
Lakehead University

Knowledge Commons,http://knowledgecommons.lakeheadu.ca

Electronic Theses and Dissertations Electronic Theses and Dissertations from 2009

2015

Improving Performance of Transactional

Applications through Adaptive

Transactional Memory

Jeyakumaran, Thireshan

http://knowledgecommons.lakeheadu.ca/handle/2453/708

Downloaded from Lakehead University, KnowledgeCommons



Improving	
  Performance	
  of	
  
Transactional	
  Applications	
  through	
  
Adaptive	
  Transactional	
  Memory	
  

	
  
	
  
	
  
	
  

Thireshan	
  Jeyakumaran	
  
	
  
	
  

Supervisor:	
  Dr.	
  Ehsan	
  Atoofian	
  
	
  
	
  

Department	
  of	
  Electrical	
  and	
  Computer	
  Engineering	
  
Lakehead	
  University	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

Thunder	
  Bay,	
  Ontario,	
  Canada	
  
Sept,	
  2015	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  





	
   iii	
  

 

Abstract  
	
   With	
  the	
  rise	
  of	
  chip	
  multiprocessors	
  (CMPs),	
   it	
   is	
  necessary	
  to	
  use	
  parallel	
  

programming	
   to	
   exploit	
   computational	
   power	
   of	
   CMPs.	
   Traditionally,	
   lock-­‐based	
  

mechanisms	
  have	
  been	
  used	
  to	
  synchronize	
  shared	
  variables	
   in	
  parallel	
  programs.	
  	
  

However,	
   with	
   the	
   complexity	
   associated	
   with	
   locks,	
   writing	
   a	
   correct	
   parallel	
  

program	
   is	
   a	
   huge	
   burden	
   for	
   programmers.	
   As	
   an	
   alternative,	
   Transactional	
  

Memory	
  (TM)	
  is	
  gaining	
  momentum	
  as	
  a	
  parallel	
  programming	
  model	
  for	
  multi-­‐core	
  

processors.	
   TM	
   provides	
   programmers	
   with	
   an	
   atomic	
   construct	
   (transaction),	
  

which	
   can	
   be	
   used	
   to	
   guarantee	
   atomicity	
   of	
   accesses	
   to	
   shared	
   variables,	
   as	
   the	
  

synchronization	
  is	
  handled	
  through	
  the	
  underlying	
  system.	
   	
  Transactional	
  memory	
  

comes	
   in	
   two	
   variants:	
   Software	
   transaction	
   memory	
   (STM)	
   and	
   Hardware	
  

transaction	
   memory	
   (HTM).	
   	
   Both	
   STM	
   and	
   HTM	
   systems	
   have	
   advantages	
   and	
  

disadvantages	
   that	
   either	
   enhance	
   or	
   penalize	
   performance	
   in	
   transactional	
  

applications.	
  

	
   In	
  this	
  thesis,	
  the	
  focus	
  is	
  on	
  implementing	
  an	
  adaptive	
  system	
  that	
  exploits	
  

both	
  STM	
  and	
  HTM	
  at	
  transaction	
  granularity.	
  	
  The	
  goal	
   is	
   to	
  achieve	
  performance	
  

gain	
  by	
  incorporating	
  the	
  benefits	
  of	
  both	
  TM	
  systems.	
  A	
  synchronization	
  technique	
  

is	
   developed	
   to	
   seamlessly	
   switch	
   between	
   HTM	
   and	
   STM	
   based	
   on	
   the	
  

characteristics	
   of	
   a	
   transaction.	
  	
  We	
   exploit	
   decision	
   tree	
   to	
   predict	
   the	
   optimum	
  

system	
   for	
   each	
   transaction	
   in	
   a	
   given	
   application.	
  	
   The	
   decision	
   tree	
   is	
   a	
   form	
  of	
  

supervised	
  machine	
   learning	
   to	
   classify	
   transactions	
  based	
  on	
  parameters	
   such	
  as	
  

transaction	
   size,	
   transaction	
   write	
   ratio,	
   etc.	
  	
   From	
   the	
   evaluations	
   using	
   STAMP,	
  

NAS,	
   and	
   DiscoPoP	
   benchmark	
   suites,	
   the	
   proposed	
   adaptive	
   system	
   is	
   able	
   to	
  

improve	
  speed	
  of	
  transactional	
  applications	
  by	
  20.82%	
  on	
  average.	
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Chapter 1 

Introduction 
  Over the past several decades, the performance of general-purpose processors has 

increased rapidly. This rapid improvement has come both from advances in the 

technology used to build processor chips and also innovations in architecture of 

processors. Over the years, improvements in VLSI technology led to smaller and faster 

transistors and this helped computer architects to increase clock frequency of processors. 

Furthermore, the number of transistors integrated on a single die is expected to grow 

according to Moore’s law [11] for the foreseeable future. This provides an ample 

opportunity for processor designers to incorporate more resources in architectural level 

and boost performance of processors. 

  The conventional way of processor design was single core processor in which all 

hardware resources were dedicated to a single processing core. Each generation of 

processor had larger and more sophisticated components such as caches and reorder 

buffers. However, by 2005 the performance of single-core processors started to 

slowdown in computation performance due to “3 Walls”: Power Wall, Memory Wall and 

instruction level parallelism (ILP) Wall [8]. 

  As the single-core processor became more complex, certain limitations made it 

technologically impossible to achieve better performance.  The power wall limitation is 

met due to increased clock frequency which results in significant heat dissipation.  This 

means that the single-core processor has reached the practical power limit in commodity 

microprocessors. As for the memory wall, the limitation exists in the gap between the 

processor and the memory speeds. This gap is increasing over time, requiring the cache 

sizes inside the processor to be larger in-order to mask the latency of memory. The third 

wall is related to the dependency of instructions. Single-core processors search stream of 

sequential instructions and execute independent instructions in parallel. However, the 

amount of independent instructions found in sequential programs is limited, causing the 

third wall: ILP wall. The 3 walls together ultimately led to the rise of chip 

multiprocessors (CMP). 
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  The architecture of a CMP consists of having 2 or more processors integrated 

onto a single circuit die.  This overcomes the limitations of the power wall, memory wall 

and IPL wall.  For Power wall, CMPs are energy efficient and silicon-area efficient due 

to smaller and less complex cores incorporated into a single chip.  For Memory-wall, the 

computations amongst the cores are overlapped with memory accesses, resulting in better 

performance.  For ILP-wall, there is an increased performance throughput by exploiting 

parallelism between the cores.  Due to these several advantages, the CMP architecture 

has been the choice of semiconductor manufacturers.  

  For the last few years, CMPs have taken over the industry by storm.  In our 

present day, CMPs are becoming a necessity in all of our everyday electronics.  The 

cheapest PC/laptop in the market today all consist of at least a dual-core processor.  

Smart-phones nowadays all have dual-core, quad-core or even octa-core processors.  

Multi-core processors do not stop there. New cars of today are equipped with multicore 

systems due to the excessive amount of technologies such as adaptive cruise control, lane 

departure assistance, self-parking, etc.  In present day, new CMPs have transistors of 

14nm wide, and the industry is now hitting physical limits.  Circuits are now so small that 

escaping heat is a major problem.  While Moore’s law may survive another few processor 

generations, chip manufacturers are starting to change their views on frequency scaling 

and applying it to core-scaling. This means that instead of focusing on increasing the 

clock frequency to increase performance of processors, it is now necessary to apply the 

concept of parallel programming and utilize computational power of multiple cores to 

boost performance. By utilizing all processing cores of CMPs, it is possible to achieve 

further performance gain in applications. 

1.1 Parallel Programming/Computing 

  In general terms, parallel programming is the simultaneous use of cores to execute 

a computational application.  Figure 1.1 displays a parallel program consisting of four 

threads. 



Figure 1.1: Block diagram of a parallel program with four threads 

  

  First, the application is broken down into sections that can be executed in parallel 

(concurrent).  Second, each section is broken down further into a series of instructions.  

Third, these instructions from each part execute concurrently on different threads.  

Although, this procedure may look simple, it actually consists of a complex order of steps 

in order to successfully exploiting parallelism in an application. However, there are 

certain problems that a programmer may face when developing parallel programs.  Paul 

E. McKenny [32] discusses 4 categories that a programmer must take into account while 

developing parallel programs. 

 

 

 

 



 

 

 

 

 

Figure 1.2:  Ordering of Parallel-Programming Tasks [32] 
 

1) Work Partitioning – is the task of splitting the code or algorithm into discrete 

sections that can be distributed to be run in parallel across all threads. 

 

2) Resource Partitioning – this ensures that the required resources are partitioned 

for the parallel tasks. 

 

3) Hardware Interactions – identifying the resources associated with parallel tasks, 

such as the operating system, the compiler, number of cores/threads, and other 

software infrastructures 

 

4) Control of Parallel Accesses – is the task of avoiding conflicts such as race 

conditions on shared memory resources.  The programmer needs to synchronize 

the sequence of the parallel tasks, and often requires serialization (locks) for 

certain parts of the program.  The programmer must also take into account of data 

dependencies where the order of executions can affect the final results of the 

program.  In shared memory, data dependence occurs from multiple use of the 

same-shared location accessed by different threads/cores. 

Due to these steps and constraints, parallel programming has known to be difficult in 

applying, or in other terms it is very difficult to get a sequential program and making it 

parallel. 
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1.2 Shared Memory Architecture (SMA) 

  For this thesis, the focus was on Shared Memory Architecture [20] as this is the 

architecture used in CMPs.  SMA is a platform where all threads within a 

program/application work in a shared space meaning that the memory address space is 

shared between the threads. In contrast, Distributed Memory (DM) is a method where all 

threads working in parallel do not share a unified memory address space. Instead, DM 

uses private memory space for each thread and must communicate with each other 

explicitly [18]. 

 

 

 

 

 

 
 
 
 
 
 

Figure 1.3:  Block diagram of Shared Memory 
 

  With shared memory, there are some constraints in which a programmer must 

take into consideration.  In SM, threads execute independently but they share the same 

memory address. It is necessary to have synchronization between the threads that are 

reading from and writing to SM. This is mainly due to the constraint of only one thread 

can access the shared memory locations at a time.   

  SM’s major advantage is fast and efficient data sharing amongst the threads as all 

threads can communicate through a shared memory. One of the major disadvantages of 

SM is limitation of memory bandwidth where an increased number of threads will require 
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a higher memory bandwidth or else it will cause a bottleneck in performance.  Another 

disadvantage of SM is that it is very prone to data races in which the programmer is 

responsible for correct synchronization using locks, mutex, semaphores, etc. 

1.3 Lock based Synchronization 

  With shared-memory, there is a high probability that race occurs in programs.  

This happens when two or more threads are accessing the same address in shared 

memory.  These data races can be classified as dependences: read-after-write (RAW), 

write-after-write (WAW) or write-after-read (WAR).  To avoid these types of data races, 

a synchronization control mechanism (SCM) must be used.  There are many SCMs that 

can be implemented such as locks, mutexes and semaphores.  Locks are the most 

frequently used SMC in parallel programming.  Locks allow a single thread to lock a 

variable which initiates ownership of a specific shared variable. Once the thread has 

completed its operation on that shared variable, it unlocks the variable allowing other 

threads to access the variable. If a lock is being held, other threads cannot access or 

attempt to acquire the same lock and must wait until it becomes unlocked.  There are two 

types of lock structures that are commonly used: Fine grained locking and Coarse-grained 

locking. 

  Fine-grained Locking is used to achieve greater parallelism which leads to better 

performance. Each fine-grained lock will lock a single shared variable (or very few). 

Instead of holding a lock for a long time, each thread will hold the lock for a small 

amount of time while providing protection.  Even though fine-grained locking achieves 

better performance, it has its own drawbacks.  Firstly, parallel programming using fine-

grained locking is complicated for average programmers. Another major disadvantage of 

fine-grained locking is high overhead due to the amount of traffic activity taking place 

with many locks being locked and unlocked. 

  On the other side, coarse-grained locking is used to lock an entire section of a 

code instead of a single shared variable.  This allows programmers to write correct 

parallel programs with less complexity because there is only one lock to deal with which 

means there is less chance of synchronization error.  The drawback of coarse-grained 



locking is less parallelism (low concurrency), which in return leads to low performance. 

Figure 1.3 shows the general depiction of performance vs. ease of programmability 

between fine-grained locking and coarse-grained locking.  

 

 

 

 

 

 

 
 
 

Figure 1.4:  Programmability analogy of lock mechanisms 
   

  The main challenge in lock-based programming (in particular fine-grained) is 

tricky synchronization bugs such as deadlock, live-lock and priority inversion.  Deadlock 

occurs when multiple threads stall/wait for each other to release the locks corresponding 

to the shared variables.  This results in a stall, as there is no possibility of forward 

progress until the lock has been released.  For example, thread A holds a lock on resource 

X and is waiting for resource Y.  While thread B holds a lock on resource Y and is 

waiting for resource X.  Both thread A and thread B are waiting and neither of them can 

proceed.   

Live-lock is similar to deadlock as the threads are unable to make forward 

progress. In deadlock the threads are blocked while in live-lock the threads are not 

blocked, rather they are busy responding to each other. Priority inversion takes place 

when a high priority process is blocked (waiting) while a low priority process is 

executed.  Due to these circumstances, this system can become unbalanced and 
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eventually crash. Fine-grained lock-based synchronizing mechanism does promote 

performance gains but the constraints caused by complex programmability and 

synchronization bugs prevent it from becoming mainstream. 

1.4 Transactional Memory 

  Transactional processing is not a new discovery; it has been around since the 

early 1960’s known as transactional processing system (TPS). The first TPS was used on 

American Airlines SABRE computing system, which automated the way the airlines 

booked reservations for flights [13].  The main idea of TPS was to provide a database of 

transactions that followed ACID properties: 

ACID - Atomicity, Consistency, Isolation and Durability [12] 
 

Atomicity – Each Transaction is atomic which means that if any part of the transaction 

fails then the entire transaction fails while the state of the system is unchanged.   

Consistency – It is necessary in TM where the memory must remain in a consistent state 

while a transaction is executing.  In the case a transaction exits in an inconsistent state, 

then the transaction is not allowed to complete and will be aborted. 

Isolation – Other transactions cannot access data that has been changed by a transaction 

currently in progress.  Isolation is necessary in order to avoid invalid results during 

execution of a transaction. 

Durability – Once a transaction has successfully committed, it cannot be lost in the event 

of a system crash. 

  This led to the discovery of Transactional Memory (TM). TM is a parallel 

programming model, which achieves comparable performance to fine-grained locking 

while providing ease of programmability of coarse-grained locking [27].  With TM, a 

programmer only specifies the critical sections of the code to run atomically, while the 

underlying system will take care of correct execution of the program, reducing the 

complexity of parallel programming. Transactional memory consists primarily of two 
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types: software transactional memory and hardware transactional memory.  In present 

day, there has been countless amount of research done in this field, due to the fascinating 

amount of potential it consists of. 

1.4.1 Software Transactional Memory (STM) 

  In software transactional memory, transactions are strictly implemented in 

software. Shavit and Touitou [30] introduced the first implementation of software 

transactional memory. STM works by providing a programming model where code is 

executed in a series of read-sets and write-sets in shared memory.  While these reads and 

writes are being executed their intermediate state is not visible to other transactions. This 

decreases the probability of conflicts as the window in which transactions execute 

simultaneously is reduced.  

  Since the mid-2000, the research in STM has evolved with numerous amounts of 

concepts and optimizations.  These concepts were introduced to further enhance 

performance of STM systems and also to enhance the ease of programmability.  For 

example in STM, programmers no longer have to handle the case where a transaction 

aborts. The underlying system of STM will guarantee that the system would eventually 

commit every transaction by retrying and executing aborted transactions.  In present day, 

there is still ongoing research on STM which shows that there is still potential for further 

improvements on practical implementations. 

  There are numerous implementations of STMs. Among those, two are more 

popular than the rest. The first implementation is Transactional Locking II (TL2) by Nir 

Shavit et al. [6].   The second implementation of software transaction memory is 

TinySTM by Pascal Felber et al [31]. TinySTM follows the same structure as TL2 but 

with enhanced design strategies that achieve even greater performance.  Further analysis 

of TL2 and TinySTM is found in Chapter 2. 
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1.4.2 Hardware Transactional Memory (HTM) 

  Hardware transactional memory is the concept of executing transactions in 

hardware.  The primary advantage of HTM is low overhead since it only relies on 

hardware resources.  Recently, HTM has become largely available in commodity 

processors. Although these implementations have always been best effort meaning that 

there is no guarantees for forward progress.  Some examples of HTM supported by 

commodity processors include, AMD’s advanced Synchronization Series [5], IBM’s Blue 

Gene/Q [1], and Sun’s ROCK processor [33]. The recent release of Haswell processor 

with Intel’s TSX (Transactionally Synchronized Extensions) results the widespread 

availability of HTM on the mass consumer market. 

  In this thesis, the focus has been on Intel’s implementation of HTM called 

Restricted Transaction Memory (RTM) [15]. Further analysis of RTM is found in 

Chapter 2. 

1.5 Motivation and Purpose  

  Both STM and RTM have benefits and limitations that either improve or penalize 

performance in certain applications.  One of the most important differences between 

RTM and STM is transactional overhead.  In RTM, the processor is responsible for 

transactional execution and this reduces timing overhead and better overall performance.  

On the other side, in STM, there is extra overhead for software based conflict detection 

and data versioning (such as initiating a transaction, validating transactional data, 

transactional commits, etc. [30]).  This greatly hampers the overall performance in STM 

systems.   Another important difference between the two systems is flexibility.  In RTM, 

the processor oversees all memory accesses, which in-hand provides strong isolation but 

relies solely on hardware resources (not scalable).  This results in complexity issues 

(fallback policy is needed) that lead to a higher probability of transactional aborts and in 

certain cases a performance slowdown when compared to STM.  On the other hand, STM 

delivers a flexible system in which there is no resource constraint and the underlying 

system deals with majority of the complex synchronization issues, leading to less 

transactional aborts and a better overall performance in some cases when compared to 
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RTM.   

  In this thesis, the focus is on implementing an adaptive system that exploits both 

STM and HTM at transaction granularity.  The goal is to achieve performance gain by 

incorporating the benefits of both systems.  Typically, in parallel applications, the 

number of transactions can vary, anywhere from a single transaction to a large number of 

transactions. It is important to note that not all transactions are identical.  Each 

transaction has its own characteristics in terms of transaction size, read-set size and write-

set size.  Depending on these characteristics of a transaction, either HTM or STM can be 

a better choice for implementation. We exploit the decision tree [22] to predict whether 

HTM or STM is faster for a given transaction. The decision tree receives input 

parameters (such as transaction size, transaction write ratio, etc.) and predicts the 

optimum TM system for a transaction. Then, a programmer or a compiler modifies the 

source code of the application based on predictions made by the decision tree. Our 

adaptive system supports both HTM and STM with the aim of reducing execution time of 

transactions with different characteristics.   

In summary, we make the following contributions: 

§  We show that there is no single TM system that works well across all applications. 

Depending on applications’ characteristics, one system might be better than the other. 

§ We propose an adaptive system, which predicts the optimum TM system for a given 

transaction, statically. The adaptive system relies on the prediction of the decision 

tree to select either HTM or STM. 

§ Our evaluations using STAMP [2], NAS [4], and DiscoPoP [37] benchmark suites 

reveal that on average, the adaptive system is able to improve speed of transactional 

applications by 20.82%. 
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1.6 Thesis Outline 

  The rest of the thesis is organized as follows. Chapter 2 reviews background 

information as well as research studies relating to TM. Chapter 3 explains design of the 

proposed adaptive system. Chapter 4 presents the experimental work including 

methodology and results. Finally, Chapter 5 concludes the thesis and discusses future 

work. 
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CHAPTER 2 

 Background and Related Work 
  This chapter reviews background information on existing STM systems, Intel’s 

restricted transaction memory (RTM) and the decision tree prediction module.  This 

chapter also examines related literature work focusing on optimization techniques for 

both HTM and STM.  

2.1 Software Transactional Memory 

  In this section, we explain two popular implementations of software transactional 

memory. The first implementation is Transactional Locking II (TL2) by Nir Shavit et. al 

[6].   The second implementation of software transactional memory is TinySTM by 

Pascal Felber et. al [30].   

2.1.1 Transactional Locking II [6] 

  TL2 is a state-of-the-art word-based Software transaction memory system that 

uses notion of time to impose order among transactions and guarantee consistency of 

transitional data. The main feature of TL2 is the ability to handle read and write 

operations in separate fashion. In TL2, the read operations are invisible; this means that 

when a transaction reads a shared variable, it will not indicate other transactions that a 

read operation is taking place. For write operations, TL2 postpones the update to the 

commit time. This means that TL2 does not perform the update as soon as it executes a 

transactional write operation; instead, the write operation updates are logged into a local 

list.  Once the transaction is ready to commit, the operation will attain the instruction 

from the local list.  Performance of a STM system is sensitive to the write operations as 

write operations are the major source of conflicts. By deferring the write operation to the 

commit time, TL2 reduces the total amount of transactional conflicts in an application.  

TL2 also utilizes conventional locks and a global-versioning counter (GVC) to validate 

transactional data. A lock is associated with each shared variable. When a transaction 

attempts to commit, it obtains the lock corresponding to the variable. GVC is a global 

counter and is used as timestamp for shared variables. When a transaction starts it copies 
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the current value of GVC into a local variable called read version (rv). The transaction 

uses rv to validate transactional reads. When a transaction commits it performs an 

increment-and-fetch on GVC and uses the new value of GVC to tag lock entries 

corresponding to transactional writes. TL2 is proven to have similar performance to fine-

grained locking [6]. 

2.1.2 TinySTM 

  The second implementation of software transaction memory is TinySTM. This 

thesis integrates TinySTM’s open source implementation of STM and incorporates it for 

switching between hardware and software transactions.  TinySTM was chosen because it 

is currently the best performing STM system [31].   

  TinySTM shares many similarities with TL2. It is also a word-based STM 

implementation that uses conventional locks to protect the shared memory locations from 

simultaneous accesses. TinySTM uses the same time-based implementation as TL2, 

which guarantees transactional consistency. On the contrary, TinySTM contains a 

different design strategy that differentiates itself from the other STM implementations.  

  TinySTM uses encounter-time locking which is beneficial for detecting conflicts 

earlier (increasing transaction throughput).  When compared to commit-time locking, 

conflicts that are detected during commit phase cannot be solved without at least one 

transaction being aborted.  Also, encounter-time locking allows efficient handling of read 

and write operations without requiring complex mechanisms.  For transactional write 

operations, TinySTM implements two new strategies: Write-through and Write-back.  

For write-through policy, a transaction writes directly to memory and keeps the old 

values in a log to reverse updates in the case of an abort.  For Write-back policy, a 

transaction updates memory in the commit phase.   TinySTM also provides memory-

management functions, which allow transactions to use dynamic memory.  This allows 

the ability to keep track of memory that has been freed (not disposed until commit) or 

allocated (not disposed until abort).  From these design tweaks, TinySTM has become 

one of the most efficient implementations of software transaction memory [31] 
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2.2 Hardware Transactional Memory 

  Hardware transactional memory is the concept of speculative transactions being 

executed using hardware resources.  The primary advantage of HTM is low overhead, 

since it only uses hardware resources such as level 1 cache, level 2 cache, etc. Recently, 

HTM has become broadly available in commodity processors. Some examples of HTM 

supported commodity processors include, AMD’s advanced Synchronization Series [5], 

IBM’s Blue Gene/Q [1], and Sun’s ROCK processor [33].  Amongst these 

implementations, the recent release of Haswell processor with Intel’s TSX 

(Transactionally Synchronized Extensions) [15] results the widespread availability of 

HTM on the mass consumer market. 

  HTM implementations have always been best effort meaning that they do not 

provide forward progress.  In other words, there is no guarantee that a transaction will 

successfully commit in hardware; essentially requiring a fallback path to successfully 

execute an application in the event of an abort.  Generally, a fallback path is an 

alternative software policy to guarantee successful execution.  This software policy can 

be as simple as acquiring a lock and executing it non-transactionally.   

  In 2013, Intel released the first commercially available chip-multiprocessor with 

HTM support, named Haswell [15].  Along with it, Intel released TSX (Transactionally 

Synchronized Extensions) to their processor’s instruction set.  These extensions provide 

two software interfaces Hardware Lock Elision and Restricted Transaction Memory. 

[b.6].   

• Hardware Lock Elision: a legacy compatible instruction set that provides 

instructions to lock/unlock shared variables using hardware resources.  

• Restricted Transaction Memory:  A new instruction set interface, where a 

programmer identifies a region of code to be executed transactionally.  RTM 

provides no forward progress.  Therefore, a program must always provide 

fallback code to handle a transactional abort that can either restart a transaction or 

take a non-transactional path (such as locks).   
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1.  while(1){     //loop 
2.  int status = XBEGIN;   //set status bit and start Txn 
3.  if(status == _XBEGIN_STARTED){ //status == _XBEGIN_STARTED 
4. (*g)++;               //increment shared global variable 
5. XEND;              //end transaction 
6. break;     //break on success 
7. } 
8.  else{ 
9. .…               //software fallback code is executed on Txn abort 
10. } 
11. } 
  

2.2.1 Restricted Transaction Memory 

For this thesis, the focus is on Intel’s Restricted Transactional Memory (RTM).  

The proposed Adaptive system uses RTM’s intrinsics along with TinySTM, which is 

used to switch between the two systems.  The programming model of Intel’s RTM is 

fairly straightforward to use.  In RTM, a transaction is commenced with the instruction 

XBEGIN. Inside of the transaction, read-sets and write-sets are constructed while other 

computation operations (branching, arithmetic operations, etc.) can also be executed 

inside of a transaction.  The consistency of read and write sets are maintained in the 

granularity of cache lines. 

   

If a transaction’s read-set/write-set is modified by another transaction, then 

conflict occurs. In the event of conflict, all the transactions are aborted and only one can 

proceed. In RTM, a fallback path is needed to guarantee forward process in order to 

avoid the application or program to stall.  To initiate the end of a transaction, the 

instruction XEND is used.  The XEND instruction commits any changes to the shared 

memory and thus successfully executes the transaction in RTM.  RTM provides four 

transactional instructions: 

• XBEGIN initiates the start of a transaction.  
 
• XEND completes a transaction and successfully commits changes to memory  
 
• XABORT aborts the current transaction using an explicit failure code. 
 
• XTEST determines if it is executing within a transaction or not. 
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

Figure 2.1:  RTM Pseudo code example 
  



	
   17	
  

EAX Status Bit ABORT Description 
0 XABORT_EXPLICIT Explicit instruction to abort transaction 
   
1 XABORT_RETRY Transaction is likely to succeed if retried 
   
2 XABORT_CONFLICT Interference from another TX 
   
3 XABORT_CAPACITY Overflow of cache and hardware buffers 
   
4 XABORT_DEBUG Debug breakpoint 
   
5 XABORT_NESTED Transaction aborted within nested transaction 

	
  

Figure 2.1 shows a sample RTM pseudo code sequence in which all the important 

instructions are implemented.  Inside of the RTM header file, it contains the intrinsics 

that are used to enable hardware transactional execution. Line 1 starts with a while loop.  

Inside the loop, there is a status variable that is equal to XBEGIN.  In line 3, there is an ‘if 

statement’ to check if the status variable == xbegin_started. if this is true, then the 

transaction is initiated.  Inside the transaction (line 4), there is a shared global variable 

that is incremented.  In line 5, the instruction XEND is used to end the transaction.  In line 

8, in the case of a transactional abort, a fallback path is necessary since RTM does not 

guarantee forward progress (further information can be found in Section 2.2.3).  

2.2.2 RTM Conflict detection and EAX register bits 

RTM uses the CPU caches (L1 cache) to track read-sets and write-sets.  The 

conflict detection is handled through the existing cache coherence protocol of the chip 

multiprocessors. RTM uses eager conflict detection as it keeps transactions in a 

consistent state by detecting conflicts when a read/write operation to memory has been 

performed.  In RTM, transaction aborts are flagged in the EAX register. The EAX 

register carries an 8-bit code that specifies the cause of the transactional abort.  When a 

transaction is aborted, all the changes made to the memory are discarded and a flag is 

sent to the EAX register with an abort code.  Table 2.1 states the abort codes with brief 

explanation. 

 

Table 2.1:  RTM Abort status using EAX abort codes 
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Conflict and capacity aborts take up the majority of transactional aborts in RTM. Conflict 

aborts occur when a transaction interferes with concurrent memory operations 

(read/write) performed by another transactions.  Once this abort is triggered, the 

processor will abort the transaction by discarding all the updates done to the shared 

memory.  Capacity aborts occur where there is an overflow of buffers and the capacity of 

the cache has been reached which results in an automatic transaction abort.  

2.2.3 Cache Coherency Conflict Detection 

In RTM, the conflict detection is handled through the cache coherency protocol. If two 

transactions access a shared memory location and if at least one of them writes into the 

same location, the cache coherency protocol detects the conflict. In the event of conflict, 

only one transaction can proceed, while the rest should abort. RTM follows the eager 

policy [17] to resolve conflicts. In eager policy, as soon as a transactional write operation 

results in conflict, RTM will then abort the conflicting transactions and allows only one 

transaction proceed.  Eager policy improves utilization of processor resources as a 

conflicting transaction is aborted immediately and is not postponed to the commit time.  

RTM follows the MESI protocol for cache coherency.   

2.2.3.1 MESI protocol [34] 
MESI is a type of invalidation-based protocol, which supports write-back caches.  

MESI is the acronym for the four states that each cache line can transition to: 

• Invalid – This is considered the non-valid state.  This means that the data is 

not located in the cache or the local copy of the data is incorrect due to 

another process updating the memory. 

• Shared – This state is used for those cache blocks that are not changed by any 

processor. 

• Exclusive – The state is exclusive when a cache is the only one that has the 

correct value of the block. 

• Modified – This state is used for those cache blocks that are written by 

processors.. 
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Figure 2.2 depicts MESI state diagram.  The following is a brief explanation of how the 

MESI protocol works. The initial state of a cache block is invalid. When a processor 

writes to a cache block for the first time, the state changes to modified as there are no 

copies of the block in other caches. If a processor reads a block for the first time, it 

broadcasts BusRd command on the interconnection network. The cache that has the block 

sends it to the requester. Also, the state of the block changes to shared in both requester 

and the sender as more than one cache hold the data. If processor reads a block and no 

other cache has the block, then the memory provides the corresponding data and state 

changes to exclusive. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.2: State diagram of MESI protocol [34] 
 

2.2.4 RTM Restrictions and Limitations 

Intel’s Restricted Transactional Memory has the term ‘restricted’ because it is 

very prone to transactional conflicts, which are primarily due to both hardware and 

software operations. There are many operations in RTM that are labeled as restricted and 

if a restricted operation is attempted then the transaction is aborted and the fallback path 

is executed. 
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These are some restrictions in RTM: 

§ Debugging tools are not supported meaning that if any breakpoints are located inside 

of a transaction, it will be automatically aborted. 

§ Interrupts located inside of a transaction will cause an abort before the calling of the 

interrupt handler 

§ Input/output statements will cause an automatic transaction abort. For example, a 

‘printf’ statement will causes RTM to abort. 

§ Software/System operations such as context switching and page faults cause 

transactional aborts. 

§ Hardware resources that exceed the capacity of the cache will cause a transaction 

abort.  If a transaction’s read-set or write-set does not fit in the CPU cache, it will 

result in a transaction abort due to the overflow of the internal processor buffers. 

§ Cache size in Haswell is 32KB with 8-way associativity. 

§ Unnecessary aborts due to false sharing of cache lines. 

§ If two transactions share a cache line and one of them aborts due to conflict 

over a shared variable in the cache line, the other transaction is aborted too. 

2.2.5 RTM’s Fallback Path 

Commodity chip multiprocessors (such as Haswell processor) that support 

hardware transactional memory, use the ‘best-effort’ mechanism.  This basically means 

that there is no guarantee for a transaction to succeed even if there is no conflict.  In 

RTM, a fallback policy is necessary to provide forward progress.  A fallback policy is 

typically executed after the threshold of RTM’s retry count has been met.  The retry 

count is the number of times an aborted transaction retries execution.  This is important 

since transactions in RTM have an abundant reasons to abort (refer to section 2.2.4).  By 

retrying an aborted transaction ‘x’ number of times, there is a possibility that the 

transaction can eventually commit in hardware.  Once the retry threshold is reached, the 

fallback policy is applied.  Further information on fallback path can be found in Section 

3.3.1. 
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2.3 Decision Tree 

For this thesis, the focus is on switching between hardware transactional memory 

and software transactional memory at transaction granularity.  By using Decision Tree 

C4.5 [23], we are able to predict which system is the best choice for a given transaction.   

Decision tree uses groups of input datasets and generates a tree as output that 

resembles a tree diagram where each branch is a decision.  Ross Quinlan developed the 

early stages of the Decision Tree in 1979 (ID3 algorithm) [22]. In 1993, the C4.5 

algorithm was developed to increase accuracy of Decision Tree.  The C4.5 builds 

decision trees from a set of training dataset using information entropy.  The decision tree 

consists of three nodes which are root, branch and leaf.  At each branch of a tree, the C4.5 

algorithm attains the attribute of the data that effectively splits the set of samples into 

sub-group in each specific class.  This splitting process is referred to as information gain 

(differences in entropy).  The input dataset contains the parameters of a function.  In this 

thesis, the focus is targeted on transactional parameters such as transaction size, read-set 

size, etc. The output of the decision tree results in a binary value of 0 or 1, which 

represents the predicted outcome.  For this thesis, the outcome of the decision tree 

represents whether RTM or STM will be used to execute a transaction.   

2.4 Related Work 

Irina Calciu et al. [14] presented Invyswell, a hybrid transactional memory system 

that incorporates RTM and InvalSTM.   InvalSTM is a modified STM system that was 

created [21] previously.  One of the key differences between InvalSTM and other STMs 

is that it performs commit-time invalidation.  This approach identifies conflicts with other 

concurrently executing transactions during its commit-phase.  InvalSTM also implements 

bloom filters for conflict detection between HTM and STM. For Invyswell, each 

transaction is first tried in hardware. If the hardware abort status suggests that a 

transaction is unlikely to succeed in hardware, then it is retried in InvalSTM.  They also 

investigate RTM’s limitations and restrictions and provide InvalSTM as a fallback policy 

instead of using lock mechanism.  They also incorporate optimizations such as failfast. 

This optimization is used for an application with high contention, which results in a 
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higher probability of hardware resources reaching capacity limit.  It is used to identify 

certain cases when RTM is wasting work with too many retries which eventually calls the 

fallback policy once the retry threshold has been met.     

In our study, we do not use STM as a fallback policy for RTM; instead, we 

implement independent switching between RTM and STM.  Also, our adaptive system is 

static and its runtime overhead is low. Furthermore, Invyswell is not evaluated from 

energy point of view. On the other side, we examine energy efficiency of our adaptive 

system and compare it with both HTM and STM. 

M. Wang et al. [29] exploited Intel’s restricted transaction memory to implement 

a molecular dynamics simulator called Moldyn. They explore several important 

relationships between transaction size and write ratio inside transactions as well as retry 

count and transaction abort rate.  They investigate how these parameters affect the overall 

performance of an application.  They introduce code transformations such as computation 

splitting and privatization for improving performance.  Computation splitting/merging is 

the basis of transactional aborts caused by the size of a transaction, which can lead to low 

performance.  In this paper, they identify a ‘sweet-spot’ in the Moldyn application where 

they compute each pair of molecule updates inside a single transaction as opposed to 

thousands of molecules or single molecule in a transaction.  This ‘sweet-spot’ in 

transaction size increases performance in RTM.   

For this thesis, we incorporated this paper’s notion of the correlation between the 

transaction’s characteristics and the performance impact.  We exploited the parameters of 

a transaction such as transaction size, read-set size, write-set size, etc. and provided a TM 

system based on both HTM and STM.  This is important because these parameters give 

information on a system’s behavior and constraints.  By using these factors, we are able 

to switch between HTM and STM at transaction granularity to achieve performance gain. 

Pereira et al. [28] presented an extensive evaluation of Haswell’s Transaction 

Memory performance.  They focused on RTM’s forward-progress polices since Intel’s 

TSX does not guarantee that a transactional execution will commit.  This technique 

retries the execution of a transaction with or without a time delay and attempts 

completing the transaction execution speculatively. They introduced three policies for 

forward progress: Maximum retry, Back-off and SerControl.  Maximum retry is the 
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simplest approach as it limits the number of times a transaction can be retried.  Once a 

transaction reached the retry threshold, it will commence the fallback policy with a global 

lock.  Back-off policy is based on a time delay in which an aborted transaction will wait 

for a time delay before restarting.  The duration of this time delay is uniform as the time 

delay increases exponentially for every restart.  Once again, there is a threshold for 

number of transactional retries and once it has reached the limit, the transaction will be 

executed using global lock.  The next policy that was introduced in this paper is 

SerControl.  This policy focuses on the type of transactional abort in RTM by using the 

EAX register status bit.  If the transaction is aborted due to conflict or capacity 

consecutively, SerControl will serialize the transaction by using a lock.  If the cause of 

abort is not conflict or capacity, then the maximum retry policy is applied.  There are also 

other aborts that are considered such as page-fault that may occur again if the transaction 

is immediately retried so the back-off policy is applied after the threshold has been 

reached.  It is important to note that this paper focuses on increasing the probability of 

executing transactions successfully in RTM.   

In our thesis, we incorporate the ideas of the potential performance benefits of 

forward progress policies.  Although, the notion of having an efficient forward progress 

policy is important, the actual performance gains are negligible.  In this research paper 

[28], they do not show the comparisons between the proposed RTM forward progress 

policy and another TM system such as TinySTM.  This would have clearly indicated the 

impact of this paper’s proposed policies on performance.  For our study, we conducted 

many experimental tests with a variety of retry counts for transactional aborts. By 

retrying an aborted transaction ‘x’ number of times, there is a possibility that the 

transaction can eventually commit in hardware.  Once the retry threshold is reached, the 

fallback policy is applied.  The fallback policy that is used is a global lock mechanism.  

In our adaptive system, the retry count is set at 4.  Based on experimental simulations, the 

retry count of 4 is the best option that produces optimal performance.  It is possible to 

have a higher retry count, but it can hurt performance as retrying a transaction that aborts 

over and over increases execution time. Also, having a low retry count can cause the 

fallback policy to be executed too early.   Furthermore, in our work, we investigated the 

behavior of a transaction that best suits each TM system.  If a transaction consists of a 
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very large transaction size as well as a very large working set size, having an optimized 

forward progress policy will not change the fact that RTM will perform poorly.  In this 

case, our adaptive system will automatically execute the optimal system based on the 

parameters of a transaction. 

 M. Castro et al. [26] presented a dynamic approach to do efficient thread mapping 

using machine learning. This technique relies on matching the behavior of an application 

with the system characteristics.  This technique is a dynamic approach and gathers 

information from the application and the STM system at specific time intervals.  They 

compared dynamic approach with static thread mapping approach based on machine 

learning.  For the Static approach, they used the decision tree learning method which was 

trained using datasets of input parameters.  It will then output a decision tree that will 

predict a thread mapping strategy. The predictor chooses one of four different strategies: 

round-robin, scatter, compact and Linux. For dynamic Thread mapping, there are three 

phases: hardware topology analyzer (HTA), thread mapping predictor and transaction 

profiler.  The HTA uses hardware locality library to get information from the underlying 

platform topology (hierarchy of caches and how they are shared among caches).  The 

transaction profiler gets information from hardware counter and from the TM underlying 

system all during runtime at specific time intervals. The thread mapping predictor gets 

the data from the profiler and feed the data to a decision. Then, the predicted thread 

mapping strategy is applied.  Whenever a TM operation starts, aborts or commits, the 

transaction profiler will be executed during these intervals and calls the thread mapping 

predictor to switch strategies when necessary.  For the transaction profiler, only one 

concurrent running thread will be chosen for that task because it reduces stress on the 

system and there isn’t any need for extra synchronization mechanisms for all threads.  

The experimental results shows that thread mapping strategies do have a major impact on 

performance.  Out of the 56 TM applications, only 3 applications show no performance 

gain and 8 applications had performance loss. The maximum performance loss was 8% 

due to wrong predictions of the decision tree. 

 In our thesis, we incorporated the decision tree to predict the optimum system for 

a given transaction. This paper proves that by incorporating a decision tree, we are able to 

classify a transaction’s parameters in order to predict the optimum system that achieves 
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the best performance.  The decision tree algorithm used in the paper is ID3 while in this 

thesis, the focus was on the C4.5 algorithm. C4.5 is an enhanced version of ID3, as it also 

supports continuous attribute that results in better performance. This paper also follows a 

procedure of attaining a training set of benchmarks and a testing set of benchmarks.  By 

separating the training and testing, it is possible to achieve results based on the prediction 

of the decision tree itself.  For our study, a training set of benchmarks consists of low, 

medium and large transaction sizes as well as low, medium and large working set size. 

C. Wang et al. [3] presented optimizations for limiting overhead in software 

transaction memory.  They focus on supporting transactional code in unmanaged 

languages such as C. Optimization of STM overhead in unmanaged languages is a 

challenging task as it requires implementing validation in the granularity of the cache 

block rather than an object. In this paper, they proposed techniques to allow programmers 

to initiate blocks to be executed atomically. They also exploit compiler-based 

optimization techniques such as in-lining (necessary for fast paths), eliminating 

redundant barriers and register checks. Our work is orthogonal and can be combined with 

this paper [3] to enhance performance further. 

Z. Li et al. [37] presented a compiler-based tool, called DiscoPoP, to 

automatically identify regions of code that can be executed in parallel.  It is designed to 

be able to find code regions with arbitrary granularity. It is important to note that 

DiscoPoP finds regions of a code in which data dependency does not exist. This is called 

CU (computational unit).  In the next step, dependency graphs are then built. The nodes 

in the graph represent CUs and the edges represent the dependency between the CUs.  By 

exploiting the dependency graph, DiscoPoP determines the potential parallelism that is 

available on different levels of the sequential code. 

 For this thesis, the DiscoPoP parallel benchmark suite was used to evaluate 

adaptive system. This Benchmark suite consisted of small and medium sized transactions 

that consisted of medium sized working set.  For the decision tree training phase, it is 

important to have a wide range of transactional parameters to achieve greater accuracy in 

predictions.  

D. Didona et al. [8] presented a self-tuning optimization technique to dynamically 

adjust the concurrency level in STMs.  The purpose of this paper is to automatically 
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identify the optimal degree of parallelism which will maximize the throughput of the 

applications.  They introduced self-tuning methods for both shared-memory and 

distributed STMs.  The performance of a TM application varies based on different factors 

such as duration of transactions, level of data contention, ratio of update vs. read-only 

transactions, etc.  By changing the number of threads at runtime, it can improve the 

performance of some applications instead of having a fixed number of threads.  In this 

paper, they used the self-tuning method that combines exploration-based and model-

driven approaches.  Shared-memory STMs use the exploration-based approach which 

consisted of three phases. The first phase is measurement phase. In this phase, the 

application runs with fixed number of threads and measures the number of commits and 

aborts.  The second phase is decision phase. This phase decides whether to increase or 

decrease the number of threads until the maximum is reached. The third phase is 

transition phase. This phase is an external controller thread which either adds or removes 

threads from an application depending on the results from the decision phase.  Distributed 

STM uses an analytical-based performance model which relies on a set of assumptions 

based on transaction conflict patterns.   

 For this thesis, a similar approach is taken regarding the evaluation phases that are 

introduced in this paper.  The decision tree consisted of two phases, training and testing.  

This was done similar to this paper in order to have discrete evaluations based on the 

decision tree prediction module. 

Y. Rughetti et al. [35] proposed a technique which automatically tunes the degree 

of parallelism in HTM.  To achieve automatic tuning, the authors incorporated a machine 

leaning algorithm.  This work focuses on a two-layered approach where the first-layer is 

the correction functions which is used to predict values of time.  The second-layer 

consists of the performance predictor model that predicts the level of concurrency. There 

are existing STM approaches such as Hill-climbing techniques [24] and transaction 

scheduler [9] that optimize degree of parallelism. The hill-climbing technique changes 

the parallelism degree by reacting to throughput or abort rate.  Transaction Scheduling is 

the basis of mapping transactions to threads dynamically to minimize data contention, 

and then the rescheduled threads are removed from the execution for that time interval.  

This approach gives different types of information from abort ratio to the details on a 
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transaction read/write set. In these approaches, the predicted value of the transaction 

wasted time is used to find the system throughput. This allows predicting the optimal 

value to achieve the expected maximum throughput. In STM, it is easier to access via 

software instrumentation to monitor specific parameters. However, these parameters are 

not supported in HTM, and implementing it in HTM via software would create overheads 

and lower the performance severely, especially since an advantage of HTM is supposed 

to avoid any costly additional software instrumentation (overhead).  The techniques are 

not compatible for HTM since all of these models for STM do not take into account the 

transaction aborts in which HTM is very vulnerable to conflicts. In this study, the authors 

implement a classification approach comparing two different machine-learning methods: 

Decision tree and Neural Networks.  This approach consists of constructing a training set 

for a specific application. The training set is constructed by executing a few runs of the 

application with different inputs of configuration parameters.  For each input, the 

application is executed for a range of threads.  By implementing this for each workload 

tested during the training phase, it becomes possible to determine the best performing 

concurrency level.  The major benefit of this approach is that it follows the one-step 

layered approach meaning that it does not require the usage of correction functions. 

 In this thesis, we use machine learning to determine which TM system is 

appropriate for a transaction.  This paper also shows the importance of overheads 

associated with HTM systems in which careful analysis must be taken or else it will 

cause performance penalties.  Furthermore, our adaptive system does not execute both 

HTM and STM, simultaneously. As this process incurs extra overhead.  Thus, the 

adaptive system avoids this performance penalty by allowing a transaction to execute in 

either hardware or software.  (Further information can be found in section 3.3) 

 Y. Xiao et al. [36] proposed an optimization technique that statically decides on 

transactional parameters to improve performance of STM in parallel applications.  By 

focusing on a transaction’s characteristics (such as transaction size, read set size and 

write set size), it is possible to achieve speedup in applications.  The transaction size is a 

crucial parameter that can have significant impact on performance and it is important to 

have an optimum size to achieve speedup.  If the transaction size is too small, it can lead 

to overhead that exceeds the performance gain of parallel execution (results in slowdown 
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when compared to sequential programs).  If the transaction size is too large, it can lead to 

an excess amount of rollbacks due to a higher probability of transactional aborts in 

applications.  Thus, it is important to have the optimum ‘sweet spot’ of transaction size. 

This approach of optimizing each parameter manually can be a tedious and time 

consuming process. To overcome this issue, the authors propose two optimization 

techniques that are designed to automatically determine the optimal transaction size. The 

first technique exploits Linear Regression (LR) to predict the transaction size. The LR 

works by attaining the transaction parameters such as transaction size, read-set size, 

write-set size and predicts the optimum transaction size.  However due to the simplicity 

of implementing LR, the accuracy is quite low. In order to improve the accuracy, 

multiple LR models are used to predict transaction size. In addition, a decision tree 

prediction model determines which LR model is appropriate for a given transaction. 

Overall, these optimization techniques improved the performance of STM based 

applications. 

 For this thesis, the adaptive system incorporates both HTM and STM to enhance 

performance of parallel applications.  A decision tree is implemented to predict the 

optimum system based on a transaction’s characteristics. With the optimization 

techniques proposed by Yang et al. [35], there is an opportunity to enhance the adaptive 

system by optimizing STM and RTM separately based on the transactional characteristics 

(such as transaction size, read-set size, write-set size, etc.).  
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Chapter 3 

Adaptive System Design  
This chapter describes the design of the proposed Adaptive system.  Section 3.1 

explains the importance of transaction granularity for the proposed adaptive system.  

Section 3.2 analyses the programmability aspects of RTM.  Section 3.3 revolves around 

the synchronization technique that is used to seamlessly switch between RTM and 

TinySTM.  Section 3.4 depicts how the adaptive system is implemented into a specific 

source code.  Finally, section 3.5 explains the implementation of the decision tree 

prediction module.   

3.1 Transaction Granularity 

One of the features of the adaptive system is that it switches between HTM and 

STM in transaction granularity.  In parallel computing, the term granularity is defined as 

the amount of real work in a parallel task.  With transaction granularity, the focus is on 

the basis of individual transactions rather than an entire application. This fine-grained 

granularity system increases performance gains while a coarse-grained granularity system 

misses many opportunities for speedup.  However, to avoid overhead, the adaptive 

system does not execute HTM and STM simultaneously. Simultaneous execution of 

HTM and STM requires communication between in-flight hardware and software 

transactions. A metadata should record transactional data and each transaction should 

check the metadata when it accesses a transactional variable. Doing so significantly 

increases execution time and hurts performance, especially in applications with low 

conflict rate. To avoid this performance penalty, we allow a transaction to execute in 

either hardware or software, but not both. 

In order to achieve transaction granularity, program counter (PC) was used to 

distinguish each and every transaction.  While executing an application/benchmark, we 

are able to attain the parameters of each transaction.  These parameters include elapsed 

execution time, the static size of transaction, transactional data, the number of aborts, etc.  

From these parameters, it is possible to further understand the behaviors of both RTM 

and TinySTM.   
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Figure	
  3.1:	
  Program	
  counter	
  Code	
  sequence	
  
 

Figure 3.1 shows the code sequence used to read PC. When a transaction is initiated this 

code returns address of the first instruction in the transaction. Line 1 initializes eip1 (a 

local variable). Line 2 retrieves the value of the program counter to identify each 

transaction. This is crucial for the adaptive system as it switches TM systems from one 

transaction to another.  

3.2 Restricted Transaction Memory (RTM) 

The implementation of RTM programs was based on the programmability 

references from Intel’s TSX manual [17]. The key factors of an RTM program is the 

following: 

• Retry count 

• Fallback policy 

• Transactional abort status 

The retry count is the maximum number of times an aborted transaction is rolled 

back and retries execution. This is important in RTM since transactions have an abundant 

reasons to abort (refer to Section 2.2.4).  By retrying an aborted transaction ‘x’ number of 

times, there is a possibility that the transaction can eventually commit in hardware.  Once 

the maximum retry threshold is reached, the fallback policy is applied.   It is important to 

be able to execute a transaction using hardware resources as often as possible in order to 

use the performance benefits of RTM. In our adaptive system, the retry count is set to 4.  

Based on our experimental simulations, the retry count of 4 is the best option that 

produces optimal performance.  It is possible to have a higher retry count, but it can hurt 

performance as retrying a transaction that aborts over and over increases execution time 

due to wasted work. For example, if the retry count is 12 and the application triggers 

 

1. uint32_t eip1 = 0; 

2. __asm__ __volatile__("movl $., %0" : "=r"(eip1)); 
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capacity aborts, the program will keep retrying the execution until the threshold of retires 

is met. This wastes processor cycles and the outcome is performance slowdown. Also, 

having a low retry count can cause the fallback policy to be executed too prematurely.  

This means that RTM does not have a chance to be executed, which is detrimental for 

performance gain.  By conducting experimental test cases, having a retry count of 4 is a 

‘sweet-spot’ for optimal performance. 

In RTM, it is necessary to incorporate a fallback policy to guarantee that an 

application will successfully execute. A sample code sequence of RTM’s fallback policy 

is found in figure 3.2.  This code sequence is placed inside a header file (tm.h in STAMP) 

and is executed when RTM is called upon. The tm.h file contains the APIs necessary for 

transactional execution for both software and hardware transactions.  For this thesis, these 

APIs are modified to support TinySTM and RTM.  

This code sequence in figure 3.2 only focuses on the lock mechanism that is used 

in the case of an RTM transactional abort.  This fallback policy consists of a global 

pthread lock.  In line 4, if the number of tries is less than 0, then the fallback path is 

initialized by acquiring a lock.  This sequence happens during TM_BEGIN_RTM.  Once 

the TM_END_RTM is called, the code sequence will try to commit a transaction in RTM 

only if the number of tries is greater than 0.  Otherwise, in line 11, the pthread lock that 

was held previously is released and the transaction is executed using locks.  This 

guarantees forward progress as the transaction will eventually commit after the threshold 

of retires has been met and eventually executes the transaction using locks.   
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Figure	
  3.2:	
  RTM	
  fallback	
  policy 

  

In RTM, there are many constraints that result in a transactional abort. To track 

these aborts, RTM uses the EAX status register to specify the exact cause of an abort.  

Once a transaction aborts, the EAX register will send an abort code with the reason of 

abort (further information on EAX abort codes can be found in Section 2.2.4).  

To measure the cause of aborts, we use an array to keep track of all the different 

kinds of transactional aborts inside an application. Once the application executes, the 

total number and type of aborts will be printed out. This feature is an important aspect for 

understanding the behaviors of RTM. From initial evaluation of RTM, the benchmarks 

that perform poorly tend to have a higher abort rate with the majority being capacity 

aborts.  While the benchmarks that show performance gain have minimal abort rate, 

along with minimal capacity aborts. Capacity aborts are detrimental to RTM’s 

performance as the hardware resources are bounded with constraints. A benchmark that 

consists of a large working set size, and/or large transaction size, has a higher probability 

of getting capacity aborts in RTM, thus decreasing performance.  Figure 3.3 depicts the 

EAX status bits located in the RTM header file. 

 

 

 

 

 

1. #define TM_BEGIN_RTM()        
2. ... 
3. tries --;            
4. if (tries <= 0)      
5. pthread_mutex_lock(&global_rtm_mutex);   
6. ... 
7.                                  
8. #define TM_END_RTM()          
9.     if (tries > 0)     
10.     ...     
11.     else                       
12.           

pthread_mutex_unlock(&global_rtm_mutex);      
     13.      ... 
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  1.  ... 
    2. { 
    3. (tx->num_abort)++; 
    4. 
    5.      if((eax_regg & 0x01) == 0x01) 
    6. (tx->abort_explicit)++; 
    7.      if((eax_regg & 0x02) == 0x02) 
    8. (tx->abort_retry)++; 
    9.      if((eax_regg & 0x04) == 0x04) 
  10. (tx->abort_conflict)++; 
  11.      if((eax_regg & 0x08) == 0x08) 
  12. (tx->abort_capacity)++; 
  13.      if((eax_regg & 0x10) == 0x10) 
  14. (tx->abort_debug)++; 
  15.      if((eax_regg & 0x20) == 0x20) 
  16. (tx->abort_nested)++; 
  17.   ... 

 

 

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  
	
  
	
  

Figure	
  3.3:	
  EAX	
  status	
  bits	
  found	
  in	
  RTM	
  header	
  file	
  
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure	
  3.4:	
  Implementation	
  of	
  EAX	
  status	
  register	
  
	
  
	
  

  The EAX status bits are implemented in conjunction with RTM’s header file that 

consists of the definitions of the aborts.  This code sequence is placed inside RTM_stats 

function to attain all the metadata of a transaction.  In line 3 (figure 3.4), the total number 

of aborts is accumulated.  From line 5 to line 16, there are if statements to check whether 

EAX status bit are initialized.  For example, if there is an abort, it will check each status 

bit and once the status bit is found, it will determine the cause of abort.  These abort 

metadata is then accumulated in the array structure to attain all the aborts of a transaction 

within an application.  

 

1.  /* Status bits */ 
2.  #define XABORT_EXPLICIT_ABORT  (1<<0) 
3.  #define XABORT_RETRY   (1<<1) 
4.  #define XABORT_CONFLICT  (1<<2) 
5.  #define XABORT_CAPACITY  (1<<3) 
6.  #define XABORT_DEBUG  (1<<4) 
7.  #define XABORT_STATUS(x)  (((x) >> 24) & 0xff) 
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3.3 Synchronization of RTM and STM 

This section explains how RTM and STM are synchronized. We need to 

guarantee that in-flight hardware and software transactions do not execute 

simultaneously. This is very crucial because if there are any issues it can stall an 

application from executing correctly or crash entirely. It can also lead to incorrect updates 

to shared memory by either one of the systems. To enable mutual-exclusion of RTM and 

STM, we exploit a conditional variable. The pseudo code in Figure 3.5 and 3.6 shows 

how synchronization is handled between the two systems. 

The synchronization occurs inside the functions tx_start() and tx_commit() which 

depict the start and commit phases of a transaction, respectively (please refer to figure 3.5 

and 3.6). These functions have other code sequences but are taken out in order to only 

focus on the synchronization portion. The input arguments of the two functions show 

whether the corresponding transaction is executed in hardware or software. A hardware 

transaction first checks if there is any in-flight software transaction (line 7). If a software 

transaction is executing, then the hardware transaction waits (line 8). Then, the hardware 

transaction increments num_in_flight_rtm which is a counter and shows the number of in-

flight hardware transactions (line 9). A global lock (rtm_stm_sync_mutex) is used to 

guarantee atomicity of accesses to the shared variables in txstart() and tx_commit(). It is 

important to note that the overhead of the global lock is very low as it is held by 

transactions for a short period of time. The code for software transaction (lines 14-22) is 

similar. When a hardware transaction commits, (lines 28-35), it decrements 

num_in_flight_rtm counter (line 31). If the counter is zero, then it broadcasts a signal to 

all software transactions waiting for in-flight hardware transactions to finish. The same 

procedure is followed for software transactions (lines 37-44). 
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25: tx_commit(int rtm_n_stm) 
26: { 
27:   ... 
28:   if(rtm_n_stm == 1) 
29:     { 
30:       pthread_mutex_lock(&rtm_stm_sync_mutex); 
31:       num_in_flight_rtm--;  
32:       if(num_in_flight_rtm == 0) 
33: pthread_cond_broadcast(&sync_cond_stm);  
34:       pthread_mutex_unlock(&rtm_stm_sync_mutex);  
35:     } 
36: 
37:   if(rtm_n_stm == 0) 
38:     { 
39:       pthread_mutex_lock(&rtm_stm_sync_mutex); 
40:       num_in_flight_stm--;  
41:       if(num_in_flight_stm == 0) 
42: pthread_cond_broadcast(&sync_cond_rtm);  
43:       pthread_mutex_unlock(&rtm_stm_sync_mutex);  
44:     } 
45:   ... 
46: }	
  

	
  
Figure 3.5: Pseudo code for synchronization of RTM and STM in tx_start(). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.6: Pseudo code for synchronization of RTM and STM in tx_commit(). 

1:     tx_start(int rtm_n_stm) 
2:   { 
3:     ... 
4:    if(rtm_n_stm == 1) 
5:      { 
6:        pthread_mutex_lock(&rtm_stm_sync_mutex); 
7:        while (num_in_flight_stm > 0)  
8:             pthread_cond_wait(&sync_cond_rtm, &rtm_stm_sync_mutex);  
9:        num_in_flight_rtm++; 
10: 
11:       pthread_mutex_unlock(&rtm_stm_sync_mutex);  
12:     } 
13: 
14:   if(rtm_n_stm == 0) 
15:     { 
16:       pthread_mutex_lock(&rtm_stm_sync_mutex); 
17:       while (num_in_flight_rtm > 0)  
18:     pthread_cond_wait(&sync_cond_stm, &rtm_stm_sync_mutex);  
19:       num_in_flight_stm++; 
20: 
21:       pthread_mutex_unlock(&rtm_stm_sync_mutex);  
22:     } 
23:   ... 
24: } 
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In this synchronization step, there are important lock functions to promote atomicity. In 

line 8, the instruction pthread_cond_wait() is called. If a transaction is being executed in 

STM mode, then this function blocks the calling transaction. When the last transaction in 

STM mode commits, it broadcasts a signal (line 42) and wakes up all blocked transaction.  

3.4 Implementing Source Code 

The main goal of our adaptive system is to have a uniform design of incorporating 

both systems. Typically, in TM applications/benchmarks, there are macros that enable 

transactions to begin and end as well as macros for data access such as reads and writes.  

For our adaptive system, there are new instructions dedicated to RTM and TinySTM. For 

a given TM application/benchmark, by substituting the source code with RTM and 

TinySTM macros, our adaptive system is able to seamlessly switch between systems for 

different transactions. These macros are defined in header files which consist of the 

entirety of the RTM and TinySTM codes. Figure 3.7 shows sample code of how RTM 

and TinySTM work alongside each other using the proposed macros. 

To start and end a transaction in RTM, we use the macro TM_BEGIN_RTM and 

TM_END_RTM. The same structure of macros is used to start and end a transaction in 

STM: TM_BEGIN_STM and TM_END_STM. There are two macros for transactional data 

access in RTM: TM_SHARED_READ_RTM and TM_SHARED_WRITE_RTM. Similar 

structure is used for STM: TM_SHARED_READ_STM and TM_SHARED_WRITE_STM.   

 

 

 

 

 

 

 

 

 

	
  
	
  

Figure	
  3.7:	
  Pseudo	
  code	
  for	
  implementing	
  RTM	
  and	
  STM.	
  

1. TM_BEGIN_STM(); 
2. TM_SHARED_READ_STM(); 
3. 
4.  //transactional area... 
5. 
6. TM_SHARED_WRITE_STM(); 
7. TM_END_STM(); 
8. 
9. 
10.  TM_BEGIN_RTM(); 
11.   TM_SHARED_READ_RTM(); 
12.  
13.   //transactional area... 
14.  
15. TM_SHARED_WRITE_RTM(); 
16. TM_END_RTM(); 
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3.5 Implementation of Decision tree 

  Decision tree is an effective method of supervised machine learning that exhibits 

an accurate prediction based on a group of datasets [22]. The goal of implementing a 

decision tree is to create a model that predicts a value based on a set of input parameters. 

Our Adaptive system exploits a decision tree prediction module (C4.5 algorithm [23]) to 

be able to predict which TM system is the better choice for a given transaction. The C4.5 

algorithm was chosen because of the stability and good accuracy when compared to other 

prediction model algorithms [22]. The basic functionality of C4.5 is to build a tree from a 

set of training datasets and the resulting tree is used to predict the optimum TM system 

(further information can be found in Section 2.3). This process can be broken down into 

two phases: training phase and testing phase.   

3.5.1 Training Phase 

The training phase is conducted to attain a prediction model based on the decision 

tree. The input datasets are constructed using the following transaction parameters:  

• Transaction size  

• Read-set size  

• Write-set size  

• Write-ratio  

Transaction size refers to the operations that are present inside a transaction.  

Typically, a transaction is initialized with TM_BEGIN and a transaction is committed 

with TM_END.  In between these instructions lie different operations, such as arithmetic 

operations, read-sets, write-sets, ‘for’ loops, etc. One way to measure transaction size is 

counting the number of C code lines in transactions. However, execution time of C 

programs changes from one line to the other by a large margin. We need a fine 

granularity metric for the transaction size. Since all C codes are compiled to assembly 

instructions, we use the number of assembly instructions to measure transaction size.  In 

general, transaction size is important when conducting evaluations for RTM.  This is 

primarily due to the hardware resource constraints. Once the cache capacity of RTM has 
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been reached, there is a higher probability of the transaction resulting in an abort, thus 

resulting in overall performance slowdown. 

Another important transactional parameter is the working set size which is 

defined as the number of distinct memory locations accessed.  This includes both the read 

and write sets inside of a transaction.  

Transaction conflict is more likely to occur in applications with large working set 

size. In RTM, such conflicting accesses force an abort to ensure that atomicity of the 

transaction is preserved, yet this will result in performance slowdown.  The write-ratio is 

the ratio between the number of shared writes and the total number of shared accesses. 

The write-ratio is used as another parameter that is included in the training set of the 

decision tree, in order to improve the accuracy of prediction. 

 Overall, these parameters are important in terms of the behaviors of both RTM 

and TinySTM. RTM favors small sized transactions as well as small working set size. 

While in STM, there is much more flexibility and offers better performance than RTM 

for large transaction sizes and large working set sizes.   

The training phase consists of a set of benchmarks that are chosen based on small, 

medium and large transaction sizes and working set sizes from all the 3 benchmark suites 

(STAMP, NAS and DiscoPoP).   

The following are the benchmarks used for the training phase:   

• GENOME  

• LABYRINTH  

• YADA  

• Embarrassingly Parallel  

• Montercarlo_Pie  

• Light_Propogation   

The benchmarks are executed twice: once using RTM and the other using 

TinySTM. The Decision tree is trained based on statistics generated by RTM and 

TinySTM. This procedure was done separately for 2, 4 and 8 number of threads because 

the characteristics of a transaction can vary as the thread count increases. The output of 

the decision tree is a binary bit that indicates whether RTM or STM is better for a given 

transaction.   
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Figures 3.8, 3.9 and 3.10 represent the decision tree predictions for 2-, 4- and 8- 

thread, respectively. Based on these predictions, an evaluation was conducted on a 

separate set of testing benchmarks. The result of the decision tree follows an if/else 

procedure.  Figure 3.8 corresponds to the prediction for 2 threads. First, it checks 

transaction size. If the transaction size is less than 155, then the optimum TM system is 

predicted to be RTM. Else, if the transaction size is greater than 155, it enters the next set 

of base parameters to be examined. Now, if the write-set size is less than 2.05 ×106 then 

the TM system that should be used is STM. Else, if the transaction has a larger write-set 

size then it will check the next base parameter. Once again, the decision tree checks if the 

transaction size is less than 580, then RTM will be used; otherwise, STM system will be 

used. As the thread count increases, the transactional execution time can change and 

ultimately the predicted system can change. In order to overcome this issue, the decision 

tree is implemented separately for threads 2, 4 and 8 to improve accuracy. 

 

 

 

 

	
  
	
  
	
  
	
  

Figure	
  3.8:	
  Decision	
  tree	
  output	
  for	
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  Threads	
  
 

 

 

 

	
  
	
  
	
  
	
  
	
  
	
  
	
  

Figure	
  3.9:	
  Decision	
  tree	
  output	
  for	
  4	
  Threads	
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Figure	
  3.10:	
  Decision	
  tree	
  output	
  for	
  8	
  Threads	
  
   

Table 3.1 shows an example of benchmark YADA and the parameters associated with its 

transactions. These parameters were used for training due to specific behaviors of each 

system.  Benchmark YADA contains 5 transactions in which each transaction has its own 

unique set of characteristics.  

Table 3.1: Characteristics of benchmark YADA consisting of five transactions 

   

  In large transactions, STM performs better than RTM primarily due to capacity 

overload of hardware resources.  Another critical behavior of a transaction is working set 

size (read/write accesses).  RTM performs well for transactions that consist of low to 

medium working set size, while STM performs well for large working set size.  This is 

due to the hardware constraints associated with RTM which caps the threshold for 

performance gain in transactions with large working set sizes.  In YADA, there are 4 

transactions with transaction sizes that range from 95-115. For these transactions, RTM 

executes faster than STM. The remaining transaction has a size of 626 and contains a 

very large working set size in which STM greatly outperforms RTM.  By training the 

decision tree using all parameters of the training benchmarks, it is possible to achieve 

TX # STM 
Time(ms) 

RTM 
Time(ms) 

Read-set 
Size 

Write-set 
Size 

TX Size Write  
Ratio 

TX1 291 113 2525298 1219387 101 0.3256 
TX2 523 48 580197 0 115 0 
TX3 39833 51061 10396152 24145158 626 0.1884 
TX4 52 24 0 464996 95 1 
TX5 144 66 1127133 505601 109 0.3096 
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accurate predictions.   

3.5.2 Testing Phase 

The testing phase is conducted to predict whether RTM or STM is better for a 

given transaction.  The testing phase consists of 6 different benchmarks, which are:  

• Conjugate-Gradient 

• Multi-Grid 

• KMEANS  

• SSCA2 

• Ann_Training  

• Mandelbrot  

The reason why there was no inclusion of the training benchmarks for evaluation 

is due to having a discrete analysis based on the decision tree prediction. Therefore, the 

focus was on attaining a prediction based on the training benchmarks then applying the 

prediction to another set of benchmarks (testing benchmarks).    

The C4.5 algorithm of the decision tree applies pruning to increase the accuracy 

of the prediction. Pruning is the basis of increasing the accuracy of unseen groups of data.  

The decision tree is designed to give an accurate prediction, which means that there is no 

guarantee that the prediction is correct all the time.  This is due to the parameters that 

impact the execution time of transactions. These parameters vary from one benchmark to 

another.  Table 3.2 is an example of the prediction of the decision tree for benchmark CG 

(Conjugate-Gradient).  D. T prediction in the table stands for decision tree prediction. 

The decision tree prediction is based on the dataset of the training phase.   

 

Table 3.2: Decision tree prediction based on Transaction Granularity for Benchmark CG 

TX # STM Time(ms) RTM Time(ms) D.T prediction Optimum 
prediction 

TX1 4 21 RTM STM 
TX2 83391 9664 RTM RTM 
TX3 97 809 STM STM 
TX4 14 2 STM RTM 
TX5 4 20 RTM STM 
TX6 172 1873 STM STM 
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This table indicates that the decision tree predicted the best system at a rate of 

50% (3/6 transactions).  Even though 50% accuracy seems poor, it is actually very 

accurate in terms of transaction execution time greater than 100ms.  Approximately, 3 out 

of the 6 transactions have an execution time greater than 100ms (for both RTM and 

STM), in which the decision tree accurately predicted the correct system to use. The 

miss-predictions for the transactions with an execution time less than 100ms are not 

important as small transactions have insignificant impact on performance.  Our adaptive 

system works alongside the predictions made by the decision tree. Based on the 

prediction, either a programmer or a compiler will statically change the source code for 

the adaptive system.  The adaptive system will then run the benchmark, which consists of 

both hardware and software transactions to achieve a performance gain. 

In summary, the primary goal of the adaptive system is improve performance of 

parallel applications by incorporating the notion of switching between hardware and 

software transactions within a given application. A decision tree is incorporated to predict 

the optimum system for each transaction based on its characteristics. 
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Chapter 4 

Experimental Results 
  The motivation to develop the proposed adaptive system is originated from the 

benefits and limitations of both TM systems. Depending on an application’s transaction 

characteristics, either RTM or STM can outperform each other. This chapter focuses on 

the experimental analysis of the adaptive system based on the testing benchmarks. In 

Section 4.1, we explain experimental framework and benchmark specifications used to 

evaluate the adaptive system. Section 4.2 analyzes both RTM and TinySTM on the basis 

of performance and energy-delay. Section 4.3 reports performance and energy-delay of 

both RTM and TinySTM.  

4.1 Experimental Framework and Benchmark Specifications 

  In this thesis, the focus is on simulating both STM and RTM on the same 

commodity processor. The experimental setup consisted of 4th generation of Intel Core i7 

processor comprising of four physical cores that can run up to eight threads 

simultaneously (hyper-threading). Each core consists of two 8-way 32KB L1 cache 

(instruction and data), 256 KB L2 cache, and 8 MB of L3 cache. The operating system 

used is 64-bit Ubuntu Linux with 3.4.5-40 kernel. In order to access Intel’s TSX intrinsic, 

-mrtm flag was used.  All benchmarks are compiled using gcc 4.8.1.  Sections 4.1.1 to 

4.1.3 describe the general characteristics of each benchmark suite that was used for 

evaluation.  

4.1.1 Stanford Transactional Applications for Multi-Processing (STAMP) 

  STAMP [2] is a well known and widely used benchmark suite for parallel 

computing. The input variables for each benchmark in STAMP can be configured.  For 

all evaluations conducted on these benchmarks, the input variables consist of the 

maximum allowed parameters (non-simulated input parameters). 

KMEANS: This benchmark represents a K-means algorithm that groups objects into ‘K’ 

number of clusters.  The basis of this algorithm is to partition data into subsets.  In this 
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benchmark, there are three transactions.  The transaction sizes in KMEANS are relatively 

small and so are the read and write sets.     

GENOME: This benchmark represents reconstructing and matching DNA segments.  The 

structure of this benchmark consists of five transactions that range from medium to large 

transactional sizes.  The working-sets (read/write) in this benchmark have moderate size. 

LABYRINTH: This benchmark represents the structure of a three-dimensional maze.  

Each thread essentially attains a start and an end point of the maze, and connects a path 

through all grid points.  The structure of this benchmark consists of three transactions in 

which the execution time of one transaction dominates the other two. The transaction 

sizes range from medium to large and the working set size is large.    

SSCA2 (Scalable Synthetic Compact Applications 2): This benchmark represents the 

construction of an array data structure for security based applications.  The structure of 

this benchmark consists of only one small sized transaction as well as a small working set 

size. 

YADA (Yet Another Delaunay Application): This benchmark represents Ruppert’s 

algorithm [24] for mesh refinement data structure.  The structure of this benchmark 

consists of five transactions ranging from small to large sizes.  The working set size also 

ranges from medium to large sizes. 

4.1.2 NAS Parallel Benchmarks 

  This benchmark suite was introduced in 1994 by Ames Research Center of NASA 

and was developed for performance evaluation of highly parallel supercomputers [4].  

These benchmarks mimic the computation and data structures of CFD (computational 

fluid dynamics) applications [19].  This benchmark suite was used in this thesis to further 

enhance the spectrum of transactional memory applications. 

Conjugate-Gradient: This benchmark represents gird computations for unstructured 

eigenvalues.  The structure of this benchmark consists of six transactions ranging from 

small to large sizes.  The working set size is fairly small throughout the six transactions. 
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Multi-Grid: This benchmark represents the testing of short and long distance data 

communications.  The structure of this benchmark consists of two transactions in which 

one of the transactions is very small and the other is medium sized.  The working set size 

is fairly small for both transactions. 

Embarrassingly Parallel: This benchmark represents calculation of floating-point data 

structures without significant inter-processor communication. The structure of this 

benchmark consists of three transactions. The transaction sizes range from medium to 

large.  The working set size remains fairly moderate in size. 

4.1.3 DiscoPoP Benchmark Suite 

  This benchmark suite was developed for a tool to automatically find potential 

parallelism in sequential programs [37].  This tool is called DiscoPoP which is able to 

find parallelism between code regions with subjective granularity. The set of benchmarks 

introduced in DiscoPoP is also used for the evaluation of the proposed adaptive system. 

The benchmarks used are the following: 

• Mandelbrot 

• Light_ Propagation 

• Monte Carlo 

• Artificial Neural Network Training 

Each of these benchmarks only consists of one transaction.  The transaction size however 

ranges from small to medium.  The working set size is considerably small when 

compared to both NAS and STAMP benchmarks. These sets of benchmarks were used to 

further enhance the prediction of the decision tree.  The adaptive system must be able to 

work with a wide variety of transactional applications, including applications that have 

minimal transaction sizes and minimal working set sizes. 

 

 



4.2 RTM vs. STM Performance Evaluation 

The first set of experiments are based on evaluation of RTM and TinySTM on 12 

benchmarks taken from Stamp [2], NAS [4], and DiscoPop [37] benchmark suites. This 

evaluation is primarily conducted to compare the performances of the two systems.  

Figure 4.1 represents a normalized comparison graph between RTM and TinySTM.  In 

each benchmark, the number for threads varies between two and eight.  In Figure 4.1, 

measurement reading greater than one favors TinySTM while less than one favors RTM.  

There is a vast discrepancy between both systems, primarily due to the transaction 

characters within a given benchmark such as transaction size, write-set size and read-set 

size.   

Figure 4.1: Normalized Transactional Execution time of RTM relative to TinySTM. 

 

In small benchmarks where working set of the benchmark fits in the L1 cache, i.e. 

Montecarlo, Light_Propagation, KMEANS, SSCA2, Conjugate-Gradient, RTM 

outperforms TinySTM. In contrast, TinySTM outperforms RTM in benchmarks 

consisting of larger transaction sizes, i.e. Labyrinth, Genome, YADA, Ann_Training, 



Mandalbrot. The number of transactions within a benchmark varies and the 

characteristics from one transaction to another also vary.  By introducing our adaptive 

system, we will be able to switch between RTM and TinySTM within a benchmark and 

achieve better performance.

4.3 RTM vs. STM Energy Expenditure Evaluation 

An important aspect of computational performance is energy efficiency. With 

modern technology (laptops, cellphones, tablets, etc.) relying heavily on battery power, it 

is essential to expend an efficient amount of energy as possible. Energy expenditure was 

accurately measured using Intel’s runtime average power limit monitor (RAPL) [16], 

calculated in milli-joules (mJ). RAPL relies on a set of hardware counters inside the 

processor, which provides energy and power consumption information.   

  The energy measurements are first taken for each TM system and an analysis is 

made. 
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Figure 4-2 represents energy-delay comparison between RTM and TinySTM. The 

energy delay measurement is calculated by the energy consumption multiplied by the 

transactional execution time. To take into account the impact of both energy and 

performance, we use energy-delay to compare adaptive system with RTM and TinySTM. 

RTM is much more energy efficient than STM for all benchmarks except for benchmarks 

GENOME and LABYRINTH.  This is primarily due to the benchmarks characteristics as 

well as the structure of RTM. Although, RTM is generally much more energy efficient 

compared to STM, the structure of RTM can lead to excess wasted work. When RTM 

aborts, the retry sequence is initiated where it will keep retrying the aborted transaction.  

Once the retry threshold is reached, the transaction will be executed using the 

fallback policy (global lock).  This results in wasted work as the abort prone transaction is 

retried unsuccessfully. Another important limitation of RTM is capacity induced aborts. 

No matter how many times the transaction is retried, the hardware limitations restrict it 

from successfully committing. By implementing our adaptive system, there is a possibility 

that by switching to RTM (when possible), it may be more energy efficient than STM. 

Furthermore, the adaptive system incorporates STM meaning that the energy efficiency 

readings compared to RTM does not result in efficiency. Table 4.1 and 4.2 depict the 

characteristics of benchmark Genome and Labyrinth, respectively. (Further analysis of all 

benchmarks is in Appendix-A). 

 
 

Table 4.1: Characteristics of Benchmark LABYRINTH at two threads 

 
 

 

 

 

TX # STM 

Time(ms) 

RTM 

Time(ms) 

Read-

set Size 

Write-

set Size 

Tx 

Size 

Abort 

Ratio(STM) 

Abort 

Ratio(RTM) 

Write 

Ratio 

Capacity 
Abort-

Ratio 

TX1 0 0 4108 512 134 0 0 0.1109 0 

TX2 77851 150512 1151846 1810368 254 0.04119 0.7470355731 0.6112 0.9596560 

TX3 0 0 12 8 61 0 0 0.3636 0 



Table 4.2: Characteristics of Benchmark GENOME at two threads.  

 

From these tables, the results show that all transactions are different from one 

another in terms of transaction size and working set size. In benchmark GENOME, the 

average capacity abort ratio (only for TX1 and TX2, due to majority of transactional load) 

is approximately 46.8% out of the total number of aborts. The capacity abort results in 

slowdown for RTM when compared to STM. For benchmark Labyrinth, only one of the 

three transactions has the majority of the transactional load. The capacity abort ratio for 

that transaction is 95.9% of the total number of aborts. This severely hampers RTM’s 

performance, as it wastes a lot of work by retrying unnecessarily and executing the 

fallback path. On the other side, for STM, the total abort ratio is very small at 4.11%.  

Figure 4.3 depicts the distribution of transactional aborts for benchmark GENOME. 

Generally, as the thread count increases from 2 to 8, the capacity aborts increase from 

46.4% to 74.6%. 
 

 

 

 

 

 

Figure 4.3: Distribution of Transactional Aborts for Benchmark GENOME 

TX # STM 

Time(ms) 

RTM 

Time(ms) 

Read-set 

Size 

Write-

set Size 

Tx 

Size 

Abort 

Ratio(STM) 

Abort 

Ratio(RTM) 

Write 

Ratio 

Capacity 
Abort-

Ratio 

TX1 6064 7359 41992177 32652 259 2.14575E-006 0.2037975743 0.0077 0.5876806 

TX2 2 1 21728 16321 116 0 0.0001837785 0.4289 0.3666666 

TX3 2493 2774 40543510 2057244 536 0.0097530404 0.2562808218 0.0482 0.3399366 

TX4 4 3 52050 32642 133 0 0.1450497643 0.3854 0.0003611 

TX5 8 2 107612 81600 154 0 0.0037543224 0.4312 0.1315789 
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4.3 Evaluation of Adaptive system  

 The experimental analysis of the adaptive system is to compare the results with 

baseline TinySTM and baseline RTM. This evaluation consists of both transactional 

execution time as well as energy delay measurements. For	
  evaluation,	
  the	
  benchmarks	
  

from	
   the	
   testing	
   phase	
   are	
   used.	
   This	
   includes	
   benchmarks	
   Conjugate-­‐Gradient,	
  

Multi-­‐Grid,	
  KMEANS,	
   SSCA2,	
  Ann_Training	
   and	
  Mandalbrot.	
   The	
  primary	
  objective	
  

of	
  the	
  testing	
  benchmarks	
  is	
  to	
  strictly	
  use	
  the	
  decision	
  tree	
  predictions.	
  Therefore,	
  

the	
   focus	
   was	
   on	
   attaining	
   a	
   prediction	
   based	
   on	
   the	
   training	
   benchmarks	
   then	
  

applying	
  the	
  prediction	
  to	
  another	
  set	
  of	
  benchmarks	
  (testing	
  benchmarks).	
  	
   

4.3.1 Adaptive system vs. TinySTM 

	
   	
   This	
  section	
  provides	
  experimental	
  analysis	
  between	
  the	
  proposed	
  adaptive	
  

system	
   and	
   TinySTM.	
   Figure	
   4.4	
   depicts	
   Normalized	
   transactional	
   execution	
   time	
  

(speedup)	
  between	
  the	
  adaptive	
  system	
  and	
  TinySTM.	
  A	
  benchmark	
  that	
  consists	
  of	
  

a	
   value	
   less	
   than	
   1	
   shows	
   speed-­‐up	
   for	
   the	
   adaptive	
   system.	
   The	
   benchmarks	
  

Conjugate-­‐Gradient,	
  Kmeans	
  and	
  SSCA2	
  have	
  a	
   significant	
   speedup	
  over	
  STM.	
  The	
  

rest	
  of	
  the	
  benchmarks,	
  Multi-­‐Grid,	
  Ann_Training	
  and	
  Mandalbrot	
  have	
  a	
  normalized	
  

speedup	
  value	
  of	
  1	
  which	
  indicates	
  that	
  the	
  prediction	
  used	
  for	
  the	
  adaptive	
  system	
  

heavily	
   favored	
   TinySTM.	
   Overall,	
   as	
   the	
   thread	
   count	
   increases,	
   there	
   is	
   little	
  

difference	
  in	
  speedup.	
  	
  On	
  average,	
  speed-­‐up	
  is	
  34.31%,	
  34.44%,	
  and	
  34.35%	
  for	
  2,	
  

4	
  and	
  8	
  threads,	
  respectively.	
  It	
  is	
  important	
  to	
  note	
  that	
  the	
  decision	
  tree	
  prediction	
  

is	
  not	
  always	
  correct,	
  as	
  a	
  few	
  predictions	
  are	
  inaccurate.	
  Yet,	
  the	
  performance	
  gains	
  

of	
  the	
  proposed	
  adaptive	
  system	
  are	
  very	
  promising	
  when	
  compared	
  to	
  TinySTM.	
  A	
  

thorough	
   analysis	
   of	
   the	
   decision	
   tree	
   prediction	
   for	
   each	
   testing	
   benchmark	
   is	
  

found	
  in	
  Appendix	
  B.	
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Figure	
  4.4:	
  Normalized	
  Speedup	
  comparison	
  between	
  adaptive	
  system	
  and	
  TinySTM.	
  

	
  

The	
  next	
  evaluation	
  is	
  based	
  on	
  the	
  energy	
  delay	
  measurements.	
  Figure	
  4.5	
  

depicts	
   Normalized	
   energy-­‐delay	
   comparison	
   between	
   the	
   adaptive	
   system	
   and	
  

TinySTM.	
   	
   Once	
   again	
   for	
   this	
   evaluation,	
   only	
   the	
   benchmarks	
   in	
   the	
   testing	
  

benchmarks	
  are	
  used	
   in	
  order	
   to	
  have	
  a	
  realistic	
  evaluation	
  based	
  on	
   the	
  decision	
  

tree	
  predictions.	
  	
  Since	
  this	
  is	
  a	
  normalized	
  graph,	
  values	
  less	
  than	
  1	
  depict	
  energy	
  

efficiency	
  and	
  a	
  value	
  greater	
  than	
  one	
  depicts	
  energy	
  deficiency.	
   In	
  all	
   the	
  testing	
  

benchmarks,	
   our	
   adaptive	
   system	
   is	
   42.11%	
  more	
   energy	
   efficient	
   than	
  TinySTM.	
  

This	
   is	
   a	
   significant	
  difference	
  of	
   energy	
  consumption	
  when	
  compared	
   to	
  baseline	
  

TinySTM.	
   The	
   reason	
   for	
   this	
   substantial	
   energy	
   efficiency	
   is	
   that	
   for	
   certain	
  

benchmarks	
   that	
   consist	
  of	
   low/medium	
  sized	
   transactions	
  and	
  working	
  set	
   sizes,	
  

by	
   implementing	
   these	
   transaction	
   in	
   RTM,	
   the	
   adaptive	
   system	
   is	
   able	
   to	
   save	
  

energy.	
   The	
   benchmarks	
   that	
   show	
   significant	
   energy	
   efficiency	
   are	
   (portrays	
  

overall	
  energy	
  efficiency	
  percentage):	
  

• Conjugate-­‐Gradient	
  à	
  94.78%	
  

• KMEANS	
  à	
  91.76%	
  

• SSCA2	
  à	
  55.81%	
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The	
   rest	
   of	
   the	
   benchmarks	
   relatively	
   have	
   low	
   to	
   moderate	
   energy	
  

efficiency.	
   This	
   is	
   because	
   for	
   certain	
   benchmarks	
   that	
   consist	
   of	
   low/medium	
  

transaction	
  and	
  working	
  set	
  sizes,	
  by	
   implementing	
  these	
  transactions	
   in	
  RTM,	
  we	
  

are	
  able	
  to	
  save	
  energy.	
  If	
  all	
  the	
  transactions	
  are	
  implemented	
  in	
  STM,	
  then	
  there	
  

will	
   be	
   additional	
   overhead	
   for	
   each	
   transaction	
   initiated.	
   (Further	
   analysis	
   of	
  

energy	
  expenditure	
  for	
  all	
  benchmarks	
  is	
  found	
  in	
  Appendix	
  D.)	
  

Figure 4.5: Normalized Energy-delay comparison between adaptive system and TinySTM. 

4.3.2 Adaptive system vs. RTM 

	
   This	
  section	
  provides	
  experimental	
  analysis	
  between	
  the	
  proposed	
  adaptive	
  

system	
   and	
   RTM.	
   Figure	
   4.6	
   depicts	
   Normalized	
   transactional	
   execution	
   time	
  

(speedup)	
   between	
   the	
   adaptive	
   system	
   and	
   RTM.	
   The	
   benchmarks	
   that	
   have	
   a	
  

normalized	
   speedup	
   less	
   than	
   one	
   indicate	
   that	
   the	
   adaptive	
   system	
   achieves	
  

speedup.	
  	
  

	
  

	
  

	
  



	
   53	
  

Figure 4.6: Normalized Speedup comparison between adaptive system and RTM. 

	
  

At	
   4	
   and	
   8	
   threads,	
   benchmark	
   Multi-­‐Grid	
   indicates	
   a	
   slowdown	
   when	
  

compared	
   to	
   the	
   baseline	
   RTM.	
   	
   This	
   is	
   due	
   to	
   the	
   decision	
   tree	
   prediction	
   that	
  

incorrectly	
   predicted	
   the	
   wrong	
   system	
   to	
   execute	
   for	
   that	
   specific	
   benchmark.	
  

Table	
  4.3	
  shows	
  transaction	
  parameters	
  of	
  Multi-­‐Grid.	
  At	
  4	
  threads,	
  Multi-­‐Grid	
  has	
  a	
  

better	
   execution	
   time	
   for	
  RTM,	
   but	
   due	
   to	
   the	
   decision	
   tree's	
   prediction,	
   the	
   STM	
  

system	
  was	
  used.	
   	
  Multi-­‐Grid	
  benchmark	
  consists	
  of	
  two	
  transactions	
  in	
  which	
  the	
  

decision	
   tree	
   predicts	
   correctly	
   for	
   only	
   one	
   of	
   the	
   two	
   transactions.	
   The	
   other	
  

transaction	
   (TX2)	
   is	
   incorrectly	
   predicted	
   and	
   this	
   results	
   in	
   slowdown	
   of	
   the	
  

adaptive	
  system	
  compared	
  to	
  the	
  baseline	
  RTM.	
  	
  	
  

Table 4.3: Transaction parameters and execution time for Multi-Grid benchmark when the 
number of threads is four. 

	
  

	
  

TX# STM Time(ms) RTM Time(ms) Read-set 
Size 

Write-set 
Size 

TX Size Write 
Ratio 

Decision 
tree 

Prediction 

Optimum 
System 

TX1 120 60 64 64 130 0.5 RTM RTM 
TX2 18818 16990 8008 8008 276 0.5 STM RTM 
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   There	
  are	
  a	
  few	
  reasons	
  why	
  RTM	
  executes	
  better	
  than	
  STM	
  even	
  though	
  the	
  

transaction	
  and	
  working	
  set	
  sizes	
  are	
  very	
   large.	
   	
  The	
  primary	
  reason	
   is	
   the	
  abort	
  

ratio	
  of	
   this	
  benchmark.	
   In	
  RTM,	
  capacity	
   induced	
  aborts	
  dramatically	
  hamper	
   the	
  

performance	
  of	
  transactional	
  executions.	
   	
  Yet,	
   for	
  benchmark	
  Multi-­‐Grid,	
  there	
  is	
  a	
  

total	
  abort	
  ratio	
  of	
  11.46%	
  and	
  out	
  of	
   that,	
  only	
  9.54%	
  consists	
  of	
  capacity	
  aborts	
  

(please	
   refer	
   to	
   appendix	
   A.2).	
   	
   This	
  means	
   that	
   there	
   is	
   a	
   low	
   abort	
   rate	
   as	
   this	
  

benchmark	
   has	
   a	
   higher	
   percentage	
   of	
   successfully	
   committing	
   transactions.	
   Also,	
  

since	
  the	
  capacity	
  abort	
  rate	
  is	
  very	
  low,	
  this	
  benchmark	
  executes	
  efficiently	
  in	
  RTM	
  

thus	
   achieving	
   a	
   better	
   performance.	
   	
   On	
   the	
   contrary,	
   at	
   8	
   threads,	
   benchmarks	
  

Conjugate-­‐Gradient,	
   Ann_Training	
   and	
   Mandalbrot	
   demonstrate	
   good	
   speedup	
  

when	
  compared	
  to	
  the	
  baseline	
  RTM.	
  On	
  average,	
  the	
  proposed	
  adaptive	
  system	
  has	
  

speedup	
  of	
  5.88%,	
  5.16%	
  and	
  11.79%	
  for	
  2,	
  4	
  and	
  8	
  threads,	
  respectively.	
  	
   

	
   	
   The	
  next	
  evaluation	
  is	
  based	
  on	
  the	
  energy-­‐delay	
  measurements.	
  Figure	
  4.7	
  

depicts	
   normalized	
   energy-­‐delay	
   comparison	
   between	
   the	
   adaptive	
   system	
   and	
  

RTM.	
  The proposed adaptive	
  system	
  is	
  not	
  energy	
  efficient	
  when	
  compared	
  to	
  RTM.	
  	
  

This	
  is	
  primarily	
  due	
  to	
  the	
  overhead	
  associated	
  with	
  switching	
  into	
  STM.	
  There	
  is	
  

extra	
  overhead	
  when	
  initiating	
  and	
  overseeing	
  a	
  transaction	
  in	
  STM	
  which	
  expends	
  

extra	
  energy.	
  Thus,	
  since	
  our	
  adaptive	
  system	
  incorporates	
  both	
  systems,	
  the	
  energy	
  

efficiency	
  drops	
  when	
  compared	
  to	
  RTM.	
  	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

Figure	
  4.7:	
  Normalized	
  Energy-­‐delay	
  comparison	
  between	
  adaptive	
  system	
  and	
  RTM	
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4.3.3 Decision Tree Predictions for Testing Benchmarks 

This section reviews the decision tree prediction that was used for each of the testing 

benchmarks. During the training phase, the system that executed the fastest was included 

as the input parameter for the decision tree.  For the testing phase, the decision tree does 

not predict correctly all the time.  

 These tables show (4.4, 4.5, 4.6, 4.7, and 4.8) that the proposed adaptive system is 

able to achieve speedup in all benchmarks (except Multi-Grid, explanation is in section 

4.3) when compared to RTM or TinySTM.   These tests also show exactly which 

transaction yields the majority of the application’s workload.  For example, in table 4.4 

(benchmark Conjugate-Gradient) TX2 takes the majority of the transactional execution 

time when compared to the other transactions.  If the decision tree predicts incorrectly, 

this can lead to performance slowdown for the adaptive system.  This shows that the 

accuracy of the decision tree is crucial to achieve speedup for applications. In SSCA2 

(table 4.7), there are 3 transactions in total but only one out of the tree transactions has 

the application’s entire workload. (Further analysis of energy expenditure for all 

benchmarks is found in Appendix D.) 

 
Table 4.4: Benchmark Conjugate-Gradient comparing Decision Tree prediction with 

Optimum system 

 

TX#	
   STM	
  

Time(ms)	
  

RTM	
  

Time(ms)	
  

Adap.	
  

Time(ms)	
  

Speedup	
  

(Baseline_STM)	
  

Speedup	
  

(Baseline_RTM)	
  

D.T	
  

prediction	
  

Optimum	
  

prediction	
  

TX1	
   4	
   21	
   19	
   4.75	
   0.9047619048	
   RTM	
   STM	
  

TX2	
   83391	
   9664	
   9473	
   0.1135973906	
   0.9802359272	
   RTM	
   RTM	
  

TX3	
   97	
   809	
   489	
   5.0412371134	
   0.6044499382	
   STM	
   STM	
  

TX4	
   14	
   2	
   28	
   2	
   14	
   STM	
   RTM	
  

TX5	
   4	
   20	
   19	
   4.75	
   0.95	
   RTM	
   STM	
  

TX6	
   172	
   1873	
   170	
   0.988372093	
   0.090763481	
   STM	
   STM	
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Table 4.5: Benchmark Multi-Grid comparing Decision Tree prediction with Optimum 
system 

 
Table 4.6: Benchmark KMEANS comparing Decision Tree prediction with Optimum 

system 

 

Table 4.7: Benchmark SSCA2 comparing Decision Tree prediction with Optimum system 

 
 

Table 4.8: Benchmark ANN_TRAINING comparing Decision Tree prediction with 
Optimum system 

TX#	
   STM	
  

Time(ms)	
  

RTM	
  

Time(ms)	
  

Adap.	
  

Time(ms)	
  

Speedup	
  

(Baseline_STM)	
  

Speedup	
  

(Baseline_RTM)	
  

D.T	
  

prediction	
  

Optimum	
  

prediction	
  

TX1	
   39	
   35	
   36	
   0.9230769231	
   1.0285714286	
   RTM	
   RTM	
  

TX2	
   20738	
   13026	
   19919	
   0.9605072813	
   1.5291724244	
   STM	
   RTM	
  

TX#	
   STM	
  

Time(ms)	
  

RTM	
  

Time(ms)	
  

Adap.	
  

Time(ms)	
  

Speedup	
  

(Baseline_STM)	
  

Speedup	
  

(Baseline_RTM)	
  

D.T	
  

prediction	
  

Optimum	
  

prediction	
  

TX1	
   6422	
   640	
   642	
   0.0999688571	
   1.003125	
   RTM	
   RTM	
  

TX2	
   102	
   0	
   0	
   0	
   0	
   RTM	
   RTM	
  

TX#	
   STM	
  

Time(ms)	
  

RTM	
  

Time(ms)	
  

Adap.	
  

Time(ms)	
  

Speedup	
  

(Baseline_STM)	
  

Speedup	
  

(Baseline_RTM)	
  

D.T	
  

prediction	
  

Optimum	
  

prediction	
  

TX1	
   0	
   0	
   0	
   0	
   0	
   n/a	
   n/a	
  

TX2	
   0	
   0	
   0	
   0	
   0	
   n/a	
   n/a	
  

TX3	
   5584	
   2663	
   2662	
   0.4767191977	
   0.9996244837	
   RTM	
   RTM	
  

TX#	
   STM	
  

Time(ms)	
  

RTM	
  

Time(ms)	
  

Adap.	
  

Time(ms)	
  

Speedup	
  

(Baseline_STM)	
  

Speedup	
  

(Baseline_RTM)	
  

D.T	
  

prediction	
  

Optimum	
  

prediction	
  

TX1	
   42698	
   45335	
   42656	
   0.9990163474	
   0.9409065843	
   STM	
   STM	
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Table 4.9: Benchmark MANDALBROT comparing Decision Tree prediction with 
Optimum system 

	
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TX#	
   STM	
  

Time(ms)	
  

RTM	
  

Time(ms)	
  

Adap.	
  

Time(ms)	
  

Speedup	
  

(Baseline_STM)	
  

Speedup	
  

(Baseline_RTM)	
  

D.T	
  

prediction	
  

Optimum	
  

prediction	
  

TX1	
   18825	
   19207	
   18785	
   0.997875166	
   0.9780288437	
   STM	
   STM	
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Chapter 5 

Conclusion 
CMPs have become the main architecture of general-purpose computing. This 

made development of efficient parallel programs a necessity in order to increase 

performance. Transactional memory (TM) has been established as a simple and effective 

parallel programming paradigm. TM has become progressively widespread especially 

with Hardware transactional memory implementations becoming increasingly available. 

This thesis proposes an adaptive system that exploits both STM and HTM at transaction 

granularity. This chapter concludes the thesis and offers the potential future work that can 

enhance performance of TM programs further. 

5.1 Summary of Contributions 

In a typical parallel application, the characteristics of a transaction vary 

immensely.  This leads to the discovery that there is no single TM system that works well 

across all parallel applications.  The primary goal of this thesis is to improve the 

performance of parallel applications by combining the benefits of both RTM and 

TinySTM. With the proposition of the adaptive system, it is possible to switch between 

RTM and TinySTM at transaction granularity. A synchronization technique is developed 

in order to seamlessly switch between RTM and TinySTM based on the characteristics of 

a transaction.  By exploiting the decision tree prediction module, it is possible to predict 

the optimum system for each transaction in a given application.  The decision tree is a 

form of supervised machine learning to classify the input transaction parameters (such as 

transaction size, transactional write ratio, etc.). This leads to an accurate prediction to 

execute the optimum TM system. The evaluation consisted of three parallel benchmark 

suites (STAMP, NAS and DiscoPoP) separated into the training phase and the testing 

phase. The decision tree attains all transactional parameters from the benchmarks in the 

training phase and predictions are created for varying number of threads (2, 4 and 8).  

These predictions are then evaluated on the testing phase which reveal that the adaptive 

system is able to improve transactional execution time and energy-delay. 
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5.2 Future Work 

  With the development of the adaptive system, there are issues that can be 

improved with further optimizations.   

1) For this thesis, the training dataset of the decision tree was limited to 6 

benchmarks (the other benchmarks are used for testing) that ranged from small to 

large transaction sizes and working set sizes.  By incorporating additional 

benchmark suites for the training phase, it is possible to improve the accuracy of 

the decision tree prediction module. 

2) The other opportunity for future work is combining adaptive system with the 

technique proposed by Yang et al. [36] (further information can be found in 

section 2.4). By implementing the optimization techniques introduced in [36] in 

conjunction with the adaptive system, it is possible to optimize STM and RTM 

separately based on the transactional characteristics (such as transaction size, 

read-set size, write-set size, etc.).  This will further enhance the accuracy of the 

predictions made by the decision tree as well as increase the performance of the 

application. 
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Appendix 
Benchmark Abbreviations used are the following: 

NAS benchmark suite 

CG – Conjugate Gradient 

MG – Multi-Grid 

EP – Embarrassingly parallel 

 

DiscoPoP benchmark suite 

09 – MONTECARLO_PIE 

10 - LIGHT_PROPAGATION 

11 - ANN_TRAINING 

12 - MANDALBROT 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



A. Total Analysis of Benchmarks for threads 2, 4 and 8 

 

  



  



  



B. Decision tree analysis for all Benchmarks 
 
  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 



C. Performance Comparison 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
D. Energy Expenditure Comparison 
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