
Lakehead University

Knowledge Commons,http://knowledgecommons.lakeheadu.ca

Electronic Theses and Dissertations Electronic Theses and Dissertations from 2009

2015

Optimization of Software Transactional

Memory through Linear Regression and

Decision Tree

Xiao, Yang

http://knowledgecommons.lakeheadu.ca/handle/2453/714

Downloaded from Lakehead University, KnowledgeCommons

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lakehead University Knowledge Commons

https://core.ac.uk/display/51419356?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Optimization of Software Transactional

Memory through Linear Regression

and Decision Tree

by

Yang Xiao

A thesis

presented to Lakehead University

in fulfillment of the thesis requirement

for the degree of Masters of Science

 in Electrical & Computer Engineering

Thunder Bay, Ontario, Canada

September, 2015

ii

Abstract

Software Transactional Memory (STM) is a promising paradigm that facilitates

programming for shared memory multiprocessors. In STM programs, synchronization

of accesses to the shared memory locations is fully handled by STM library and does

not require any intervention by programmers. While STM eases parallel programming,

it results in run-time overhead which increases execution time of certain applications.

In this thesis, we focus on overhead of STM and propose optimization techniques to

enhance speed of STM applications. In particular, we focus on size of transaction,

read-set, and write-set and show that execution time of applications significantly

changes by varying these parameters. Optimizing these parameters manually is a time

consuming process and requires significant labor work. We exploit Linear Regression

(LR) and propose an optimization technique that decides on these parameters

automatically. We further enhance this technique by using decision tree. The decision

tree improves accuracy of predictions by selecting appropriate LR model for a given

transaction. We evaluate our optimization techniques using a set of benchmarks from

Stamp, NAS and DiscoPoP benchmark suites. Our experimental results reveal that LR

and decision tree together are able to improve performance of STM programs up to

54.8%.

iii

Acknowledgements

Firstly, I would like to express my sincere gratitude to my advisor Prof. E. Atoofian

for the continuous support of my Master study and related research, for his patience,

motivation, and immense knowledge. His guidance helped me in all the time of

research and writing of this thesis.

Besides my advisor, I would like to thank the rest of my thesis committee: Prof. A.

Jannesari, Prof. Luara, for their insightful comments and encouragement, but also for

the hard question which incented me to widen my research from various perspectives.

My sincere thanks also goes to my classmates: Ahsan and Thireshan as well as my

father and mother.

iv

Table of Contents

Abstract ...ii

Acknowledgements ... iii

Table of Contents ... iv

List of Figures .. vi

List of Tables ... vii

List of Symbols ... viii

List of Abbreviations .. ix

Chapter 1 Introudction ... 1

1.1 Software Transactional Memory ... 3

1.2 Factors that Impact Performance of STMs ... 4

1.2.1 Brief introduction of contribution .. 4

1.3 Organization of the Thesis .. 5

Chapter 2 Background and Related Work ... 6

2.1 Transaction Locking II (TL2) [4] .. 6

2.2 Optimization Techniques for STMs .. 8

2.3 Linear Regression ... 18

2.4 The Choice of a Classifier ... 19

2.5 NAS Benchmark Suite .. 24

Chapter 3 Static Optimization of Transactional Parameters ... 25

3.1 System APIs and Programming Style in STMs .. 25

3.1.1 System APIs ... 25

3.1.2 Programming Style in STMs .. 30

3.2 Sensitivity of STM Programs to Static Parameters ... 32

3.2.1 Transaction Size ... 33

3.2.2 Size of Write-Set .. 37

3.2.3 Size of Read-Set ... 40

3.2.4 Comprehensive Optimization Based on the Three Parameters 42

3.3 Linear Regression Model .. 43

3.3.1 Naive Version of Linear Regression Model ... 44

3.3.2 Multi-linear Regression Model .. 47

3.4 Classifier for multi-LR model ... 48

3.4.1 Decision Tree ... 49

3.4.2 SVM Classifier ... 50

3.4.3 Adaboost Decision Tree ... 51

3.5 Mixed Decision Tree and Multi-Linear Regressions Model ... 52

3.6 Details of Mixed Models for Other Number of Threads ... 52

3.6.1 Mixed Model for 2 Threads ... 53

3.6.2 Evaluation of Mixed Model for 2 Threads ... 54

3.6.3 Mixed Model for 4 Threads ... 55

v

3.7 Summary of contributions ... 57

Chapter 4 Experimential Results .. 58

4.1 Benchmark Suites ... 58

4.2 Speed-up for DP Benchmarks ... 59

4.3Speed-up for Stamp Benchmarks ... 60

Chapter 5 Conclusion and Future Work ... 63

5.1 Conclusion .. 63

6.2 Future Work .. 63

References ... 65

List of Figures

Figure 2-1: Transaction execution in STM. .. 6

Figure 2-2: Steps of commit in TL2. ... 8

Figure 2-3: Two classes in a 2D-coordinate. ... 21

Figure 3-1: Performance of DP benchmarks in STM relative to sequential code. Bars less

than one show slow down. .. 26

Figure 3-2: The code snippet of the first transaction in histo_serial. 27

Figure 3-3: The code snippet of the fourth transaction in histo_serial. 28

Figure 3-4: Execution time of histo_serial benchmark with rand() and without rand(). 29

Figure 3-5: Execution time of optimized and original histo_serial. .. 30

Figure 3-6: A) A sequential program accesses an array. B) STM version of the program. 31

Figure 3-7: Performance of optimized and naively parallelized benchmarks. 32

Figure 3-8: Speed-up in STM relative to sequential version of NAS benchmarks. The number

of threads varies from two to 8. .. 33

Figure 3-9: Speed-up when transaction size changes. The number of threads varies from two

to eight. ... 35

Figure 3-10: A code snippet taken from BT benchmark. .. 36

Figure 3-11: Speed-up in NAS benchmark suite when size of transaction is optimized. 37

Figure 3-12: Performance of parallel EigenBench when write-set size changes. 39

Figure 3-13: Speed-up in NAS benchmarks when write-set is optimized. 39

Figure 3-14: Speed-up in EigenBench where read-set size changes for 2, 4 and 8 threads. ... 40

Figure 3-15: Speed-up in NAS benchmarks when read-set is optimized. 41

Figure 3-16: Speed-up for NAS benchmarks where size of transaction, write-set, and

read-sets are optimized. ... 43

Figure 3-17: Output of C4.5 for multi-LR model. .. 50

Figure 3-18: Flow chart for predicting transaction size. ... 52

Figure 3-19: Decision tree model for multi-LR model. .. 53

Figure 3-20: Output of decision tree for 4 threads. ... 56

Figure 4-1: Speed-up for DP benchmarks. .. 60

file:///C:/Users/user/Desktop/thesis_YangXiao_SEP_24.docx%23_Toc430864265
file:///C:/Users/user/Desktop/thesis_YangXiao_SEP_24.docx%23_Toc430864266
file:///C:/Users/user/Desktop/thesis_YangXiao_SEP_24.docx%23_Toc430864269
file:///C:/Users/user/Desktop/thesis_YangXiao_SEP_24.docx%23_Toc430864273
file:///C:/Users/user/Desktop/thesis_YangXiao_SEP_24.docx%23_Toc430864280
file:///C:/Users/user/Desktop/thesis_YangXiao_SEP_24.docx%23_Toc430864282
file:///C:/Users/user/Desktop/thesis_YangXiao_SEP_24.docx%23_Toc430864283

vii

List of Tables

Table 3-1: Execution time (in second) per transaction in histo_serial benchmark. 27

Table 3-2: Execution time of each transaction in histo_serial benchmark. 30

Table 3-3: EigenBench parameters. .. 34

Table 3-4: Accuracy of Predictions in Naive LR Model. .. 45

Table 3-5: Accuracy of predictions in the revised LR model. ... 47

Table 3-6: Accuracy of Predictions Made by multi-LR model. .. 48

Table 3-7: Classification based on decision tree. .. 50

Table 3-8: Classification based on SVM. .. 51

Table 3-9: Classification based on adaboost. .. 51

Table 3-10: Predictions made by decision tree for 2 threads... 54

Table 3-11: Predictions made by SVM for 2 threads. ... 54

Table 3-12: Predictions made by adaboost for 2 threads. .. 54

Table 3-13: Predictions made by decision tree for 4 threads... 56

Table 3-14: Predictions made by SVM for 4 threads. ... 56

Table 3-15: Predictions made by adaboost for 4 threads. .. 57

Table 4-1: Predicted and Optimum TX Size in DP for 2 threads. ... 59

Table 4-2: Predicted and Optimum TX Size in DP for 4 threads. ... 59

Table 4-3: Predicted and Optimum TX Size in DP for 8 threads. ... 59

Table 4-4: Transaction size and speed-up in Stamp benchmark suite for 2 threads. 61

Table 4-5: Transaction size and speed-up in Stamp benchmark suite for 4 threads. 61

Table 4-6: Transaction size and speed-up in Stamp benchmark suite for 8 threads. 61

viii

List of Symbols

Symbol Meaning

α Weight variable of adaptive transaction scheduling

CI Contention intensity

CC Current contention

y Output of linear regression

B Intercept

x Input of linear regression

 Error of linear regression

 Prediction transaction size

TxSize Transaction size

RdSize Read-set size

WrSize Write-set size

TS Predicted transaction size

ST Transaction size

WS Write-set size

RS Read-set size

SNT Size of next transaction

NCT number of assembly instructions between two consecutive transactions

WN write-set of the next transaction

RN read-set of the next transaction

TL number of assembly instructions in a loop

ix

List of Abbreviations

Abbreviation Meaning

STM Software Transactional Memory

LR Linear Regression

TM Transactional Memory

HTM Hardware Transactional Memory

SVM Support vector machine

TX Transaction

TL2 Transactional Locking II

RV Read version

TLC Thread local clock

ProPS Progressively Pessimistic scheduler

CL Concurrency level

ATS Adaptive transaction scheduling

STAMP Stanford Transactional Applications for Multi-Processing

ID3 Iterative Dichotomiser 3

Adaboost Adaptive boosting

API Application Programming Interface

DP DiscoPoP

NAS NAS benchmark suit

OS Operating system

1

Chapter 1

Introduction

Transistor scaling was the driving force for rapid growth of general-purpose

processors in the past decades. Advances in integrated circuit technology allow

processor designers to exploit faster and smaller transistors and boost performance of

processors. The unprecedented growth in performance of processors enabled

programmers to rely on hardware to increase the speed of their applications; the same

software runs faster as chip manufacturers introduce new generations of processors.

However, this trend has changed since 2003 due to energy consumption and heat

dissipation issues that limited frequency scaling in single core processors. Since then,

all major chip manufacturers such as Intel, AMD, and IBM turned in to multi-core

processors to increase computational power of general-purpose processors. This shift

in the landscape of general-purpose processors had tremendous impact on software

developer community.

Traditionally, the vast majority of programmers developed sequential programs for

single core processors. The programmers have become accustomed to the expectation

that their programs run faster with each new generation of processors. However, this

expectation is not valid in the era of multi-core processors. A sequential program runs

only on one of the cores in a multi-core processor which is not significantly faster

than single core processors. The only way that programs can continue to enjoy

performance improvement in each generation of multi-core processors is parallel

programming.

Parallel programming is a method to separate a large task into smaller sub-tasks

which are then mapped into threads and are executed simultaneously. Compared with

sequential programming, parallel programming can really reflect the benefit of

multi-core processors by exploiting thread level parallelism in addition to instruction

level parallelism. The conventional method of parallel programming is lock where

2

shared variables are surrounded by locks to guarantee atomicity of accesses to the

shared variables. However, lock-based programming is challenging as it may lead to

tricky synchronization bugs such as deadlock, livelock, etc [2]. To make parallel

programming mainstream, it is necessary to find new programming models which

simplify parallel programming for average programmers.

An alternative approach to lock-based programming is Transactional Memory (TM)

[1]. TM is a programming model which facilitates parallel programming for

multi-core processors. TM provides an atomic construct, called transaction, which is

used to protect shared memory locations from concurrent accesses by threads. Reads

and writes to transactional data occur at a single instance of time. Intermediate

transactional values are not visible to other transactions. TM executes transactions

speculatively in parallel and monitor memory locations accessed by active

transactions. If executing transactions do not conflict over shared memory locations,

then they safely commit. However, in the event of conflict, only one transaction can

proceed and the rest should abort and restart. Transactions log operations during the

execution so that they can restore state of the running program if roll-back is needed.

TM eliminates many of the problems associated with locks and enables

programmers to compose scalable applications safely. In a TM program, a

programmer does not need to worry about priority inversion, deadlock, or live lock.

This is in contrast to lock-based programming in which a programmer needs to deal

with lock placement and synchronization bugs. In a TM program, the programmer

only needs to reason locally about shared memory locations and mark sections of the

program that should be executed concurrently. The underlying system guarantees

correctness. In addition to ease of programming, TMs are speculative in nature. The

benefit of speculative approach is that transactions do not need to wait for shared

memory locations; instead, they can execute concurrently and modify disjoint

memory locations safely, leading to performance gains.

3

 Transactional memory may be implemented in hardware (HTM) [1], software (STM)

[2], or a combination of the two [3]. While HTM makes transactional memory fast, it

increases design complexity and is not flexible. In addition, both HTM and hybrid

approaches require adding new features to the hardware. STM, however, can use

available features of current processors and comes with fewer intrinsic limitations

imposed by hardware structures, such as buffer size and caches.

1.1 Software Transactional Memory

In the last decade, there have been several implementations of STMs [4, 5, 6]. The

emergence of new STM algorithms has not been slowed down in the recent years, and

the support for transactional memory in new processors [7] is likely to increase the

number of STM implementations. The performance of STMs depends on several

factors such as lock acquisition time, granularity of conflict detection, the mapping of

memory addresses to the lock table, etc. Some researchers have explored design space

of STMs and proposed changing STM parameters during the run-time. For example,

Marathe et al. [8] studied lock acquisition in STMs and showed that the time at which

locks are acquired has drastic impact on scalability. While eager policy

(encounter-time locking) reduces overhead, lazy policy (commit-time locking)

provides better throughput for some multithreaded applications. Marathe et al. [8]

proposed an adaptive technique which dynamically changes lock acquisition policy in

run-time. The other example is granularity of conflict detection [9]. Felber et al. [9]

showed that performance of STMs varies with granularity of conflict detection and

non-optimum parameters can slow down some programs by a factor of three. In

addition, several STM implementations have partial roll-back ability. This ability can

keep the validated part of a transaction and just retry the in-validated part. While the

above techniques improve performance of STMs, all of them focus on execution of

STM programs during the run-time. They do not provide any guidelines for

programmers to write an efficient TM program in the first place.

4

1.2 Factors that Impact Performance of STMs

The size of a transaction has significant impact on performance. If the transaction is

too short, then the overhead of STM APIs exceeds performance gain of parallel

execution and may lead to an STM program which is slower than sequential version

of the program. On the other side, if a transaction is too large, then the cost of

roll-back in applications with high abort rate may reduce speed-up in STM

applications.

Size of transaction is not the only factor that impacts performance of STMs. The

other factors that affect execution time of transactions are read-set and write-set.

When a transaction commits, all shared variables in the read-set and the write-set need

to be checked and validated. If checking or validation fails, then the transaction needs

to abort and retry. Transactions with large read-sets and write-sets are more likely to

abort as there are more shared variables in large read-sets and write-sets which

increase the probability of validation failure.

1.2.1 Brief introduction of contribution

One way to find optimal sizes for transaction, read-set and write-set is using try and

error approach. A programmer can vary a transaction and finds out the optimal

transaction size, read-set size as well as write-set size by running the program

multiple times. This procedure is very time consuming and requires significant

programming effort. To address this challenge, we propose two optimization

techniques that automatically determine near optimal transaction size: the first

technique exploits Linear Regression (LR) [10] to predict transaction size. LR

receives parameters of a non-optimized transaction such as transaction size, read-set

size, and write-set size and predicts the optimum transaction size. While LR is simple

to implement, as we will show later, its accuracy is low. Our second optimization

technique exploits a classifier and enhances accuracy of predictions. The classifier

divides transactions into multiple groups and then uses a different LR model for each

group. We also evaluated three different classifiers: decision tree, SVM and adaboost

5

decision tree. Our evaluations show that the accuracy of decision tree is higher than

the other two as decision tree is more resilient to noisy dataset. Using a set of

benchmarks from NAS [11], DiscoPoP [12], and Stamp [18] benchmark suites, we

show that decision tree and LR together increase performance significantly.

1.3 Organization of the Thesis

The rest of this thesis is organized as follows. In chapter 2, we explain the necessary

background for our optimization techniques and review related work. Chapter 3

discusses our optimization techniques in details. Chapter 4 reports experimental

results. Finally, in chapter 5, we offer concluding remarks and future work.

6

Chapter 2

Background and Related Work

In this chapter, we review research papers that are related to this thesis. In Section 2.1,

we explain TL2 which is an STM library and is used to evaluate our optimization

techniques. In Section 2.2, we review research papers related to optimization of STMs.

In Section 2.3, we explain linear regression which is used to predict transactional

parameters. In Section 2.4, we discuss different types of classifiers that we used to

categorize STM applications. Finally, in Section 2.5, we discuss NAS benchmark

suite used in this thesis.

2.1 Transaction Locking II (TL2) [4]

TM is an optimistic approach and executes transactions speculatively. If transactions

conflict then they abort and restart. On the other side, in lock-based parallel programs,

threads conservatively acquire locks. This may serialize execution of threads

unnecessarily and hurt performance. Figure 2-1 shows three threads executing six

transactions. Executions of TX1, TX3, and TX5 overlap. These transactions can

commit if they do not conflict. However, in lock-based programs, always critical

sections are serialized. This reduces thread level parallelism and degrades

performance.

Figure 2-1: Transaction execution in STM.

In this thesis, we use TL2 [4] which is a popular implementation of software

transactional memory and is faster than parallel programs written in pthread [13] up to

6X [4]. TL2 uses a global clock and a lock table to maintain consistency of

7

transactions. The global clock is a shared counter and is incremented by committing

transactions. The lock table consists of a table of locks. Addresses of shared variables

are hashed into the table entries and each entry of the table has two fields: lock bit and

version number. The lock bit shows whether the corresponding variable is acquired or

it is free. The version number is equal to the value of the global clock at the time that

the last writing transaction successfully wrote into the corresponding variable.

When a transaction starts, it samples the value of the global clock and writes it into

a local variable called read version (RV). Each transaction in TL2 keeps a read-set and

a write-set which are linked-lists and store information related to read and written

variables, respectively. Before a transactions commits, it starts validation of its

read-set. To validate a variable, TL2 checks that lock bit of the corresponding lock

entry is free. TL2 also compares version number of corresponding lock entry with rv.

If the version number is less than or equal to RV, validation passes; otherwise,

validation fails since another transaction wrote into the same variable and committed.

After validation of read-set, TL2 processes its write-set. If a lock bit of a variable in

the write-set is free, then the transaction tries to acquire the lock bit. If lock

acquisition fails, transaction aborts and restarts. Finally, transaction re-validates its

read-set to make sure that it is not changed since last validation. Transaction can

commit only if read-set validation passes and it successfully acquires locks for its

write-set; otherwise, it aborts and restarts. Figure 2-2 shows the steps taken by a

transaction to commit.

TL2 also implements a high efficiency read-only transaction validation process.

Read-only transactions are those transactions that do not have any node in write-set.

Therefore, it is not required to acquire locks for read-only transactions. In TL2,

read-only transactions only need to do a post-validation to guarantee shared variables

are consistent. If the post-validation fails, then the transaction is abord.

8

Figure 2-2: Steps of commit in TL2.

2.2 Optimization Techniques for STMs

Despite of ease of programming, STM has its own disadvantages. For example, the

global clock is a bottleneck in STM as it is shared and modified by all writing

transactions. In addition, in the event of conflict, only one transaction can proceed and

the rest should abort. This increases program execution time and wastes processor

resources. Therefore, there have been many research papers that try to optimize

transactional memory.

yes

passed

passed

start

version #≤rv

increment global

clock

all lock bits are

free and acquired

re-validate

read-set

update memory

with write-set

update version #

abort transaction

end

no

failed

failed

9

One approach to optimize STM is to design and implement a new STM library from

scratch. An example of this approach is TinySTM [6] which is a lighter and a faster

implementation of STM than TL2. Although, this method may result in significant

improvement, it is a very time consuming process and requires a relatively high level

of knowledge on computer architecture, programming languages, etc.

The other approach is to optimize an existing implementation of transactional

memory. In this approach, a researcher only focuses on those aspects of TM that

require optimization and replaces/modifies them with new optimization techniques. In

this Section, we focus on research papers that use the latter approach.

Partial rollback is a technique to reduce overhead of aborts in STMs [14, 15, 16].

Many existing transactional memory libraries abort the whole transaction if validation

of read-set or acquisition of lock bits fails. However, sometimes, part of the aborted

transaction is still correct. If we keep those correct parts and re-execute the reset, then

we can save time theoretically.

Porfirio et al. [14] implemented the partial rollback technique in TinySTM. This

work uses snapshot extension to determine the parts that need to be aborted. The

evaluation shows that partial rollback quite often has better performance than baseline

TinySTM.

However, in some benchmarks, it increases execution time. The main reason for

slow-down is overhead. In benchmarks with high conflicts and short transactions, the

partial rollback scheme needs to check validation of shared variables whenever

conflict occurs. The execution time of partial rollback validation checking can take a

large portion of total execution time. Therefore, the amount of time saved by partial

rollback may be less than its overhead. The other reason for slow down of this

technique is related to the behaviour of some of the transactions. In some transactions,

the correct part is only a small fraction of total transaction, which means the benefit of

correct part is small. Therefore, it is hard to gain speed-up in these types of

transactions.

10

Global clock is s shared variable and is accessed by all writing transactions. This

may result in ping-pong effect [17] and severally degrade performance. To cope with

this problem, Avni et al. [17] proposed thread local clock (TLC) which replaces global

clock with lock clocks.

In TLC, each thread has a local clock which is initialized to zero and is incremented

by one at the start of every new transaction. There is also a thread local array that has

an entry per thread recording timestamp of the thread. Each lock entry has a new field

which is ID of the last writing thread. When a transaction commits it writes its thread

ID and timestamp into the associated lock.

To validate read-set, all locks corresponding to the transactional read operations are

checked to be unlocked. Then, the timestamp of each lock is checked to make sure

that it is less than the associated thread j’s entry in the thread local array. If the check

fails then thread j’s entry in the array is updated with the new timestamp.

If validation of read-set passes, TLC acquires lock bits of its write-set (similar to

TL2 [4]). Then, TLC revalidates its read-set. If committing transaction successfully

validates its read-set and acquires locks for its write-set, it increments its local clock

and uses it to update version number of lock entries corresponding to its write-set;

otherwise, it aborts and restarts.

While TLC eliminates central global clock, it increases abort rate since the new

timestamp of a committed transaction is not transferred to other transactions

immediately. Instead, other transactions notice the new timestamp when their

validations fail. As such, TLC may degrade performance despite of the fact that it

eliminates the central clock. In addition, Avni and Shavit evaluated TLC with micro

benchmarks which are not representative of real applications. In contrast, we have

evaluated our optimization techniques with the comprehensive Stamp [18] and NAS

[11] benchmark suites.

11

Both TLC and partial rollback are dynamic approaches and result in runtime

overhead. On the other side, our optimization techniques are static and do not incur

any timing overhead.

Felber et al. [9] proposed a self-tuning methodology which dynamically adjusts

concurrency level in STMs. One of the key factors in STM programs is contention.

Too many threads in a program increase contentions over shared memory locations

and hurt performance. On the other side, if concurrency level is too low, then

exploited parallelism by STM programs will be limited. The optimum number of

executing threads depends on many parameters including but not limited to pattern of

addresses generated by transactions, OS scheduler, structure of memory hierarchy, etc.

So, identifying the right level of concurrency in STMs is not a trivial task. Felber et al.

[9] used a hill-climbing algorithm to explore concurrency level space in shared

memory STMs.

One of the shortcomings of this work is response time. In some benchmarks, a

transaction commits before the dynamic approach finds the best concurrency level.

For these benchmarks, the response time is too long to result in any noticeable

speed-up. On the other side, our optimization techniques are applied before runtime.

Hence, response time is not an issue in our work.

Wang et al. [19] developed a compiler that automatically optimizes programs written

in C/C++. The compiler focuses on synchronization barriers and tries to remove those

barriers that are not necessary for correctness of parallel programs. Synchronization

barriers are used to maintain consistency but reduce the concurrency level. However,

non-experienced programmers may use a conservative approach and add redundant

synchronization barriers to guarantee correctness of parallel programs. Redundant

barriers reduce thread level parallelism and degrade performance. To remove

redundant barriers, the complier checks the dependency of transactions. There are two

situations that the compiler can remove a barrier. First, there is no dependence

between two transactions. Secondly, there is only write-after-write dependence.

12

Write-after-write dependence can be checked at commit stage of STMs and does not

require synchronization barriers. The compiler improves performance of most of

parallel benchmarks considerably. However, some benchmarks only show negligible

improvement because transactions in these benchmarks are large and quite often

conflict with each other.

To reduce contention in parallel applications, it is important to determine

dependency between variables. DiscoPoP [12] is a tool that automatically finds

parallelizable regions of a sequential code based on dependency of variables.

DiscoPoP is able to identify parallelism between code regions with arbitrary

granularity and does not require any predefined notion of language constructs.

DiscoPoP identifies sections of the code in which data dependency does not exist.

These sections are called Computational Units (CUs). Then, the tool builds a

dependency graph using CUs. Nodes of the graph represent CUs and edges represent

dependency between CUs. From the dependency graph, DiscoPoP determines

potential parallelism available on varying levels of the code. The output of the

DiscoPoP is a file that indicates which lines of the sequential code can be grouped as

a task and run concurrently with others. We used the set of benchmarks introduced in

DiscoPoP for evaluation of our optimization techniques.

As mentioned earlier, one of the sources of overhead in STMs is contention. Rito et

al. [20] proposed Progressively Pessimistic scheduler (ProPS) which is a scheduler for

reducing contentions in STMs. ProPS exploits a matrix to indicate the concurrency

level (CL). The rows and columns of this matrix are atomic operations. indicates

how many transactions executing atomic operations of type i may execute

concurrently with one transaction executing atomic operation of type j. The scheduler

adjusts the values in the matrix based on abort rate. If the scheduler notices that

transactions frequently have conflicts, the scheduler decreases the corresponding

values of the matrix. This scheduler uses the matrix to speculate conflict among

executing transactions. The scheduler gives high priority to those threads which have

13

high values in the matrix. On the other side, the scheduler temporarily stalls or blocks

those transactions that have low concurrency values in the matrix. The main benefit of

ProPs is low overhead as it uses a matrix to maintain record of contentions in STM

programs. As such, the response time of ProPs is low. However, simple and quick

control function of this scheduler has a disappointing accuracy rate. In some

benchmarks, the performance of STM with this scheduler is worse than the baseline

STM. There are different sources that cause conflicts. For each source, we need to use

an appropriate technique to adjust concurrency level. Blindly increasing or decreasing

values in the matrix may lead to low accuracy rate. This can be explained through an

example. Assume that a TM program has two threads: A and B. Thread A has three

transactions and thread B has only one transaction. The first and third transactions in

A conflict with the transaction in B but the second transaction in A has no conflict

with the transaction in B. If we use ProPs in this example, the concurrency level is

decreased after first conflict. Then, the second transaction will be blocked because of

low concurrency level in the matrix. Finally, ProPs will increase concurrency level

because the second transaction actually has no conflict, which leads to the third

transaction in thread A conflict with the transaction in B. The accuracy rate in this

example is 0. Our work is different as we use a static approach and optimize STM

programs before the runtime.

Unlike ProPs, some research papers focused on scheduler using mathematical

methods to reduce conflicts in STMs. Yoo et al. [21] proposed adaptive transaction

scheduling (ATS) to adjust concurrency level. ATS uses equation 2-1 to quantify

contention intensity:

CIn=α × CIn-1 + (1-α) × CC (2-1)

Where CIn is contention intensity in n
th

 execution of a transaction in a thread, CC is

current contention, and α is weight variable. This equation is evaluated whenever a

transaction commits or aborts. If a transaction commits CC is set to 0; otherwise, it is

set to 1. Weight variable determines which part of the equation is more important, the

past history or the current contention. Yoo and Lee [21] measured execution time

14

under different values for α and threshold and found that α = 0.3 and threshold = 0.5

result in the best average performance.

The scheduler uses a decentralized contention manager, which means each thread

manages its own contention, locally. Before a TX starts, ATS uses equation 2-1 to

determine CI. If CI is more than the threshold, ATS inserts the TX into a centralized

queue. The structure of the queue is first-in-first-out (FIFO). ATS only allows the TX

in the head of the queue to execute, effectively serializing transactions with high CI.

Mathias et al. [22] proposed a dynamic approach to tune important STM parameters

such as different write strategies, hash-function for local write-set, etc. STM library

samples some metrics such as the number of unique read and write locations, the

number of aborts and commits, and the quality of hash functions to decide on STM

parameters.

There are two approaches for adaptivity: local and global. In global adaptivity, STM

parameters are changed for all running transactions. On the other side, in local

adaptivity, STM parameters are changed on a per-thread basis. The main advantage of

local adaptivity over global adaptivity is that every thread decides on STM parameters

locally. This prevents costly synchronization operations among the executing threads.

On the other side, global adaptivity is a bottleneck for scalability as it requires all

threads in a TM program to be synchronized to change STM parameters. The

disadvantage of local adaptivity is that global STM parameters such as hash function

for lock table cannot be changed locally. This limits effectiveness of local adaptivity.

To exploit the better of the two, Mathias et al. [22] used a hybrid scheme to change

STM parameters. Evaluations with STAMP benchmarks reveal that the hybrid

approach improves performance of the benchmarks by 10% on average

Our work is different from [21] and [22] as we optimize STM programs before the

runtime. Our approach focuses on source code of STM programs and decides on some

STM parameters such as TX size, read-set size, etc.

15

In conclusion, there are two common ways to optimize software transactional

memory: optimizing the library of transactional memory and optimizing the source

code of transactional memory programs. In this thesis, we focus on the latter

technique and propose optimization techniques that require adjustments in the source

code of the programs and not the STM libraries.

To optimize static parameters, we need to change the source code of programs.

Generally speaking, many parameters such as size of transaction, read-set size, and

write-set size can impact performance. We should not only consider the impact of

individual parameters on performance. We also need to take into account the

performance impact of these parameters together as some of these parameters are

correlated.

One of the challenges of a static optimization technique is that it needs to explore a

large space. The parameters that we focus on are continuous variables and so there are

many combinations of those variable values that make it impossible to test them all

manually. We need a tool that tests STM parameters and automatically optimizes

STM programs.

One method to evaluate the impact of STM parameters is using a set of benchmarks.

Application-based benchmarks are useful programs that help STM designers to

explore design space of STMs. However, they have a limited ability to isolate the

effect of each parameter on the overall performance. For example, an application’s

read-set size is often tied to the size of its transactions, but these two parameters may

be completely orthogonal in terms of how they affect the system performance. To

quantify the impact of STM parameters on performance, we need an evaluation

framework which is able to isolate the impact of each parameter on performance.

EigenBench [23] is a micro-benchmark which can be used to fully evaluate STM

systems. EigenBench decouples STM characteristics and enables programmers to

vary each of those characteristics, independently. The characteristics considered in

EigenBench are:

16

1. Concurrency: number of threads

2. Working-set size: size of read-set and write-set

3. Transaction length: size of transaction

4. Pollution: the percentage of shared write variables

5. Contention: the rate of conflicts

6. Temporal locality: probability of repeated addresses

7. Predominance: fraction of shared access cycles to total execution cycles

8. Density: the percentage of non-shared cycles executed outside of transactions

In this thesis, we consider only the first five parameters as the last three rely on

memory access latency and processor cycles and so are not appropriate for a static

optimization technique.

In EigenBench [23], a programmer can adjust 21 parameters such as number of

threads, number of transactions per thread, etc. to change each of the eight character

tics. Then, EigenBench [23] generates a program based on the selected values of the

parameters. The program can be used to evaluate performance of one or more of those

characteristics simultaneously.

We use EigenBench to evaluate the impact of transaction size, read-set size, etc on

performance. Based on those evaluations, we can find the optimum values of

transactional parameters. Then, we change source code of TM benchmarks based on

the optimum values to gain speed-up. We will discuss details of our optimization

technique in chapter 3.

Some research studies used neural network to optimize STMs. Neural network

provides the ability to approximate different types of functions including functions

with continuous variables. Inspired by the human brains, a neural network consists of

a set of interconnected neurons which cooperate to compute a specific function.

Neurons are the processing elements of a neural network and each neuron has a

17

simple function. In a neural network, each link is associated with a weight. The

weight of a link determines the influence of neurons in a level on the next level

neurons.

Rughetti et al. [27] proposed a self-adjusting concurrency scheme for STMs based

on neural network. This self-adjusting concurrency scheme can activate or block

threads to increase thread level parallelism and reduce data conflicts. This scheme has

three parts: a collector, a neural network, and a controller. The collector monitors an

application and collects a set of values characterizing the application. The set of

values are passed to the controller after a sampling interval. The neural network

receives the set of values from the controller and predicts the average wasted

transaction execution time spent by the application. Then, the controller adjusts

concurrency level according to prediction made by the neural network. The collector

collects three parameters from a benchmark:

1. size of read-set

2. size of write-set

3. execution time of successfully committed transactions

4. execution time of non-transactional parts

Neural network in this scheme is a three layers radial basis function network. The first

layer receives input parameters. The second layer calculates wasted time and sends it

to the third layer which is output layer.

Rughetti et al. compared the neural network-based concurrency control scheme

with TinySTM [6]. The performance of the baseline TinySTM is an increasing

function of the number of thread. However, after certain point, it degrades due to data

conflicts. On the other side, the performance of the enhanced scheme does not

degrade as it adjusts number of threads to avoid data conflicts when the number of

threads increases.

18

The main disadvantage of neural network is that there is no clear guideline for the

structure of the neural network such as the number of layers, the weight of each

connection, and the number of neurons in each layer. Each neural network should be

built based on an application and there is no clear rule that we can follow. Unlike

neural network, regression [10] is a statistical technique and has a clear approach to

build regression model.

2.3 Linear Regression

Linear Regression (LR) is a mathematical equation which relates a response

variable to a set of input parameters for a given design space [10]. LR is widely used

to predict the response variable at an arbitrary point in the design space. Equation 2-2

shows a simple model for LR:

 (2-2)

Where y is response variable, xi is an input parameter, B0 is the intercept of the fit

with the y-axis, and is the error of LR model. Bi (0<i) is coefficient and represents

the expected change in y per unit change in xi. LR uses least square method to find the

best-fitting curve to a set of test points. In this method, coefficients are calculated so

that the sum of square of the errors for the test points (error of a test point is the

distance of the point from the fitting curve) is minimized. While LR exploits a simple

model for prediction, it shows excellent results in many applications [28, 29, 30] and

is able to predict the response variable with high accuracy.

Dong et al. [28] used linear regression to predict age of article writers. The linear

regression model is based on the frequency of words in articles. Training and testing

of datasets are from three corpora and forums: blog, fishing, and cancer. Dong et al.

[28] selected articles from those corpora and calculate important features such as

textual features and gender. Frequency of words varies from one corpus to the other.

For example, people in fishing forum rarely talk about cancer while the word "cancer"

is top high-frequency word in cancer forum. Therefore, it is important to distinguish

19

corpus-specific textual features. In addition, some features are commonly used in the

three corpus such as "with", "and", "hence", etc. Dong et al. [28] built four types of

regression models to predict age of an author:

1) A model trained by corpus-specific features individually

2) A model trained by all the three corpus-specific features

3) A model only trained by global features

4) A model trained by global features and individual corpus-specific features.

For prediction, the regression model analyzes a test article and measures the

features. Then, the four models predict age of the article writer. The purpose of using

four models for prediction is to find out which model has the highest accuracy. The

evaluation shows that the correlation rate can reach up to 75% and error of prediction

is 4.1 to 6.8 years. The model trained by all corpus-specific features has better

performance than individual models and the model which only uses global features

has the worst performance.

 Google Inc. published [29] regression models to predict box office sales. The

model inputs are based on phrases that clients search through Google search engine.

The first model uses search volume to predict weekend box office sale. The accuracy

of this model is 70%. The second model takes into account some extra factors such as

number of theaters and franchise status to boost the accuracy rate to 92%. The third

model is used to predict box office sales four weeks ahead. The accuracy of this

model is 94%.

2.4 The Choice of a Classifier

A TM program is composed of a variety of transactions. These transactions vary in

terms of TX size, read-set size, etc. Using a single linear regression model to predict

parameters of all transaction types reduces accuracy (details will be discussed in

chapter 3). The alternative approach is using multiple linear regression models. Each

20

model corresponds to a specific transaction type. To select which model should be

used for a given TX, we need to use a classifier such as decision tree.

Classification is the task of assigning objects to a set of predefined categories.

Decision tree [31] is a popular approach for classification. Originally, decision tree

was used in the field of statistics. However, soon it found to be effective in many

other disciplines such as machine learning, image processing, etc. A decision tree

classifies an input object through a set of functions organized in a hieratical manner

and represented by a tree. A tree has three types of nodes: root, internal, and leaf [31].

An internal node splits the objects into two categories according to a test function.

The inputs to the function are attributes of the object and the output of the function is

a binary value: 0 or 1. A leaf represents a category. Objects are classified by

navigating them from the root down to the leaves, based on the output of the test

functions along the path. There are many open source implementations of decision

tree such as ID3 [25] and C4.5 [26].

Kemal et al. [32] proposed a hybrid intelligent method to improve classification

accuracy for multi-class classification problems. The hybrid method is based on C4.5

decision tree and is evaluated using three multi-class problems: dermatology, image

segmentation, and lymphography datasets. The accuracy of C4.5 for the three

problems is 84%, 88%, and 80%, respectively. In Dermatology and lymphography,

medical sciences overlap while in image segmentation, graphics overlap. Using single

classifier, the overlaps create mutual interferences during the training and reduce

accuracy. On the other side, the hybrid approach avoids overlaps and improves

accuracy to 96%, 95%, and 87% in the three multi-class problems, respectively.

Support vector machine (SVM) is a machine learning method which is used to

classify a set of data. SVM builds a model based on training data which can be used to

classify test data. Similar to decision tree, SVM is a binary predictor and classifies

objects into two categories.

21

SVM creates a hyperplane based on training data for classification. Figure 2-3

shows an example for SVM. There are two classes in the 2D-coordinate. There are

many lines that separate the two classes. If a line is too close to an element, then the

line is sensitive to noisy data. Therefore, the best line is the one which has the largest

distance to the nearest training-data point of any class. Using a set of mathematical

equations, SVM determines the hyperplane [33].

Figure 2-3: Two classes in a 2D-coordinate.

A natural advantage of decision tree is that it is simple to understand. Decision tree

is similar to a white box that the decisions can be read and understood by human

while SVM is similar to a black box model which is hard to understand and interpret

as it relies on complicated mathematical equations. The other advantage of decision

tree is that it is able to select only those features that correlate with the output and

filter out irrelevant features. Furthermore, decision tree is insensitive to the noise

when the training dataset is large because the large number of training datasets can

dilute the influence of noise.

The other benefit of decision tree over SVM is related to scale problem. In machine

learning, large values can mislead the training process because sometimes, large

values can dominate small values. The good aspect of decision tree is that it does not

suffer from scale problem. However, SVM which depends on mathematical equations

need to deal with the scale problem. Last but not least, in both decision tree and SVM,

22

no linear relationship is required among features and output. On the other side, some

techniques such as linear regression require linear relationship between features.

However, decision tree has its own disadvantages. The first one is that training

dataset should be large; otherwise, it may lead to high error rate. Secondly, since each

node in decision tree can have up to two children nodes, the size of the tree grows

exponentially if we increase the number of decisions. On the other side, SVM can

classify test data with high accuracy using a small set of training data.

In conclusion, decision tree is easy to understand and is suitable for applications

with a few decision situations and with large amount of training dataset, whereas,

SVM is suitable for medium sized training dataset.

Adaptive boosting (Adaboost) [34] is a machine learning technique which boosts

performance of decision tree. Each sample in a machine learning technique may

contain a large number of features. If we train the decision tree or SVM by all those

features, the speed of training might be too low. Also, this may reduce the accuracy

rate because of Hughes Effect [34]. Unlike basic decision tree or SVM, adaboost

selects those features which improve the performance of predictions.

Adaboost iteratively trains classifiers using input datasets. Adaboost associates

weights to inputs. The weight of those inputs that are misclassified is increased in

each iteration. This biases classifiers towards correcting misclassified inputs in future

iterations. The final result is an ensemble of instances of hard to classify inputs, each

with its own weight. During the testing, unseen instances are classified using a

weighted combination of weak classifiers.

Zhen et al. [35] used decision tree, SVM, and adaboost to select parallelizable

sections of a sequential code. The inputs to the machine learning techniques are

features of a snippet of a code and the output is a binary value: whether the snippet is

parallelizable or not.

During the evaluation, the authors used two methods for training and testing. In the

first method, all 16 features are used. The results show that adaboost has the best

23

performance which is 92%. The accuracy of decision tree and SVM is the same and is

equal to 85%. In the second method, only top features with an importance score of

0.08 or greater are used. Accuracy of adaboost, decision tree, and SVM is 91%, 90%,

and 89%, respectively.

 Zhen et al. [35] concluded that the most important feature which increases

accuracy is number of instructions whereas execution time is not a top feature. Among

the three prediction methods, adaboost is more accurate than decision tree and SVM.

The accuracy of decision tree and SVM increases when the numbers of features is

narrowed down. Therefore, blindly increasing the number of features not only does

not increase accuracy but also may reduce it.

Freund et al. [36] proposed an alternating decision tree based on adaboost decision

tree. This alternating decision tree only focuses on binary decisions. An internal node

in decision tree splits the objects into two categories according to a test function.

Unlike the baseline decision tree, alternating decision tree [36] has two types of

internal nodes: splitter nodes and prediction nodes. Splitter nodes have the same

function as internal nodes of the baseline decision tree. They make decision according

to a test function. Each prediction node is associated with a value. The leaf nodes in

the baseline decision tree are used to make decision, whereas in the alternating

decision tree, the final decision is the sum of all passed values of prediction nodes.

Compared with the baseline adaboost decision tree, adaboost alternating tree is

more flexible. Each node in the baseline decision tree can split at most once but

alternating tree does not have this restriction. Freund et al. [36] used Cleve dataset to

evaluate adaboost alternating tree and showed that adaboost alternating tree requires

only 6 nodes to represent Cleve dataset whereas the baseline decision tree requires

446 nodes. In addition, in the baseline decision tree, if we need to add new decisions,

then we can only add them to the leaf nodes or rebuild the whole decision tree.

However, in adaboost alternating tree, we can add new decisions to anywhere and

only adjust the value of each node. Compared with the baseline decision tree model,

24

this paper [36] shows that the accuracy rate of adaboost alternating decision tree is 15%

higher than the baseline decision tree.

2.5 NAS Benchmark Suite

To evaluate an STM system, researchers rely on a set of benchmarks. If the set of the

benchmarks are selected from a specific field, then the outcome of the research is not

reliable. To be able to extend the outcome of a research project to the real world

applications, we need a set of comprehensive benchmarks that truly represent real

world applications. Asanovic et al. [37] proposed 13 Dwarfs as a guideline to develop

benchmark suites for parallel applications. A dwarf is a high level abstraction which

categorizes applications based on patterns of computation and communication.

Programs that belong to a pattern may have different implementations, but the

underlying patterns do not change through different implementations. Their work is

based on 7 dwarfs proposed by Phil Colella [38] who identified seven numerical

methods which are important for science and engineering. Asanovic et al. [37] have

examined different application domains, i.e. machine learning, computer games, etc

and expanded the primary seven dwarfs to 13. Asanovic et al. [37] showed that NAS

benchmark suite [11] includes all those dwarfs and so in this work, we use NAS

benchmark suite to evaluate our optimization techniques.

25

Chapter 3

Static Optimization of Transactional Parameters

In this chapter, we focus on contributions of this thesis. In section 3.1, we explain how

system APIs and the choice of programming style impact STM programs. In section

3.2, we describe parameters that impact performance of STMs. In section 3.3, we show

how linear regression predicts a set of static parameters to improve performance. In

section 3.4, we focus on classifiers and show how a classifier can assign an appropriate

LR model to a benchmark. In section 3.5, we explain how a combination of linear

regression and decision tree enhances performance of STM applications and finally, in

section 3.6, we evaluate our optimization techniques for two and four threads.

3.1 System APIs and Programming Style in STMs

3.1.1 System APIs

In an STM program, the parallel parts are implemented in transactions. Although

programmers do not need to worry about deadlock, live-lock, and other

synchronization bugs, they still may get discouraged by performance of STMs.

In chapter 2, we discussed some parameters that impact performance of STMs.

Long transactions may lead to high overhead when they abort and large write-sets and

read-sets may cause high contentions. Therefore, if programmers are not careful about

transaction, read-set, and write-set sizes, they can generate programs with inefficient

structures leading to unacceptable performance.

To evaluate the impact of STM parameter on performance, we use DP benchmark

suite [12]. DP is a set of sequential programs used to evaluate DiscoPoP (Section 2.2).

DP is composed of 6 benchmarks:

 Histo_serial: It uses random numbers to generate histograms.

 Combined_ctrl_regions: This is a simulation of a controller to randomly mix

colors based on three-primary colors.

 Ann_training: This benchmark is an implementation of neural network training

26

algorithm.

 Mandelbrot: This benchmark draws a picture of Mandelbrot set.

 Mc_light: This benchmark simulates the propagation of light using Monte

Carlo approach.

 Mont: It is used to draw random curve.

DiscoPoP detects parallelizable sections of a sequential code and transforms the

sequential code to a parallel code based on pthread library [13]. We converted the

pthread codes generated by DiscoPoP to STM programs. The conversion is

straightforward and requires replacement of pthread APIs with STM APIs.

Lock/unlock in pthread is replaced by TM_BEGIN/TM_END and access to a shared

variables in pthread is replaced by TM_SHARED_READ/TM_SHARED_WRITE.

In this thesis, we use two Intel Xeon E5660 processors to evaluate our optimization

techniques. Each processor has six cores and is capable of running up to 12 threads

simultaneously. Each processor has a 12MB shared L3 cache with 64B cache lines.

Each core has a 32KB instruction cache and a 32KB data cache.

 Figure 3-1 shows performance of STM relative to sequential programs in DP

benchmark suite. Bars less than one show slow-down. For each benchmark, the

number of threads varies from two to 8. While STM improves performance of some

benchmarks such as mandelbrot, in some others, it degrades performance. In mont,

execution time increases by a factor of 2 when the number of threads is 8.

Figure 3-1: Performance of DP benchmarks in STM relative to sequential code. Bars

less than one show slow down.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

sp
e

e
d

u
p

 c
o

m
p

ar
e

d
 w

it
h

se

q
u

e
n

ti
al

 c
o

d
e

(r
at

io
)

2 threads

4 threads

8 threads

27

To scrutinize why STM degrades performance of some of the benchmarks, we focus

on histo_serial benchmark. There are 4 transactions in this benchmark. We use

gettimeoftheday() function to measure execution time of each transaction. Table 3-1

reports execution time per transaction. The first column indicates the transaction

number. Other columns show execution time of transactions when the number of

threads changes from 2 to 8. Execution time is averaged over 10 runs and is reported

in Table 3-1.

Table 3-1: Execution time (in second) per transaction in histo_serial benchmark.

Transaction # 2 threads 4 threads 8 threads

1 5.87 9.64 14.96

2 0.07 0.04 0.04

3 0.29 0.22 0.17

4 3.11 5.94 5.79

From table 3-1, we observe that execution time of the first and the fourth

transactions dominate the total execution time. Figures 3-2 and 3-3 show the code

snippets of the first and the fourth transactions, respectively.

TM_BEGIN();

 for(i=lowIndex;i<highIndex;i++)

 {

 if(i<50)

 data[i]=(rand()%range_max)-range_min;

 }

TM_END();

Figure 3-2: The code snippet of the first transaction in histo_serial.

28

The two transactions are small but they call external functions. The first transaction

calls rand() to generate random values. This function is a system call function and is

implemented in operating system (OS). The seed of this function is time which is

provided by OS. When a system API is invoked, OS needs to fall into kernel mode. To

do so, OS first stores context of current user process into memory and then switches

to system API. This procedure is called context switching. If system call happens only

once, the overhead of context switching is small. However, rand() in histo_serial

benchmark is called 50 times in each transaction. This is the main reason that STM

degrades performance of the first transaction.

To eliminate the overhead of system call, we wrote a pseudo-random number

generator function and use it instead of rand(). The seed of this pseudo-random

number generator is the number of loop iterations and a local snapshot of the global

clock. This function keeps a dataset which stores a large number of values. Based on

the seed, this function selects a value from the dataset. All the process is done by local

statements to avoid context switching. Figure 3-4 shows execution time of the

optimized histo_serial benchmark. In figure 3-4, rand() means the original version of

histo_serial benchmark and no_rand() means the optimized version. Y-axis is

execution time in second.

TM_BEGIN();

for(k=1;k<20;k++){

/........

/........

TM_SHARED_WRITE_F(rhs[k], t);

}

TM_END();

Figure 3-3: The code snippet of the fourth transaction in histo_serial.

29

Figure 3-4: Execution time of histo_serial benchmark with rand() and without rand().

This graph strongly proves our assumption. When using a local function, the

speed-up is dramatically increased compared with rand() function. Therefore, in STM

programs, we should avoid using external functions which can cause context

switching.

The fourth transaction in histo_serial benchmark uses printf() function within a

loop. This function is a standard IO function in C programming language. When a

thread calls this function, system prints formatted data to a standard output which is

usually a console or a terminal. This IO function generates a software interrupt. When

OS receives an IO request through a software interrupt, it uses a system API to send

output stream to a console or a terminal. At the same time, the calling thread is

blocked until this IO process is finished. Essentially, printf() function is similar to

rand() function and causes context switching.

Figure 3-5 compares performance of optimized and original histo_serial. In the

optimized version, printf()function is removed. Y-axis is execution time in second.

Performance of the optimized version is improved up to 30X.

0

5

10

15

20

25

30

35

2 threads 4 threads 8 threads 16 threads

Ex
e

cu
ti

o
n

 t
im

e
(s

e
c.

)

rand()

no_rand()

30

Figure 3-5: Execution time of optimized and original histo_serial.

We also investigate the other two benchmarks for slow-down: mont and mc_light.

The problem in these two benchmarks is rand() function as well. After replacing

rand() with pseudo-random number generator, performance of optimized benchmarks

is improved dramatically. Table 3-2 exhibits the results. The numbers in the table are

execution time in second.

Table 3-2: Execution time of each transaction in histo_serial benchmark.

Benchmark 2 threads 4 threads 8 threads

mont 21.26 33.56 45.21

mont_optimized 1.05 1.13 1.26

mc_light 2.12 7.39 16.54

mc_light_optimized 1.77 1.49 1.03

In a nutshell, context switching can dramatically decrease performance of STM

programs and so should be avoided. Unfortunately, an optimizing compiler might not

be able to remove them all because removing system calls may compromise

correctness of programs. Therefore, what we can do is to notify programmers about

potential context switching in transactions. Then, they can remove context switching

by restructuring their programs.

3.1.2 Programming Style in STMs

In addition to context switching, coding style also affects the performance of STM

programs. One of the popular data structures used in programs is array. Programs

access elements of an array through indexing. If transactions of a STM program

0

5

10

15

20

25

30

35

2 threads 4 threads 8 threads 16 threads

Ex
e

cu
ti

o
n

 t
im

e
(s

e
c.

)

original

optimized

31

access disjoint indexes of an array, then there is no conflict over the array. This can

reduce overhead of the STM program as transactions do not need to call STM APIs

such is STM_SHARED_READ and STM_SHARED_WRITE to access the array

elements.

Figure 3-6A shows a sequential program that accesses an array in a loop. In each

iteration, an element of the array is changed. Figure 3-5B shows STM version of the

sequential program. Each transaction accesses a non-overlapping portion of the array.

So, there is no need to use TM_SHARED_WRITE to access the array. However, an

inexperienced programmer may consider this array as a shared variable and use STM

APIs to guarantee consistency of the array.

Three benchmarks in DP have structures similar to Figure 3-6a. The three

benchmarks are: histo_serial, Mandelbrot, and ann_training. Figure 3-7 shows

performance of optimized version relative to naïve version. Bars more than one show

speed-up in the optimized version. The optimized benchmarks demonstrate

performance improvement from 7% to 13%.

for(j = 0; j<x; j++){

 counter[j]=3+j;

}

int numthread=getThreadNum();

int myId=getThreadId();

int low=(x*myId)/ numthread;

int high=(x*(myId+1))/ numthread;

TM_BEGIN();

for(j = low; j<high; j++){

ct=3+j;

TM_SHARED_WRITE(counter[j],ct);

 }

TM_END();

A B

Figure 3-6: A) A sequential program accesses an array. B) STM version of the program.

32

Figure 3-7: Performance of optimized and naively parallelized benchmarks.

3.2 Sensitivity of STM Programs to Static Parameters

NAS benchmark suite is a comprehensive set of benchmarks and covers a wide range

of features of real world applications (Section 2.5). NAS benchmarks are designed

using OpenMP library [39]. To convert NAS benchmarks into STM benchmarks, we

replace critical sections in NAS with transactions. Figure 3-8 shows performance of

STM version of NAS relative to the sequential version. Bars more than one show

speed-up in STM version. Only two benchmarks are faster than the sequential version

and others are all slower. On average, STM reduces performance by 43.8%, 57.5%,

and 59.1%, when the number of threads is 2, 4, and 8 respectively.

We investigated the cause of slow-down in these benchmarks. In BT, MG, and FT,

there are many large transactions which abort frequently. On the other side, IS is

dominated by small transactions. The downside of small transactions is that overhead

of STM APIs exceeds performance gain due to parallelism.

0

2

4

6

8

10

12

naïve version optimized

Ex
e

cu
ti

o
n

 t
im

e
(s

e
c.

)
ann_training

mandelbrot

histo_serial

33

Figure 3-8: Speed-up in STM relative to sequential version of NAS benchmarks. The

number of threads varies from two to 8.

In the next section, we focus on transaction size and explain how changing

transaction size can improve performance of NAS benchmarks.

3.2.1 Transaction Size

Performance of STM programs varies with transaction size. Speed-up in a short

transaction is limited since overhead of STM is high relative to the size of the

transaction. On the other side, a long transaction may increase abort rate as a large

number of instructions in a transaction may increase the window during which

transactions are identified as competitors. So, to boost performance of STM programs,

we should merge small transactions to reduce overhead of APIs. On the other side, we

should split a large transaction into a number of small transactions to reduce abort rate

and improve performance.

One way to measure transaction size is to count the number of C code lines in

transactions. However, execution time of C programs changes from one line to the

other by a large margin. We need a fine granularity metric for transaction size. Since

0

0.2

0.4

0.6

0.8

1

1.2

1.4

LU BT CG EP IS MG FT

Sp
e

e
d

u
p

 c
o

m
p

ar
e

d
 w

it
h

 s
e

q
u

e
n

ti
al

 c
o

d
e

(h
ig

h
e

r
th

an
 o

n
e

 m
e

an
s

b
e

tt
e

r)
(r

at
io

)

2

4

8

34

all C codes are compiled to assembly instructions, we use number of assembly

instructions to measure transaction size.

To evaluate the impact of transaction size on performance, we use EigenBench [23]

(Section 2.2). This micro-benchmark enables us to explore design space of STMs by

orthogonally changing different transactional parameters. Unless otherwise specified,

we use the parameters tabulated in Table 3-3 in our experiments.

Table 3-3: EigenBench parameters.

parameter value parameter value

Thread number 2-8 Predominance 1.00

Temporal locality 0 Pollution 0.1

Working set size 256KB/thread Density 1.0

In EigenBench, we can control the number of instructions per transaction through

loop iterations. The micro-benchmark has a loop and the body of the loop is

composed of three small loops. The number of iterations of the outer loop varies from

10 to 600. To measure the number of assembly instructions, we used gcc 4.8.1 to

disassemble the C code.

Figure 3-9 shows performance of EigenBench when the number of instructions per

transaction changes. We compare performance of STM version with sequential

version. The number of threads varies from two to eight. We averaged execution time

of the micro-benchmark over 10 runs.

Depending on the number of threads, the optimum transaction size changes. With 8

threads, the speed-up increases at the beginning rapidly, reaches to a maximum for

6784 assembly instructions, and then starts decreasing. When the number of threads is

4, the trend is totally different. The speed-up increases slightly at the beginning but

steadily decrease when the number of assembly instructions exceeds 1696. The trend

for 2 threads is almost the same as 4 threads. However, the highest speed-up for 2

threads is less and is around 1.

35

Figure 3-9: Speed-up when transaction size changes. The number of threads varies from

two to eight.

Based on Figure 3-9, we can optimize STM programs. If a transaction is larger than

the optimum size, then it should be broken into smaller transactions. On the other side,

if a transaction is smaller than the optimum size, then it should be merged into other

transactions. Figure 3-10 shows how to change size of a transaction. This is a code

snippet taken from BT benchmark which is in NAS benchmark suite. Size of

transaction is the number of assembly instructions between TM_BEGIN() and

TM_END(). Therefore, to change transaction size, we can move TM_BEGIN() and

TM_END() into appropriate locations. It is important to note that to guarantee

correctness of the program, TM_SHARED_READ() and TM_SHARED_WRITE()

must be between TM_BEGIN() and TM_END().

0

0.5

1

1.5

2

2.5

3

Sp
e

e
d

u
p

 c
o

m
p

ar
e

d
 w

it
h

 s
e

q
u

e
n

ti
al

 c
o

d
e

(r
at

io
)

Transaction size(number of assembly instructions)

8 threads

4 threads

2 thraeads

36

Based on Figure 3-9, the optimum transaction size when the number of threads is

eight is 6784. However, in real applications, it is not always possible to change STM

codes so that all transactions are optimum. For example, in Figure 3-10, transaction

size is 5576. Since there is no other transaction in the code to merge with, the

transaction cannot be changed to an optimum transaction.

We use the following two rules to optimize transaction size:

1. If a transaction is only 10% smaller or larger than 6784 assembly instructions,

then we do not change the transaction.

2. We try to keep size of transactions between 3392 and 10176. If it is not

possible, we refer to Figure 3-9 to determine the optimum size.

Figure 3-11 reports speed-up in optimized version of NAS benchmarks. Optimizing

transaction size has dramatic impact on performance. For example, in BT,

performance increases up to 9.3X. On average, changing transaction size improves

performance by 77.7%, 88.4%, and 89.1% when the number of threads is 2, 4, and 8

respectively.

Figure 3-10: A code snippet taken from BT benchmark.

TM_BEGIN();

for(k=1;…;k++)

for(j=1;…;j++)

rhs_t=(double)TM_SHARED_READ_F(rhs[k][j][i][0]);

for(i=1;i<= grid_point[0]-2;i++){

 ui=rhs_t+dx1*tx1*(up1+us1-um1);

 rhs_t=ui*tx2-u[k][j][i][1];

 }

TM_SHARED_WRITE_F(rhs[k][j][i][0],rhs_t);

TM_END();

37

Figure 3-11: Speed-up in NAS benchmark suite when size of transaction is optimized.

There is an interesting phenomenon that IS still shows slowdown compared with

sequential code. This is because of small transactions in IS. In IS benchmark, all the

transactions are smaller than the optimum size. Furthermore, there are many

non-transactional instructions between two consecutive transactions. Therefore, it is

not possible to combine small transactions in this benchmark. So, in IS, the overhead

of transactions (validation of read-set, lock acquisition, etc.) exceeds performance

gain of parallelism and results in slow-down in this benchmark.

3.2.2 Size of Write-Set

TL2 uses write-set to record transactional write operations. The write-set is

implemented through linked-list. When a transaction writes into a shared memory

location, it inserts a new node to the linked-list. Each variable in the write-set is

associated with a lock bit. In commit, the transaction traverses the linked-list to

acquire locks and update memory with new transactional data.

Write-set is overhead of STMs as it does not exist in sequential programs. If a

transaction fails to acquire a lock, then it aborts and restarts. So, a transaction with a

0

1

2

3

4

5

6

7

LU BT CG EP IS MG FT

Sp
e

e
d

u
p

(h
ig

h
e

r
th

an
 o

n
e

 m
e

an
s

b
e

tt
e

r)
(r

at
io

)

2

4

8

38

large write-set is more likely to abort. However, if we restrict transactions to have

only small write-sets, then we need to split transactions into too many short

transactions. This increases overhead of STM APIs relative to the performance gains

of concurrent transactions and limits speed-up.

Similar to transaction size, we use EigenBench to evaluate the impact of write-set

size on performance. EigenBench is not directly designed for evaluation of write-set

size. The only parameter in EigenBench which affects write-set is pollution. Pollution

is defined as the fraction of transactional writes. EigenBench keeps a fixed size

transaction and increases or decreases the size of write-set to change the fraction of

transactional writes. This is not what we require for evaluation of write-set size.

Write-set is a linked-list which stores shared variables. So, it is not feasible to adjust

size of write-set in a workload without changing the total number of memory

locations accessed in the workload. If we increase or decrease the size of write-set

through pollution, we may change the data structure of the workload.

The only way to optimize write-set is to split the transactions. Therefore, we created

a new function based on pollution in EigenBench. The body of the function has a

transaction with a large write-set. To change write-set size, we split the transaction

into a number of small transactions. By measuring execution time of the function, we

can evaluate the impact of write-set size on performance. Figure 3-12 shows the

results.

Speed-up is lower for small and large write-sets. For small write-sets, the overhead

of STM is higher than performance gain. In large data sets, there are more shared

variables to check at commit stage. Therefore, the probability of conflicts increases.

In Figure 3-12, speed-up increases with the number of threads. This is mainly due

to contention. A program with large number of threads has more conflicts, leading to

higher probability to abort. This increases the impact of write-set optimization on

performance.

39

Figure 3-12: Performance of parallel EigenBench when write-set size changes.

 Based on Figure 3-12, we optimized write-set of NAS benchmarks (Figure 3-13).

Although the speed-up is not as high as optimized transaction size, it is still

considerable. Optimizing write-set enhances performance up to 4.7X. The only

benchmark which shows slowdown is IS. As we mentioned before, IS benchmark is

composed of small transactions with many non-transactional instructions between

them. This makes it impossible to create large transactions out of small ones.

Figure 3-13: Speed-up in NAS benchmarks when write-set is optimized.

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

1 8 16 32 64 128 256

Sp
e

e
d

u
p

(r
at

io
)

Write set size

2 threads

4 threads

8 threads

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

LU BT CG EP IS MG FT

Sp
e

e
d

u
p

 c
o

m
p

ae
rd

 w
it

h
 s

e
q

u
e

n
ti

al

co
d

e
(r

at
io

)

2

4

8

40

3.2.3 Size of Read-Set

Read-set in TL2 is used to store shared variables that are read by transactions. Since

shared variables that are read by a transaction might be written by others, it is

necessary to validate read-set in commit to guarantee atomicity of transactions. If

validation fails then the transaction needs to abort and retry. Since a long read-set has

more variables to validate than a short read-set, it is more likely that a long read-set

results in abort. On the other side, while a short read-set reduces abort rate, it may

increase overhead of STMs. Quite often, transaction size and read-set size are

correlated. A small transaction accesses a few number of shared memory locations

which results in small read-sets.

To evaluate the impact of read-set on performance, we use a function similar to the

one that we used for write-set. The function is composed of several transactions. One

of them is a read-only transaction and the rest are writing transactions. The initial

read-only transaction has a large read-set. The transaction is broken into small

transactions to create small read-sets. Other transactions are used to create contentions.

Figure 3-14 shows speed-up of STM version of the function relative to the sequential

version when read-set size changes.

Figure 3-14: Speed-up in EigenBench where read-set size changes for 2, 4 and 8 threads.

Read-set size has significant impact on speed-up when the number of threads is 8.

With 8 threads, speed-up is highest when the read-set size is 8. However, when the

0

1

2

3

4

5

6

1 8 16 32 64 128 256

sp
e

e
d

u
p

(r
at

io
)

Read set size

2 threads

4 threads

8 threads

41

number of threads is 2, the fluctuation is mild. As the number of threads reduces, there

are fewer contentions among the running transactions. Hence, speed-up will be less

sensitive to the read-set size. Another interesting point is the peak speed-up in each

line. The peak with 8 threads is located at 8. The peak with 4 threads occurs when

read-set size is 16. For 2 threads, the peak moves to read-set size of 128. So, as the

number of threads reduces the peak point increases. This is mainly due to trade off

between overhead of abort and overhead of STM APIs. When the number of threads

is 8, the contention is high, so the overhead of abort can easily surpass the overhead of

STM APIs. On the other side, when the number of threads is 2, the contention is low

leading to lower abort overhead.

Based on Figure 3-14, we optimized NAS benchmark suite. However, there are a

few read-only transactions in NAS benchmark suite. If we optimize both read-only

and writing transactions, it is hard to specify whether speed-up is due to read-set or

write-set. Therefore, there are few opportunities to optimize NAS benchmarks based

on read-set. Figure 3-15 shows speed-up after optimizing the read-sets.

Figure 3-15: Speed-up in NAS benchmarks when read-set is optimized.

Based on Figure 3-15, read-set optimization slightly improves performance but it

does not mean that read-set is less important than the other two factors. The main

reason for small improvement is the limited number of read-only transactions in NAS

0

0.2

0.4

0.6

0.8

1

1.2

1.4

LU BT CG EP IS MG FT

Sp
e

e
d

u
p

 c
o

m
p

ar
e

d
 w

it
h

 s
e

q
u

e
n

ti
al

co

d
e

(r
at

io
)

2

4

8

42

benchmarks. However, if we have a program which is dominated by read-only

transaction, then optimizing read-sets result in higher speed-up.

3.2.4 Comprehensive Optimization Based on the Three Parameters

In this section we explain how these three parameters are optimized together. These

parameters can impact each other. For example, a transaction with optimum

transaction size may contain an oversized read-set or a small transaction may have a

large write-set.

We optimized the three parameters one at a time. We start with transaction size and

use Figure 3-9 to optimize transaction size. Then, we adjusted write-set size. To

optimize write-set, we follow the rules below:

 If the write-set is shorter/larger than the optimum size, we enlarge/shrink the

size of transaction step by step to approach the optimum size of the write-set.

During this process, we measured execution time at each step. We select the

transaction with minimum execution time and consider the transaction

optimized for both transaction size and write-set size.

 If due to constraint in a benchmark, it is not feasible to optimize the write-set,

we try to optimize both transaction size and write-set size simultaneously to

find the minimum transaction size. For example, if a transaction contains a loop

and the body of the loop is larger than optimum transaction size, we optimize

transaction size and write-set size simultaneously.

In the next step, we optimized read-set. The rules for optimizing read-only

transactions are similar to the above rules. However, for read-write transactions we

follow the rules below:

 If a shared variable appears in both read-set and write-set, we cannot optimize

read-set and write-set separately. First, we focus on read-set and size of

transaction. Then, we change write-set size step by step and select the write-set

that minimizes execution time.

43

 If read-set and write-set use disjoint variables, we can adjust size of read-set

and size of write-set, separately. For read-set optimization, we enlarge or shrink

the size of transaction gradually to reach the optimum read-set size. For

write-set optimization, we follow rule 1 for write-set.

Figure 3-16: Speed-up for NAS benchmarks where size of transaction, write-set, and

read-sets are optimized.

Figure 3-16 shows speed-up when all the three parameters are optimized. Based on

Figure 3-16, optimization based on the three factors is better than optimization based

on a single factor. Compared with non-optimized version, performance improves by

77.7%, 88.4%, and 89.1% when the number of threads is 2, 4, and 8, respectively.

3.3 Linear Regression Model

Optimizing an STM program based on the three parameters manually is a time

consuming process. We need an automatic technique which can predict the optimum

parameters for transactions. To optimize performance of STM programs, we build a

linear regression model that predicts transaction size based on the three characteristics

of a transaction: transaction size, write-set size, and read-set size. The main reason

that we decided to use transaction size as the predicted value is that changing STM

programs based on transaction size is straightforward. Quite often, it does not require

any changes in the data structure of programs. For example, Figure 3-10 shows a code

snippet from BT benchmark. The loop iterations are independent and so we can

0

1

2

3

4

5

6

7

8

LU BT CG EP IS MG FT

Sp
e

e
d

u
p

 c
o

m
p

ar
e

d
 w

it
h

se

q
u

e
n

ti
al

 c
o

d
e

(r
at

io
)

2

4

8

44

change transaction size by splitting the outer loop into a number of smaller loops and

assigning each small loop to a transaction. On the other side, changing write-set

and/or read-set of a transaction needs significant programming effort which

complicates parallel programming. Hence, in all our experiments, we target

transaction size for optimization. It is important to note that in some programs, it is

not feasible to break down a large transaction because of dependency. For example, if

the loop iterations in Figure 3-10 are dependent, then we cannot break the outer loop.

Before deciding on using LR for prediction, we scrutinized three other techniques:

SVM, decision tree, and neural networks. SVM and decision tree are not appropriate

for prediction of transaction size as these techniques are only able to predict discrete

variables. However, transaction size is a continuous variable. We also checked neural

network for prediction. Theory and structure of neural network is more complex than

linear regression. In addition, there is no common rule to design an optimum neural

network. Neural network can have different number of layers and different

propagation functions. On the other side, linear regression is simple to use and there

are many matured applications that can be used to build linear regression model

automatically. If we can get acceptable results from linear regression, then we can

remove neural network from the list of candidates for prediction.

In this thesis, we use SPSS [40] to generate linear regression model. SPSS is a

comprehensive and easy to use tool and helps users to optimize weight of each

independent variable to find the best accuracy rate.

To simplify our discussion, we use 8 threads to evaluate our optimization

techniques. In Section 3.6, we report experimental results for other number of threads.

3.3.1 Naive Version of Linear Regression Model

The first version of LR model uses three factors as input variables: non-optimized

transaction size, non-optimized write-set size, and non-optimized read-set size. The

predicted output is optimum transaction size. We selected 40 transactions from NAS

45

benchmark suite for training. For test, we use DP benchmark suite [12] and Stamp

benchmark suite [18].

After training, SPSS generated equation 3-1 for prediction. stands for

predicted transaction size. TxSize, WrSize and RdSize are the parameters of

non-optimized transactions. We selected 6 transactions from DP benchmark suite to

test the LR model. Table 3-4 shows predicted transaction size. On average, error of

prediction is 45.32%. In some benchmarks, the accuracy error reaches to -335.26%.

 (3-1)

Table 3-4: Accuracy of Predictions in Naive LR Model.

TX
No optimized

TX size

Predicted

TX Size

Optimum TX

Size

Error

(%)

Test 1 148258 16859.82 6739 -150.18%

Test 2 54736 10829.28 2488 -335.26%

Test 3 112816 15122.88 5128 -194.91%

Test 4 636460 51735.96 28930 -78.83%

Test 5 204192 21675.2 6381 -239.68%

Test 6 35122 9846.301 35122 71.97%

The LR model which only relies on transaction, write-set, and read-set sizes results

in low accuracy rate. We analyzed structure of STM programs and found that

optimization of current transaction is closely related to the next transaction. For

example, if we try to combine small transactions, we need to consider the distance

between two transactions. If there are only a few sequential instructions between the

two transactions, we can combine them by including the sequential instructions in the

final transaction. However, if there are a large number of instructions between the two

transactions, we need to consider the impact of those sequential instructions on

transaction size. The other example is when a transaction needs to enlarge but the next

transaction is optimized. In such a case, the non-optimized transaction cannot be

changed. So, we needed to consider these factors in LR prediction and revise our

model.

After several experiments, we decided to extend the inputs of the LR and include

five more parameters: size of next transaction (SNT), number of assembly instructions

46

between two consecutive transactions (NCT), write-set of the next transaction (WN),

read-set of the next transaction (RN), and number of assembly instructions in a loop

(TL). These five parameters are in addition to the original three parameters: size of

transaction (ST), size of write-set (WS), and size of read-set (RS)

The first factor is called SNT. We explain why we use SNT as an input to the LR

model through an example. Assume that transaction A is followed by transaction B

and transaction C is followed by transaction D. Transactions A, B, C, and D have

3000, 5000, 6000, and 11000 instructions, respectively, Assume that the optimum

transaction size is 8000 instructions. We can combine transactions A and B and create

a larger transaction with 8000 instructions. However, transactions C and D cannot be

combined since the combined transaction has much more than 8000 instructions.

The second factor is called NCT. The number of instructions between two

consecutive transactions affects the way we merge multiple small transactions into a

large transaction. Assume that there are two transactions each with 3000 instructions.

Similar to the previous example, assume that the optimum transaction size is 8000

instructions. If NCT is 2000 instructions, then the combined transaction results in

optimum performance. However, if NCT is 10000, then we cannot combine the two

transactions as the combined transaction is too large and hurts performance.

The third and fourth parameters are called WN and RN. Similar to SNT, write-set

and read-set of the next transaction affect how we merge small transactions to build

optimum transactions. So, to optimize transaction size, we need to consider WN and

RN as well.

The fifth parameter is called TL. This parameter affects those transactions that are

inside the body of a loop. If the total number of instructions in a loop is less than

optimum transaction size, then we can move the whole loop into a transaction. For

transactions that are not inside a loop, we set this parameter to zero.

Equation 3-2 shows LR model using the 8 input parameters. We used SPSS [40] to

calculate coefficients in equation 3-2. TS stands for transactions size.

47

(3-2)

Table 3-5 shows accuracy of predictions by LR. The test cases in Table 3-5 are

transactions from DP benchmarks which are the same as those test cases used for

evaluation of the naive version. While accuracy is high in some of the benchmarks, i.e.

test 6, in most of the benchmarks, LR prediction still results in significant error. The

main reason for high error is that LR tries to draw a line to cover as many points as

possible. If the points are scattered, then LR is unable to fit a line that covers all the

points. This reduces accuracy of predictions.

Table 3-5: Accuracy of predictions in the revised LR model.

TX
No Optimized

TX Size

Predicted

TX Size

Optimum TX

Size
Error (%)

Test 1 148258 10576.54 6739 -56.90%

Test 2 54736 6985 2488 -180.70%

Test 3 112816 9159 5128 -78.60%

Test 4 636460 27062 28930 6.50%

Test 5 204192 5343 6381 16.30%

Test 6 35122 34385 35122 2.10%

3.3.2 Multi-linear Regression Model

Further investigation of LR model reveals that the error rate for transactions with

large negative error is in the range of 56%-180.7%. On the other side, error rate of

transactions with large positive error is in the range of 6.5%-16.3%. This motivates us

to classify transactions into three categories: transactions with large negative error

(class1), transactions with large positive error (class2), and transactions with small

error (clas3). We use separate LR model for each class. This improves accuracy of

predictions since the set of points within a class are well-organized and fitting a curve

to the points results in less residual error. We use the same 8 input parameters for the

three LR models: SNT, NCT, WN, RN, TL, ST, WS, and RS. Equations 3-3 to 3-5

48

show the new LR models. TS1, TS2, and TS3 correspond to predicted TX size in

class1, class2, and class3, respectively.

(3-3)

(3-4)

(3-5)

To evaluate the accuracy rate of this multi-LR model, we used the same six test

cases of single LR model. Table 3-6 shows predictions made by multi-LR model.

Under multi-LR model, accuracy of predictions increases significantly. On average,

error rate drops from 59% to 1.7%. The maximum and minimum error rates are 7.22%

and 0%, respectively. In four out of six test samples, error rate is less than 0.5%.

Table 3-6: Accuracy of Predictions Made by multi-LR model.

name

None

Optimized TX

Size

Predicted TX

Size

Optimum TX

Size
Error (%)

Test 1 148258 6739 6739 0%

Test 2 54736 2488.45 2488 -0.02%

Test 3 112816 5129.87 5128 -0.04%

Test 4 636460 28930 28930 0%

Test 5 204192 5919.92 6381 7.22%

Test 6 35122 34247 35122 2.49%

3.4 Classifier for multi-LR model

We need a classifier to decide which LR model should be used for a transaction. For

the above evaluations, we selected the LR models manually. There are only 6 test

cases and so manual process is not time consuming. However, for a large number of

test cases, manually selecting the LR models is not feasible. We need a method that

49

automatically selects the appropriate LR model based on characteristics of

transactions.

In Section 2.4, we discussed several classifiers. Two popular classifiers are decision

tree and SVM. There are also enhanced decision tree and SVM using boost techniques

such as adaboost [34].We can combine adaboost with decision tree or SVM to

improve accuracy of predictions. In the rest of this section, we compare the accuracy

of three different classification models: decision tree, SVM, and decision trees

boosted with adaboost.

3.4.1 Decision Tree

To classify transactions based on decision tree, we use C4.5 [26]. C4.5 is a popular

decision tree algorithm which is able to classify objects with continuous attributes. We

train the decision tree with already classified sample transactions. Each sample Si

consists of an 8-dimensional input vector (SNT, NCT, WN, RN, TL, ST, WS, and RS)

as well as the class which Si belongs to. Through the training phase, the decision tree

learns how to classify transactions. For test, we feed the decision tree an 8-

dimensional vector and the decision tree predicts the class of the transaction

corresponding to the vector.

Figure 3-17 shows the output of C4.5 when the number of threads is 8. We will

report output of C4.5 for other number of threads in section 3.6. According to Figure

3-17, LR model 1 is selected when transaction size is less than or equal to 3074 and

the read-set size is less than or equal to 7. By following the output of C4.5, we can

classify transactions of an STM program.

To evaluate C4.5, we use the 6 test cases which are used in the previous evaluations.

Table 3-7 illustrates predictions for the 6 test cases. C4.5 mispredicts only one test

case. For all other test cases, C4.5 accurately predicts the LR model.

50

Table 3-7: Classification based on decision tree.

TX Correct Model
Predicted

Model

Test 1 Model 3 Model 3

Test 2 Model 2 Model 2

Test 3 Model 3 Model 3

Test 4 Model 3 Model 2

Test 5 Model 2 Model 2

Test 6 Model 2 Model 2

3.4.2 SVM Classifier

To classify transactions based on SVM, we used libsvm V.3.2 [41]. Since some

transactions have large transactions with small write-sets or read-sets, scale problem

can affect accuracy of predictions. To minimize the scale problem, we call

normalization function [41] before training the SVM with datasets.

Decision tree:

INPUT: SNT, NCT, WN, RN, TL, ST, WS, and RS

IF transaction size <= 3074

 THEN IF read-set size <= 7

 THEN select regression model 1

 ELSE select regression model 3

ELSE

 THEN IF read-set size <= 64

 THEN select regression model 2

 ELSE

 THEN IF transaction size <= 200673

 THEN select regression model 3

 ELSE select regression model 2

Figure 3-17: Output of C4.5 for multi-LR model.

51

Table 3-8: Classification based on SVM.

TX Correct Model
Predicted

Model

Test 1 Model 3 Model 2

Test 2 Model 2 Model 3

Test 3 Model 3 Model 2

Test 4 Model 3 Model 3

Test 5 Model 2 Model 2

Test 6 Model 2 Model 2

Table 3-8 shows prediction results for the six test cases using libsvm V.3.2. The

accuracy of SVM is lower than decision tree. This is because SVM is sensitive to

noisy dataset. In training dataset, usually, most of small transactions belong to LR

model 1. However, a few small transactions belong to LR model 3. This creates noise

and confuses the SVM. Since decision tree is more resilient to noise than SVM, its

accuracy is higher.

3.4.3 Adaboost Decision Tree

We used C4.5 as classifier in adaboost technique. Adaboost is implemented in

MATLAB 2014b. Table 3-9 shows accuracy of predictions in adaboost. On average,

the accuracy rate is 66.7%. Similar to SVM, adaboost falls behind decision tree

because of nosy dataset. However, accuracy of adaboost is higher than SVM.

Table 3-9: Classification based on adaboost.

TX Correct Model
Predicted

Model

Test 1 Model 3 Model 3

Test 2 Model 2 Model 2

Test 3 Model 3 Model 2

Test 4 Model 3 Model 2

Test 5 Model 2 Model 2

Test 6 Model 2 Model 2

52

3.5 Mixed Decision Tree and Multi-Linear Regressions Model

To predict transaction size, we use a combination of linear regression and decision

tree. First, decision tree determine the class of a transaction. Then, we use one of the

three LR models (equations 3-3 to 3-5) to predict optimal transaction size.

Figure 3-18 shows the steps that should be taken to find out the optimum transaction

size. First, the input vector corresponding to a transaction is determined through

profiling. Then, a classifier determines which LR model should be used for prediction.

In the next step, the selected LR model predicts the optimum transaction size.

Figure 3-18: Flow chart for predicting transaction size.

3.6 Details of Mixed Models for Other Number of Threads

So far, we focused on 8 threads in all our evaluations. The optimum transaction size,

write-set size, and read-set size depend on number of threads. So, LR models and also

classifier change with the number of threads. In this section, we report experimental

results for two and four threads.

generate 8 inputs through

profiling

start

predict LR model

LR model 2 LR model 1 LR model 3

end

53

3.6.1 Mixed Model for 2 Threads

To build LR models, we use the same 8 parameters for prediction. Optimum

transaction size for 2 threads is greater than 8 threads. So, we use four LR models

instead of three for 2 threads. Two out of four are the same: an LR model for large

negative error and an LR model for small error. The other two LR models are used for

large and medium positive errors. Equations 3-6, 3-7, 3-8, and 3-9 correspond to,

small, medium, large positive and large negative errors.

(3-6)

(3-7)

(3-8)

(3-9)

Since we have 4 LR models for 2 threads, we need to rebuild the decision tree.

Figure 3-19 shows the output of decision tree.

 Figure 3-19: Decision tree model for multi-LR model.

Decision tree:

INPUT: SNT, NCT, WN, RN, TL, ST, WS, and RS

IF transaction size <= 2488

 THEN select regression model 1

ELSE

 THEN IF write-set size >= 135

 THEN select regression model 2

 ELSE IF next write-set size >101

 THEN select regression model 4

 ELSE IF length to next transaction > 83

 THEN select regression model 3

 ELSE IF transaction size<=33695

 THEN select regression model 4

 ELSE select regression model 2

54

3.6.2 Evaluation of Mixed Model for 2 Threads

Tables 3-9, 3-10, and 3-11 show predictions by decision tree, SVM, and adaboost,

respectively. For 2 threads, decision tree is slightly better than SVM and adaboost.

Compared to 8 threads, accuracy rate of decision tree and SVM reduces. This is

mainly due to increased number of LR models. Because we have 4 categories, the

boundary of each category is not as clear as 8 threads. In other words, the influence of

noise reduces accuracy rate.

Table 3-10: Predictions made by decision tree for 2 threads.

TX Correct model
Predicted

model

Test 1-2 threads Model 2 Model 2

Test 2-2 threads Model 3 Model 3

Test 3-2 threads Model 4 Model 3

Test 4-2 threads Model 3 Model 3

Test 5-2 threads Model 4 Model 2

Test 6-2 threads Model 2 Model 2

Table 3-11: Predictions made by SVM for 2 threads.

TX Correct model
Predicted

model

Test 1-2 threads Model 2 Model 2

Test 2-2 threads Model 3 Model 3

Test 3-2 threads Model 4 Model 3

Test 4-2 threads Model 3 Model 3

Test 5-2 threads Model 4 Model 2

Test 6-2 threads Model 2 Model 2

Table 3-12: Predictions made by adaboost for 2 threads.

TX Correct model
Predicted

model

Test 1-2 threads Model 2 Model 3

Test 2-2 threads Model 3 Model 4

Test 3-2 threads Model 4 Model 4

Test 4-2 threads Model 3 Model 3

Test 5-2 threads Model 4 Model 2

Test 6-2 threads Model 2 Model 2

55

3.6.3 Mixed Model for 4 Threads

In this section, we present details of mixed model for 4 threads. Unlike 2 threads, we

can use 3 LR models to express the whole dataset for 4 threads. Equations 3-10 to

equation 3-12 are the LR models for 4 threads corresponding to large positive, small,

and large negative errors.

Figure 3-20 shows the output of C4.5 for 4 threads. Tables 3-12, 3-13, and 3-14

show predictions made by decision tree, SVM, and adaboost, respectively. Adaboost

has the best accuracy rate but SVM still has the lowest accuracy rate. The Noise in 4

threads is less than 2 threads as we have only three categories for classification. Also,

for 4 threads, the optimum transaction size is more than 8 threads. So, the boundary

between each category is clearer for 4 threads. Low level of noise and clear boundary

are suitable for adaboost. However, lowest accuracy rate of SVM indicates that this

level of noise is still too high for SVM.

(3-10)

(3-11)

(3-12)

56

Table 3-13: Predictions made by decision tree for 4 threads.

TX Correct model
Predicted

model

Test 1-4 threads Model 2 Model 1

Test 2-4 threads Model 1 Model 1

Test 3-4 threads Model 2 Model 2

Test 4-4 threads Model 1 Model 1

Test 5-4 threads Model 1 Model 1

Test 6-4 threads Model 2 Model 2

Table 3-14: Predictions made by SVM for 4 threads.

TX Correct model
Predicted

model

Test 1-4 threads Model 2 Model 2

Test 2-4 threads Model 1 Model 1

Test 3-4 threads Model 2 Model 1

Test 4-4 threads Model 1 Model 1

Test 5-4 threads Model 1 Model 2

Test 6-4 threads Model 2 Model 2

Figure 3-20: Output of decision tree for 4 threads.

Decision tree:

INPUT: SNT, NCT, WN, RN, TL, ST, WS, and RS

IF total loop <= 6081

 THEN select regression model 3

ELSE

 THEN IF size of next transaction >= 61013

 THEN select regression model 1

 ELSE IF next write-set size <=16

 THEN select regression model 2

 ELSE IF size of transaction > 25760

 THEN select regression model 1

 ELSE IF total loop<=53655

 THEN select regression model 2

 ELSE select regression model 1

57

Table 3-15: Predictions made by adaboost for 4 threads.

TX Correct model
Predicted

model

Test 1-4 threads Model 2 Model 2

Test 2-4 threads Model 1 Model 1

Test 3-4 threads Model 2 Model 2

Test 4-4 threads Model 1 Model 1

Test 5-4 threads Model 1 Model 1

Test 6-4 threads Model 2 Model 2

3.7 Summary of contributions

In this chapter, we evaluated the impact of transactional parameters on performance of

STM programs. We proposed mixed models to predict optimal transaction size. As

optimal transaction size depends on number of threads, we generated three mixed

models for 2, 4 and 8 threads. In chapter 4, we evaluate accuracy of the mixed models

and report speedup.

58

Chapter 4

Experimental Results

In this chapter, we report performance of the mixed prediction model. To measure the

performance, we selected two indicators: accuracy rate of prediction and speed-up.

Accuracy rate shows how often a model can classify different types of workloads

properly. Speed-up is defined as execution time of the baseline scheme divided by

execution time of the enhanced scheme and shows whether a model can boost

execution time of applications.

4.1 Benchmark Suites

We used a subset of NAS [11] and DiscoPoP benchmark suites [12] to train LR and

decision tree. To test our models, we used the rest of the benchmarks from NAS and

DiscoPoP benchmark suites and also benchmarks from Stamp benchmark suite.

Stamp benchmark suite [18] is designed by Stanford University for shared memory

parallel applications. This benchmark suite contains 8 benchmarks: bayes, genome,

intruder, kmeans, labyrinth, ssca2, vacation, and yada. Here is a brief description of

these benchmarks:

 Bayes: an algorithm to build a bayesian classification model.

 Genome: an application for gene sequencing.

 Intruder: used in domain of security which can monitor intrusions in computer

networks.

 Kmeans: an algorithm for data mining,

 Labyrinth: an algorithm to find routes in a maze.

 Ssca2: this benchmark is used to generate efficient graph representation.

 Vacation: an algorithm to simulate travel reservation.

59

 Yada: this benchmark is used to refine Delaunay mesh.

4.2 Speed-up for DP Benchmarks

Tables 4-1, 4-2, and 4-3 show predicted transaction size for 2, 4, and 8 threads,

respectively. If a benchmark has more than one transaction, then the name of the

benchmark is followed by transaction number to distinguish different transactions.

Table 4-1: Predicted and Optimum TX Size in DP for 2 threads.

Table 4-2: Predicted and Optimum TX Size in DP for 4 threads.

Table 4-3: Predicted and Optimum TX Size in DP for 8 threads.

TX
None Optimized

TX Size

Predicted TX

Size
Optimum TX Size

Histo_serial 320625 15523 14800

Mc_light-Tx1 2125000 18120 5673

Mc_light-Tx2 465000 9076 10130

Ann_trainig-Tx1 288000 14157 11772

Ann_trainig-Tx2 480000000 748569 12725

Mandelbrot 78208 17158 16344

TX
None Optimized

TX Size

Predicted TX

Size
Optimum TX Size

Histo_serial 320625 16267 9672

Mc_light-Tx1 2125000 52633 5673

Mc_light-Tx2 232500 14148 10130

Ann_trainig-Tx1 144000 9544 11772

Ann_trainig-Tx2 480000000 1225201 12725

Mandelbrot 78208 12255 16344

TX
None Optimized

TX Size

Predicted TX

Size
Optimum TX Size

Histo_serial 320625 14186 7440

Mc_light-Tx1 2125000 77310 5673

Mc_light-Tx2 116250 11148 10130

Ann_trainig-Tx1 72000 10614 11772

Ann_trainig-Tx2 480000000 16328112 12725

Mandelbrot 78208 9776 8673

60

In some benchmark, the error of prediction is very large. For example, the error rate

in ann_training-TX2 is 578% when the number of threads is two. This transaction is a

large transaction. However, in our training dataset, we do not have such a large

transaction. This reduces accuracy of prediction. Histo_serial is another benchmark

that its error rate is high. This benchmark has a large transaction with small write-set.

We also do not have samples similar to histo_serial in our training dataset.

To measure speed-up, we optimize all transactions in the benchmarks according to

predictions. Each benchmark is run 10 times and the average of execution times is

calculated. Figure 4-1 shows speed-up in DP benchmarks. Bars greater than one show

speed-up in optimized code. On average, performance is improved by 43.75%,

59.50%, and 42.10% when the number of threads is 2, 4, and 8, respectively.

Figure 4-1: Speed-up for DP benchmarks.

4.3 Speed-up for Stamp Benchmarks

In Stamp benchmark suite, genome, kmeans, and ssca2 cannot be optimized due to

dependency among transactional variables. Only bayes, vacation, and yada can be

optimized. Table 4-4 to 4-6 show the results of predicted transaction size and

speed-up compared with the baseline scheme. DT means using decision tree as

classifier and ADA means using adaboost decision tree as classifier.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

histo_serial mc_light ann_training mandelbort

Sp
e

e
d

u
p

 c
o

m
p

ar
e

d
 w

it
h

 o
ri

gi
n

al

ve
rs

io
n

(r
at

io
)

2 threads

4 threads

8 threads

61

Table 4-4: Transaction size and speed-up in Stamp benchmark suite for 2 threads.

Table 4-5: Transaction size and speed-up in Stamp benchmark suite for 4 threads.

Table 4-6: Transaction size and speed-up in Stamp benchmark suite for 8 threads.

TX
None Optimized

TX Size

Predicted TX

Size
Speed-up

bayes-DT 1261 16747 14.83%

vacation-DT 672 9925 9.14%

yada-DT 573 5452 11.41%

bayes-SVM 1261 16747 14.83%

vacation-SVM 672 9925 9.14%

yada-SVM 573 1125 0%

bayes-ADA 1261 16747 14.83%

vacation-ADA 672 847 0%

yada-ADA 573 5452 11.41%

TX
None Optimized

TX Size

Predicted TX

Size
Speed-up

bayes-DT 1261 12745 22.25%

vacation-DT 672 7975 6.65%

yada-DT 573 8183 18.32%

bayes-SVM 1261 12745 22.25%

vacation-SVM 672 7975 6.65%

yada-SVM 573 8183 18.32%

bayes-ADA 1261 12745 22.25%

vacation-ADA 672 7975 6.65%

yada-ADA 573 8183 18.32%

TX
None Optimized

TX Size

Predicted TX

Size
Speed-up

bayes-DT 1261 8218 39.60%

vacation-DT 672 7238 7.20%

yada-DT 573 7223 26.30%

bayes-SVM 1261 8218 39.60%

vacation-SVM 672 7238 7.20%

yada-SVM 573 7223 26.30%

bayes-ADA 1261 8218 39.60%

vacation-ADA 672 7238 7.20%

yada-ADA 573 456 0%

62

Across all benchmarks, decision tree always has better accuracy rate than adaboost.

In some benchmarks, speed-up is 0%. In these benchmarks, due to restrictions in the

structure of transactions, it is not feasible to optimize transaction size. On average,

performance is improved by 9.51%, 15.74%, and 21.45%, when the number of

threads is 2, 4, and 8, respectively.

63

Chapter 5

Conclusion and Future work

5.1 Conclusion

In this thesis, we presented an optimization technique that helps programmers to write

efficient STM programs. We studied the impact of three parameters on STM

performance and showed that STM applications are highly sensitive to the three

parameters. Then, we exploited LR to predict transaction size based on the three

parameters. A single LR model is not accurate enough and it results in high error rate.

We revised the LR model by extending its inputs from 3 to 8 parameters. Also, to

improve accuracy of LR, we classified transactions into three groups for 4 and 8

threads: transactions with large positive errors, transactions with large negative errors,

and transaction with low errors. For 2 threads, there is an extra category: transactions

with medium positive errors.

Our evaluations using DP and Stamp benchmark suites show that the mixed model

is effective and is able to improve performance of transaction applications. On

average, the mixed model improves performance of DP and Stamp benchmark suites

by 48.45% and 15.56%, respectively.

6.2 Future Work

The mixed model is able to predict the optimum transaction size. However, a

programmer needs to change transaction size manually. This is a time consuming

process and requires significant programming effort. If the mixed model is integrated

with a compiler, then the optimization process can be done automatically without

interference of programmers. DiscoPoP (Section 2.2) is a compiler that can find

parallel parts of a sequential code. One possibility for future work is changing

DiscoPoP so that it automatically converts a sequential code to an optimized STM

program. Given that most of software packages are written sequentially, an optimizing

64

compiler such as DiscoPoP provides an ample opportunity to use STM for

commercial applications.

The other way to extend our work is using partial rollback. When a transaction

aborts, all instructions executed in the transactional section are aborted. However,

some of those instructions may generate the same output when they are executed

again. Re-executing these instructions is wasteful and underutilizes precious processor

resources. We can use a static approach and mark those instructions that do not need

to re-execute. To integrate partial rollback with our LR model, we need to revise our

model and add extra parameters for training. Furthermore, EigenBench does not

support partial rollback. So, we need to change EigenBench to individually evaluate

the impact of different parameters on performance in an STM system with rollback

support.

65

References

[1] H. Maurice, Moss, J. Eliot B, "Transactional memory: Architectural support for lock-free

data structures", in the 20th International Symposium on Computer Architecture

(ISCA) ,1993, .pp. 289–300

[2] N.Shavit, and T. Dan, "Software transactional memory." in Distributed Computing, 2

October 1997, pp. 99-116.

[3] P. Damron, A. Fedorova, Y. Lev, V. Luchangco,M. Moir, and D. Nussbaum, " Hybrid

transactional memory", In ACM Sigplan Notices, October 2006, Vol. 41, No. 11, pp.

336-346.

[4] D. Dice, O. Shalev, and N. Shavit, "Transactional Locking II", In 20th International

Symposium on Distributed Computing , September 2006, pp.194-208.

[5] M. Abadi, T. Harris, and M. Mehrara, "Transactional Memory with Strong Atomicity

Using Off-the-Shelf Memory Protection Hardware", In 14
th
 ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, February 2009,

pp.185-196.

[6] P. Felber, C. Fetzer, P. Marlier, and T. Riegel, "Time-based Software Transactional

Memory", In IEEE Transactions on Parallel and Distributed Systems, December 2010,

Vol. 21, Issue 12, pp. 1793-1807.

[7] D. Dice, Y. Lev, M. Moir, and D. Nussbaum, "Early Experience with a Commercial

Hardware Transactional Memory Implementation", In 14
th
 International Conference on

Architectural Support for Programming Languages and Operating Systems, March

2009, pp.157-168.

[8] V. J. Marathe, W. N. Scherer III, and M. L. Scott, "Adaptive Software Transactional

Memory", In 19
th
 International Symposium on Distributed Computing, September 2005,

pp.354-368.

66

[9] P. Felber, C. Fetzer, and T. Riegel, "Dynamic Performance Tuning of Word-Based

Software Transactional Memory", In 13
th
 ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming, February 2008, pp.237-246.

[10] S. Goldberger, "Best Linear Unbiased Prediction In the Generalized Linear Regression

Model", In Journal of the American Statistical Association, Volume 57, Issue 298,

pp.369-375, 1962.

[11] D. Bailey, E.Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi, S.

Fineberg, P. Frederickson, T.Lasinski, R. Schreiber, H. Simon, V.Venkatakrishnan

and S. Weeratunga, "The NAS parallel Benchmarks", In RNR Technical Report,

RNR-94-007, March 1994.

[12] Zhen Li, Ali Jannesari, Felix Wolf, "Discovery of Potential Parallelism in Sequential

Programs", In 42nd International Conference on Parallel Processing Workshops

(ICPPW), Workshop on Parallel Software Tools and Tool Infrastructures (PSTI),

October 2013, pp. 1004-1013.

[13] B. David, "Programming with POSIX threads", Addison-Wesley Professional, ISBN-

0201633922, 1997.

[14] A. Porfirio, A. Pellegrini, P. Sanzo, and F. Quaglia, "Transparent support for partial

rollback in software transactional memories", In Euro-Par 2013 Parallel

Processing, 2013, pp. 583-594.

[15] R. Adl-Tabatabai, T. Lewis, V. Menon, R. Murphy, B. Saha, and T. Shpeisman,

"Compiler and runtime support for efficient software transactional memory", In ACM

SIGPLAN Notices, June 2006, pp. 26-37.

[16] B. Saha, R. Adl-Tabatabai, L. Hudson, C. Minh, and B. Hertzberg, "McRT-STM: a high

performance software transactional memory system for a multi-core runtime", In ACM

SIGPLAN symposium on Principles and practice of parallel programming, March 2006,

pp. 187-197.

[17] H.Avni, and N. Shavit, "Maintaining consistent transactional states without a global

clock", In Structural Information and Communication Complexity, 2008, pp. 131-140.

67

[18] C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun, "STAMP: Stanford transactional

applications for multi-processing". In Workload Characterization. IISWC 2008. IEEE

International Symposium ,2008 September, pp. 35-46.

[19] C. Wang, W. Y. Chen, Y. Wu, B. Saha, and R. Adl-Tabatabai, "Code generation and

optimization for transactional memory constructs in an unmanaged language",

In International Symposium on Code Generation and Optimization, March 2007, pp.

34-48.

[20] H. Rito, and J. Cachopo, "ProPS: A Progressively Pessimistic Scheduler for Software

Transactional Memory", In Euro-Par 2014 Parallel Processing, 2014, pp. 150-161.

[21] R. M. Yoo, & H. H. S. Lee, "Adaptive transaction scheduling for transactional memory

systems", In annual symposium on Parallelism in algorithms and architectures, June

2008, pp. 169-178.

[22] P.Mathias, and T. R. Gross, "Performance evaluation of adaptivity in software

transactional memory", In Performance Analysis of Systems and Software (ISPASS),

April 2011, pp. 165-174.

[23] S. Hong, T. Oguntebi, J. Casper, N. Bronson, C. Kozyrakis, and K. Olukotun,

"EigenBench: A simple exploration tool for orthogonal TM characteristics", In Workload

Characterization (IISWC), 2010 December, pp. 1-1.

[24] M. Castro, L. F. W. Goes, C. P. Ribeiro, M. Cole, M. Cintra, and J. F. Mehaut, "A

machine learning-based approach for thread mapping on transactional memory

applications", In High Performance Computing (HiPC), December 2011, pages 1-10.

[25] J. R. Quinlan, "Induction of Decision Trees", In Machine Learn, March 1986, pp.81-106.

[26] J. R. Quinlan, "C4.5: Programs for Machine Learning", Morgan Kaufmann Publishers,

ISBN- 0080500587, 1993.

[27] D. Rughetti, P. Sanzo, B. Ciciani, and F. Quaglia, "Machine learning-based self-adjusting

concurrency in software transactional memory systems". In Modeling, Analysis &

Simulation of Computer and Telecommunication Systems, 2012 August, pp. 278-285.

68

[28] N. Dong, N. A.Smith, and C. P. Rosé, "Author age prediction from text using linear

regression", In 5th ACL-HLT Workshop on Language Technology for Cultural Heritage,

June 2011, pp. 115-123.

[29] Google Inc. Quantifying Movie Magic with Google Search. June 2013.

[30] N. R.Draper, H. Smith, and E. Pownell, "Applied regression analysis", Wiley,

ISBN-0471170828, 1966.

[31] J. R. Quinlan, "Induction of Decision Tree", In Machine learning, 1986, pp. 81-106.

[32] P. Kemal, and S. Güneş, "A novel hybrid intelligent method based on C4. 5 decision tree

classifier and one-against-all approach for multi-class classification problems", In Expert

Systems with Applications, 2009, pp. 1587-1592.

[33] P. Xu, F. Davoine, H. Zha, and T. Denoeux, "Evidential calibration of binary SVM

classifiers", In International Journal of Approximate Reasoning, 2015.

[34] Y. Freund, R. Schapire, and N. Abe, "A short introduction to boosting", In

Journal-Japanese Society for Artificial Intelligence, 1999, Vol.14, pp.771-780.

[35] Daniel Fried, Zhen Li, Ali Jannesari, Felix Wolf, “Predicting Parallelization of Sequential

Programs Using Supervised Learning”， In 12th IEEE International Conference on

Machine Learning and Applications (ICMLA), December 2013, pages 72-77.

[36] Y. Freund, and L.Mason, "The alternating decision tree learning algorithm". In ICML,

June 1999, pp. 124-133.

[37] K.Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, and K. A.

Yelick, "The landscape of parallel computing research: A view from berkeley", In

Technical Report UCB/EECS-2006-183, EECS Department, University of California,

Berkeley. 2006.

[38] P. Colella, “Defining Software Requirements for Scientific Computing”, presentation,

2004.

69

[39] L. Dagum, and R. Enon, "OpenMP: an industry standard API for shared-memory

programming", In Computational Science & Engineering, 1998, pp. 46-55.

[40] N. H. Nie, D. H. Bent, and C. H. Hull, " SPSS: Statistical package for the social

sciences ", In New York: McGraw-Hill, 1977.

[41] C. C. Chang, and C. J. Lin, "LIBSVM: A library for support vector machines", In ACM

Transactions on Intelligent Systems and Technology (TIST), 2011, Vol.2, issue 3, No. 27.

