than 0, then the fallback path is

initialized by acquiring a lock. This sequence happens during TM_BEGIN_RTM. Once

the TM_END_RTM is called, the code sequence will try to commit a transaction in RTM

only if the number of tries is greater than 0. Otherwise, in line 11, the pthread lock that

was held previously is released and the transaction is executed using locks. This

guarantees forward progress as the transaction will eventually commit after the threshold

of retires has been met and eventually executes the transaction using locks.

	

	

	

	

	 32	

Figure	 3.2:	 RTM	 fallback	 policy

In RTM, there are many constraints that result in a transactional abort. To track

these aborts, RTM uses the EAX status register to specify the exact cause of an abort.

Once a transaction aborts, the EAX register will send an abort code with the reason of

abort (further information on EAX abort codes can be found in Section 2.2.4).

To measure the cause of aborts, we use an array to keep track of all the different

kinds of transactional aborts inside an application. Once the application executes, the

total number and type of aborts will be printed out. This feature is an important aspect for

understanding the behaviors of RTM. From initial evaluation of RTM, the benchmarks

that perform poorly tend to have a higher abort rate with the majority being capacity

aborts. While the benchmarks that show performance gain have minimal abort rate,

along with minimal capacity aborts. Capacity aborts are detrimental to RTM’s

performance as the hardware resources are bounded with constraints. A benchmark that

consists of a large working set size, and/or large transaction size, has a higher probability

of getting capacity aborts in RTM, thus decreasing performance. Figure 3.3 depicts the

EAX status bits located in the RTM header file.

1. #define TM_BEGIN_RTM()
2. ...
3. tries --;
4. if (tries <= 0)
5. pthread_mutex_lock(&global_rtm_mutex);
6. ...
7.
8. #define TM_END_RTM()
9. if (tries > 0)
10. ...
11. else
12.

pthread_mutex_unlock(&global_rtm_mutex);
 13. ...
	

	 33	

	 	 	 	 1. ...
 2. {
 3. (tx->num_abort)++;
 4.
 5. if((eax_regg & 0x01) == 0x01)
 6. (tx->abort_explicit)++;
 7. if((eax_regg & 0x02) == 0x02)
 8. (tx->abort_retry)++;
 9. if((eax_regg & 0x04) == 0x04)
 10. (tx->abort_conflict)++;
 11. if((eax_regg & 0x08) == 0x08)
 12. (tx->abort_capacity)++;
 13. if((eax_regg & 0x10) == 0x10)
 14. (tx->abort_debug)++;
 15. if((eax_regg & 0x20) == 0x20)
 16. (tx->abort_nested)++;
 17. ...

	 	 	 	 	 	 	 	 	
	
	
	

Figure	 3.3:	 EAX	 status	 bits	 found	 in	 RTM	 header	 file	

Figure	 3.4:	 Implementation	 of	 EAX	 status	 register	
	
	

 The EAX status bits are implemented in conjunction with RTM’s header file that

consists of the definitions of the aborts. This code sequence is placed inside RTM_stats

function to attain all the metadata of a transaction. In line 3 (figure 3.4), the total number

of aborts is accumulated. From line 5 to line 16, there are if statements to check whether

EAX status bit are initialized. For example, if there is an abort, it will check each status

bit and once the status bit is found, it will determine the cause of abort. These abort

metadata is then accumulated in the array structure to attain all the aborts of a transaction

within an application.

1. /* Status bits */
2. #define XABORT_EXPLICIT_ABORT (1<<0)
3. #define XABORT_RETRY (1<<1)
4. #define XABORT_CONFLICT (1<<2)
5. #define XABORT_CAPACITY (1<<3)
6. #define XABORT_DEBUG (1<<4)
7. #define XABORT_STATUS(x) (((x) >> 24) & 0xff)

	 34	

3.3 Synchronization of RTM and STM

This section explains how RTM and STM are synchronized. We need to

guarantee that in-flight hardware and software transactions do not execute

simultaneously. This is very crucial because if there are any issues it can stall an

application from executing correctly or crash entirely. It can also lead to incorrect updates

to shared memory by either one of the systems. To enable mutual-exclusion of RTM and

STM, we exploit a conditional variable. The pseudo code in Figure 3.5 and 3.6 shows

how synchronization is handled between the two systems.

The synchronization occurs inside the functions tx_start() and tx_commit() which

depict the start and commit phases of a transaction, respectively (please refer to figure 3.5

and 3.6). These functions have other code sequences but are taken out in order to only

focus on the synchronization portion. The input arguments of the two functions show

whether the corresponding transaction is executed in hardware or software. A hardware

transaction first checks if there is any in-flight software transaction (line 7). If a software

transaction is executing, then the hardware transaction waits (line 8). Then, the hardware

transaction increments num_in_flight_rtm which is a counter and shows the number of in-

flight hardware transactions (line 9). A global lock (rtm_stm_sync_mutex) is used to

guarantee atomicity of accesses to the shared variables in txstart() and tx_commit(). It is

important to note that the overhead of the global lock is very low as it is held by

transactions for a short period of time. The code for software transaction (lines 14-22) is

similar. When a hardware transaction commits, (lines 28-35), it decrements

num_in_flight_rtm counter (line 31). If the counter is zero, then it broadcasts a signal to

all software transactions waiting for in-flight hardware transactions to finish. The same

procedure is followed for software transactions (lines 37-44).

	 35	

25: tx_commit(int rtm_n_stm)
26: {
27: ...
28: if(rtm_n_stm == 1)
29: {
30: pthread_mutex_lock(&rtm_stm_sync_mutex);
31: num_in_flight_rtm--;
32: if(num_in_flight_rtm == 0)
33: pthread_cond_broadcast(&sync_cond_stm);
34: pthread_mutex_unlock(&rtm_stm_sync_mutex);
35: }
36:
37: if(rtm_n_stm == 0)
38: {
39: pthread_mutex_lock(&rtm_stm_sync_mutex);
40: num_in_flight_stm--;
41: if(num_in_flight_stm == 0)
42: pthread_cond_broadcast(&sync_cond_rtm);
43: pthread_mutex_unlock(&rtm_stm_sync_mutex);
44: }
45: ...
46: }	

	
Figure 3.5: Pseudo code for synchronization of RTM and STM in tx_start().

Figure 3.6: Pseudo code for synchronization of RTM and STM in tx_commit().

1: tx_start(int rtm_n_stm)
2: {
3: ...
4: if(rtm_n_stm == 1)
5: {
6: pthread_mutex_lock(&rtm_stm_sync_mutex);
7: while (num_in_flight_stm > 0)
8: pthread_cond_wait(&sync_cond_rtm, &rtm_stm_sync_mutex);
9: num_in_flight_rtm++;
10:
11: pthread_mutex_unlock(&rtm_stm_sync_mutex);
12: }
13:
14: if(rtm_n_stm == 0)
15: {
16: pthread_mutex_lock(&rtm_stm_sync_mutex);
17: while (num_in_flight_rtm > 0)
18: pthread_cond_wait(&sync_cond_stm, &rtm_stm_sync_mutex);
19: num_in_flight_stm++;
20:
21: pthread_mutex_unlock(&rtm_stm_sync_mutex);
22: }
23: ...
24: }

	 36	

In this synchronization step, there are important lock functions to promote atomicity. In

line 8, the instruction pthread_cond_wait() is called. If a transaction is being executed in

STM mode, then this function blocks the calling transaction. When the last transaction in

STM mode commits, it broadcasts a signal (line 42) and wakes up all blocked transaction.

3.4 Implementing Source Code

The main goal of our adaptive system is to have a uniform design of incorporating

both systems. Typically, in TM applications/benchmarks, there are macros that enable

transactions to begin and end as well as macros for data access such as reads and writes.

For our adaptive system, there are new instructions dedicated to RTM and TinySTM. For

a given TM application/benchmark, by substituting the source code with RTM and

TinySTM macros, our adaptive system is able to seamlessly switch between systems for

different transactions. These macros are defined in header files which consist of the

entirety of the RTM and TinySTM codes. Figure 3.7 shows sample code of how RTM

and TinySTM work alongside each other using the proposed macros.

To start and end a transaction in RTM, we use the macro TM_BEGIN_RTM and

TM_END_RTM. The same structure of macros is used to start and end a transaction in

STM: TM_BEGIN_STM and TM_END_STM. There are two macros for transactional data

access in RTM: TM_SHARED_READ_RTM and TM_SHARED_WRITE_RTM. Similar

structure is used for STM: TM_SHARED_READ_STM and TM_SHARED_WRITE_STM.

	
	

Figure	 3.7:	 Pseudo	 code	 for	 implementing	 RTM	 and	 STM.	

1. TM_BEGIN_STM();
2. TM_SHARED_READ_STM();
3.
4. //transactional area...
5.
6. TM_SHARED_WRITE_STM();
7. TM_END_STM();
8.
9.
10. TM_BEGIN_RTM();
11. TM_SHARED_READ_RTM();
12.
13. //transactional area...
14.
15. TM_SHARED_WRITE_RTM();
16. TM_END_RTM();

	 37	

3.5 Implementation of Decision tree

 Decision tree is an effective method of supervised machine learning that exhibits

an accurate prediction based on a group of datasets [22]. The goal of implementing a

decision tree is to create a model that predicts a value based on a set of input parameters.

Our Adaptive system exploits a decision tree prediction module (C4.5 algorithm [23]) to

be able to predict which TM system is the better choice for a given transaction. The C4.5

algorithm was chosen because of the stability and good accuracy when compared to other

prediction model algorithms [22]. The basic functionality of C4.5 is to build a tree from a

set of training datasets and the resulting tree is used to predict the optimum TM system

(further information can be found in Section 2.3). This process can be broken down into

two phases: training phase and testing phase.

3.5.1 Training Phase

The training phase is conducted to attain a prediction model based on the decision

tree. The input datasets are constructed using the following transaction parameters:

• Transaction size

• Read-set size

• Write-set size

• Write-ratio

Transaction size refers to the operations that are present inside a transaction.

Typically, a transaction is initialized with TM_BEGIN and a transaction is committed

with TM_END. In between these instructions lie different operations, such as arithmetic

operations, read-sets, write-sets, ‘for’ loops, etc. One way to measure transaction size is

counting the number of C code lines in transactions. However, execution time of C

programs changes from one line to the other by a large margin. We need a fine

granularity metric for the transaction size. Since all C codes are compiled to assembly

instructions, we use the number of assembly instructions to measure transaction size. In

general, transaction size is important when conducting evaluations for RTM. This is

primarily due to the hardware resource constraints. Once the cache capacity of RTM has

	 38	

been reached, there is a higher probability of the transaction resulting in an abort, thus

resulting in overall performance slowdown.

Another important transactional parameter is the working set size which is

defined as the number of distinct memory locations accessed. This includes both the read

and write sets inside of a transaction.

Transaction conflict is more likely to occur in applications with large working set

size. In RTM, such conflicting accesses force an abort to ensure that atomicity of the

transaction is preserved, yet this will result in performance slowdown. The write-ratio is

the ratio between the number of shared writes and the total number of shared accesses.

The write-ratio is used as another parameter that is included in the training set of the

decision tree, in order to improve the accuracy of prediction.

 Overall, these parameters are important in terms of the behaviors of both RTM

and TinySTM. RTM favors small sized transactions as well as small working set size.

While in STM, there is much more flexibility and offers better performance than RTM

for large transaction sizes and large working set sizes.

The training phase consists of a set of benchmarks that are chosen based on small,

medium and large transaction sizes and working set sizes from all the 3 benchmark suites

(STAMP, NAS and DiscoPoP).

The following are the benchmarks used for the training phase:

• GENOME

• LABYRINTH

• YADA

• Embarrassingly Parallel

• Montercarlo_Pie

• Light_Propogation

The benchmarks are executed twice: once using RTM and the other using

TinySTM. The Decision tree is trained based on statistics generated by RTM and

TinySTM. This procedure was done separately for 2, 4 and 8 number of threads because

the characteristics of a transaction can vary as the thread count increases. The output of

the decision tree is a binary bit that indicates whether RTM or STM is better for a given

transaction.

	 39	

Figures 3.8, 3.9 and 3.10 represent the decision tree predictions for 2-, 4- and 8-

thread, respectively. Based on these predictions, an evaluation was conducted on a

separate set of testing benchmarks. The result of the decision tree follows an if/else

procedure. Figure 3.8 corresponds to the prediction for 2 threads. First, it checks

transaction size. If the transaction size is less than 155, then the optimum TM system is

predicted to be RTM. Else, if the transaction size is greater than 155, it enters the next set

of base parameters to be examined. Now, if the write-set size is less than 2.05 ×106 then

the TM system that should be used is STM. Else, if the transaction has a larger write-set

size then it will check the next base parameter. Once again, the decision tree checks if the

transaction size is less than 580, then RTM will be used; otherwise, STM system will be

used. As the thread count increases, the transactional execution time can change and

ultimately the predicted system can change. In order to overcome this issue, the decision

tree is implemented separately for threads 2, 4 and 8 to improve accuracy.

	
	
	
	

Figure	 3.8:	 Decision	 tree	 output	 for	 2	 Threads	

	
	
	
	
	
	
	

Figure	 3.9:	 Decision	 tree	 output	 for	 4	 Threads	

	 40	

	
	
	
	

Figure	 3.10:	 Decision	 tree	 output	 for	 8	 Threads	

Table 3.1 shows an example of benchmark YADA and the parameters associated with its

transactions. These parameters were used for training due to specific behaviors of each

system. Benchmark YADA contains 5 transactions in which each transaction has its own

unique set of characteristics.

Table 3.1: Characteristics of benchmark YADA consisting of five transactions

 In large transactions, STM performs better than RTM primarily due to capacity

overload of hardware resources. Another critical behavior of a transaction is working set

size (read/write accesses). RTM performs well for transactions that consist of low to

medium working set size, while STM performs well for large working set size. This is

due to the hardware constraints associated with RTM which caps the threshold for

performance gain in transactions with large working set sizes. In YADA, there are 4

transactions with transaction sizes that range from 95-115. For these transactions, RTM

executes faster than STM. The remaining transaction has a size of 626 and contains a

very large working set size in which STM greatly outperforms RTM. By training the

decision tree using all parameters of the training benchmarks, it is possible to achieve

TX # STM
Time(ms)

RTM
Time(ms)

Read-set
Size

Write-set
Size

TX Size Write
Ratio

TX1 291 113 2525298 1219387 101 0.3256
TX2 523 48 580197 0 115 0
TX3 39833 51061 10396152 24145158 626 0.1884
TX4 52 24 0 464996 95 1
TX5 144 66 1127133 505601 109 0.3096

	 41	

accurate predictions.

3.5.2 Testing Phase

The testing phase is conducted to predict whether RTM or STM is better for a

given transaction. The testing phase consists of 6 different benchmarks, which are:

• Conjugate-Gradient

• Multi-Grid

• KMEANS

• SSCA2

• Ann_Training

• Mandelbrot

The reason why there was no inclusion of the training benchmarks for evaluation

is due to having a discrete analysis based on the decision tree prediction. Therefore, the

focus was on attaining a prediction based on the training benchmarks then applying the

prediction to another set of benchmarks (testing benchmarks).

The C4.5 algorithm of the decision tree applies pruning to increase the accuracy

of the prediction. Pruning is the basis of increasing the accuracy of unseen groups of data.

The decision tree is designed to give an accurate prediction, which means that there is no

guarantee that the prediction is correct all the time. This is due to the parameters that

impact the execution time of transactions. These parameters vary from one benchmark to

another. Table 3.2 is an example of the prediction of the decision tree for benchmark CG

(Conjugate-Gradient). D. T prediction in the table stands for decision tree prediction.

The decision tree prediction is based on the dataset of the training phase.

Table 3.2: Decision tree prediction based on Transaction Granularity for Benchmark CG

TX # STM Time(ms) RTM Time(ms) D.T prediction Optimum
prediction

TX1 4 21 RTM STM
TX2 83391 9664 RTM RTM
TX3 97 809 STM STM
TX4 14 2 STM RTM
TX5 4 20 RTM STM
TX6 172 1873 STM STM

	 42	

This table indicates that the decision tree predicted the best system at a rate of

50% (3/6 transactions). Even though 50% accuracy seems poor, it is actually very

accurate in terms of transaction execution time greater than 100ms. Approximately, 3 out

of the 6 transactions have an execution time greater than 100ms (for both RTM and

STM), in which the decision tree accurately predicted the correct system to use. The

miss-predictions for the transactions with an execution time less than 100ms are not

important as small transactions have insignificant impact on performance. Our adaptive

system works alongside the predictions made by the decision tree. Based on the

prediction, either a programmer or a compiler will statically change the source code for

the adaptive system. The adaptive system will then run the benchmark, which consists of

both hardware and software transactions to achieve a performance gain.

In summary, the primary goal of the adaptive system is improve performance of

parallel applications by incorporating the notion of switching between hardware and

software transactions within a given application. A decision tree is incorporated to predict

the optimum system for each transaction based on its characteristics.

	

	 43	

Chapter 4

Experimental Results
 The motivation to develop the proposed adaptive system is originated from the

benefits and limitations of both TM systems. Depending on an application’s transaction

characteristics, either RTM or STM can outperform each other. This chapter focuses on

the experimental analysis of the adaptive system based on the testing benchmarks. In

Section 4.1, we explain experimental framework and benchmark specifications used to

evaluate the adaptive system. Section 4.2 analyzes both RTM and TinySTM on the basis

of performance and energy-delay. Section 4.3 reports performance and energy-delay of

both RTM and TinySTM.

4.1 Experimental Framework and Benchmark Specifications

 In this thesis, the focus is on simulating both STM and RTM on the same

commodity processor. The experimental setup consisted of 4th generation of Intel Core i7

processor comprising of four physical cores that can run up to eight threads

simultaneously (hyper-threading). Each core consists of two 8-way 32KB L1 cache

(instruction and data), 256 KB L2 cache, and 8 MB of L3 cache. The operating system

used is 64-bit Ubuntu Linux with 3.4.5-40 kernel. In order to access Intel’s TSX intrinsic,

-mrtm flag was used. All benchmarks are compiled using gcc 4.8.1. Sections 4.1.1 to

4.1.3 describe the general characteristics of each benchmark suite that was used for

evaluation.

4.1.1 Stanford Transactional Applications for Multi-Processing (STAMP)

 STAMP [2] is a well known and widely used benchmark suite for parallel

computing. The input variables for each benchmark in STAMP can be configured. For

all evaluations conducted on these benchmarks, the input variables consist of the

maximum allowed parameters (non-simulated input parameters).

KMEANS: This benchmark represents a K-means algorithm that groups objects into ‘K’

number of clusters. The basis of this algorithm is to partition data into subsets. In this

	 44	

benchmark, there are three transactions. The transaction sizes in KMEANS are relatively

small and so are the read and write sets.

GENOME: This benchmark represents reconstructing and matching DNA segments. The

structure of this benchmark consists of five transactions that range from medium to large

transactional sizes. The working-sets (read/write) in this benchmark have moderate size.

LABYRINTH: This benchmark represents the structure of a three-dimensional maze.

Each thread essentially attains a start and an end point of the maze, and connects a path

through all grid points. The structure of this benchmark consists of three transactions in

which the execution time of one transaction dominates the other two. The transaction

sizes range from medium to large and the working set size is large.

SSCA2 (Scalable Synthetic Compact Applications 2): This benchmark represents the

construction of an array data structure for security based applications. The structure of

this benchmark consists of only one small sized transaction as well as a small working set

size.

YADA (Yet Another Delaunay Application): This benchmark represents Ruppert’s

algorithm [24] for mesh refinement data structure. The structure of this benchmark

consists of five transactions ranging from small to large sizes. The working set size also

ranges from medium to large sizes.

4.1.2 NAS Parallel Benchmarks

 This benchmark suite was introduced in 1994 by Ames Research Center of NASA

and was developed for performance evaluation of highly parallel supercomputers [4].

These benchmarks mimic the computation and data structures of CFD (computational

fluid dynamics) applications [19]. This benchmark suite was used in this thesis to further

enhance the spectrum of transactional memory applications.

Conjugate-Gradient: This benchmark represents gird computations for unstructured

eigenvalues. The structure of this benchmark consists of six transactions ranging from

small to large sizes. The working set size is fairly small throughout the six transactions.

	 45	

Multi-Grid: This benchmark represents the testing of short and long distance data

communications. The structure of this benchmark consists of two transactions in which

one of the transactions is very small and the other is medium sized. The working set size

is fairly small for both transactions.

Embarrassingly Parallel: This benchmark represents calculation of floating-point data

structures without significant inter-processor communication. The structure of this

benchmark consists of three transactions. The transaction sizes range from medium to

large. The working set size remains fairly moderate in size.

4.1.3 DiscoPoP Benchmark Suite

 This benchmark suite was developed for a tool to automatically find potential

parallelism in sequential programs [37]. This tool is called DiscoPoP which is able to

find parallelism between code regions with subjective granularity. The set of benchmarks

introduced in DiscoPoP is also used for the evaluation of the proposed adaptive system.

The benchmarks used are the following:

• Mandelbrot

• Light_ Propagation

• Monte Carlo

• Artificial Neural Network Training

Each of these benchmarks only consists of one transaction. The transaction size however

ranges from small to medium. The working set size is considerably small when

compared to both NAS and STAMP benchmarks. These sets of benchmarks were used to

further enhance the prediction of the decision tree. The adaptive system must be able to

work with a wide variety of transactional applications, including applications that have

minimal transaction sizes and minimal working set sizes.

4.2 RTM vs. STM Performance Evaluation

The first set of experiments are based on evaluation of RTM and TinySTM on 12

benchmarks taken from Stamp [2], NAS [4], and DiscoPop [37] benchmark suites. This

evaluation is primarily conducted to compare the performances of the two systems.

Figure 4.1 represents a normalized comparison graph between RTM and TinySTM. In

each benchmark, the number for threads varies between two and eight. In Figure 4.1,

measurement reading greater than one favors TinySTM while less than one favors RTM.

There is a vast discrepancy between both systems, primarily due to the transaction

characters within a given benchmark such as transaction size, write-set size and read-set

size.

Figure 4.1: Normalized Transactional Execution time of RTM relative to TinySTM.

In small benchmarks where working set of the benchmark fits in the L1 cache, i.e.

Montecarlo, Light_Propagation, KMEANS, SSCA2, Conjugate-Gradient, RTM

outperforms TinySTM. In contrast, TinySTM outperforms RTM in benchmarks

consisting of larger transaction sizes, i.e. Labyrinth, Genome, YADA, Ann_Training,

Mandalbrot. The number of transactions within a benchmark varies and the

characteristics from one transaction to another also vary. By introducing our adaptive

system, we will be able to switch between RTM and TinySTM within a benchmark and

achieve better performance.

4.3 RTM vs. STM Energy Expenditure Evaluation

An important aspect of computational performance is energy efficiency. With

modern technology (laptops, cellphones, tablets, etc.) relying heavily on battery power, it

is essential to expend an efficient amount of energy as possible. Energy expenditure was

accurately measured using Intel’s runtime average power limit monitor (RAPL) [16],

calculated in milli-joules (mJ). RAPL relies on a set of hardware counters inside the

processor, which provides energy and power consumption information.

 The energy measurements are first taken for each TM system and an analysis is

made.

	 48	

Figure 4-2 represents energy-delay comparison between RTM and TinySTM. The

energy delay measurement is calculated by the energy consumption multiplied by the

transactional execution time. To take into account the impact of both energy and

performance, we use energy-delay to compare adaptive system with RTM and TinySTM.

RTM is much more energy efficient than STM for all benchmarks except for benchmarks

GENOME and LABYRINTH. This is primarily due to the benchmarks characteristics as

well as the structure of RTM. Although, RTM is generally much more energy efficient

compared to STM, the structure of RTM can lead to excess wasted work. When RTM

aborts, the retry sequence is initiated where it will keep retrying the aborted transaction.

Once the retry threshold is reached, the transaction will be executed using the

fallback policy (global lock). This results in wasted work as the abort prone transaction is

retried unsuccessfully. Another important limitation of RTM is capacity induced aborts.

No matter how many times the transaction is retried, the hardware limitations restrict it

from successfully committing. By implementing our adaptive system, there is a possibility

that by switching to RTM (when possible), it may be more energy efficient than STM.

Furthermore, the adaptive system incorporates STM meaning that the energy efficiency

readings compared to RTM does not result in efficiency. Table 4.1 and 4.2 depict the

characteristics of benchmark Genome and Labyrinth, respectively. (Further analysis of all

benchmarks is in Appendix-A).

Table 4.1: Characteristics of Benchmark LABYRINTH at two threads

TX # STM

Time(ms)

RTM

Time(ms)

Read-

set Size

Write-

set Size

Tx

Size

Abort

Ratio(STM)

Abort

Ratio(RTM)

Write

Ratio

Capacity
Abort-

Ratio

TX1 0 0 4108 512 134 0 0 0.1109 0

TX2 77851 150512 1151846 1810368 254 0.04119 0.7470355731 0.6112 0.9596560

TX3 0 0 12 8 61 0 0 0.3636 0

Table 4.2: Characteristics of Benchmark GENOME at two threads.

From these tables, the results show that all transactions are different from one

another in terms of transaction size and working set size. In benchmark GENOME, the

average capacity abort ratio (only for TX1 and TX2, due to majority of transactional load)

is approximately 46.8% out of the total number of aborts. The capacity abort results in

slowdown for RTM when compared to STM. For benchmark Labyrinth, only one of the

three transactions has the majority of the transactional load. The capacity abort ratio for

that transaction is 95.9% of the total number of aborts. This severely hampers RTM’s

performance, as it wastes a lot of work by retrying unnecessarily and executing the

fallback path. On the other side, for STM, the total abort ratio is very small at 4.11%.

Figure 4.3 depicts the distribution of transactional aborts for benchmark GENOME.

Generally, as the thread count increases from 2 to 8, the capacity aborts increase from

46.4% to 74.6%.

Figure 4.3: Distribution of Transactional Aborts for Benchmark GENOME

TX # STM

Time(ms)

RTM

Time(ms)

Read-set

Size

Write-

set Size

Tx

Size

Abort

Ratio(STM)

Abort

Ratio(RTM)

Write

Ratio

Capacity
Abort-

Ratio

TX1 6064 7359 41992177 32652 259 2.14575E-006 0.2037975743 0.0077 0.5876806

TX2 2 1 21728 16321 116 0 0.0001837785 0.4289 0.3666666

TX3 2493 2774 40543510 2057244 536 0.0097530404 0.2562808218 0.0482 0.3399366

TX4 4 3 52050 32642 133 0 0.1450497643 0.3854 0.0003611

TX5 8 2 107612 81600 154 0 0.0037543224 0.4312 0.1315789

	 50	

4.3 Evaluation of Adaptive system

 The experimental analysis of the adaptive system is to compare the results with

baseline TinySTM and baseline RTM. This evaluation consists of both transactional

execution time as well as energy delay measurements. For	 evaluation,	 the	 benchmarks	

from	 the	 testing	 phase	 are	 used.	 This	 includes	 benchmarks	 Conjugate-‐Gradient,	

Multi-‐Grid,	 KMEANS,	 SSCA2,	 Ann_Training	 and	 Mandalbrot.	 The	 primary	 objective	

of	 the	 testing	 benchmarks	 is	 to	 strictly	 use	 the	 decision	 tree	 predictions.	 Therefore,	

the	 focus	 was	 on	 attaining	 a	 prediction	 based	 on	 the	 training	 benchmarks	 then	

applying	 the	 prediction	 to	 another	 set	 of	 benchmarks	 (testing	 benchmarks).	 	

4.3.1 Adaptive system vs. TinySTM

	 	 This	 section	 provides	 experimental	 analysis	 between	 the	 proposed	 adaptive	

system	 and	 TinySTM.	 Figure	 4.4	 depicts	 Normalized	 transactional	 execution	 time	

(speedup)	 between	 the	 adaptive	 system	 and	 TinySTM.	 A	 benchmark	 that	 consists	 of	

a	 value	 less	 than	 1	 shows	 speed-‐up	 for	 the	 adaptive	 system.	 The	 benchmarks	

Conjugate-‐Gradient,	 Kmeans	 and	 SSCA2	 have	 a	 significant	 speedup	 over	 STM.	 The	

rest	 of	 the	 benchmarks,	 Multi-‐Grid,	 Ann_Training	 and	 Mandalbrot	 have	 a	 normalized	

speedup	 value	 of	 1	 which	 indicates	 that	 the	 prediction	 used	 for	 the	 adaptive	 system	

heavily	 favored	 TinySTM.	 Overall,	 as	 the	 thread	 count	 increases,	 there	 is	 little	

difference	 in	 speedup.	 	 On	 average,	 speed-‐up	 is	 34.31%,	 34.44%,	 and	 34.35%	 for	 2,	

4	 and	 8	 threads,	 respectively.	 It	 is	 important	 to	 note	 that	 the	 decision	 tree	 prediction	

is	 not	 always	 correct,	 as	 a	 few	 predictions	 are	 inaccurate.	 Yet,	 the	 performance	 gains	

of	 the	 proposed	 adaptive	 system	 are	 very	 promising	 when	 compared	 to	 TinySTM.	 A	

thorough	 analysis	 of	 the	 decision	 tree	 prediction	 for	 each	 testing	 benchmark	 is	

found	 in	 Appendix	 B.	

	 51	

Figure	 4.4:	 Normalized	 Speedup	 comparison	 between	 adaptive	 system	 and	 TinySTM.	

	

The	 next	 evaluation	 is	 based	 on	 the	 energy	 delay	 measurements.	 Figure	 4.5	

depicts	 Normalized	 energy-‐delay	 comparison	 between	 the	 adaptive	 system	 and	

TinySTM.	 	 Once	 again	 for	 this	 evaluation,	 only	 the	 benchmarks	 in	 the	 testing	

benchmarks	 are	 used	 in	 order	 to	 have	 a	 realistic	 evaluation	 based	 on	 the	 decision	

tree	 predictions.	 	 Since	 this	 is	 a	 normalized	 graph,	 values	 less	 than	 1	 depict	 energy	

efficiency	 and	 a	 value	 greater	 than	 one	 depicts	 energy	 deficiency.	 In	 all	 the	 testing	

benchmarks,	 our	 adaptive	 system	 is	 42.11%	 more	 energy	 efficient	 than	 TinySTM.	

This	 is	 a	 significant	 difference	 of	 energy	 consumption	 when	 compared	 to	 baseline	

TinySTM.	 The	 reason	 for	 this	 substantial	 energy	 efficiency	 is	 that	 for	 certain	

benchmarks	 that	 consist	 of	 low/medium	 sized	 transactions	 and	 working	 set	 sizes,	

by	 implementing	 these	 transaction	 in	 RTM,	 the	 adaptive	 system	 is	 able	 to	 save	

energy.	 The	 benchmarks	 that	 show	 significant	 energy	 efficiency	 are	 (portrays	

overall	 energy	 efficiency	 percentage):	

• Conjugate-‐Gradient	 à	 94.78%	

• KMEANS	 à	 91.76%	

• SSCA2	 à	 55.81%	

	

	 52	

The	 rest	 of	 the	 benchmarks	 relatively	 have	 low	 to	 moderate	 energy	

efficiency.	 This	 is	 because	 for	 certain	 benchmarks	 that	 consist	 of	 low/medium	

transaction	 and	 working	 set	 sizes,	 by	 implementing	 these	 transactions	 in	 RTM,	 we	

are	 able	 to	 save	 energy.	 If	 all	 the	 transactions	 are	 implemented	 in	 STM,	 then	 there	

will	 be	 additional	 overhead	 for	 each	 transaction	 initiated.	 (Further	 analysis	 of	

energy	 expenditure	 for	 all	 benchmarks	 is	 found	 in	 Appendix	 D.)	

Figure 4.5: Normalized Energy-delay comparison between adaptive system and TinySTM.

4.3.2 Adaptive system vs. RTM

	 This	 section	 provides	 experimental	 analysis	 between	 the	 proposed	 adaptive	

system	 and	 RTM.	 Figure	 4.6	 depicts	 Normalized	 transactional	 execution	 time	

(speedup)	 between	 the	 adaptive	 system	 and	 RTM.	 The	 benchmarks	 that	 have	 a	

normalized	 speedup	 less	 than	 one	 indicate	 that	 the	 adaptive	 system	 achieves	

speedup.	 	

	

	

	

	 53	

Figure 4.6: Normalized Speedup comparison between adaptive system and RTM.

	

At	 4	 and	 8	 threads,	 benchmark	 Multi-‐Grid	 indicates	 a	 slowdown	 when	

compared	 to	 the	 baseline	 RTM.	 	 This	 is	 due	 to	 the	 decision	 tree	 prediction	 that	

incorrectly	 predicted	 the	 wrong	 system	 to	 execute	 for	 that	 specific	 benchmark.	

Table	 4.3	 shows	 transaction	 parameters	 of	 Multi-‐Grid.	 At	 4	 threads,	 Multi-‐Grid	 has	 a	

better	 execution	 time	 for	 RTM,	 but	 due	 to	 the	 decision	 tree's	 prediction,	 the	 STM	

system	 was	 used.	 	 Multi-‐Grid	 benchmark	 consists	 of	 two	 transactions	 in	 which	 the	

decision	 tree	 predicts	 correctly	 for	 only	 one	 of	 the	 two	 transactions.	 The	 other	

transaction	 (TX2)	 is	 incorrectly	 predicted	 and	 this	 results	 in	 slowdown	 of	 the	

adaptive	 system	 compared	 to	 the	 baseline	 RTM.	 	 	

Table 4.3: Transaction parameters and execution time for Multi-Grid benchmark when the
number of threads is four.

	

	

TX# STM Time(ms) RTM Time(ms) Read-set
Size

Write-set
Size

TX Size Write
Ratio

Decision
tree

Prediction

Optimum
System

TX1 120 60 64 64 130 0.5 RTM RTM
TX2 18818 16990 8008 8008 276 0.5 STM RTM

	 54	

	 There	 are	 a	 few	 reasons	 why	 RTM	 executes	 better	 than	 STM	 even	 though	 the	

transaction	 and	 working	 set	 sizes	 are	 very	 large.	 	 The	 primary	 reason	 is	 the	 abort	

ratio	 of	 this	 benchmark.	 In	 RTM,	 capacity	 induced	 aborts	 dramatically	 hamper	 the	

performance	 of	 transactional	 executions.	 	 Yet,	 for	 benchmark	 Multi-‐Grid,	 there	 is	 a	

total	 abort	 ratio	 of	 11.46%	 and	 out	 of	 that,	 only	 9.54%	 consists	 of	 capacity	 aborts	

(please	 refer	 to	 appendix	 A.2).	 	 This	 means	 that	 there	 is	 a	 low	 abort	 rate	 as	 this	

benchmark	 has	 a	 higher	 percentage	 of	 successfully	 committing	 transactions.	 Also,	

since	 the	 capacity	 abort	 rate	 is	 very	 low,	 this	 benchmark	 executes	 efficiently	 in	 RTM	

thus	 achieving	 a	 better	 performance.	 	 On	 the	 contrary,	 at	 8	 threads,	 benchmarks	

Conjugate-‐Gradient,	 Ann_Training	 and	 Mandalbrot	 demonstrate	 good	 speedup	

when	 compared	 to	 the	 baseline	 RTM.	 On	 average,	 the	 proposed	 adaptive	 system	 has	

speedup	 of	 5.88%,	 5.16%	 and	 11.79%	 for	 2,	 4	 and	 8	 threads,	 respectively.	 	

	 	 The	 next	 evaluation	 is	 based	 on	 the	 energy-‐delay	 measurements.	 Figure	 4.7	

depicts	 normalized	 energy-‐delay	 comparison	 between	 the	 adaptive	 system	 and	

RTM.	 The proposed adaptive	 system	 is	 not	 energy	 efficient	 when	 compared	 to	 RTM.	 	

This	 is	 primarily	 due	 to	 the	 overhead	 associated	 with	 switching	 into	 STM.	 There	 is	

extra	 overhead	 when	 initiating	 and	 overseeing	 a	 transaction	 in	 STM	 which	 expends	

extra	 energy.	 Thus,	 since	 our	 adaptive	 system	 incorporates	 both	 systems,	 the	 energy	

efficiency	 drops	 when	 compared	 to	 RTM.	 	

	

	

	

	

	

	

	

Figure	 4.7:	 Normalized	 Energy-‐delay	 comparison	 between	 adaptive	 system	 and	 RTM	

	 55	

4.3.3 Decision Tree Predictions for Testing Benchmarks

This section reviews the decision tree prediction that was used for each of the testing

benchmarks. During the training phase, the system that executed the fastest was included

as the input parameter for the decision tree. For the testing phase, the decision tree does

not predict correctly all the time.

 These tables show (4.4, 4.5, 4.6, 4.7, and 4.8) that the proposed adaptive system is

able to achieve speedup in all benchmarks (except Multi-Grid, explanation is in section

4.3) when compared to RTM or TinySTM. These tests also show exactly which

transaction yields the majority of the application’s workload. For example, in table 4.4

(benchmark Conjugate-Gradient) TX2 takes the majority of the transactional execution

time when compared to the other transactions. If the decision tree predicts incorrectly,

this can lead to performance slowdown for the adaptive system. This shows that the

accuracy of the decision tree is crucial to achieve speedup for applications. In SSCA2

(table 4.7), there are 3 transactions in total but only one out of the tree transactions has

the application’s entire workload. (Further analysis of energy expenditure for all

benchmarks is found in Appendix D.)

Table 4.4: Benchmark Conjugate-Gradient comparing Decision Tree prediction with

Optimum system

TX#	 STM	

Time(ms)	

RTM	

Time(ms)	

Adap.	

Time(ms)	

Speedup	

(Baseline_STM)	

Speedup	

(Baseline_RTM)	

D.T	

prediction	

Optimum	

prediction	

TX1	 4	 21	 19	 4.75	 0.9047619048	 RTM	 STM	

TX2	 83391	 9664	 9473	 0.1135973906	 0.9802359272	 RTM	 RTM	

TX3	 97	 809	 489	 5.0412371134	 0.6044499382	 STM	 STM	

TX4	 14	 2	 28	 2	 14	 STM	 RTM	

TX5	 4	 20	 19	 4.75	 0.95	 RTM	 STM	

TX6	 172	 1873	 170	 0.988372093	 0.090763481	 STM	 STM	

	 56	

Table 4.5: Benchmark Multi-Grid comparing Decision Tree prediction with Optimum
system

Table 4.6: Benchmark KMEANS comparing Decision Tree prediction with Optimum

system

Table 4.7: Benchmark SSCA2 comparing Decision Tree prediction with Optimum system

Table 4.8: Benchmark ANN_TRAINING comparing Decision Tree prediction with
Optimum system

TX#	 STM	

Time(ms)	

RTM	

Time(ms)	

Adap.	

Time(ms)	

Speedup	

(Baseline_STM)	

Speedup	

(Baseline_RTM)	

D.T	

prediction	

Optimum	

prediction	

TX1	 39	 35	 36	 0.9230769231	 1.0285714286	 RTM	 RTM	

TX2	 20738	 13026	 19919	 0.9605072813	 1.5291724244	 STM	 RTM	

TX#	 STM	

Time(ms)	

RTM	

Time(ms)	

Adap.	

Time(ms)	

Speedup	

(Baseline_STM)	

Speedup	

(Baseline_RTM)	

D.T	

prediction	

Optimum	

prediction	

TX1	 6422	 640	 642	 0.0999688571	 1.003125	 RTM	 RTM	

TX2	 102	 0	 0	 0	 0	 RTM	 RTM	

TX#	 STM	

Time(ms)	

RTM	

Time(ms)	

Adap.	

Time(ms)	

Speedup	

(Baseline_STM)	

Speedup	

(Baseline_RTM)	

D.T	

prediction	

Optimum	

prediction	

TX1	 0	 0	 0	 0	 0	 n/a	 n/a	

TX2	 0	 0	 0	 0	 0	 n/a	 n/a	

TX3	 5584	 2663	 2662	 0.4767191977	 0.9996244837	 RTM	 RTM	

TX#	 STM	

Time(ms)	

RTM	

Time(ms)	

Adap.	

Time(ms)	

Speedup	

(Baseline_STM)	

Speedup	

(Baseline_RTM)	

D.T	

prediction	

Optimum	

prediction	

TX1	 42698	 45335	 42656	 0.9990163474	 0.9409065843	 STM	 STM	

	 57	

Table 4.9: Benchmark MANDALBROT comparing Decision Tree prediction with
Optimum system

	

TX#	 STM	

Time(ms)	

RTM	

Time(ms)	

Adap.	

Time(ms)	

Speedup	

(Baseline_STM)	

Speedup	

(Baseline_RTM)	

D.T	

prediction	

Optimum	

prediction	

TX1	 18825	 19207	 18785	 0.997875166	 0.9780288437	 STM	 STM	

	 58	

Chapter 5

Conclusion
CMPs have become the main architecture of general-purpose computing. This

made development of efficient parallel programs a necessity in order to increase

performance. Transactional memory (TM) has been established as a simple and effective

parallel programming paradigm. TM has become progressively widespread especially

with Hardware transactional memory implementations becoming increasingly available.

This thesis proposes an adaptive system that exploits both STM and HTM at transaction

granularity. This chapter concludes the thesis and offers the potential future work that can

enhance performance of TM programs further.

5.1 Summary of Contributions

In a typical parallel application, the characteristics of a transaction vary

immensely. This leads to the discovery that there is no single TM system that works well

across all parallel applications. The primary goal of this thesis is to improve the

performance of parallel applications by combining the benefits of both RTM and

TinySTM. With the proposition of the adaptive system, it is possible to switch between

RTM and TinySTM at transaction granularity. A synchronization technique is developed

in order to seamlessly switch between RTM and TinySTM based on the characteristics of

a transaction. By exploiting the decision tree prediction module, it is possible to predict

the optimum system for each transaction in a given application. The decision tree is a

form of supervised machine learning to classify the input transaction parameters (such as

transaction size, transactional write ratio, etc.). This leads to an accurate prediction to

execute the optimum TM system. The evaluation consisted of three parallel benchmark

suites (STAMP, NAS and DiscoPoP) separated into the training phase and the testing

phase. The decision tree attains all transactional parameters from the benchmarks in the

training phase and predictions are created for varying number of threads (2, 4 and 8).

These predictions are then evaluated on the testing phase which reveal that the adaptive

system is able to improve transactional execution time and energy-delay.

	 59	

5.2 Future Work

 With the development of the adaptive system, there are issues that can be

improved with further optimizations.

1) For this thesis, the training dataset of the decision tree was limited to 6

benchmarks (the other benchmarks are used for testing) that ranged from small to

large transaction sizes and working set sizes. By incorporating additional

benchmark suites for the training phase, it is possible to improve the accuracy of

the decision tree prediction module.

2) The other opportunity for future work is combining adaptive system with the

technique proposed by Yang et al. [36] (further information can be found in

section 2.4). By implementing the optimization techniques introduced in [36] in

conjunction with the adaptive system, it is possible to optimize STM and RTM

separately based on the transactional characteristics (such as transaction size,

read-set size, write-set size, etc.). This will further enhance the accuracy of the

predictions made by the decision tree as well as increase the performance of the

application.

	 60	

Appendix
Benchmark Abbreviations used are the following:

NAS benchmark suite

CG – Conjugate Gradient

MG – Multi-Grid

EP – Embarrassingly parallel

DiscoPoP benchmark suite

09 – MONTECARLO_PIE

10 - LIGHT_PROPAGATION

11 - ANN_TRAINING

12 - MANDALBROT

A. Total Analysis of Benchmarks for threads 2, 4 and 8

B. Decision tree analysis for all Benchmarks

C. Performance Comparison

D. Energy Expenditure Comparison

	 68	

Bibliography
[1] A. Wang, M. Gaudet, P. Wu, J. N. Amaral, M. Ohmacht, C. Barton, R. Silvera, and M. Michael,

“Evaluation of blue gene/q hardware support for transactional memories”, In Proceedings of the
21st international conference on Parallel architectures and compilation techniques, New York,
NY, USA, 2012, PACT ’12, pp. 127–136.

[2] C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun, “STAMP: Stanford Transactional

Applications for Multi-Processing,” in The IEEE International Symposium on Workload
Characterization (IISWC), Seattle, WA, USA, Sep. 2008, pp. 35–46.

[3] C. Wang, Y. Wu , et al. “Code generation and optimization for transactional memory constructs in

an unmanaged language”, In the Proceedings of the International Symposium on Code Generation
and Optimization. IEEE Computer Society, 2007, pp. 34-48.

[4] D. Bailey, E.Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi, S. Fineberg, P.

Frederickson, T.Lasinski, R. Schreiber, H. Simon, V.Venkatakrishnan and S. Weeratunga. The
NAS parallel Benchmarks. RNR Technical Report RNR-94-007, March 1994.

[5] D. Christie , J. Chung , S. Diestelhorst , M. Hohmuth , M. Pohlack and et al. “Evaluation of

AMD's advanced synchronization facility within a complete transactional memory stack”,
Proceedings of the 5th European conference on Computer systems, Paris, April 13-16, 2010.

[6] D. Dice, O. Shalev, and N. Shavit, “Transactional Locking II”, In Proceedings of the 20th

International Symposium on Distributed Computing, September 2006, pp. 194-208,

[7] D. Didona, P. Felber, D. Harmanci, P. Romano, J. Schenker, “Identifying the Optimal Level of
Parallelism in Transactional Memory Applications”, NETYS, 2013, pp. 233-247.

[8] D. Patterson, “Origins and Vision of the UC Berkeley Parallel Computing Laboratory”, Chapter

1, 2004.

[9] F. Martinez and E. Ipek, “Dynamic Multicore Resource Management: A Machine Learning
Approach”, IEEE Micro 29, September 2009, pp. 8-17.

[10] G. Cunha, J. Lourenço, and R. J. Dias, "Consistent State Software Transactional Memory", IV

Jornadas de Engenharia de Electrónica e Telecomunicações e de Computadores (JETC'08),
Lisboa, Portugal, ISEL - Instituto Superior de Engenharia de Lisboa, 2008, pp. 251–256.

[11] G. E. Moore., “Cramming More Components onto Integrated Circuits”, Textbook- Electronics,

pp:114–117, April 1965.

[12] H.Tim, J. Larus, and R. Rajwar. Tech: “Transactional Memory”, Morgan & Claypool, 2010.

[13] IBM, “Sabre Transactional Processing”, Web link:
http://www03.ibm.com/ibm/history/ibm100/us/en/icons/sabre

[14] I. Calciu , J. Gottschlich , T. Shpeisman , G. Pokam , M. Herlihy, “Invyswell: a hybrid

transactional memory for haswell's restricted transactional memory”, Proceedings of the 23rd
international conference on Parallel architectures and compilation, August 24-27, 2014.

[15] Intel Corporation, “Chapter 12: Intel’s Transactional Synchronization Extensions (TSX),” Jul.

2013. Website link: http://www.intel.com/content/www/us/en/architecture-and- technology/64-ia-
32-architectures-optimization-manual.html

[16] Intel Architecture Software Developer’s Manual: System Programming Guide, June. 2013.

[17] Intel Corporation, “Intel Architecture instruction set extensions programming reference” Website

link: http://software.intel.com/sites/default/files/69/60/41604

	 69	

[18] J. Bennett, J. Carter, and W.Zwaenepoel, “Distributed shared memory based on type-specific

memory coherence”. Vol. 25. No. 3, 1990.

[19] J. David, and J. Wendt, “Computational fluid dynamics”, Vol. 206, New York, McGraw-Hill,
1995.

[20] J. El-Rewini, H. and M. Abd-El-Barr, “Shared Memory Architecture, in Advanced Computer

Architecture and Parallel Processing”, John Wiley & Sons, Inc., Hoboken, NJ, 2004.

[21] J. Gottschlich, M. Vachharajani, and J. Siek, “An efficient software transactional memory using
commit-time invalidation”, In Proceedings of the 8th annual IEEE/ACM international symposium
on Code generation and optimization (CGO '10). ACM, New York, NY, 2010, pp. 101-110.

[22] J. Quinlan, “ Induction of Decision Tree. Machine learning”, 1986, pp. 81-106.

[23] J. Quinlan, “C4.5: Programs for Machine Learning”, Morgan Kaufmann Publishers, 1993.

[24] J. Shewchuk and J. Richard, "Delaunay Refinement Algorithms for Triangular Mesh Generation",

2001.

[25] M. Bohlin, Y. Lu, J. Kraft, P. Kreuger, and T. Nolte, "Best-effort simulation-based timing analysis
using hill-climbing with random restarts," Mälardalen University, Technical Report ISSN 1404-
3041 ISRN MDH-MRTC-236/2009-1-SE, June 2009

[26] M. Castro, L. Góes, L. Fernandes, J. Méhaut, “Dynamic Thread Mapping Based on Machine

Learning for Transactional Memory Applications”, Euro-Par, 2012, pp. 465-476.

[27] M. Herlihy and J. E. B. Moss, Transactional memory: Architectural support for lock-free data
structures, in Proceedings of the Twentieth Annual International Symposium on Computer
Architecture (ISCA) , May 1993, pp. 289–300.

[28] M. Pereira, M. Gaudet, J. Amaral, and G. Araújo, “Multi-dimensional Evaluation of Haswell's

Transactional Memory Performance”, In Proceedings of the 2014 IEEE 26th International
Symposium on Computer Architecture and High Performance Computing (SBAC-PAD '14),
2014.

[29] M. Wang, M. Burcea, L. Li, S. Sharifymoghaddam, G. Steffan, and C. Amza, “Exploring the

performance and programmability design space of hardware transactional memory,” in the ACM
SIGPLAN Workshop on Languages, Compilers, and Hardware Support for Trans- actional
Computing (TRANSACT), Raleigh, NC, USA, Mar. 2014.

[30] N. Shavit and D. Touitou, “Software transactional memory”, Distributed Computing, 1997, pp.99-

116.

[31] P. Felber, C. Fetzer, and T. Riegel, “Dynamic Performance Tuning of Word-Based Software
Transactional Memory”, In Proceedings of the 13th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, Salt Lake City, UT, Feb. 2008.

[32] P. McKenney, M. Gupta, M. Michael, P. Howard, J. Triplett, and J. Walpole, “Is parallel

programming hard, and if so, why Control”, 2002.

[33] S. Chaudhry, R. Cypher, M. Ekman, M. Karlsson, et al. , “Simultaneous speculative threading: a
novel pipeline architecture implemented in sun's rock processor”, SIGARCH Comput. Archit.
News 37, June 2009, pp. 484-495.

	 70	

[34] S. Ramos and T. Hoefler,“Modeling communication in cache-coherent SMP systems: a case-study
with Xeon Phi.” In Proceedings of the 22nd international symposium on High-performance
parallel and distributed computing (HPDC '13), New York, NY, pp. 97-108.

[35] Y. Rughetti et al.,“Automatic Tuning of the Parallelism Degree in Hardware Transactional

Memory”, Euro-Par 2014 Parallel Processing, Springer International Publishing, 2014, pp. 475–
486.

[36] Y. Xiao et. al, “Automatic Optimization of Software Transactional Memory through Linear

Regression and Decision Tree”, to appear in the International Conference on Algorithms and
Architectures for Parallel Processing, 2015.

[37] Z. Li, A. Jannesari, F. Wolf, “Discovery of Potential Parallelism in Sequential Programs”, In

Proceedings of the 42nd International Conference on Parallel Processing Workshops (ICPPW),
Workshop on Parallel Software Tools and Tool Infrastructures (PSTI), Lyon, France, October
2013, pp. 1004-1013.

	

	

