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Abstract 

Software Transactional Memory (STM) is a promising paradigm that facilitates 

programming for shared memory multiprocessors. In STM programs, synchronization 

of accesses to the shared memory locations is fully handled by STM library and does 

not require any intervention by programmers. While STM eases parallel programming, 

it results in run-time overhead which increases execution time of certain applications. 

In this thesis, we focus on overhead of STM and propose optimization techniques to 

enhance speed of STM applications. In particular, we focus on size of transaction, 

read-set, and write-set and show that execution time of applications significantly 

changes by varying these parameters. Optimizing these parameters manually is a time 

consuming process and requires significant labor work. We exploit Linear Regression 

(LR) and propose an optimization technique that decides on these parameters 

automatically. We further enhance this technique by using decision tree. The decision 

tree improves accuracy of predictions by selecting appropriate LR model for a given 

transaction. We evaluate our optimization techniques using a set of benchmarks from 

Stamp, NAS and DiscoPoP benchmark suites. Our experimental results reveal that LR 

and decision tree together are able to improve performance of STM programs up to 

54.8%. 
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Chapter 1  

Introduction 

Transistor scaling was the driving force for rapid growth of general-purpose 

processors in the past decades. Advances in integrated circuit technology allow 

processor designers to exploit faster and smaller transistors and boost performance of 

processors. The unprecedented growth in performance of processors enabled 

programmers to rely on hardware to increase the speed of their applications; the same 

software runs faster as chip manufacturers introduce new generations of processors. 

However, this trend has changed since 2003 due to energy consumption and heat 

dissipation issues that limited frequency scaling in single core processors. Since then, 

all major chip manufacturers such as Intel, AMD, and IBM turned in to multi-core 

processors to increase computational power of general-purpose processors. This shift 

in the landscape of general-purpose processors had tremendous impact on software 

developer community.  

Traditionally, the vast majority of programmers developed sequential programs for 

single core processors. The programmers have become accustomed to the expectation 

that their programs run faster with each new generation of processors. However, this 

expectation is not valid in the era of multi-core processors. A sequential program runs 

only on one of the cores in a multi-core processor which is not significantly faster 

than single core processors. The only way that programs can continue to enjoy 

performance improvement in each generation of multi-core processors is parallel 

programming. 

Parallel programming is a method to separate a large task into smaller sub-tasks 

which are then mapped into threads and are executed simultaneously. Compared with 

sequential programming, parallel programming can really reflect the benefit of 

multi-core processors by exploiting thread level parallelism in addition to instruction 

level parallelism. The conventional method of parallel programming is lock where 
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shared variables are surrounded by locks to guarantee atomicity of accesses to the 

shared variables. However, lock-based programming is challenging as it may lead to 

tricky synchronization bugs such as deadlock, livelock, etc [2]. To make parallel 

programming mainstream, it is necessary to find new programming models which 

simplify parallel programming for average programmers. 

An alternative approach to lock-based programming is Transactional Memory (TM) 

[1]. TM is a programming model which facilitates parallel programming for 

multi-core processors. TM provides an atomic construct, called transaction, which is 

used to protect shared memory locations from concurrent accesses by threads. Reads 

and writes to transactional data occur at a single instance of time. Intermediate 

transactional values are not visible to other transactions. TM executes transactions 

speculatively in parallel and monitor memory locations accessed by active 

transactions. If executing transactions do not conflict over shared memory locations, 

then they safely commit. However, in the event of conflict, only one transaction can 

proceed and the rest should abort and restart. Transactions log operations during the 

execution so that they can restore state of the running program if roll-back is needed.  

TM eliminates many of the problems associated with locks and enables 

programmers to compose scalable applications safely. In a TM program, a 

programmer does not need to worry about priority inversion, deadlock, or live lock. 

This is in contrast to lock-based programming in which a programmer needs to deal 

with lock placement and synchronization bugs. In a TM program, the programmer 

only needs to reason locally about shared memory locations and mark sections of the 

program that should be executed concurrently. The underlying system guarantees 

correctness. In addition to ease of programming, TMs are speculative in nature. The 

benefit of speculative approach is that transactions do not need to wait for shared 

memory locations; instead, they can execute concurrently and modify disjoint 

memory locations safely, leading to performance gains. 
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 Transactional memory may be implemented in hardware (HTM) [1], software (STM) 

[2], or a combination of the two [3]. While HTM makes transactional memory fast, it 

increases design complexity and is not flexible. In addition, both HTM and hybrid 

approaches require adding new features to the hardware. STM, however, can use 

available features of current processors and comes with fewer intrinsic limitations 

imposed by hardware structures, such as buffer size and caches. 

1.1 Software Transactional Memory 

In the last decade, there have been several implementations of STMs [4, 5, 6]. The 

emergence of new STM algorithms has not been slowed down in the recent years, and 

the support for transactional memory in new processors [7] is likely to increase the 

number of STM implementations. The performance of STMs depends on several 

factors such as lock acquisition time, granularity of conflict detection, the mapping of 

memory addresses to the lock table, etc. Some researchers have explored design space 

of STMs and proposed changing STM parameters during the run-time. For example, 

Marathe et al. [8] studied lock acquisition in STMs and showed that the time at which 

locks are acquired has drastic impact on scalability. While eager policy 

(encounter-time locking) reduces overhead, lazy policy (commit-time locking) 

provides better throughput for some multithreaded applications. Marathe et al. [8] 

proposed an adaptive technique which dynamically changes lock acquisition policy in 

run-time. The other example is granularity of conflict detection [9]. Felber et al. [9] 

showed that performance of STMs varies with granularity of conflict detection and 

non-optimum parameters can slow down some programs by a factor of three. In 

addition, several STM implementations have partial roll-back ability. This ability can 

keep the validated part of a transaction and just retry the in-validated part. While the 

above techniques improve performance of STMs, all of them focus on execution of 

STM programs during the run-time. They do not provide any guidelines for 

programmers to write an efficient TM program in the first place.  
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1.2 Factors that Impact Performance of STMs 

The size of a transaction has significant impact on performance. If the transaction is 

too short, then the overhead of STM APIs exceeds performance gain of parallel 

execution and may lead to an STM program which is slower than sequential version 

of the program. On the other side, if a transaction is too large, then the cost of 

roll-back in applications with high abort rate may reduce speed-up in STM 

applications.  

Size of transaction is not the only factor that impacts performance of STMs. The 

other factors that affect execution time of transactions are read-set and write-set. 

When a transaction commits, all shared variables in the read-set and the write-set need 

to be checked and validated. If checking or validation fails, then the transaction needs 

to abort and retry. Transactions with large read-sets and write-sets are more likely to 

abort as there are more shared variables in large read-sets and write-sets which 

increase the probability of validation failure.  

1.2.1 Brief introduction of contribution  

One way to find optimal sizes for transaction, read-set and write-set is using try and 

error approach. A programmer can vary a transaction and finds out the optimal 

transaction size, read-set size as well as write-set size by running the program 

multiple times. This procedure is very time consuming and requires significant 

programming effort. To address this challenge, we propose two optimization 

techniques that automatically determine near optimal transaction size: the first 

technique exploits Linear Regression (LR) [10] to predict transaction size. LR 

receives parameters of a non-optimized transaction such as transaction size, read-set 

size, and write-set size and predicts the optimum transaction size. While LR is simple 

to implement, as we will show later, its accuracy is low. Our second optimization 

technique exploits a classifier and enhances accuracy of predictions. The classifier 

divides transactions into multiple groups and then uses a different LR model for each 

group. We also evaluated three different classifiers: decision tree, SVM and adaboost 
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decision tree. Our evaluations show that the accuracy of decision tree is higher than 

the other two as decision tree is more resilient to noisy dataset. Using a set of 

benchmarks from NAS [11], DiscoPoP [12], and Stamp [18] benchmark suites, we 

show that decision tree and LR together increase performance significantly. 

1.3 Organization of the Thesis 

The rest of this thesis is organized as follows. In chapter 2, we explain the necessary 

background for our optimization techniques and review related work. Chapter 3 

discusses our optimization techniques in details. Chapter 4 reports experimental 

results. Finally, in chapter 5, we offer concluding remarks and future work.  
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Chapter 2  

Background and Related Work 

In this chapter, we review research papers that are related to this thesis. In Section 2.1, 

we explain TL2 which is an STM library and is used to evaluate our optimization 

techniques. In Section 2.2, we review research papers related to optimization of STMs. 

In Section 2.3, we explain linear regression which is used to predict transactional 

parameters. In Section 2.4, we discuss different types of classifiers that we used to 

categorize STM applications. Finally, in Section 2.5, we discuss NAS benchmark 

suite used in this thesis.  

2.1 Transaction Locking II (TL2) [4] 

TM is an optimistic approach and executes transactions speculatively. If transactions 

conflict then they abort and restart. On the other side, in lock-based parallel programs, 

threads conservatively acquire locks. This may serialize execution of threads 

unnecessarily and hurt performance. Figure 2-1 shows three threads executing six 

transactions. Executions of TX1, TX3, and TX5 overlap. These transactions can 

commit if they do not conflict. However, in lock-based programs, always critical 

sections are serialized. This reduces thread level parallelism and degrades 

performance.  

 

Figure 2-1: Transaction execution in STM. 

In this thesis, we use TL2 [4] which is a popular implementation of software 

transactional memory and is faster than parallel programs written in pthread [13] up to 

6X [4]. TL2 uses a global clock and a lock table to maintain consistency of 
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transactions. The global clock is a shared counter and is incremented by committing 

transactions. The lock table consists of a table of locks. Addresses of shared variables 

are hashed into the table entries and each entry of the table has two fields: lock bit and 

version number. The lock bit shows whether the corresponding variable is acquired or 

it is free. The version number is equal to the value of the global clock at the time that 

the last writing transaction successfully wrote into the corresponding variable.  

When a transaction starts, it samples the value of the global clock and writes it into 

a local variable called read version (RV). Each transaction in TL2 keeps a read-set and 

a write-set which are linked-lists and store information related to read and written 

variables, respectively. Before a transactions commits, it starts validation of its 

read-set. To validate a variable, TL2 checks that lock bit of the corresponding lock 

entry is free. TL2 also compares version number of corresponding lock entry with rv. 

If the version number is less than or equal to RV, validation passes; otherwise, 

validation fails since another transaction wrote into the same variable and committed.   

After validation of read-set, TL2 processes its write-set. If a lock bit of a variable in 

the write-set is free, then the transaction tries to acquire the lock bit. If lock 

acquisition fails, transaction aborts and restarts. Finally, transaction re-validates its 

read-set to make sure that it is not changed since last validation. Transaction can 

commit only if read-set validation passes and it successfully acquires locks for its 

write-set; otherwise, it aborts and restarts. Figure 2-2 shows the steps taken by a 

transaction to commit.  

TL2 also implements a high efficiency read-only transaction validation process. 

Read-only transactions are those transactions that do not have any node in write-set. 

Therefore, it is not required to acquire locks for read-only transactions. In TL2, 

read-only transactions only need to do a post-validation to guarantee shared variables 

are consistent. If the post-validation fails, then the transaction is abord. 
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Figure 2-2: Steps of commit in TL2. 

2.2 Optimization Techniques for STMs 

Despite of ease of programming, STM has its own disadvantages. For example, the 

global clock is a bottleneck in STM as it is shared and modified by all writing 

transactions. In addition, in the event of conflict, only one transaction can proceed and 

the rest should abort. This increases program execution time and wastes processor 

resources. Therefore, there have been many research papers that try to optimize 

transactional memory. 
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One approach to optimize STM is to design and implement a new STM library from 

scratch. An example of this approach is TinySTM [6] which is a lighter and a faster 

implementation of STM than TL2. Although, this method may result in significant 

improvement, it is a very time consuming process and requires a relatively high level 

of knowledge on computer architecture, programming languages, etc. 

The other approach is to optimize an existing implementation of transactional 

memory. In this approach, a researcher only focuses on those aspects of TM that 

require optimization and replaces/modifies them with new optimization techniques. In 

this Section, we focus on research papers that use the latter approach. 

Partial rollback is a technique to reduce overhead of aborts in STMs [14, 15, 16]. 

Many existing transactional memory libraries abort the whole transaction if validation 

of read-set or acquisition of lock bits fails. However, sometimes, part of the aborted 

transaction is still correct. If we keep those correct parts and re-execute the reset, then 

we can save time theoretically.  

Porfirio et al. [14] implemented the partial rollback technique in TinySTM. This 

work uses snapshot extension to determine the parts that need to be aborted. The 

evaluation shows that partial rollback quite often has better performance than baseline 

TinySTM.  

However, in some benchmarks, it increases execution time. The main reason for 

slow-down is overhead. In benchmarks with high conflicts and short transactions, the 

partial rollback scheme needs to check validation of shared variables whenever 

conflict occurs. The execution time of partial rollback validation checking can take a 

large portion of total execution time. Therefore, the amount of time saved by partial 

rollback may be less than its overhead. The other reason for slow down of this 

technique is related to the behaviour of some of the transactions. In some transactions, 

the correct part is only a small fraction of total transaction, which means the benefit of 

correct part is small. Therefore, it is hard to gain speed-up in these types of 

transactions.  
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Global clock is s shared variable and is accessed by all writing transactions. This 

may result in ping-pong effect [17] and severally degrade performance. To cope with 

this problem, Avni et al. [17] proposed thread local clock (TLC) which replaces global 

clock with lock clocks.  

In TLC, each thread has a local clock which is initialized to zero and is incremented 

by one at the start of every new transaction. There is also a thread local array that has 

an entry per thread recording timestamp of the thread. Each lock entry has a new field 

which is ID of the last writing thread. When a transaction commits it writes its thread 

ID and timestamp into the associated lock. 

To validate read-set, all locks corresponding to the transactional read operations are 

checked to be unlocked. Then, the timestamp of each lock is checked to make sure 

that it is less than the associated thread j’s entry in the thread local array. If the check 

fails then thread j’s entry in the array is updated with the new timestamp. 

If validation of read-set passes, TLC acquires lock bits of its write-set (similar to 

TL2 [4]). Then, TLC revalidates its read-set. If committing transaction successfully 

validates its read-set and acquires locks for its write-set, it increments its local clock 

and uses it to update version number of lock entries corresponding to its write-set; 

otherwise, it aborts and restarts.  

While TLC eliminates central global clock, it increases abort rate since the new 

timestamp of a committed transaction is not transferred to other transactions 

immediately. Instead, other transactions notice the new timestamp when their 

validations fail. As such, TLC may degrade performance despite of the fact that it 

eliminates the central clock. In addition, Avni and Shavit evaluated TLC with micro 

benchmarks which are not representative of real applications. In contrast, we have 

evaluated our optimization techniques with the comprehensive Stamp [18] and NAS 

[11] benchmark suites.  
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Both TLC and partial rollback are dynamic approaches and result in runtime 

overhead. On the other side, our optimization techniques are static and do not incur 

any timing overhead. 

Felber et al. [9] proposed a self-tuning methodology which dynamically adjusts 

concurrency level in STMs. One of the key factors in STM programs is contention. 

Too many threads in a program increase contentions over shared memory locations 

and hurt performance. On the other side, if concurrency level is too low, then 

exploited parallelism by STM programs will be limited. The optimum number of 

executing threads depends on many parameters including but not limited to pattern of 

addresses generated by transactions, OS scheduler, structure of memory hierarchy, etc. 

So, identifying the right level of concurrency in STMs is not a trivial task. Felber et al. 

[9] used a hill-climbing algorithm to explore concurrency level space in shared 

memory STMs.  

One of the shortcomings of this work is response time. In some benchmarks, a 

transaction commits before the dynamic approach finds the best concurrency level. 

For these benchmarks, the response time is too long to result in any noticeable 

speed-up. On the other side, our optimization techniques are applied before runtime. 

Hence, response time is not an issue in our work. 

Wang et al. [19] developed a compiler that automatically optimizes programs written 

in C/C++. The compiler focuses on synchronization barriers and tries to remove those 

barriers that are not necessary for correctness of parallel programs. Synchronization 

barriers are used to maintain consistency but reduce the concurrency level. However, 

non-experienced programmers may use a conservative approach and add redundant 

synchronization barriers to guarantee correctness of parallel programs. Redundant 

barriers reduce thread level parallelism and degrade performance. To remove 

redundant barriers, the complier checks the dependency of transactions. There are two 

situations that the compiler can remove a barrier. First, there is no dependence 

between two transactions. Secondly, there is only write-after-write dependence. 
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Write-after-write dependence can be checked at commit stage of STMs and does not 

require synchronization barriers. The compiler improves performance of most of 

parallel benchmarks considerably. However, some benchmarks only show negligible 

improvement because transactions in these benchmarks are large and quite often 

conflict with each other.    

To reduce contention in parallel applications, it is important to determine 

dependency between variables. DiscoPoP [12] is a tool that automatically finds 

parallelizable regions of a sequential code based on dependency of variables. 

DiscoPoP is able to identify parallelism between code regions with arbitrary 

granularity and does not require any predefined notion of language constructs. 

DiscoPoP identifies sections of the code in which data dependency does not exist. 

These sections are called Computational Units (CUs). Then, the tool builds a 

dependency graph using CUs. Nodes of the graph represent CUs and edges represent 

dependency between CUs. From the dependency graph, DiscoPoP determines 

potential parallelism available on varying levels of the code. The output of the 

DiscoPoP is a file that indicates which lines of the sequential code can be grouped as 

a task and run concurrently with others. We used the set of benchmarks introduced in 

DiscoPoP for evaluation of our optimization techniques.  

As mentioned earlier, one of the sources of overhead in STMs is contention. Rito et 

al. [20] proposed Progressively Pessimistic scheduler (ProPS) which is a scheduler for 

reducing contentions in STMs. ProPS exploits a matrix to indicate the concurrency 

level (CL). The rows and columns of this matrix are atomic operations.      indicates 

how many transactions executing atomic operations of type i may execute 

concurrently with one transaction executing atomic operation of type j. The scheduler 

adjusts the values in the matrix based on abort rate. If the scheduler notices that 

transactions frequently have conflicts, the scheduler decreases the corresponding 

values of the matrix. This scheduler uses the matrix to speculate conflict among 

executing transactions. The scheduler gives high priority to those threads which have 
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high values in the matrix. On the other side, the scheduler temporarily stalls or blocks 

those transactions that have low concurrency values in the matrix. The main benefit of 

ProPs is low overhead as it uses a matrix to maintain record of contentions in STM 

programs. As such, the response time of ProPs is low. However, simple and quick 

control function of this scheduler has a disappointing accuracy rate. In some 

benchmarks, the performance of STM with this scheduler is worse than the baseline 

STM. There are different sources that cause conflicts. For each source, we need to use 

an appropriate technique to adjust concurrency level. Blindly increasing or decreasing 

values in the matrix may lead to low accuracy rate. This can be explained through an 

example. Assume that a TM program has two threads: A and B. Thread A has three 

transactions and thread B has only one transaction. The first and third transactions in 

A conflict with the transaction in B but the second transaction in A has no conflict 

with the transaction in B. If we use ProPs in this example, the concurrency level is 

decreased after first conflict. Then, the second transaction will be blocked because of 

low concurrency level in the matrix. Finally, ProPs will increase concurrency level 

because the second transaction actually has no conflict, which leads to the third 

transaction in thread A conflict with the transaction in B. The accuracy rate in this 

example is 0. Our work is different as we use a static approach and optimize STM 

programs before the runtime.  

Unlike ProPs, some research papers focused on scheduler using mathematical 

methods to reduce conflicts in STMs. Yoo et al. [21] proposed adaptive transaction 

scheduling (ATS) to adjust concurrency level. ATS uses equation 2-1 to quantify 

contention intensity: 

CIn=α × CIn-1 + (1-α) × CC (2-1) 

Where CIn is contention intensity in n
th

 execution of a transaction in a thread, CC is 

current contention, and α is weight variable. This equation is evaluated whenever a 

transaction commits or aborts. If a transaction commits CC is set to 0; otherwise, it is 

set to 1. Weight variable determines which part of the equation is more important, the 

past history or the current contention. Yoo and Lee [21] measured execution time 
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under different values for α and threshold and found that α = 0.3 and threshold = 0.5 

result in the best average performance. 

The scheduler uses a decentralized contention manager, which means each thread 

manages its own contention, locally. Before a TX starts, ATS uses equation 2-1 to 

determine CI. If CI is more than the threshold, ATS inserts the TX into a centralized 

queue. The structure of the queue is first-in-first-out (FIFO). ATS only allows the TX 

in the head of the queue to execute, effectively serializing transactions with high CI.  

Mathias et al. [22] proposed a dynamic approach to tune important STM parameters 

such as different write strategies, hash-function for local write-set, etc. STM library 

samples some metrics such as the number of unique read and write locations, the 

number of aborts and commits, and the quality of hash functions to decide on STM 

parameters.  

There are two approaches for adaptivity: local and global. In global adaptivity, STM 

parameters are changed for all running transactions. On the other side, in local 

adaptivity, STM parameters are changed on a per-thread basis. The main advantage of 

local adaptivity over global adaptivity is that every thread decides on STM parameters 

locally. This prevents costly synchronization operations among the executing threads. 

On the other side, global adaptivity is a bottleneck for scalability as it requires all 

threads in a TM program to be synchronized to change STM parameters. The 

disadvantage of local adaptivity is that global STM parameters such as hash function 

for lock table cannot be changed locally. This limits effectiveness of local adaptivity. 

To exploit the better of the two, Mathias et al. [22] used a hybrid scheme to change 

STM parameters. Evaluations with STAMP benchmarks reveal that the hybrid 

approach improves performance of the benchmarks by 10% on average 

Our work is different from [21] and [22] as we optimize STM programs before the 

runtime. Our approach focuses on source code of STM programs and decides on some 

STM parameters such as TX size, read-set size, etc.  



15 

In conclusion, there are two common ways to optimize software transactional 

memory: optimizing the library of transactional memory and optimizing the source 

code of transactional memory programs. In this thesis, we focus on the latter 

technique and propose optimization techniques that require adjustments in the source 

code of the programs and not the STM libraries. 

To optimize static parameters, we need to change the source code of programs. 

Generally speaking, many parameters such as size of transaction, read-set size, and 

write-set size can impact performance. We should not only consider the impact of 

individual parameters on performance. We also need to take into account the 

performance impact of these parameters together as some of these parameters are 

correlated. 

One of the challenges of a static optimization technique is that it needs to explore a 

large space. The parameters that we focus on are continuous variables and so there are 

many combinations of those variable values that make it impossible to test them all 

manually. We need a tool that tests STM parameters and automatically optimizes 

STM programs. 

One method to evaluate the impact of STM parameters is using a set of benchmarks. 

Application-based benchmarks are useful programs that help STM designers to 

explore design space of STMs. However, they have a limited ability to isolate the 

effect of each parameter on the overall performance. For example, an application’s 

read-set size is often tied to the size of its transactions, but these two parameters may 

be completely orthogonal in terms of how they affect the system performance. To 

quantify the impact of STM parameters on performance, we need an evaluation 

framework which is able to isolate the impact of each parameter on performance. 

EigenBench [23] is a micro-benchmark which can be used to fully evaluate STM 

systems. EigenBench decouples STM characteristics and enables programmers to 

vary each of those characteristics, independently. The characteristics considered in 

EigenBench are:  
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1. Concurrency: number of threads 

2. Working-set size: size of read-set and write-set 

3. Transaction length: size of transaction 

4. Pollution: the percentage of shared write variables 

5. Contention: the rate of conflicts 

6. Temporal locality: probability of repeated addresses 

7. Predominance: fraction of shared access cycles to total execution cycles 

8. Density: the percentage of non-shared cycles executed outside of transactions 

In this thesis, we consider only the first five parameters as the last three rely on 

memory access latency and processor cycles and so are not appropriate for a static 

optimization technique. 

In EigenBench [23], a programmer can adjust 21 parameters such as number of 

threads, number of transactions per thread, etc. to change each of the eight character 

tics. Then, EigenBench [23] generates a program based on the selected values of the 

parameters. The program can be used to evaluate performance of one or more of those 

characteristics simultaneously.  

We use EigenBench to evaluate the impact of transaction size, read-set size, etc on 

performance. Based on those evaluations, we can find the optimum values of 

transactional parameters. Then, we change source code of TM benchmarks based on 

the optimum values to gain speed-up. We will discuss details of our optimization 

technique in chapter 3. 

Some research studies used neural network to optimize STMs. Neural network 

provides the ability to approximate different types of functions including functions 

with continuous variables. Inspired by the human brains, a neural network consists of 

a set of interconnected neurons which cooperate to compute a specific function. 

Neurons are the processing elements of a neural network and each neuron has a 
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simple function. In a neural network, each link is associated with a weight. The 

weight of a link determines the influence of neurons in a level on the next level 

neurons.  

Rughetti et al. [27] proposed a self-adjusting concurrency scheme for STMs based 

on neural network. This self-adjusting concurrency scheme can activate or block 

threads to increase thread level parallelism and reduce data conflicts. This scheme has 

three parts: a collector, a neural network, and a controller. The collector monitors an 

application and collects a set of values characterizing the application. The set of 

values are passed to the controller after a sampling interval. The neural network 

receives the set of values from the controller and predicts the average wasted 

transaction execution time spent by the application. Then, the controller adjusts 

concurrency level according to prediction made by the neural network. The collector 

collects three parameters from a benchmark:  

1. size of read-set 

2. size of write-set 

3. execution time of successfully committed transactions 

4. execution time of non-transactional parts 

Neural network in this scheme is a three layers radial basis function network. The first 

layer receives input parameters. The second layer calculates wasted time and sends it 

to the third layer which is output layer.  

Rughetti et al. compared the neural network-based concurrency control scheme 

with TinySTM [6]. The performance of the baseline TinySTM is an increasing 

function of the number of thread. However, after certain point, it degrades due to data 

conflicts. On the other side, the performance of the enhanced scheme does not 

degrade as it adjusts number of threads to avoid data conflicts when the number of 

threads increases. 
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The main disadvantage of neural network is that there is no clear guideline for the 

structure of the neural network such as the number of layers, the weight of each 

connection, and the number of neurons in each layer. Each neural network should be 

built based on an application and there is no clear rule that we can follow. Unlike 

neural network, regression [10] is a statistical technique and has a clear approach to 

build regression model. 

2.3 Linear Regression 

Linear Regression (LR) is a mathematical equation which relates a response 

variable to a set of input parameters for a given design space [10]. LR is widely used 

to predict the response variable at an arbitrary point in the design space. Equation 2-2 

shows a simple model for LR: 

             

 

   

   (2-2) 

Where y is response variable, xi is an input parameter, B0 is the intercept of the fit 

with the y-axis, and   is the error of LR model. Bi (0<i) is coefficient and represents 

the expected change in y per unit change in xi. LR uses least square method to find the 

best-fitting curve to a set of test points. In this method, coefficients are calculated so 

that the sum of square of the errors for the test points (error of a test point is the 

distance of the point from the fitting curve) is minimized. While LR exploits a simple 

model for prediction, it shows excellent results in many applications [28, 29, 30] and 

is able to predict the response variable with high accuracy. 

Dong et al. [28] used linear regression to predict age of article writers. The linear 

regression model is based on the frequency of words in articles. Training and testing 

of datasets are from three corpora and forums: blog, fishing, and cancer. Dong et al. 

[28] selected articles from those corpora and calculate important features such as 

textual features and gender. Frequency of words varies from one corpus to the other. 

For example, people in fishing forum rarely talk about cancer while the word "cancer" 

is top high-frequency word in cancer forum. Therefore, it is important to distinguish 
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corpus-specific textual features. In addition, some features are commonly used in the 

three corpus such as "with", "and", "hence", etc. Dong et al. [28] built four types of 

regression models to predict age of an author:  

1) A model trained by corpus-specific features individually 

2) A model trained by all the three corpus-specific features 

3) A model only trained by global features 

4) A model trained by global features and individual corpus-specific features. 

For prediction, the regression model analyzes a test article and measures the 

features. Then, the four models predict age of the article writer. The purpose of using 

four models for prediction is to find out which model has the highest accuracy. The 

evaluation shows that the correlation rate can reach up to 75% and error of prediction 

is 4.1 to 6.8 years. The model trained by all corpus-specific features has better 

performance than individual models and the model which only uses global features 

has the worst performance.   

 Google Inc. published [29] regression models to predict box office sales. The 

model inputs are based on phrases that clients search through Google search engine. 

The first model uses search volume to predict weekend box office sale. The accuracy 

of this model is 70%. The second model takes into account some extra factors such as 

number of theaters and franchise status to boost the accuracy rate to 92%. The third 

model is used to predict box office sales four weeks ahead. The accuracy of this 

model is 94%. 

2.4 The Choice of a Classifier 

A TM program is composed of a variety of transactions. These transactions vary in 

terms of TX size, read-set size, etc. Using a single linear regression model to predict 

parameters of all transaction types reduces accuracy (details will be discussed in 

chapter 3). The alternative approach is using multiple linear regression models. Each 
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model corresponds to a specific transaction type. To select which model should be 

used for a given TX, we need to use a classifier such as decision tree.  

Classification is the task of assigning objects to a set of predefined categories. 

Decision tree [31] is a popular approach for classification. Originally, decision tree 

was used in the field of statistics. However, soon it found to be effective in many 

other disciplines such as machine learning, image processing, etc. A decision tree 

classifies an input object through a set of functions organized in a hieratical manner 

and represented by a tree. A tree has three types of nodes: root, internal, and leaf [31]. 

An internal node splits the objects into two categories according to a test function. 

The inputs to the function are attributes of the object and the output of the function is 

a binary value: 0 or 1. A leaf represents a category. Objects are classified by 

navigating them from the root down to the leaves, based on the output of the test 

functions along the path. There are many open source implementations of decision 

tree such as ID3 [25] and C4.5 [26].   

Kemal et al. [32] proposed a hybrid intelligent method to improve classification 

accuracy for multi-class classification problems. The hybrid method is based on C4.5 

decision tree and is evaluated using three multi-class problems: dermatology, image 

segmentation, and lymphography datasets. The accuracy of C4.5 for the three 

problems is 84%, 88%, and 80%, respectively. In Dermatology and lymphography, 

medical sciences overlap while in image segmentation, graphics overlap. Using single 

classifier, the overlaps create mutual interferences during the training and reduce 

accuracy. On the other side, the hybrid approach avoids overlaps and improves 

accuracy to 96%, 95%, and 87% in the three multi-class problems, respectively.  

Support vector machine (SVM) is a machine learning method which is used to 

classify a set of data. SVM builds a model based on training data which can be used to 

classify test data. Similar to decision tree, SVM is a binary predictor and classifies 

objects into two categories.  
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SVM creates a hyperplane based on training data for classification. Figure 2-3 

shows an example for SVM. There are two classes in the 2D-coordinate. There are 

many lines that separate the two classes. If a line is too close to an element, then the 

line is sensitive to noisy data. Therefore, the best line is the one which has the largest 

distance to the nearest training-data point of any class. Using a set of mathematical 

equations, SVM determines the hyperplane [33].  

 

Figure 2-3: Two classes in a 2D-coordinate. 

A natural advantage of decision tree is that it is simple to understand. Decision tree 

is similar to a white box that the decisions can be read and understood by human 

while SVM is similar to a black box model which is hard to understand and interpret 

as it relies on complicated mathematical equations. The other advantage of decision 

tree is that it is able to select only those features that correlate with the output and 

filter out irrelevant features. Furthermore, decision tree is insensitive to the noise 

when the training dataset is large because the large number of training datasets can 

dilute the influence of noise.  

The other benefit of decision tree over SVM is related to scale problem. In machine 

learning, large values can mislead the training process because sometimes, large 

values can dominate small values. The good aspect of decision tree is that it does not 

suffer from scale problem. However, SVM which depends on mathematical equations 

need to deal with the scale problem. Last but not least, in both decision tree and SVM, 
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no linear relationship is required among features and output. On the other side, some 

techniques such as linear regression require linear relationship between features. 

However, decision tree has its own disadvantages. The first one is that training 

dataset should be large; otherwise, it may lead to high error rate. Secondly, since each 

node in decision tree can have up to two children nodes, the size of the tree grows 

exponentially if we increase the number of decisions. On the other side, SVM can 

classify test data with high accuracy using a small set of training data. 

In conclusion, decision tree is easy to understand and is suitable for applications 

with a few decision situations and with large amount of training dataset, whereas, 

SVM is suitable for medium sized training dataset.  

Adaptive boosting (Adaboost) [34] is a machine learning technique which boosts 

performance of decision tree. Each sample in a machine learning technique may 

contain a large number of features. If we train the decision tree or SVM by all those 

features, the speed of training might be too low. Also, this may reduce the accuracy 

rate because of Hughes Effect [34]. Unlike basic decision tree or SVM, adaboost 

selects those features which improve the performance of predictions.  

Adaboost iteratively trains classifiers using input datasets. Adaboost associates 

weights to inputs. The weight of those inputs that are misclassified is increased in 

each iteration. This biases classifiers towards correcting misclassified inputs in future 

iterations. The final result is an ensemble of instances of hard to classify inputs, each 

with its own weight. During the testing, unseen instances are classified using a 

weighted combination of weak classifiers.   

Zhen et al. [35] used decision tree, SVM, and adaboost to select parallelizable 

sections of a sequential code. The inputs to the machine learning techniques are 

features of a snippet of a code and the output is a binary value: whether the snippet is 

parallelizable or not. 

During the evaluation, the authors used two methods for training and testing. In the 

first method, all 16 features are used. The results show that adaboost has the best 
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performance which is 92%. The accuracy of decision tree and SVM is the same and is 

equal to 85%. In the second method, only top features with an importance score of 

0.08 or greater are used. Accuracy of adaboost, decision tree, and SVM is 91%, 90%, 

and 89%, respectively. 

 Zhen et al. [35] concluded that the most important feature which increases 

accuracy is number of instructions whereas execution time is not a top feature. Among 

the three prediction methods, adaboost is more accurate than decision tree and SVM. 

The accuracy of decision tree and SVM increases when the numbers of features is 

narrowed down. Therefore, blindly increasing the number of features not only does 

not increase accuracy but also may reduce it. 

Freund et al. [36] proposed an alternating decision tree based on adaboost decision 

tree. This alternating decision tree only focuses on binary decisions. An internal node 

in decision tree splits the objects into two categories according to a test function. 

Unlike the baseline decision tree, alternating decision tree [36] has two types of 

internal nodes: splitter nodes and prediction nodes. Splitter nodes have the same 

function as internal nodes of the baseline decision tree. They make decision according 

to a test function. Each prediction node is associated with a value. The leaf nodes in 

the baseline decision tree are used to make decision, whereas in the alternating 

decision tree, the final decision is the sum of all passed values of prediction nodes.  

Compared with the baseline adaboost decision tree, adaboost alternating tree is 

more flexible. Each node in the baseline decision tree can split at most once but 

alternating tree does not have this restriction. Freund et al. [36] used Cleve dataset to 

evaluate adaboost alternating tree and showed that adaboost alternating tree requires 

only 6 nodes to represent Cleve dataset whereas the baseline decision tree requires 

446 nodes. In addition, in the baseline decision tree, if we need to add new decisions, 

then we can only add them to the leaf nodes or rebuild the whole decision tree. 

However, in adaboost alternating tree, we can add new decisions to anywhere and 

only adjust the value of each node. Compared with the baseline decision tree model, 
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this paper [36] shows that the accuracy rate of adaboost alternating decision tree is 15% 

higher than the baseline decision tree. 

2.5 NAS Benchmark Suite 

To evaluate an STM system, researchers rely on a set of benchmarks. If the set of the 

benchmarks are selected from a specific field, then the outcome of the research is not 

reliable. To be able to extend the outcome of a research project to the real world 

applications, we need a set of comprehensive benchmarks that truly represent real 

world applications. Asanovic et al. [37] proposed 13 Dwarfs as a guideline to develop 

benchmark suites for parallel applications. A dwarf is a high level abstraction which 

categorizes applications based on patterns of computation and communication. 

Programs that belong to a pattern may have different implementations, but the 

underlying patterns do not change through different implementations. Their work is 

based on 7 dwarfs proposed by Phil Colella [38] who identified seven numerical 

methods which are important for science and engineering. Asanovic et al. [37] have 

examined different application domains, i.e. machine learning, computer games, etc 

and expanded the primary seven dwarfs to 13. Asanovic et al. [37] showed that NAS 

benchmark suite [11] includes all those dwarfs and so in this work, we use NAS 

benchmark suite to evaluate our optimization techniques. 
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Chapter 3  

Static Optimization of Transactional Parameters 

In this chapter, we focus on contributions of this thesis. In section 3.1, we explain how 

system APIs and the choice of programming style impact STM programs. In section 

3.2, we describe parameters that impact performance of STMs. In section 3.3, we show 

how linear regression predicts a set of static parameters to improve performance. In 

section 3.4, we focus on classifiers and show how a classifier can assign an appropriate 

LR model to a benchmark. In section 3.5, we explain how a combination of linear 

regression and decision tree enhances performance of STM applications and finally, in 

section 3.6, we evaluate our optimization techniques for two and four threads. 

3.1 System APIs and Programming Style in STMs 

3.1.1 System APIs 

In an STM program, the parallel parts are implemented in transactions. Although 

programmers do not need to worry about deadlock, live-lock, and other 

synchronization bugs, they still may get discouraged by performance of STMs.  

In chapter 2, we discussed some parameters that impact performance of STMs. 

Long transactions may lead to high overhead when they abort and large write-sets and 

read-sets may cause high contentions. Therefore, if programmers are not careful about 

transaction, read-set, and write-set sizes, they can generate programs with inefficient 

structures leading to unacceptable performance.  

To evaluate the impact of STM parameter on performance, we use DP benchmark 

suite [12]. DP is a set of sequential programs used to evaluate DiscoPoP (Section 2.2). 

DP is composed of 6 benchmarks: 

 Histo_serial: It uses random numbers to generate histograms. 

 Combined_ctrl_regions: This is a simulation of a controller to randomly mix 

colors based on three-primary colors. 

 Ann_training: This benchmark is an implementation of neural network training 
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algorithm. 

 Mandelbrot: This benchmark draws a picture of Mandelbrot set. 

 Mc_light: This benchmark simulates the propagation of light using Monte 

Carlo approach. 

 Mont: It is used to draw random curve.  

DiscoPoP detects parallelizable sections of a sequential code and transforms the 

sequential code to a parallel code based on pthread library [13]. We converted the 

pthread codes generated by DiscoPoP to STM programs. The conversion is 

straightforward and requires replacement of pthread APIs with STM APIs. 

Lock/unlock in pthread is replaced by TM_BEGIN/TM_END and access to a shared 

variables in pthread is replaced by TM_SHARED_READ/TM_SHARED_WRITE.  

In this thesis, we use two Intel Xeon E5660 processors to evaluate our optimization 

techniques. Each processor has six cores and is capable of running up to 12 threads 

simultaneously. Each processor has a 12MB shared L3 cache with 64B cache lines. 

Each core has a 32KB instruction cache and a 32KB data cache. 

 Figure 3-1 shows performance of STM relative to sequential programs in DP 

benchmark suite. Bars less than one show slow-down. For each benchmark, the 

number of threads varies from two to 8. While STM improves performance of some 

benchmarks such as mandelbrot, in some others, it degrades performance. In mont, 

execution time increases by a factor of 2 when the number of threads is 8. 

 

Figure 3-1: Performance of DP benchmarks in STM relative to sequential code. Bars 

less than one show slow down. 

0 
0.5 

1 
1.5 

2 
2.5 

3 
3.5 

4 
4.5 

sp
e

e
d

u
p

 c
o

m
p

ar
e

d
 w

it
h

 
se

q
u

e
n

ti
al

 c
o

d
e

(r
at

io
) 

2 threads 

4 threads 

8 threads 



27 

To scrutinize why STM degrades performance of some of the benchmarks, we focus 

on histo_serial benchmark. There are 4 transactions in this benchmark. We use 

gettimeoftheday() function to measure execution time of each transaction. Table 3-1 

reports execution time per transaction. The first column indicates the transaction 

number. Other columns show execution time of transactions when the number of 

threads changes from 2 to 8. Execution time is averaged over 10 runs and is reported 

in Table 3-1.  

 

Table 3-1: Execution time (in second) per transaction in histo_serial benchmark. 

Transaction # 2 threads 4 threads 8 threads 

1 5.87 9.64 14.96 

2 0.07 0.04 0.04 

3 0.29 0.22 0.17 

4 3.11 5.94 5.79 

From table 3-1, we observe that execution time of the first and the fourth 

transactions dominate the total execution time. Figures 3-2 and 3-3 show the code 

snippets of the first and the fourth transactions, respectively.  

 

 

TM_BEGIN(); 

 for(i=lowIndex;i<highIndex;i++) 

 { 

 if(i<50) 

    data[i]=(rand()%range_max)-range_min; 

 } 

TM_END(); 

Figure 3-2: The code snippet of the first transaction in histo_serial. 



28 

 

 

The two transactions are small but they call external functions. The first transaction 

calls rand() to generate random values. This function is a system call function and is 

implemented in operating system (OS). The seed of this function is time which is 

provided by OS. When a system API is invoked, OS needs to fall into kernel mode. To 

do so, OS first stores context of current user process into memory and then switches 

to system API. This procedure is called context switching. If system call happens only 

once, the overhead of context switching is small. However, rand() in histo_serial 

benchmark is called 50 times in each transaction. This is the main reason that STM 

degrades performance of the first transaction.  

To eliminate the overhead of system call, we wrote a pseudo-random number 

generator function and use it instead of rand(). The seed of this pseudo-random 

number generator is the number of loop iterations and a local snapshot of the global 

clock. This function keeps a dataset which stores a large number of values. Based on 

the seed, this function selects a value from the dataset. All the process is done by local 

statements to avoid context switching. Figure 3-4 shows execution time of the 

optimized histo_serial benchmark. In figure 3-4, rand() means the original version of 

histo_serial benchmark and no_rand() means the optimized version. Y-axis is 

execution time in second.  

TM_BEGIN(); 

for(k=1;k<20;k++){ 

/........ 

/........ 

TM_SHARED_WRITE_F(rhs[k], t); 

} 

TM_END(); 

Figure 3-3: The code snippet of the fourth transaction in histo_serial. 
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Figure 3-4: Execution time of histo_serial benchmark with rand() and without rand(). 

This graph strongly proves our assumption. When using a local function, the 

speed-up is dramatically increased compared with rand() function. Therefore, in STM 

programs, we should avoid using external functions which can cause context 

switching.  

The fourth transaction in histo_serial benchmark uses printf() function within a 

loop. This function is a standard IO function in C programming language. When a 

thread calls this function, system prints formatted data to a standard output which is 

usually a console or a terminal. This IO function generates a software interrupt. When 

OS receives an IO request through a software interrupt, it uses a system API to send 

output stream to a console or a terminal. At the same time, the calling thread is 

blocked until this IO process is finished. Essentially, printf() function is similar to 

rand() function and causes context switching.  

Figure 3-5 compares performance of optimized and original histo_serial. In the 

optimized version, printf()function is removed. Y-axis is execution time in second. 

Performance of the optimized version is improved up to 30X.  
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Figure 3-5: Execution time of optimized and original histo_serial. 

We also investigate the other two benchmarks for slow-down: mont and mc_light. 

The problem in these two benchmarks is rand() function as well. After replacing 

rand() with pseudo-random number generator, performance of optimized benchmarks 

is improved dramatically. Table 3-2 exhibits the results. The numbers in the table are 

execution time in second. 

Table 3-2: Execution time of each transaction in histo_serial benchmark. 

Benchmark 2 threads 4 threads 8 threads 

mont 21.26 33.56 45.21 

mont_optimized 1.05 1.13 1.26 

mc_light 2.12 7.39 16.54 

mc_light_optimized 1.77 1.49 1.03 

In a nutshell, context switching can dramatically decrease performance of STM 

programs and so should be avoided. Unfortunately, an optimizing compiler might not 

be able to remove them all because removing system calls may compromise 

correctness of programs. Therefore, what we can do is to notify programmers about 

potential context switching in transactions. Then, they can remove context switching 

by restructuring their programs.  

3.1.2 Programming Style in STMs 

In addition to context switching, coding style also affects the performance of STM 

programs. One of the popular data structures used in programs is array. Programs 

access elements of an array through indexing. If transactions of a STM program 
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access disjoint indexes of an array, then there is no conflict over the array. This can 

reduce overhead of the STM program as transactions do not need to call STM APIs 

such is STM_SHARED_READ and STM_SHARED_WRITE to access the array 

elements. 

Figure 3-6A shows a sequential program that accesses an array in a loop. In each 

iteration, an element of the array is changed. Figure 3-5B shows STM version of the 

sequential program. Each transaction accesses a non-overlapping portion of the array. 

So, there is no need to use TM_SHARED_WRITE to access the array. However, an 

inexperienced programmer may consider this array as a shared variable and use STM 

APIs to guarantee consistency of the array. 

 

 

Three benchmarks in DP have structures similar to Figure 3-6a. The three 

benchmarks are: histo_serial, Mandelbrot, and ann_training. Figure 3-7 shows 

performance of optimized version relative to naïve version. Bars more than one show 

speed-up in the optimized version. The optimized benchmarks demonstrate 

performance improvement from 7% to 13%. 

for(j = 0; j<x; j++){      

 counter[j]=3+j; 

} 

int numthread=getThreadNum(); 

int myId=getThreadId(); 

int low=(x*myId)/ numthread; 

int high=(x*(myId+1))/ numthread; 

TM_BEGIN(); 

for(j = low; j<high; j++){ 

ct=3+j; 

TM_SHARED_WRITE(counter[j],ct);

 } 

TM_END(); 

A B 

Figure 3-6: A) A sequential program accesses an array. B) STM version of the program. 
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Figure 3-7: Performance of optimized and naively parallelized benchmarks. 

3.2 Sensitivity of STM Programs to Static Parameters 

NAS benchmark suite is a comprehensive set of benchmarks and covers a wide range 

of features of real world applications (Section 2.5). NAS benchmarks are designed 

using OpenMP library [39]. To convert NAS benchmarks into STM benchmarks, we 

replace critical sections in NAS with transactions. Figure 3-8 shows performance of 

STM version of NAS relative to the sequential version. Bars more than one show 

speed-up in STM version. Only two benchmarks are faster than the sequential version 

and others are all slower. On average, STM reduces performance by 43.8%, 57.5%, 

and 59.1%, when the number of threads is 2, 4, and 8 respectively. 

We investigated the cause of slow-down in these benchmarks. In BT, MG, and FT, 

there are many large transactions which abort frequently. On the other side, IS is 

dominated by small transactions. The downside of small transactions is that overhead 

of STM APIs exceeds performance gain due to parallelism.  
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Figure 3-8: Speed-up in STM relative to sequential version of NAS benchmarks. The 

number of threads varies from two to 8. 

In the next section, we focus on transaction size and explain how changing 

transaction size can improve performance of NAS benchmarks. 

3.2.1 Transaction Size 

Performance of STM programs varies with transaction size. Speed-up in a short 

transaction is limited since overhead of STM is high relative to the size of the 

transaction. On the other side, a long transaction may increase abort rate as a large 

number of instructions in a transaction may increase the window during which 

transactions are identified as competitors. So, to boost performance of STM programs, 

we should merge small transactions to reduce overhead of APIs. On the other side, we 

should split a large transaction into a number of small transactions to reduce abort rate 

and improve performance. 

One way to measure transaction size is to count the number of C code lines in 

transactions. However, execution time of C programs changes from one line to the 

other by a large margin. We need a fine granularity metric for transaction size. Since 
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all C codes are compiled to assembly instructions, we use number of assembly 

instructions to measure transaction size.  

To evaluate the impact of transaction size on performance, we use EigenBench [23] 

(Section 2.2). This micro-benchmark enables us to explore design space of STMs by 

orthogonally changing different transactional parameters. Unless otherwise specified, 

we use the parameters tabulated in Table 3-3 in our experiments. 

Table 3-3: EigenBench parameters. 

parameter value parameter value 

Thread number 2-8 Predominance 1.00 

Temporal locality 0 Pollution 0.1 

Working set size 256KB/thread Density 1.0 

In EigenBench, we can control the number of instructions per transaction through 

loop iterations. The micro-benchmark has a loop and the body of the loop is 

composed of three small loops. The number of iterations of the outer loop varies from 

10 to 600. To measure the number of assembly instructions, we used gcc 4.8.1 to 

disassemble the C code.  

Figure 3-9 shows performance of EigenBench when the number of instructions per 

transaction changes. We compare performance of STM version with sequential 

version. The number of threads varies from two to eight. We averaged execution time 

of the micro-benchmark over 10 runs.  

Depending on the number of threads, the optimum transaction size changes. With 8 

threads, the speed-up increases at the beginning rapidly, reaches to a maximum for 

6784 assembly instructions, and then starts decreasing. When the number of threads is 

4, the trend is totally different. The speed-up increases slightly at the beginning but 

steadily decrease when the number of assembly instructions exceeds 1696. The trend 

for 2 threads is almost the same as 4 threads. However, the highest speed-up for 2 

threads is less and is around 1.  
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Figure 3-9: Speed-up when transaction size changes. The number of threads varies from 

two to eight. 

Based on Figure 3-9, we can optimize STM programs. If a transaction is larger than 

the optimum size, then it should be broken into smaller transactions. On the other side, 

if a transaction is smaller than the optimum size, then it should be merged into other 

transactions. Figure 3-10 shows how to change size of a transaction. This is a code 

snippet taken from BT benchmark which is in NAS benchmark suite. Size of 

transaction is the number of assembly instructions between TM_BEGIN() and 

TM_END(). Therefore, to change transaction size, we can move TM_BEGIN() and 

TM_END() into appropriate locations. It is important to note that to guarantee 

correctness of the program, TM_SHARED_READ() and TM_SHARED_WRITE() 

must be between TM_BEGIN() and TM_END(). 
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Based on Figure 3-9, the optimum transaction size when the number of threads is 

eight is 6784. However, in real applications, it is not always possible to change STM 

codes so that all transactions are optimum. For example, in Figure 3-10, transaction 

size is 5576. Since there is no other transaction in the code to merge with, the 

transaction cannot be changed to an optimum transaction.  

We use the following two rules to optimize transaction size:  

1. If a transaction is only 10% smaller or larger than 6784 assembly instructions, 

then we do not change the transaction. 

2. We try to keep size of transactions between 3392 and 10176. If it is not 

possible, we refer to Figure 3-9 to determine the optimum size. 

Figure 3-11 reports speed-up in optimized version of NAS benchmarks. Optimizing 

transaction size has dramatic impact on performance. For example, in BT, 

performance increases up to 9.3X. On average, changing transaction size improves 

performance by 77.7%, 88.4%, and 89.1% when the number of threads is 2, 4, and 8 

respectively. 

 

Figure 3-10: A code snippet taken from BT benchmark. 

TM_BEGIN(); 

for(k=1;…;k++) 

for(j=1;…;j++) 

rhs_t=(double)TM_SHARED_READ_F(rhs[k][j][i][0]); 

for(i=1;i<= grid_point[0]-2;i++){ 

 ui=rhs_t+dx1*tx1*(up1+us1-um1); 

 ..... 

 rhs_t=ui*tx2-u[k][j][i][1]; 

 } 

TM_SHARED_WRITE_F(rhs[k][j][i][0],rhs_t); 

TM_END(); 
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Figure 3-11: Speed-up in NAS benchmark suite when size of transaction is optimized. 

There is an interesting phenomenon that IS still shows slowdown compared with 

sequential code. This is because of small transactions in IS. In IS benchmark, all the 

transactions are smaller than the optimum size. Furthermore, there are many 

non-transactional instructions between two consecutive transactions. Therefore, it is 

not possible to combine small transactions in this benchmark. So, in IS, the overhead 

of transactions (validation of read-set, lock acquisition, etc.) exceeds performance 

gain of parallelism and results in slow-down in this benchmark.  

3.2.2 Size of Write-Set 

TL2 uses write-set to record transactional write operations. The write-set is 

implemented through linked-list. When a transaction writes into a shared memory 

location, it inserts a new node to the linked-list. Each variable in the write-set is 

associated with a lock bit. In commit, the transaction traverses the linked-list to 

acquire locks and update memory with new transactional data.  

Write-set is overhead of STMs as it does not exist in sequential programs. If a 

transaction fails to acquire a lock, then it aborts and restarts. So, a transaction with a 

0 

1 

2 

3 

4 

5 

6 

7 

LU BT CG EP IS MG FT 

Sp
e

e
d

u
p

(h
ig

h
e

r 
th

an
 o

n
e

 m
e

an
s 

b
e

tt
e

r)
(r

at
io

) 

2 

4 

8 



38 

large write-set is more likely to abort. However, if we restrict transactions to have 

only small write-sets, then we need to split transactions into too many short 

transactions. This increases overhead of STM APIs relative to the performance gains 

of concurrent transactions and limits speed-up. 

Similar to transaction size, we use EigenBench to evaluate the impact of write-set 

size on performance. EigenBench is not directly designed for evaluation of write-set 

size. The only parameter in EigenBench which affects write-set is pollution. Pollution 

is defined as the fraction of transactional writes. EigenBench keeps a fixed size 

transaction and increases or decreases the size of write-set to change the fraction of 

transactional writes. This is not what we require for evaluation of write-set size. 

Write-set is a linked-list which stores shared variables. So, it is not feasible to adjust 

size of write-set in a workload without changing the total number of memory 

locations accessed in the workload. If we increase or decrease the size of write-set 

through pollution, we may change the data structure of the workload. 

The only way to optimize write-set is to split the transactions. Therefore, we created 

a new function based on pollution in EigenBench. The body of the function has a 

transaction with a large write-set. To change write-set size, we split the transaction 

into a number of small transactions. By measuring execution time of the function, we 

can evaluate the impact of write-set size on performance. Figure 3-12 shows the 

results. 

Speed-up is lower for small and large write-sets. For small write-sets, the overhead 

of STM is higher than performance gain. In large data sets, there are more shared 

variables to check at commit stage. Therefore, the probability of conflicts increases.  

In Figure 3-12, speed-up increases with the number of threads. This is mainly due 

to contention. A program with large number of threads has more conflicts, leading to 

higher probability to abort. This increases the impact of write-set optimization on 

performance. 
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Figure 3-12: Performance of parallel EigenBench when write-set size changes. 

 Based on Figure 3-12, we optimized write-set of NAS benchmarks (Figure 3-13). 

Although the speed-up is not as high as optimized transaction size, it is still 

considerable. Optimizing write-set enhances performance up to 4.7X. The only 

benchmark which shows slowdown is IS. As we mentioned before, IS benchmark is 

composed of small transactions with many non-transactional instructions between 

them. This makes it impossible to create large transactions out of small ones. 

 

Figure 3-13: Speed-up in NAS benchmarks when write-set is optimized. 
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3.2.3 Size of Read-Set 

Read-set in TL2 is used to store shared variables that are read by transactions. Since 

shared variables that are read by a transaction might be written by others, it is 

necessary to validate read-set in commit to guarantee atomicity of transactions. If 

validation fails then the transaction needs to abort and retry. Since a long read-set has 

more variables to validate than a short read-set, it is more likely that a long read-set 

results in abort. On the other side, while a short read-set reduces abort rate, it may 

increase overhead of STMs. Quite often, transaction size and read-set size are 

correlated. A small transaction accesses a few number of shared memory locations 

which results in small read-sets. 

To evaluate the impact of read-set on performance, we use a function similar to the 

one that we used for write-set. The function is composed of several transactions. One 

of them is a read-only transaction and the rest are writing transactions. The initial 

read-only transaction has a large read-set. The transaction is broken into small 

transactions to create small read-sets. Other transactions are used to create contentions. 

Figure 3-14 shows speed-up of STM version of the function relative to the sequential 

version when read-set size changes. 

 

Figure 3-14: Speed-up in EigenBench where read-set size changes for 2, 4 and 8 threads. 

Read-set size has significant impact on speed-up when the number of threads is 8. 
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number of threads is 2, the fluctuation is mild. As the number of threads reduces, there 

are fewer contentions among the running transactions. Hence, speed-up will be less 

sensitive to the read-set size. Another interesting point is the peak speed-up in each 

line. The peak with 8 threads is located at 8. The peak with 4 threads occurs when 

read-set size is 16. For 2 threads, the peak moves to read-set size of 128. So, as the 

number of threads reduces the peak point increases. This is mainly due to trade off 

between overhead of abort and overhead of STM APIs. When the number of threads 

is 8, the contention is high, so the overhead of abort can easily surpass the overhead of 

STM APIs. On the other side, when the number of threads is 2, the contention is low 

leading to lower abort overhead. 

Based on Figure 3-14, we optimized NAS benchmark suite. However, there are a 

few read-only transactions in NAS benchmark suite. If we optimize both read-only 

and writing transactions, it is hard to specify whether speed-up is due to read-set or 

write-set. Therefore, there are few opportunities to optimize NAS benchmarks based 

on read-set. Figure 3-15 shows speed-up after optimizing the read-sets.  

 

Figure 3-15: Speed-up in NAS benchmarks when read-set is optimized. 

Based on Figure 3-15, read-set optimization slightly improves performance but it 

does not mean that read-set is less important than the other two factors. The main 

reason for small improvement is the limited number of read-only transactions in NAS 
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benchmarks. However, if we have a program which is dominated by read-only 

transaction, then optimizing read-sets result in higher speed-up.  

3.2.4 Comprehensive Optimization Based on the Three Parameters 

In this section we explain how these three parameters are optimized together. These 

parameters can impact each other. For example, a transaction with optimum 

transaction size may contain an oversized read-set or a small transaction may have a 

large write-set.  

We optimized the three parameters one at a time. We start with transaction size and 

use Figure 3-9 to optimize transaction size. Then, we adjusted write-set size. To 

optimize write-set, we follow the rules below: 

 If the write-set is shorter/larger than the optimum size, we enlarge/shrink the 

size of transaction step by step to approach the optimum size of the write-set. 

During this process, we measured execution time at each step. We select the 

transaction with minimum execution time and consider the transaction 

optimized for both transaction size and write-set size. 

 If due to constraint in a benchmark, it is not feasible to optimize the write-set, 

we try to optimize both transaction size and write-set size simultaneously to 

find the minimum transaction size. For example, if a transaction contains a loop 

and the body of the loop is larger than optimum transaction size, we optimize 

transaction size and write-set size simultaneously.  

In the next step, we optimized read-set. The rules for optimizing read-only 

transactions are similar to the above rules. However, for read-write transactions we 

follow the rules below: 

 If a shared variable appears in both read-set and write-set, we cannot optimize 

read-set and write-set separately. First, we focus on read-set and size of 

transaction. Then, we change write-set size step by step and select the write-set 

that minimizes execution time.  



43 

 If read-set and write-set use disjoint variables, we can adjust size of read-set 

and size of write-set, separately. For read-set optimization, we enlarge or shrink 

the size of transaction gradually to reach the optimum read-set size. For 

write-set optimization, we follow rule 1 for write-set. 

 

Figure 3-16: Speed-up for NAS benchmarks where size of transaction, write-set, and 

read-sets are optimized. 

Figure 3-16 shows speed-up when all the three parameters are optimized. Based on 

Figure 3-16, optimization based on the three factors is better than optimization based 

on a single factor. Compared with non-optimized version, performance improves by 

77.7%, 88.4%, and 89.1% when the number of threads is 2, 4, and 8, respectively. 

3.3  Linear Regression Model 

Optimizing an STM program based on the three parameters manually is a time 

consuming process. We need an automatic technique which can predict the optimum 

parameters for transactions. To optimize performance of STM programs, we build a 

linear regression model that predicts transaction size based on the three characteristics 

of a transaction: transaction size, write-set size, and read-set size. The main reason 

that we decided to use transaction size as the predicted value is that changing STM 

programs based on transaction size is straightforward. Quite often, it does not require 

any changes in the data structure of programs. For example, Figure 3-10 shows a code 

snippet from BT benchmark. The loop iterations are independent and so we can 
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change transaction size by splitting the outer loop into a number of smaller loops and 

assigning each small loop to a transaction. On the other side, changing write-set 

and/or read-set of a transaction needs significant programming effort which 

complicates parallel programming. Hence, in all our experiments, we target 

transaction size for optimization. It is important to note that in some programs, it is 

not feasible to break down a large transaction because of dependency. For example, if 

the loop iterations in Figure 3-10 are dependent, then we cannot break the outer loop. 

Before deciding on using LR for prediction, we scrutinized three other techniques: 

SVM, decision tree, and neural networks. SVM and decision tree are not appropriate 

for prediction of transaction size as these techniques are only able to predict discrete 

variables. However, transaction size is a continuous variable. We also checked neural 

network for prediction. Theory and structure of neural network is more complex than 

linear regression. In addition, there is no common rule to design an optimum neural 

network. Neural network can have different number of layers and different 

propagation functions. On the other side, linear regression is simple to use and there 

are many matured applications that can be used to build linear regression model 

automatically. If we can get acceptable results from linear regression, then we can 

remove neural network from the list of candidates for prediction. 

In this thesis, we use SPSS [40] to generate linear regression model. SPSS is a 

comprehensive and easy to use tool and helps users to optimize weight of each 

independent variable to find the best accuracy rate.  

To simplify our discussion, we use 8 threads to evaluate our optimization 

techniques. In Section 3.6, we report experimental results for other number of threads. 

3.3.1 Naive Version of Linear Regression Model 

The first version of LR model uses three factors as input variables: non-optimized 

transaction size, non-optimized write-set size, and non-optimized read-set size. The 

predicted output is optimum transaction size. We selected 40 transactions from NAS 
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benchmark suite for training. For test, we use DP benchmark suite [12] and Stamp 

benchmark suite [18].  

After training, SPSS generated equation 3-1 for prediction.     stands for 

predicted transaction size. TxSize, WrSize and RdSize are the parameters of 

non-optimized transactions. We selected 6 transactions from DP benchmark suite to 

test the LR model. Table 3-4 shows predicted transaction size. On average, error of 

prediction is 45.32%. In some benchmarks, the accuracy error reaches to -335.26%. 

                                       (3-1) 

Table 3-4: Accuracy of Predictions in Naive LR Model. 

TX 
No optimized 

TX size 

Predicted 

TX Size 

Optimum TX 

Size 

Error 

(%) 

Test 1 148258 16859.82 6739 -150.18% 

Test 2 54736 10829.28 2488 -335.26% 

Test 3 112816 15122.88 5128 -194.91% 

Test 4 636460 51735.96 28930 -78.83% 

Test 5 204192 21675.2 6381 -239.68% 

Test 6 35122 9846.301 35122 71.97% 

The LR model which only relies on transaction, write-set, and read-set sizes results 

in low accuracy rate. We analyzed structure of STM programs and found that 

optimization of current transaction is closely related to the next transaction. For 

example, if we try to combine small transactions, we need to consider the distance 

between two transactions. If there are only a few sequential instructions between the 

two transactions, we can combine them by including the sequential instructions in the 

final transaction. However, if there are a large number of instructions between the two 

transactions, we need to consider the impact of those sequential instructions on 

transaction size. The other example is when a transaction needs to enlarge but the next 

transaction is optimized. In such a case, the non-optimized transaction cannot be 

changed. So, we needed to consider these factors in LR prediction and revise our 

model. 

After several experiments, we decided to extend the inputs of the LR and include 

five more parameters: size of next transaction (SNT), number of assembly instructions 
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between two consecutive transactions (NCT), write-set of the next transaction (WN), 

read-set of the next transaction (RN), and number of assembly instructions in a loop 

(TL). These five parameters are in addition to the original three parameters: size of 

transaction (ST), size of write-set (WS), and size of read-set (RS) 

The first factor is called SNT. We explain why we use SNT as an input to the LR 

model through an example. Assume that transaction A is followed by transaction B 

and transaction C is followed by transaction D. Transactions A, B, C, and D have 

3000, 5000, 6000, and 11000 instructions, respectively, Assume that the optimum 

transaction size is 8000 instructions. We can combine transactions A and B and create 

a larger transaction with 8000 instructions. However, transactions C and D cannot be 

combined since the combined transaction has much more than 8000 instructions.  

The second factor is called NCT. The number of instructions between two 

consecutive transactions affects the way we merge multiple small transactions into a 

large transaction. Assume that there are two transactions each with 3000 instructions. 

Similar to the previous example, assume that the optimum transaction size is 8000 

instructions. If NCT is 2000 instructions, then the combined transaction results in 

optimum performance. However, if NCT is 10000, then we cannot combine the two 

transactions as the combined transaction is too large and hurts performance. 

The third and fourth parameters are called WN and RN. Similar to SNT, write-set 

and read-set of the next transaction affect how we merge small transactions to build 

optimum transactions. So, to optimize transaction size, we need to consider WN and 

RN as well.  

The fifth parameter is called TL. This parameter affects those transactions that are 

inside the body of a loop. If the total number of instructions in a loop is less than 

optimum transaction size, then we can move the whole loop into a transaction. For 

transactions that are not inside a loop, we set this parameter to zero. 

Equation 3-2 shows LR model using the 8 input parameters. We used SPSS [40] to 

calculate coefficients in equation 3-2. TS stands for transactions size. 
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(3-2) 

Table 3-5 shows accuracy of predictions by LR. The test cases in Table 3-5 are 

transactions from DP benchmarks which are the same as those test cases used for 

evaluation of the naive version. While accuracy is high in some of the benchmarks, i.e. 

test 6, in most of the benchmarks, LR prediction still results in significant error. The 

main reason for high error is that LR tries to draw a line to cover as many points as 

possible. If the points are scattered, then LR is unable to fit a line that covers all the 

points. This reduces accuracy of predictions. 

 

Table 3-5: Accuracy of predictions in the revised LR model. 

TX 
No Optimized 

TX Size 

Predicted 

TX Size 

Optimum TX 

Size 
Error (%) 

Test 1 148258 10576.54 6739 -56.90% 

Test 2 54736 6985 2488 -180.70% 

Test 3 112816 9159 5128 -78.60% 

Test 4 636460 27062 28930 6.50% 

Test 5 204192 5343 6381 16.30% 

Test 6 35122 34385 35122 2.10% 

 

3.3.2 Multi-linear Regression Model 

Further investigation of LR model reveals that the error rate for transactions with 

large negative error is in the range of 56%-180.7%. On the other side, error rate of 

transactions with large positive error is in the range of 6.5%-16.3%. This motivates us 

to classify transactions into three categories: transactions with large negative error 

(class1), transactions with large positive error (class2), and transactions with small 

error (clas3). We use separate LR model for each class. This improves accuracy of 

predictions since the set of points within a class are well-organized and fitting a curve 

to the points results in less residual error. We use the same 8 input parameters for the 

three LR models: SNT, NCT, WN, RN, TL, ST, WS, and RS. Equations 3-3 to 3-5 
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show the new LR models. TS1, TS2, and TS3 correspond to predicted TX size in 

class1, class2, and class3, respectively. 

                                            

                             
(3-3) 

                                            

                                  

    

(3-4) 

                                            

                                  

    

(3-5) 

To evaluate the accuracy rate of this multi-LR model, we used the same six test 

cases of single LR model. Table 3-6 shows predictions made by multi-LR model. 

Under multi-LR model, accuracy of predictions increases significantly. On average, 

error rate drops from 59% to 1.7%. The maximum and minimum error rates are 7.22% 

and 0%, respectively. In four out of six test samples, error rate is less than 0.5%. 

 

Table 3-6: Accuracy of Predictions Made by multi-LR model. 

name 

None 

Optimized TX 

Size 

Predicted TX 

Size 

Optimum TX 

Size 
Error (%) 

Test 1 148258 6739 6739 0% 

Test 2 54736 2488.45 2488 -0.02% 

Test 3 112816 5129.87 5128 -0.04% 

Test 4 636460 28930 28930 0% 

Test 5 204192 5919.92 6381 7.22% 

Test 6 35122 34247 35122 2.49% 

3.4 Classifier for multi-LR model 

We need a classifier to decide which LR model should be used for a transaction. For 

the above evaluations, we selected the LR models manually. There are only 6 test 

cases and so manual process is not time consuming. However, for a large number of 

test cases, manually selecting the LR models is not feasible. We need a method that 
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automatically selects the appropriate LR model based on characteristics of 

transactions. 

In Section 2.4, we discussed several classifiers. Two popular classifiers are decision 

tree and SVM. There are also enhanced decision tree and SVM using boost techniques 

such as adaboost [34].We can combine adaboost with decision tree or SVM to 

improve accuracy of predictions. In the rest of this section, we compare the accuracy 

of three different classification models: decision tree, SVM, and decision trees 

boosted with adaboost.  

3.4.1 Decision Tree 

To classify transactions based on decision tree, we use C4.5 [26]. C4.5 is a popular 

decision tree algorithm which is able to classify objects with continuous attributes. We 

train the decision tree with already classified sample transactions. Each sample Si 

consists of an 8-dimensional input vector (SNT, NCT, WN, RN, TL, ST, WS, and RS) 

as well as the class which Si belongs to. Through the training phase, the decision tree 

learns how to classify transactions. For test, we feed the decision tree an 8- 

dimensional vector and the decision tree predicts the class of the transaction 

corresponding to the vector. 

Figure 3-17 shows the output of C4.5 when the number of threads is 8. We will 

report output of C4.5 for other number of threads in section 3.6. According to Figure 

3-17, LR model 1 is selected when transaction size is less than or equal to 3074 and 

the read-set size is less than or equal to 7. By following the output of C4.5, we can 

classify transactions of an STM program.  

To evaluate C4.5, we use the 6 test cases which are used in the previous evaluations. 

Table 3-7 illustrates predictions for the 6 test cases. C4.5 mispredicts only one test 

case. For all other test cases, C4.5 accurately predicts the LR model. 
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Table 3-7: Classification based on decision tree. 

TX Correct Model 
Predicted 

Model 

Test 1 Model 3 Model 3 

Test 2 Model 2 Model 2 

Test 3 Model 3 Model 3 

Test 4 Model 3 Model 2 

Test 5 Model 2 Model 2 

Test 6 Model 2 Model 2 

3.4.2 SVM Classifier 

To classify transactions based on SVM, we used libsvm V.3.2 [41]. Since some 

transactions have large transactions with small write-sets or read-sets, scale problem 

can affect accuracy of predictions. To minimize the scale problem, we call 

normalization function [41] before training the SVM with datasets.  

 

 

 

 

Decision tree: 

INPUT: SNT, NCT, WN, RN, TL, ST, WS, and RS 

IF transaction size <= 3074 

 THEN IF read-set size <= 7 

  THEN select regression model 1 

  ELSE select regression model 3 

ELSE  

 THEN IF read-set size <= 64 

  THEN select regression model 2 

 ELSE 

  THEN IF transaction size <= 200673 

   THEN select regression model 3 

   ELSE select regression model 2 

Figure 3-17: Output of C4.5 for multi-LR model. 
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Table 3-8: Classification based on SVM. 

TX Correct Model 
Predicted 

Model 

Test 1 Model 3 Model 2 

Test 2 Model 2 Model 3 

Test 3 Model 3 Model 2 

Test 4 Model 3 Model 3 

Test 5 Model 2 Model 2 

Test 6 Model 2 Model 2 

 

Table 3-8 shows prediction results for the six test cases using libsvm V.3.2. The 

accuracy of SVM is lower than decision tree. This is because SVM is sensitive to 

noisy dataset. In training dataset, usually, most of small transactions belong to LR 

model 1. However, a few small transactions belong to LR model 3. This creates noise 

and confuses the SVM. Since decision tree is more resilient to noise than SVM, its 

accuracy is higher. 

3.4.3 Adaboost Decision Tree 

We used C4.5 as classifier in adaboost technique. Adaboost is implemented in 

MATLAB 2014b. Table 3-9 shows accuracy of predictions in adaboost. On average, 

the accuracy rate is 66.7%. Similar to SVM, adaboost falls behind decision tree 

because of nosy dataset. However, accuracy of adaboost is higher than SVM.   

Table 3-9: Classification based on adaboost. 

TX Correct Model 
Predicted 

Model 

Test 1 Model 3 Model 3 

Test 2 Model 2 Model 2 

Test 3 Model 3 Model 2 

Test 4 Model 3 Model 2 

Test 5 Model 2 Model 2 

Test 6 Model 2 Model 2 
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3.5 Mixed Decision Tree and Multi-Linear Regressions Model   

To predict transaction size, we use a combination of linear regression and decision 

tree. First, decision tree determine the class of a transaction. Then, we use one of the 

three LR models (equations 3-3 to 3-5) to predict optimal transaction size. 

Figure 3-18 shows the steps that should be taken to find out the optimum transaction 

size. First, the input vector corresponding to a transaction is determined through 

profiling. Then, a classifier determines which LR model should be used for prediction. 

In the next step, the selected LR model predicts the optimum transaction size.  

 

 

Figure 3-18: Flow chart for predicting transaction size. 

3.6 Details of Mixed Models for Other Number of Threads 

So far, we focused on 8 threads in all our evaluations. The optimum transaction size, 

write-set size, and read-set size depend on number of threads. So, LR models and also 

classifier change with the number of threads. In this section, we report experimental 

results for two and four threads. 

generate 8 inputs through 

profiling 

start 

predict LR model 

LR model 2 LR model 1 LR model 3 

end 
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3.6.1 Mixed Model for 2 Threads 

To build LR models, we use the same 8 parameters for prediction. Optimum 

transaction size for 2 threads is greater than 8 threads. So, we use four LR models 

instead of three for 2 threads. Two out of four are the same: an LR model for large 

negative error and an LR model for small error. The other two LR models are used for 

large and medium positive errors. Equations 3-6, 3-7, 3-8, and 3-9 correspond to, 

small, medium, large positive and large negative errors.  

                                             

                                

          

(3-6) 

                                        

                            
(3-7) 

                                              

                       
(3-8) 

                                           

                               

          

(3-9) 

Since we have 4 LR models for 2 threads, we need to rebuild the decision tree. 

Figure 3-19 shows the output of decision tree. 

 

 Figure 3-19: Decision tree model for multi-LR model. 

Decision tree: 

INPUT: SNT, NCT, WN, RN, TL, ST, WS, and RS 

IF transaction size <= 2488 

 THEN select regression model 1 

ELSE 

 THEN IF write-set size >= 135 

  THEN select regression model 2 

 ELSE IF next write-set size >101 

   THEN select regression model 4 

     ELSE IF length to next transaction > 83 

    THEN select regression model 3 

   ELSE IF transaction size<=33695  

     THEN select regression model 4 

    ELSE select regression model 2 
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3.6.2 Evaluation of Mixed Model for 2 Threads 

Tables 3-9, 3-10, and 3-11 show predictions by decision tree, SVM, and adaboost, 

respectively. For 2 threads, decision tree is slightly better than SVM and adaboost. 

Compared to 8 threads, accuracy rate of decision tree and SVM reduces. This is 

mainly due to increased number of LR models. Because we have 4 categories, the 

boundary of each category is not as clear as 8 threads. In other words, the influence of 

noise reduces accuracy rate.  

Table 3-10: Predictions made by decision tree for 2 threads. 

TX Correct model 
Predicted 

model 

Test 1-2 threads Model 2 Model 2 

Test 2-2 threads Model 3 Model 3 

Test 3-2 threads Model 4 Model 3 

Test 4-2 threads Model 3 Model 3 

Test 5-2 threads Model 4 Model 2 

Test 6-2 threads Model 2 Model 2 

 

 

Table 3-11: Predictions made by SVM for 2 threads. 

TX Correct model 
Predicted 

model 

Test 1-2 threads Model 2 Model 2 

Test 2-2 threads Model 3 Model 3 

Test 3-2 threads Model 4 Model 3 

Test 4-2 threads Model 3 Model 3 

Test 5-2 threads Model 4 Model 2 

Test 6-2 threads Model 2 Model 2 

 

Table 3-12: Predictions made by adaboost for 2 threads. 

TX Correct model 
Predicted 

model 

Test 1-2 threads Model 2 Model 3 

Test 2-2 threads Model 3 Model 4 

Test 3-2 threads Model 4 Model 4 

Test 4-2 threads Model 3 Model 3 

Test 5-2 threads Model 4 Model 2 

Test 6-2 threads Model 2 Model 2 
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3.6.3 Mixed Model for 4 Threads 

In this section, we present details of mixed model for 4 threads. Unlike 2 threads, we 

can use 3 LR models to express the whole dataset for 4 threads. Equations 3-10 to 

equation 3-12 are the LR models for 4 threads corresponding to large positive, small, 

and large negative errors.  

Figure 3-20 shows the output of C4.5 for 4 threads. Tables 3-12, 3-13, and 3-14 

show predictions made by decision tree, SVM, and adaboost, respectively. Adaboost 

has the best accuracy rate but SVM still has the lowest accuracy rate. The Noise in 4 

threads is less than 2 threads as we have only three categories for classification. Also, 

for 4 threads, the optimum transaction size is more than 8 threads. So, the boundary 

between each category is clearer for 4 threads. Low level of noise and clear boundary 

are suitable for adaboost. However, lowest accuracy rate of SVM indicates that this 

level of noise is still too high for SVM.  

 

                                             

                               

          

(3-10) 

                                             

                          
(3-11) 

                                           

                                

          

(3-12) 
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Table 3-13: Predictions made by decision tree for 4 threads. 

TX Correct model 
Predicted 

model 

Test 1-4 threads Model 2 Model 1 

Test 2-4 threads Model 1 Model 1 

Test 3-4 threads Model 2 Model 2 

Test 4-4 threads Model 1 Model 1 

Test 5-4 threads Model 1 Model 1 

Test 6-4 threads Model 2 Model 2 

 

Table 3-14: Predictions made by SVM for 4 threads. 

TX Correct model 
Predicted 

model 

Test 1-4 threads Model 2 Model 2 

Test 2-4 threads Model 1 Model 1 

Test 3-4 threads Model 2 Model 1 

Test 4-4 threads Model 1 Model 1 

Test 5-4 threads Model 1 Model 2 

Test 6-4 threads Model 2 Model 2 

 

 

Figure 3-20: Output of decision tree for 4 threads. 

Decision tree: 

INPUT: SNT, NCT, WN, RN, TL, ST, WS, and RS 

IF total loop <= 6081 

 THEN select regression model 3 

ELSE 

 THEN IF size of next transaction >= 61013 

  THEN select regression model 1 

 ELSE IF next write-set size <=16 

   THEN select regression model 2 

     ELSE IF size of transaction > 25760 

    THEN select regression model 1 

   ELSE IF total loop<=53655  

     THEN select regression model 2 

    ELSE select regression model 1 
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Table 3-15: Predictions made by adaboost for 4 threads. 

TX Correct model 
Predicted 

model 

Test 1-4 threads Model 2 Model 2 

Test 2-4 threads Model 1 Model 1 

Test 3-4 threads Model 2 Model 2 

Test 4-4 threads Model 1 Model 1 

Test 5-4 threads Model 1 Model 1 

Test 6-4 threads Model 2 Model 2 

 

3.7 Summary of contributions 

In this chapter, we evaluated the impact of transactional parameters on performance of 

STM programs. We proposed mixed models to predict optimal transaction size. As 

optimal transaction size depends on number of threads, we generated three mixed 

models for 2, 4 and 8 threads. In chapter 4, we evaluate accuracy of the mixed models 

and report speedup.  
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Chapter 4  

Experimental Results 

In this chapter, we report performance of the mixed prediction model. To measure the 

performance, we selected two indicators: accuracy rate of prediction and speed-up.  

Accuracy rate shows how often a model can classify different types of workloads 

properly. Speed-up is defined as execution time of the baseline scheme divided by 

execution time of the enhanced scheme and shows whether a model can boost 

execution time of applications.  

4.1 Benchmark Suites 

We used a subset of NAS [11] and DiscoPoP benchmark suites [12] to train LR and 

decision tree. To test our models, we used the rest of the benchmarks from NAS and 

DiscoPoP benchmark suites and also benchmarks from Stamp benchmark suite.  

Stamp benchmark suite [18] is designed by Stanford University for shared memory 

parallel applications. This benchmark suite contains 8 benchmarks: bayes, genome, 

intruder, kmeans, labyrinth, ssca2, vacation, and yada. Here is a brief description of 

these benchmarks: 

 Bayes: an algorithm to build a bayesian classification model. 

 Genome: an application for gene sequencing.  

 Intruder: used in domain of security which can monitor intrusions in computer 

networks.  

 Kmeans: an algorithm for data mining,  

 Labyrinth: an algorithm to find routes in a maze. 

 Ssca2: this benchmark is used to generate efficient graph representation. 

 Vacation: an algorithm to simulate travel reservation. 
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 Yada: this benchmark is used to refine Delaunay mesh. 

4.2 Speed-up for DP Benchmarks 

Tables 4-1, 4-2, and 4-3 show predicted transaction size for 2, 4, and 8 threads, 

respectively. If a benchmark has more than one transaction, then the name of the 

benchmark is followed by transaction number to distinguish different transactions.  

Table 4-1: Predicted and Optimum TX Size in DP for 2 threads. 

 

Table 4-2: Predicted and Optimum TX Size in DP for 4 threads. 

 

Table 4-3: Predicted and Optimum TX Size in DP for 8 threads. 

TX 
None Optimized                          

TX Size 

Predicted TX 

Size 
Optimum TX Size 

Histo_serial 320625 15523 14800 

Mc_light-Tx1 2125000 18120 5673 

Mc_light-Tx2 465000 9076 10130 

Ann_trainig-Tx1 288000 14157 11772 

Ann_trainig-Tx2 480000000 748569 12725 

Mandelbrot 78208 17158 16344 

TX 
None Optimized                          

TX Size 

Predicted TX 

Size 
Optimum TX Size 

Histo_serial 320625 16267 9672 

Mc_light-Tx1 2125000 52633 5673 

Mc_light-Tx2 232500 14148 10130 

Ann_trainig-Tx1 144000 9544 11772 

Ann_trainig-Tx2 480000000 1225201 12725 

Mandelbrot 78208 12255 16344 

TX 
None Optimized                          

TX Size 

Predicted TX 

Size 
Optimum TX Size 

Histo_serial 320625 14186 7440 

Mc_light-Tx1 2125000 77310 5673 

Mc_light-Tx2 116250 11148 10130 

Ann_trainig-Tx1 72000 10614 11772 

Ann_trainig-Tx2 480000000 16328112 12725 

Mandelbrot 78208 9776 8673 
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In some benchmark, the error of prediction is very large. For example, the error rate 

in ann_training-TX2 is 578% when the number of threads is two. This transaction is a 

large transaction. However, in our training dataset, we do not have such a large 

transaction. This reduces accuracy of prediction. Histo_serial is another benchmark 

that its error rate is high. This benchmark has a large transaction with small write-set. 

We also do not have samples similar to histo_serial in our training dataset.  

To measure speed-up, we optimize all transactions in the benchmarks according to 

predictions. Each benchmark is run 10 times and the average of execution times is 

calculated. Figure 4-1 shows speed-up in DP benchmarks. Bars greater than one show 

speed-up in optimized code. On average, performance is improved by 43.75%, 

59.50%, and 42.10% when the number of threads is 2, 4, and 8, respectively.  

 

Figure 4-1: Speed-up for DP benchmarks. 

4.3  Speed-up for Stamp Benchmarks 

In Stamp benchmark suite, genome, kmeans, and ssca2 cannot be optimized due to 

dependency among transactional variables. Only bayes, vacation, and yada can be 

optimized. Table 4-4 to 4-6 show the results of predicted transaction size and 

speed-up compared with the baseline scheme. DT means using decision tree as 

classifier and ADA means using adaboost decision tree as classifier.  
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Table 4-4: Transaction size and speed-up in Stamp benchmark suite for 2 threads. 

 

Table 4-5: Transaction size and speed-up in Stamp benchmark suite for 4 threads. 

 

Table 4-6: Transaction size and speed-up in Stamp benchmark suite for 8 threads. 

TX 
None Optimized                          

TX Size 

Predicted TX 

Size 
Speed-up 

bayes-DT 1261 16747 14.83% 

vacation-DT 672 9925 9.14% 

yada-DT 573 5452 11.41% 

bayes-SVM 1261 16747 14.83% 

vacation-SVM 672 9925 9.14% 

yada-SVM 573 1125 0% 

bayes-ADA 1261 16747 14.83% 

vacation-ADA 672 847 0% 

yada-ADA 573 5452 11.41% 

TX 
None Optimized                          

TX Size 

Predicted TX 

Size 
Speed-up 

bayes-DT 1261 12745 22.25% 

vacation-DT 672 7975 6.65% 

yada-DT 573 8183 18.32% 

bayes-SVM 1261 12745 22.25% 

vacation-SVM 672 7975 6.65% 

yada-SVM 573 8183 18.32% 

bayes-ADA 1261 12745 22.25% 

vacation-ADA 672 7975 6.65% 

yada-ADA 573 8183 18.32% 

TX 
None Optimized                          

TX Size 

Predicted TX 

Size 
Speed-up 

bayes-DT 1261 8218 39.60% 

vacation-DT 672 7238 7.20% 

yada-DT 573 7223 26.30% 

bayes-SVM 1261 8218 39.60% 

vacation-SVM 672 7238 7.20% 

yada-SVM 573 7223 26.30% 

bayes-ADA 1261 8218 39.60% 

vacation-ADA 672 7238 7.20% 

yada-ADA 573 456 0% 
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Across all benchmarks, decision tree always has better accuracy rate than adaboost. 

In some benchmarks, speed-up is 0%. In these benchmarks, due to restrictions in the 

structure of transactions, it is not feasible to optimize transaction size. On average, 

performance is improved by 9.51%, 15.74%, and 21.45%, when the number of 

threads is 2, 4, and 8, respectively. 
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Chapter 5  

Conclusion and Future work 

5.1 Conclusion 

In this thesis, we presented an optimization technique that helps programmers to write 

efficient STM programs. We studied the impact of three parameters on STM 

performance and showed that STM applications are highly sensitive to the three 

parameters. Then, we exploited LR to predict transaction size based on the three 

parameters. A single LR model is not accurate enough and it results in high error rate. 

We revised the LR model by extending its inputs from 3 to 8 parameters. Also, to 

improve accuracy of LR, we classified transactions into three groups for 4 and 8 

threads: transactions with large positive errors, transactions with large negative errors, 

and transaction with low errors. For 2 threads, there is an extra category: transactions 

with medium positive errors.  

Our evaluations using DP and Stamp benchmark suites show that the mixed model 

is effective and is able to improve performance of transaction applications. On 

average, the mixed model improves performance of DP and Stamp benchmark suites 

by 48.45% and 15.56%, respectively. 

6.2 Future Work 

The mixed model is able to predict the optimum transaction size. However, a 

programmer needs to change transaction size manually. This is a time consuming 

process and requires significant programming effort. If the mixed model is integrated 

with a compiler, then the optimization process can be done automatically without 

interference of programmers. DiscoPoP (Section 2.2) is a compiler that can find 

parallel parts of a sequential code. One possibility for future work is changing 

DiscoPoP so that it automatically converts a sequential code to an optimized STM 

program. Given that most of software packages are written sequentially, an optimizing 
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compiler such as DiscoPoP provides an ample opportunity to use STM for 

commercial applications.  

The other way to extend our work is using partial rollback. When a transaction 

aborts, all instructions executed in the transactional section are aborted. However, 

some of those instructions may generate the same output when they are executed 

again. Re-executing these instructions is wasteful and underutilizes precious processor 

resources. We can use a static approach and mark those instructions that do not need 

to re-execute. To integrate partial rollback with our LR model, we need to revise our 

model and add extra parameters for training. Furthermore, EigenBench does not 

support partial rollback. So, we need to change EigenBench to individually evaluate 

the impact of different parameters on performance in an STM system with rollback 

support.  
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