
Lakehead University

Knowledge Commons,http://knowledgecommons.lakeheadu.ca

Electronic Theses and Dissertations Electronic Theses and Dissertations from 2009

2015-06-16

System formulation for parallel circuit analysis

Savalia, Tapankumar Kishorbhai

http://knowledgecommons.lakeheadu.ca/handle/2453/649

Downloaded from Lakehead University, KnowledgeCommons

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lakehead University Knowledge Commons

https://core.ac.uk/display/51419226?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

















































 



    







             



           

           

         

      

              

           





              



















 





          







               

         



























 


          

          

        

       











































 











































 





 

 

 

 

 

  

  



 

 





 



 

 

 













 

 

 

 

 





 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 











 





 



 



 

 

 



 







 

 

 

 

 

 

 

 

 

 

 







 



























 







 











  

  

  

 

 

 

  

 

 

  

 





 

  

 

 



Chapter 1 : Introduction

2

Chapter 1

Introduction

1.1 Motivation and Objective of This Study

As one of the most critical forms of pre-silicon simulation and verification, transistor-level

circuit simulation (e.g., SPICE) is essential for the design of a very broad range of integrated

circuits and systems such as custom digital integrated circuits (ICs), memories, analog, mixed

signal, and radio-frequency (RF) designs [1]. Circuit simulation predicts circuit performance and

makes it possible to disqualify a failing design for expensive chip fabrication. Equally, the ability

of predicting circuit performance through simulation is at the core of any design process; it

makes the implementation of complex integrated circuits technically feasible and economically

viable while relaxing any heavy need for prototyping.

Performing expensive transistor- level circuit analysis consumes lots of CPU time. The

simulation bottleneck significantly limits pre- silicon verification and design space exploration,

contributing to long design turnaround time, suboptimal designs and even chip failures. With the

advent of more complex device models and increased design complexity, high-capacity circuit

simulation is strongly desirable in order to boost design productivity. One of the most effective

ways to reduce the computing time is to use parallel processing. The necessary requirement for

parallel processing is parallel hardware. Traditionally, the parallel processing was performed in

supercomputers with multiple processors, but these computers were usually very expensive [2].

In networked parallel processing, each serial (or parallel) computer is used as a processing unit

and data is transferred via a local area network, like Ethernet. In the meantime, the industry's

shift to the multi-core processor technology and emergence of new types of accelerators has

introduced new challenges and opportunities for addressing today's CAD problems, including

circuit simulation. Because the slowdown in single-core clock frequency scaling, there are limits

in the performance of single-threaded CAD applications, new parallel algorithms and tools,

which are able to utilize parallel hardware, have attracted great renewed interest. Parallel circuit

Chapter 1 : Introduction

3

simulation naturally comes into the picture under this context. To this end, the main challenge is

to develop highly scalable parallel simulation techniques so as to tackle computationally

challenging simulation tasks while maintaining high accuracy and robustness across a wide range

of circuit applications.

Simulation of large circuits suffers from excessive computational cost. In general, simulation

cost is proportional to ��, where S represents the original matrix size and a depends on the

sparsity of the circuit matrix. For typical circuits, a varies from 1.1 to 2.4 [3]. The computational

cost would be high if the S is large. For modern electronic circuits, S can be very large, in the

range of several millions. Hence, it is desirable to approach the circuit simulation problem by

dividing the original circuit into several smaller subcircuits, and solving each smaller subcircuit

independently and in parallel. Merging the subcircuit results will get the solution of the original

circuit.

Hence, what is needed is a method for accurate and fast analysis of large circuits and

formulations that effectively partition the given problem while providing a mechanism requiring

minimum computational cost to synchronize the solution among different partitions/processors.

There have been earlier attempts to develop parallel simulation capabilities on multiprocessors,

and supercomputers, either custom built or commercially available [4], [5], [6], [7], [8], [9]. On

the other hand, the recent industry’s shift to multi and many core processor technology has

literally made every modern-day desktop, server, and laptop a parallel computer [10], [11], [12],

[13]. This shift toward chip multiprocessors (CMPs) reflects the fundamental performance and

power tradeoffs in lieu of VLSI technology scaling. The main contribution of this thesis is to

investigate the performance of some circuit decomposition techniques for efficient parallel

circuit simulation. Effective parallel circuit simulation requires minimal communication between

processors. This thesis presents two main approaches : Circuit decomposition based on nodal

variables and based on scattering waves. In the former approach partitioned subcircuits exchange

nodal variables i.e. voltage and current, while in the latter approach subcircuits exchange

scattering waves.

A node-tearing process is used to divide the system Jacobian in blocks. The first formulation is

based on the nodal voltages and currents at the interface nodes. Although this formulation is not

new, until recently branch-tearing was preferred because it requires less number of variables. It

Chapter 1 : Introduction

4

will be shown in this thesis that the node-tearing approach results in a simpler matrix structure

that is more convenient for parallel analysis. In addition, the node-tearing formulation can be

modified to use scattering wave variables at the subcircuit interfaces instead of voltages and

currents. This approach is also explored in this work. A formulation based on wave variables is

attractive because they can handle open- and short-circuit conditions without the numerical

problems that may arise when using voltage and currents. For example, if a non-zero voltage is

assumed across a short-circuit, the corresponding current is infinite. The use of waves also

enables the use of a simpler convergent relaxation approach [3] to exchange information between

subcircuits. Both reference algorithms have been implemented in the Cardoon circuit simulator

[14].

1.2 Thesis Overview

The thesis is composed of four chapters. The basic concepts and literature review is presented in

Chapter 2. Chapter 3 shows design procedure and simulation results of circuit decomposition

based on nodal variables and scattering waves. In the last chapter conclusion and proposed

direction of future work is discussed.

Chapter 2 Literature Review

5

Chapter 2

Literature Review

2.1 Introduction

As circuit sizes increase, it is essential to improve the performance of simulations without

sacrificing the accuracy of the results. The larger the circuit, the larger the computational cost.

For modern electronics, circuits can be very large, in the range of several millions nodes. Hence

it is desirable to approach the circuit simulation problem by dividing the original circuit into

several small subcircuits by decomposition. The decomposition can be performed using specific

partitioning algorithms. Here, we do not consider how the partition is performed but, as a

guideline, the optimal partition has only a few connections when compared with the size of the

subcircuit and subcircuit should be of about the same size for load balancing. This thesis focuses

on how system of equations can be solved effectively in parallel assuming circuit is partitioned

into several subsystems and hence this chapter presents different approaches to solve nodal

equations efficiently in blocks rather than the partitioning approach. In all approaches it is

assumed that circuit is readily partitioned into subcircuits.

In the following section, basic concepts like Newton method, nodal analysis and Diakoptics are

explained, formulations based on domain decomposition are summarized in Section 2.3 and

other formulations are discussed in Section 2.4.

Chapter 2 Literature Review

6

2.2 Basic Concepts

2.2.1 Newton Method

Newton’s method often called Newton-Raphson method, particularly in the engineering literature

is the most successful method for the numerical solution of nonlinear problems provided with

some differentiability. Because its idea of successive linearization is so fundamental, there are

many possible applications.

Suppose that a solution of a nonlinear equation

 f(x) = 0 (2.1)

is to be found, where f is a differentiable function for which a root is sought. Newton's Method

solves this nonlinear equation iteratively. Let, f'(x) be derivative of function f, and iteration index

is n. At n+1 iteration, by taking first order Taylor's expansion, we approximate nonlinear

function f(x) into linear function:

)x(x)(x'f)f(x)f(x
n1nnn1n

−+=
++

. (2.2)

This is linearization of f(x) around n+1. Newton's method in one dimension is obtained by

making x
n+1

 equal to the root of the linear approximation at n+1 iteration. The correction

(
1n

x
+

∆) at iteration n+1 is given by:

)(x'f

)f(x
xx x

n

n
n1n1n

−=−=∆
++

. (2.3)

Figure 2.1 explains Newton's method. Suppose that solution of the function f(x) is to be found

then Newton method iterates with initial guess x
0
. x

1
 and x

2
are the approximations to the

solution of f(x) at iteration 2 and 3, respectively. x
*
 is the solution of f(x).

Chapter 2 Literature Review

Now for multidimensional Newton method, consider nonlinear system of equation,

where x is nodal voltage vector, F(x)

iteration is the following:

where JF is Jacobian matrix of F

Figure 2.1 Newton's Method

Now for multidimensional Newton method, consider nonlinear system of equation,

F(x) = 0

F(x) is a differentiable vector function. The correction at each

)F(x)(xJxxΔx
1

F
nnn1n1n −++

−=−=

F and it is defined as,

 JF =





















∂

∂

∂

∂

∂

∂

∂

∂

k

k

1

k

k

1

1

1

x

(x)F

x

(x)F

x

(x)F

x

(x)F

�

���

�

.

Solution , x
*

7

Now for multidimensional Newton method, consider nonlinear system of equation,

 (2.4)

is a differentiable vector function. The correction at each

 (2.5)

.

Chapter 2 Literature Review

Equation (2.5) is solved iteratively until convergence. Convergence check is done by checking

condition toleranceΔx ≤ , where

toleranceΔx ≈ then convergence rate is quadratic.

2.2.2 Nodal Analysis

The circuit equations can be created using nodal analysis

formulating Kirchhoff current law (KCL) for all nodes, except for the reference node. These

nodal voltages are assigned with respect to a reference node. This reference node is denoted as

ground. A simple circuit example for nod

Figure 2.2

To write a nodal analysis for a circuit shown in Figure 2.2 first identify nodes and assign one

node as the reference node. After that write KCL at each node. All

expressed as:

Writing KCL for circuit shown in Figure 2.2 for each node except reference node gives:

Equation (2.5) is solved iteratively until convergence. Convergence check is done by checking

, where
n1n

xxΔx −=
+

. When iterations get close to the solution

then convergence rate is quadratic.

The circuit equations can be created using nodal analysis [15]. Nodal equations are created by

formulating Kirchhoff current law (KCL) for all nodes, except for the reference node. These

nodal voltages are assigned with respect to a reference node. This reference node is denoted as

ground. A simple circuit example for nodal analysis is shown in Figure 2.2.

Figure 2.2 Example circuit to explain Nodal analysis

To write a nodal analysis for a circuit shown in Figure 2.2 first identify nodes and assign one

node as the reference node. After that write KCL at each node. All nodal equations can be

 i = f(v).

Writing KCL for circuit shown in Figure 2.2 for each node except reference node gives:

8

Equation (2.5) is solved iteratively until convergence. Convergence check is done by checking

. When iterations get close to the solution i.e.

al equations are created by

formulating Kirchhoff current law (KCL) for all nodes, except for the reference node. These

nodal voltages are assigned with respect to a reference node. This reference node is denoted as

To write a nodal analysis for a circuit shown in Figure 2.2 first identify nodes and assign one

nodal equations can be

 (2.6)

Writing KCL for circuit shown in Figure 2.2 for each node except reference node gives:

Chapter 2 Literature Review

9

KCL at node 1: g1 v1 - Is = 0

KCL at node 2: h(v1) + g2 v2 + g3(v2 - v3) = 0

KCL at node 3: -g3(v2 - v3) + f(v1) = 0. (2.7)

A set of equations (2.8) can be written in matrix form as:

 












=












+



























−
−+

0

0

I

)f(v

)h(v

0

v

v

v

gg0

ggg0

00g s

1

1

3

2

1

33

332

1

 (2.8)

Now let the nonlinear system of equations be

 F(x) = s

 F(x) - s = 0 (2.9)

where x is nodal voltage vector, F is a differentiable function and s is source vector. Now

comparing Equation (2.8) and (2.9) yields :

� �������� ���� ��
i(x)xG

F(x)













+




























−
−+=

)f(v

)h(v

0

v

v

v

gg0

ggg0

00g

1

1

3

2

1

33

332

1

, 












=

0

0

I s

s

Hence from Equation (2.9)

 0 s-i(x)+ x G= s-F(x) = (2.10)

where, Gx is linear contribution of the function F and i(x) is nonlinear contribution of function

F. Applying Newton's method to Equation (2.10) will get :

()

())i(x -Gx-ss-)F(x -ΔxJ

s-)F(xJxx

F

1-
F

nnn1n

nn1n

==

−=

+

+

But iF + J G= J . where JF is Jacobian of function F and Ji is Jacobian of current vector i(x).

Using this relation Equation (2.11) can be written as:

)i(xGxsΔx]J[G i
nn1n

−−=+
+

. (2.12)

(2.11)

Chapter 2 Literature Review

10

2.2.4 Diakoptics

Diakoptics [16] is tearing down an electric network into sub-systems, in other words the circuit is

partitioned into subcircuits. Figure 2.3 shows a circuit network ∏ partitioned into three

subcircuits. Components outside of subcircuits are part of the interconnect block.

AC

Figure 2.3 General Circuit Diagram to explain Diakoptics

Kron [17], [18] derived the equations resulting after partitioning a network into k subcircuits.

Now suppose linear circuit network ∏ is defined by:

 A x = b (2.12)

where A is nodal matrix, x is unknown voltage vector and b is source vector. Now Equation

(2.12) could be partitioned into k subsystems :

Subcircuit-1

Subcircuit-2

Subcircuit-3

∏

Chapter 2 Literature Review

11





















=









































++ 1k

k

2

1

1k

k

2

1

k21

kk

22

11

k

2

1

k21

b

b

b

b

x

x

x

x

CMMM

NA

NA

NA

��

�

���

�

 where, Aj with j=1, 2, ..., k, is a matrix representing subcircuit j, depending on circuit

partitioning approach the interconnect network spreads in Aj , Nj , Mj and C,
k

x,...,
2

x,1x are

unknown internal nodal voltage vectors of subcircuits, xk+1 is interconnect nodal voltage vector,

k
b,...,

2
b,1b are source vectors of subcircuits and 1k +b is the source vector for interconnect block.

There are two types of circuit decomposition is possible: branch tearing and node tearing. If

circuit decomposition is done using branch tearing, links connecting to subcircuits are distributed

to Aj , Nj , Mj and C blocks and create dependency between subcircuits. Node tearing will be

discussed in detail in Chapter 3.

To solve Equation (2.13), unknown voltage vector for j
th

 subcircuit is found :

)xN(bAx
1

1kjjjj +
−

−= (2.14)

Interconnect nodal voltages can be found as follows:

∑

∑

=

++
=

+

−+=+











∑
=

−

=+−

k

1j
j

1k1k

k

1j
1kjjj

jj1k1k

k

1j
jjj b

1-
AMbxN

1-
AMC

bxC)xN(bAM j
1-

Now to evaluate system of equations (2.13), interconnect nodal voltage xk+1 is calculated first

from Equation (2.15) and then subcircuit nodal voltage xj can be found from Equation (2.14).

For an example of Diakoptics consider a linear circuit network shown in Figure 2.4. This circuit

is divided in three subsystems: two subcircuits and one interconnect block.

(2.13)

(2.15)

Chapter 2 Literature Review

12

1 2 3

4

g2

g3

gint1

g5 g6

 g7

V

5

 g8

gint2

iv

Figure 2.4 Example Circuit for Diakoptics

Figure 2.5 shows system of equations corresponding to the circuit shown in Figure 2.4.























=













































+++−−
−++−

−
−−+

−
−−

+

0

0

0

0

V

0

v

v

v

v

i

v

ggggg0g00

gggg000g

00gg00

g50ggg00

000001

0g001g

3

2

5

4

v

1

58int2int1int15

int132int12

7g66

665

22

Figure 2.5 System of Equation

Likewise, for a nonlinear circuit, Diakoptics is applied to solve each Newton iteration.

Subcircuit-1

Subcircuit-2

Interconnect

Subcircuit blocks

Interconnect variables

 (M blocks)

Interconnect variables

 (N blocks)

Contains ±1

Interconnect variables

 (C block)

Source Vector

Vector of Unknown

variables

Chapter 2 Literature Review

13

2.3 Formulations Based on Domain Decomposition

Domain decomposition method refer to a collection of divide-and-conquer techniques which

have been primarily developed for solving Partial Differential Equations [19], [20]. Domain

decomposition refers to a class of methods for solving linear or nonlinear systems of equations,

primarily arising from the discretization of partial differential equations (PDEs). In a way that is

mostly relevant to the focus of this thesis, a domain decomposition method finds the solution to a

large system by subdividing it into smaller sub-domains and solving these sub-domains

separately. This section discusses different domain decomposition approaches.

2.3.1 Multilevel Newton Method [21]

Multilevel Newton Method

To speed-up simulation, one possible improvement that can be achieved from NR method is

parallelization. In order to further improve the speed, other iteration methods than NR iteration

may be utilized. Digital circuits are usually modular, latent, and unidirectional i.e. loosely

coupled. Because block, waveform, and nonlinear relaxation methods utilize these properties,

they have been found suitable for this kind of circuits. These methods cannot apply effectively to

the analog circuits, which usually are tightly coupled. Multilevel Newton method is one of the

methods that can be effectively applied in parallel processing [21].

Two characteristics of many electronic circuits are discussed for a more efficient analysis :

1. Many electronic circuits consist of identical repetitive sub-networks. This characteristic is

utilized by macromodeling.

2. Many electronic networks contain sub-networks which are inactive i.e. their electrical

variables are constant most of the simulation time.

Macromodels

A macromodel of a network is defined as a set of nonlinear and/or time varying elements

simulating external behaviour of the sub-network. It consists of a set of nonlinear and/or time

Chapter 2 Literature Review

14

varying elements. Some papers e.g. [22] use macromodels represented by circuit elements or

equations which approximate the external behaviour of subnetwork whereas reference [21]

define macromodel such that the external behaviour of the circuit is exactly represented by the

macromodel.

Consider an example for macromodel: Let ∏ be the large-scale network composed of

interconnected sub-networks Si = S1, S2, S3 and S4 (Figure 2.6).

 Figure 2.6 Example circuit network (∏) to explain macromodel

S1

S2

S3

S4

∏

Chapter 2 Literature Review

15

Let S be a subnetwork (Figure 2.7(a)) of whole circuit network ∏ (Figure 2.6) to be represented

by macromodel. Figure 2.7(b) is macromodel of subnetwork S.

 (a) (b)

Figure 2.7 Example of macromodel (a) subnetwork S of circuit network ∏ (b) Macromodel

of subcircuit S which represents its external behaviour.

The algorithm of multilevel newton method using Macromodel is as follows:

Let the equations describing behaviour of circuit network ∏ having only one subcircuit S,

 F(u, G(intx), extx) = 0 (2.16)

where u is the vector of inputs, intx is internal variables of subcircuit S, G(intx) is a

macromodel of subnetwork S, extx is the vector of interconnect (external) variables in ∏ not

communicating with S.

Applying Newton's algorithm to Equation (2.16) by updating only outer variables and keeping

internal variables of macromodel G(intx) constant will get :

 −=
+ n1n

extext xx (JF)F(x))(x ext
1

ext
nn −

 (2.17)

where JF is Jacobian of function F (Equation 2.16) with respect to variable extx (intx is

constant),
1n+

extx is value at next Newton iteration step,
n
extx is previous value of Newton

iteration and n is iteration index.

S

iA
A C

VA VC

B

+

iB iA iB

A C

B

VC VA

+
+

+ FA(iA, iB)

FC(iA, iB)

Chapter 2 Literature Review

16

Now, to evaluate macromodel G(intx) another Newton method is applied to equations

representing macromodel. Equation (2.18) represents macromodel :

 H(u , intx , y) = 0 (2.18)

where y is output vector. In this Newton method only update inner variables intx and keep outer

variables u constant :

 −=
+ n1n

intint xx (JH)H(x))(x int
1

int
nn −

 (2.19)

JH is Jacobian of macromodel with respect to intx and y. Keep iterating until it converges.

Convergence condition is given by :

 extΔx
int

Δx <

where
n1n
intintint xxΔx −=

+
is error in subcircuit nodal voltages and

n1n
extextext xxΔx −=

+
 is error

in interconnect nodal voltages. Here, Newton's algorithm applied twice on Equations (2.16) and

(2.18), that's why this method is called multilevel Newton's algorithm.

Latency

The second characteristic of the network is latency. Suppose that in the electrical network to be

analyzed, at any particular time t1, most of the subcircuits are latent i.e. the value of their

electrical variables remain constant. Latency is used to speed up the analysis in logic simulation

when only the active part of the circuit is analysed which is called event driven simulation.

Basically, when any subcircuit is found to be latent at a certain instant of time e.g. t2, then

obviously no function or Jacobian evaluations are needed to find the value of the subcircuit

variables at all the subsequent time steps until a change in the input variables of the subnetwork

occurs. In other words, the corresponding element in Jacobian of the circuit equation are not

evaluated at t2 and the value of the subcircuit variables is set to the one taken at time t1 [21].

Latency approach is more effective for digital circuits as they are usually modular and latent. Use

of latency can achieve significant savings in computer time. An additional advantage is that it

can easily deal with asynchronous designs. Latency can be used for timing analysis including the

usage of multi-delay model. This aspect is not implemented in this thesis.

Chapter 2 Literature Review

17

2.3.2 New Approach for Parallel Circuit Simulation [23]

A new approach for parallel simulation of very large scale integration (VLSI) circuit on a

transistor level is presented [23]. Authors proposed circuit partitioning algorithms along with

formulation for parallel circuit simulation. Three algorithms are presented:

I. Parallel Newton Method

II. Parallel Multilevel Newton Method

III. Parallel Multilevel Newton Method with Latency

Supose that linear system of equations to be solved at each Newton iteration is presented by :

 Ax = b . (2.20)

Diakoptics [17] is used to implement parallel simulation. These three algorithms are

implemented on Equations (2.14) and (2.15) mentioned in Section 2.2.4 Diakoptics. For quick

reference equations are rewritten below :

)xN(bAx
1

1kjjjj +
−

−=

 ∑
=

−+=+











∑
=

−
k

1j
j jj1k1k

k

1j
jjj b

1-
AMbx)N

1-
A(MC .

Decomposition of Equation (2.20) leads to the decoupled nonlinear system:

 0)x,F(x =+1kj (2.21)

 0)x,G(x =+1kj (2.22)

where j = 1, ..., k, F is subcircuits (A blocks) and G is interconnect (coupling) system whose

elements are spread in M, N and C blocks (Equation 2.13). Every subcircuit j is represented by

its own nonlinear system (2.21) and dependencies between each subcircuits are given by

Equation (2.22). Figure 2.8 shows Newton’s method for the decoupled nonlinear equation

systems (Equations (2.21) and (2.22)) [23]. Computation is divided between master and slave

processors.

Chapter 2 Literature Review

18

 Start :)(
0

1k
0
j

0
1 x,x......,,x + ; n = 0

 repeat

 Slaves:

 Do parallel j=1,....,k

 J = Lj Uj (LU decomposition)

j
1

jj
n
j

j
1

jj
n
j

b*)(A*Mw

N*)(A*MS

−

−

=

=
 (Forward and backward substitution)

 send
n
jS and

n
jw to master

 endj

 Master:

nn
1k

n

k n
j

n
1k,

n
k,...,

n
1

n

k
n
j

n

wΔx*S

1j
w)xxG(xw

1j
SCS

=

∑
=

−=

∑
=

−=

+

+

 send
n

1kΔx + to slaves to calculate internal nodal voltages.

 Slaves:

 Do parallel k=1,...., j

 Do forward and backward substitution

(Update)
n

j

1n

j

1n

j

jj

xxΔx

F)
1k

n
1k

n
k

1n
j Δx*N)x,(x(*(J)xΔ

−= ++

− ++
−

=

 endj

Figure 2.8 Parallel Newton's algorithm

(Serial computation of linear system)

Chapter 2 Literature Review

19

The algorithms shown in Figure 2.8 can be classified in three main steps:(i) Slave processors

calculate Sj and wj for each subcircuit and sent these variables to master processor. (ii) Master

processor calculates Sn, wn, interconnect nodal voltage vector xk+1 and send xk+1 to slave

processors. (iii) Slave processors calculates subcircuit nodal voltages for each subcircuit using

xk+1. However, this simple approach has the following potential limitation. Since several

Newton iterations may be needed before the solution to the nonlinear system converges, there

may be a considerable amount of inter-processor communication, which limits the efficiency of

the parallel simulation.

A trade-off can be made between communication and computation by introducing the multilevel

Newton Method. In this case, one Newton iteration consists of an inner iteration loop and an

outer Newton update step. In the inner iteration loop, each local nonlinear equation is iteratively

solved to converge under a fixed outer (interface) variable vector ∆xk+1 to update all local

variables x1, x2...., xk. Then an outer Newton step is taken to update outer variable vector ∆xk+1

based on the solutions received from the slaves. Finally, to complete one Newton iteration for the

entire system, a Newton step is taken to correct all local variables x1, x2...., xk using the updated

∆xk+1. Since more work is done at the slave level in the above multilevel Newton method, the

number of top-level Newton iterations may be reduced, leading to less communication between

the slaves and the master. The conditions under which the multilevel Newton method maintains

local quadratic convergence was provided in [21].

Latency can be also exploited under this multilevel framework [21], [23]. PNAM_MUL method

is efficient if there is a sufficient decrease of the interconnect variables in the outer iteration, in

that case slave processors do not need to evaluate the outer derivative. Sending the matrices Sj to

the master processor causes the main part of the communication. In case of latency, these

matrices do not have to be sent to the master process. Only the inner variables have to be

transmitted to the master. One condition latency = true is added in PANEM_MUL algorithm. If

this condition satisfies then slave neither have to evaluate Sj matrices nor have to send it to the

master process.

Chapter 2 Literature Review

20

Simulation Results

The parallel multilevel Newton method was demonstrated as part of the TITAN simulator,

running on both computer clusters and shared-memory multiprocessors [23]. Good parallel

speedups were demonstrated up to eight processors. Table 2.1 shows the comparison of three

algorithms PANEM, PANEM_MUL AND PANEM_MUL_L with required number of iterations

to simulation CPU time to simulate circuit industry 1. Table 2.2 shows the CPU time for

simulation, speedup and number of interconnect for circuit industry 5.

 Table 2.1 Simulation results of PANEM, PANEM_MUL and PANEM_MUL_L for circuit industry

1

Method #iterations(DC/TR) Real simulation CPU-time

(min:sec)

PANEM 59/222 34:35

PANEM_MUL 11/158 27:28

PANEM_MUL_L 11/158 21:59

Table 2.2 Simulation results for circuit Industry 5(large industry circuit having approx. 50k

MOSFETs)

 1 processor 4 processors 8 processors

Real simulation

CPU-

time(hour:min:sec)

5:07:12 1:17:49 0:39:26

Speedup - 3.95 7.79

#interconnect - 7 8

Modified Multilevel Newton Method [24]

The New Multilevel Newton-Raphson Method is modified from the multilevel Newton method

[21]. Good global convergence can be achieved by adjusting inner iterations and local quadratic

convergence is achieved [24].

Authors used Diakoptics [17] method to implement parallel circuit simulation as discussed in

Section 2.2.4. This approach is slightly modified from Reference [21]. It is the exact same

process from Equations (2.10) to (2.12) without defining a macromodel. In New Multilevel

Chapter 2 Literature Review

21

Newton Method, instead of taking global NR steps [24], the iterations are taken at multiple

levels. Between each outer NR step only fixed number of inner iterations (q) are taken to

synchronise local and global convergence i.e. for load balancing. At each outer iteration instead

of updating only outer variables, update all variables. In this way overall convergence would be

faster by achieving local quadratic convergence.

Simulation Results of modified Multilevel Newton Method

Simulation Results of modified Multilevel Newton Method for a circuit with 1440 BJTs and

7746 nodes is shown in Table 2.3, where p is number of outer iterations and q is the number of

inner iterations. This circuit is partitioned into 3 subcircuits and simulated with three processors.

Processing time is the time to decompose the whole circuit network into subcircuits, symbolic

recording of sparse matrix etc.

Table 2.3 Simulation results of modified multilevel Newton method

q p Preprocessing

time
Iteration time total

0 19 9.0 s 2.6 s 11.6

1 13 9.0 s 2.6 s 11.6

2 6 9.0 s 1.9 s 10.9

3 5 9.0 s 1.7 s 10.7

Even though load balancing can be achieved by fixed number of iterations, total number of

iterations for small subcircuits will be different than big subcircuit blocks i.e. small subcircuit

may converge faster than big subcircuit block having more internal nodes compare to small

subcircuits.

2.3.3 Formulation with Binary Link [25]

This algorithm formulates the interface vectors between partitions, through binary vectors,

leading to enhanced parallelism, scalability and reduced CPU costs while synchronizing the

solutions between various partitions. The CPU cost per iteration as a function of the number of

links L between subcircuits is in the order of L
2
. That leads to poor scalability as its complexity

increases. This reference [25] proposed an algorithm that exhibits superior scalability as its

complexity increases only in order of L.

Chapter 2 Literature Review

22

Node tearing (decomposition) technique [16], [26] is used to partition circuit into several

subcircuits. Consider a circuit divided in two subcircuits using node tearing as shown in Figure

2.9. Figure 2.9 shows procedure to find out external current along this link (current i1) by finding

Thévenin equivalent. Open circuit port voltages Vth1 and Vth2 can be found with independent

sources of subcircuits enabled as show in Figure 2.9 (b). Thévenin equivalent impedance for

each subcircuit can be calculated by connecting a unit current source to each port and deactivate

the independent sources of circuits. Now from open circuit voltages Vth1 and Vth2 and Thévenin

equivalent impedance (Zth1 and Zth2) external current i1 flowing from subcircuit-1 to subcircuit-2

can be found by

th2th1

th2th1
1

ZZ

VV
i

+

−
= . (2.23)

1 2

i1

(a)

Subcircuit-1 Subcircuit-2

Chapter 2 Literature Review

23

1 2

Vth1 Vth2

+ +

_ _

 (b)

1 2

Subcircuit-1 Subcircuit-2

Zth1

Vth1 Vth2

Zth2

 (c)

Figure 2.9 Thévenin equivalent measurement to find external current (a) Example of node tearing

(b) Measurement of Vth (c) Link current (i1) measurement (Equation 2.23)

A binary selector column vector N1 is constructed where the row of node 1 is +1 and rest are

zero. Number of rows are equal to subcircuit block A1, which is MNA matrix for subcircuit 1.

Likewise binary selector column vector N2 is constructed for subcircuit 2 where row of node 2 is

-1 and rest are zero.

The system of equations for the circuit shown in Figure 2.9 is :

Subcircuit-1 Subcircuit-2

i1

i1

Chapter 2 Literature Review

24














=






























3

2

1

2

1

21

22

11

b

b

b

i

v

v

0NN

NA0

N0A

1
TT

. (2.24)

Now the overall matrix for k subcircuits will have the following form :





















=









































=

0

b

b

b

i

x

x

x

0NNN

NA

NA

NA

F(x)

E
TTT

k

2

1

k

2

1

k21

kk

22

11

��

�

�� (2.25)

where,
E

i is external current vector flowing from one subcircuit to another. Now rewriting

Equations (2.14) and (2.15) using notation used in Equation (2.25)

 ∑=
=

k

1j
j Ejjj)iN-(b

1-
Ax (2.26)

 ∑
−

−=∑
−

−
==

k

1j

k

1j
jjjjjj(b

1
)(A

T
Ni)N

1
)(A

T
N(E

Now for more than two subcircuits (e.g. k subcircuits) the Thévenin equivalent impedance

matrix defined is:

 ∑
−

−=
=

k

1j
jjj N

1
)(A

T
N(Z (2.28)

and the external currents flowing from one subcircuit to another is given by

 ∑
−

−=
=

− k

1j
jjj b

1
)(A

T
NZi

1
E . (2.29)

using relation given in (2.28) in Equation (2.27). Now the entire system can be solved by two

Equations (2.26) and (2.29) iteratively. Matrices Mj, Nj and C in Equation (2.13) for [21], [23]

and [24] approaches contain original nodal variables and are non-binary matrices. Consequently,

solution cost of interconnecting equations (solved on a master processor) as well as the

(2.27)

Chapter 2 Literature Review

25

communication cost among slaves and the master processor grow rapidly with the increasing

number of partitions. This causes poor scalability with the increasing number of processors and

partitions. Reference [25] minimizes the computations required for interfacing various parallel

blocks as well as minimizes the communication overhead between the processors involved. This

is accomplished by efficient form of node splitting, during Newton Raphson iterations, at any

time point. At each NR iteration, since the resulting circuit is linear, the technique of node

tearing can be applied at the identified partitioning nodes, leading to coupling vectors (linking

various resulting subcircuits) that are purely binary in nature, and an impedance matrix whose

dimension depends on the number of links between various partitions.

This approach is similar to the formulations presented in Section 3.1 of this thesis. That

formulation was developed independently of this reference.

Simulation Results

Here each circuit network is simulated with two implementations : one using node tearing and

other using branch tearing. The circuit partitioning is performed by hMETIS [27], [28]. Each

subcircuit was simulated on a single processor. In reference [25] simulation is done using up to

16 CPUs but here to summarize simulation result with only 8 processors are shown in Table 2.4

with analysis time and speed up. The speedup is measured relative to a standard simulation using

a traditional LU solver, with no parallelism or partitioning. Table 2.4 shows simulation result

summary of DSP example, SRAM, dual SRAM and Array Multiplier Example.

Table 2.4 Performance results with 8 processors

Examples Branch Tearing Node Tearing

Analysis Time Speed up Analysis time Speed up

DSP 480.4 s 2.0 187.2s 5.1

SRAM 399.0 s 1.9 148.2s 4.6

Dual SRAM 378.0s 2.2 139.0s 6.0

Array Multiplier 682.1s 1.9 261.3s 4.8

Chapter 2 Literature Review

2.4 Other Formulations

The technique proposed in [29]

delay element is used to partition

can be simulated on different core

subcircuits is used to formulate the whole domain simulation.

Figure 2.10 shows delay elements. Figure 2.10(a) shows

element and Figure 2.10(b) shows

line. The state variable model replicates a bidirectional delay so that circuit

port of the element does not affect the circuit

Figure 2.10 Delay Elements. (a) Ideal state variable based delay element. (b) Ideal lossless

transmission line.

The simulated behavior of the delay element is

g2, which depend upon the past voltage and current at ports 2 and 1, respectively.

shows two subcircuits connected with a delay element. This

delay elements as shown in figure 2.11 (b) and those partitions can be iterated independently.

(a)

Formulations

[29] exploits the inherent delay present within some

delay element is used to partition a circuit network into several subcircuits and these su

different cores of a shared-memory CPU. A delay element interfacing

subcircuits is used to formulate the whole domain simulation.

Figure 2.10 shows delay elements. Figure 2.10(a) shows state-variable model of an ideal delay

shows electrical circuit equivalent of the ideal lossless transmission

model replicates a bidirectional delay so that circuit behavior at either

port of the element does not affect the circuit at the opposite port until after a delay,

Figure 2.10 Delay Elements. (a) Ideal state variable based delay element. (b) Ideal lossless

The simulated behavior of the delay element is given by the behavior of the state variables

upon the past voltage and current at ports 2 and 1, respectively.

shows two subcircuits connected with a delay element. This delay element partitioned into sub

delay elements as shown in figure 2.11 (b) and those partitions can be iterated independently.

(b)

Z0, β

26

some circuits. This

circuit network into several subcircuits and these subcircuits

memory CPU. A delay element interfacing

variable model of an ideal delay

lossless transmission

behavior at either

ite port until after a delay, τ .

Figure 2.10 Delay Elements. (a) Ideal state variable based delay element. (b) Ideal lossless

the behavior of the state variables g1 and

upon the past voltage and current at ports 2 and 1, respectively. Figure 2.11 (a)

delay element partitioned into sub-

delay elements as shown in figure 2.11 (b) and those partitions can be iterated independently.

Chapter 2 Literature Review

Figure 2.11 Par

To interface the NR-based iterations of each of the circuit

scheme is used. In the case of finite delay, the top

until voltages and currents at the delay element ports become consistent with the subcircuits

connected to them. In the case of an instantaneous connection,

solved by means of waveform relaxation

relaxation iterations at the delay elements match the voltages at the ports of the delay element.

Figure 2.12 shows flowchart of parallel simulation of delay based partitioning

Sub-

 (a)

 (b)

Partition of two subcircuits with delay element

based iterations of each of the circuit partitions, a delay

is used. In the case of finite delay, the top-level simulator iterates at the delay elements

the delay element ports become consistent with the subcircuits

connected to them. In the case of an instantaneous connection, i.e., zero delay, equations are

solved by means of waveform relaxation [30]. All subcircuits are solved independently

relaxation iterations at the delay elements match the voltages at the ports of the delay element.

lowchart of parallel simulation of delay based partitioning [29]

Delay Element

-Delay Sub-Delay

27

delay-based iterative

terates at the delay elements

the delay element ports become consistent with the subcircuits

, zero delay, equations are

independently and

relaxation iterations at the delay elements match the voltages at the ports of the delay element.

[29].

Chapter 2 Literature Review

28

Parent Analysis Routine

Identify delay elements and create

circuit partitions

Sequential simulation of subcircuits

 for few time steps

Model

evaluation

Matrix

construction

Matrix solve

Subcircuit 1

Model

evaluation

Matrix

construction

Matrix solve

Model

evaluation

Matrix

construction

Matrix solve

Subcircuit 2
Subcircuit N

Shared Memory

Exchange

Interconnect vector

Core 1 Core 2 Core N

NR

 loop
NR

loop

NR

loop

Convergence

check

Mapping of results of

subcircuits on main

circuit

Netlist

NONO

YES

In the case of zero delay perform

Waveform Relaxation

Figure 2.12 Flowchart of parallel simulation of delay based partitioning

First of all, the netlist is analyzed by the parent analysis routine. Then, the delay elements whose

two ports belong to different LRGs are identified. These delay elements represent the temporal

isolation between the subcircuits connected to the corresponding delay element. The delay

elements are then divided into two sub-delay elements which is also called partner sub-delay

Chapter 2 Literature Review

29

elements, as shown in Figure 2.11, resulting in two circuit partitions belonging to different

LRGs. The circuit partitions thus formed are simulated sequentially in their circuit topological

order initially for a few time steps (∆T) within the parent routine. This builds history, which

enables efficient automated parallel simulation of circuit partitions for the rest of the simulation

time points. After initial sequential simulation, multiple child threads are allocated from the

parent routine with the number of threads. The number of allocated threads depends on the

number of circuit partitions and the number of available cores of the shared-memory multicore

processor. Each child thread is assigned one circuit partition and directed to one of the available

cores. Likewise, if N cores are available then N circuit subcircuits can be run in parallel [29].

Each circuit partition is simulated for DF∆T time period, where DF is delay factor described by

relationship show in Equation (2.30) and ∆T is fixed time step.

 �� =
�	
� (��, ��,.., ��)�

∆�
 (2.30)

The two partner sub-delay elements exchange their current and past state-variable-based current

source values (called the interconnect vector) after each ∆T time duration. The interconnect

vectors are stored in a shared memory data structure. The individual circuit partitions are solved

using the direct method that comprises three steps:

1) Model evaluation (linearization of nonlinear device characteristics and Jacobian matrix

calculation)

2) Matrix build (construction of a sparse matrix equation)

3) Matrix solve (The solution of matrix equation coupled in an NR loop)

An error criterion is formulated in the parent routine to check convergence. In the case of zero

delay element perform waveform relaxation. Each subcircuit iterates for DF∆T time then sends

results to the other subcircuits. Each subcircuit then will check whether it is consistent with

previous solution. If the previous solution is not same as the current solution then iterate again

till find consistent solution. At the end, subcircuit voltages and currents are mapped to the parent

circuit voltages and currents after convergence is achieved.

Chapter 2 Literature Review

30

Simulation Results

Simulation results for 8 different circuits are presented in [29] and 4 of them are listed in Table

2.5 with percentage of total simulation time taken by model evaluation, matrix build and matrix

solve. Simulation results for unpartitioned chain of 12 frequency divider circuit, chain of 8

frequency multipliers, soliton line and 20-bit ripple carry adder are shown. Table 2.6 shows

percentage of total simulation time reduced by partitioning circuit and simulated on different

number of processors 2 and 8.

Table 2.5 Percentage of Total Simulation Time Taken by Various Steps During Simulation On a

Single Core

Circuits Model Evaluation Matrix build Matrix Solve

Chain of 12 frequency dividers 64 31.53 3.96

Chain of 8 frequency multiplier 32.20 56.93 10.34

Soliton Line 2.24 85.26 11.90

20 Bit Ripple Counter 54.9 40.53 4.21

Table 2.6 Percentage reduction in the various steps of simulation in delayed partitioned parallel

simulation on multiple cores w.r.t. unpartitioned simulation on a single core
 Model Evaluation Matrix Build Matrix Solve

Cores 2 8 2 8 2 8

Chain of 12 frequency

dividers

50.81 90.10 74.83 98.6 45.93 90.83

Chain of 8 frequency

multiplier

47.10 86.36 76.81 97.93 48.51 86.23

Soliton Line 46.73 87.85 73.73 98.02 44.93 85.51

20 Bit Ripple Counter 56.11 89.33 71.65 96.54 51.61 83.87

There are two main parallelization overheads in proposed method [29]. The first one is

sequential simulation. In order to create history, sequential simulation has to be performed at the

beginning of the simulation that enables parallel simulation at subsequent time points. The

second overhead is locks and barriers implemented at each DF∆T. After every DF∆T time frame

the circuit is synchronised, which reinitializes the parallel simulation to a sequential simulation.

Chapter 2 Literature Review

31

This overhead increases as the number of subcircuits increases, because now more number of

subcircuits will access the shared memory data, resulting in longer waiting times due to the lock

on the data structure. Efficiency of this approach depends on partition and it depends on specific

type of circuits having delay elements. If there is no delay element in circuit then waveform

relaxation is performed. In waveform relaxation each subcircuit has to iterate for several time for

the same time interval until it converges and hence it is not efficient.

HMAPS [31]

All literature discussed till now suffers two main disadvantages. First one, all parallel approaches

are intra-algorithm, i.e. parallel computing is only applied to expedite intermediate

computational steps within a single algorithm. This choice often leads to fine grained parallel

algorithm which requires a significant amount of data dependency analysis and programming

efforts.

Second common disadvantage is load balancing. Circuit may not be partitioned evenly i.e. each

partitioned subcircuit blocks may have different number of nodes and elements. For example,

one circuit network is divided in three subcircuits and Subcircuit 1 is smaller than other two.

These subcircuits are assigned to three different processors. Now, processor with small subcircuit

will complete its calculations faster than other two processors with big subcircuit blocks.

Processor with smaller subcircuit has to wait for information from other processors. Hence

parallel simulation of such circuit is not efficient for all approaches discussed till now. However

this depends on the circuit partition, which is not the focus of this thesis.

Circuit behaviours to be simulated are complex functions of circuit types, structures and input

excitations. Furthermore, for a fixed circuit, the circuit behaviour may vary significantly over the

time,�exhibiting varying amount of switching activities and because of nonlinearities. It is not

difficult to predict that the characteristics of circuit behavior have a definite influence on how

such characteristics may be simulated by different families of simulation algorithms��However,

in practice, it is difficult to select a single best algorithm that fits all type of circuits or even one

complete simulation run for a given circuit.

This observation of variations in the performance of a single simulation algorithm over the time

and different types of circuit suggests that it is beneficial to run multiple algorithms in parallel

Chapter 2 Literature Review

[31]. There are four different computing models possible for circuit simulation: (i) single

algorithm on single core processor (Figure 2.13(a)) (ii) single algorithm on multi

(Figure 2.13(b)) (iii) multialgorithm on multicore CPU and (iv) hierarchical multialgorithm on

multicore CPU.

Figure 2.13 Possible computing models of circuit s

single core processor

multicore CPU and (d

In this work, the researchers propose a hierarchical multi

simulation framework for parallel time

(a)

(c)

. There are four different computing models possible for circuit simulation: (i) single

algorithm on single core processor (Figure 2.13(a)) (ii) single algorithm on multi

(Figure 2.13(b)) (iii) multialgorithm on multicore CPU and (iv) hierarchical multialgorithm on

3 Possible computing models of circuit simulation approaches (a) Single algorithm on

single core processor (b) Single algorithm on multi-core CPU (c) Multialgorithm on

d) Hierarchical multialgorithm on multicore CPU

In this work, the researchers propose a hierarchical multi-algorithm (MA)

simulation framework for parallel time-domain transistor level circuit simulation. Their

(a) (b)

(d)

32

. There are four different computing models possible for circuit simulation: (i) single

algorithm on single core processor (Figure 2.13(a)) (ii) single algorithm on multi-core CPU

(Figure 2.13(b)) (iii) multialgorithm on multicore CPU and (iv) hierarchical multialgorithm on

ingle algorithm on

Multialgorithm on

) Hierarchical multialgorithm on multicore CPU

(MA) parallel circuit

domain transistor level circuit simulation. Their

Chapter 2 Literature Review

33

framework exploits the advantageous characteristics of the recent multi-core processor

computing platforms such as small inter-processor communication cost, flexible shared memory

programming environment to achieve good runtime performance.

Unlike conventional approaches where a single (parallel) algorithm is employed for a given

application, in HMAPS, multiple algorithms with varying characteristics are launched to process

the same simulation task. In their framework, they implemented two levels of parallelism. For a

simulation task, multiple different simulation algorithms begin in parallel. Parallel speedups are

obtained by having these algorithms interact with each other in a cooperative manner on the fly.

This opens up a somewhat unorthodox angle to approach parallel circuit simulation as it allows

one to explore a combination of intra- and interalgorithm parallelism. This combination of

different levels of parallelism not only opens up new opportunities, but also explore advantages

that are simply not possible when working within one fixed algorithm. Each algorithm in the

multi-algorithm framework uses multiple CPU cores to do its own computing tasks. By using

this hierarchical multi-algorithm parallel circuit simulation framework, super-linear speedup is

achieved for some test circuits [31].

Other Contribution in Parallel Circuit Simulation

An adaptive sparse matrix solver called NICSLU is proposed by paper [33]. They proposed

matrix solver called NICSLU, which uses multithread parallel LU factorization algorithm on

shared memory computers with multicore CPUs to accelerate circuit simulators. A simple

method is proposed to predict whether a matrix is suitable for parallel factorization.

Another reference [32] proposes a new method for transient analysis of nonlinear circuits based

on power waves instead of voltages and currents. The circuit is partitioned into two parts : linear

and nonlinear. This method uses relaxation approach to decouple the calculation in each part.

The advantage using power waves is that iterations can never diverge to infinity. The use of

waves results in guaranteed convergence for any linear passive circuit and some types of

nonlinear circuits. Another advantage using power waves is, this method does not require large

matrix decomposition if time step is constant. This method was implemented in the fREEDA [29]

circuit simulator. Because of the concurrent calculations of this approach, the method can be

adopted to solve in parallel.

Chapter 3 System Formulation for Parallel Circuit Analysis

Chapter 3

System Formulation for Parallel

Circuit Analysis

This chapter discusses the proposed two circuit decomposition methods for efficient parallel

analysis, one is based on nodal variables and another based on scattering waves. Both approaches

have been implemented in two analysis types in a circuit simulator: EOP and WAVEOP.

The formulation for each approach is presented first, followed by details about the software

implementation. The performance of both formulations is then evaluated with simulation

examples.

3.1 Formulation Based on Nodal Voltages and Currents

If circuit partition is performed using branch tearing then elements shared by subcircuit block

and interconnect block create dependency between each other. Branch tearing causes additional

process interdependencies and thus increases simulation time. Let's consider an example circuit

diagram Figure 2.5 and Equation (2.9) used in Section 2.2.4 which is shown again in Figure 3.1

and Equation (3.1) for quick reference.

Chapter 3 System Formulation for Parallel Circuit Analysis

35

1 2 3

4

g2

g3

gint1

g5 g6

 g7

V

5

 g8

gint2

iv

Figure 3.1 Example Circuit Network























=













































+++−−
−++−

+−
−−+

−
−−

0

0

0

0

V

0

v

v

v

v

i

v

ggggg0g00

gggg000g

00ggg00

g50ggg00

000001

0g001g

3

2

5

4

v

1

58int2int1int15

int132int12

766

665

22

Figure 3.2 System of equation

Subcircuit 1

Subcircuit 2

Interconnect

Subcircuit blocks

Interconnect variables

 (M blocks)

Interconnect variables

 (N blocks)

Contains ±1

Interconnect variables

 (C block)

Source vector

Vector of unknown

variables

A1

M1

N1

Chapter 3 System Formulation for Parallel Circuit Analysis

36

From Figure 3.2 it is clear that conductance g2 is shared by Blocks A1, M1, N1 and C. Hence

change in that element in A1 will affect all other blocks. Linear components will not change after

each Newton iteration but nonlinear elements change at every Newton iteration which increases

information exchange between processors sharing same nonlinear element. Furthermore, if

interconnect network is large it increases amount of information exchange between processors

and also increases the complexity of the interconnect system. In the proposed method, the

interconnect block is successfully removed from Jacobian matrix.

The node tearing approach is described next. The following derivation assumes that:

1. Circuit network is manually partitioned in blocks.

2. Each subcircuit has a ground connection.

Figure 3.3 shows the general circuit diagram using node tearing [17]. Each interface node is

separated into two nodes by means of ideal voltage source.

V=0

V=0

Figure 3.3 General circuit diagram to explain partition approach

Connections between subcircuits appear as single node in nodal equations. So, we split these

nodes by adding ideal voltage sources having 0V. According to MNA, adding an ideal voltage

Subcircuit 1 Subcircuit 2

Subcircuit 3

i1

i2

i3

i4

i5

i6

Chapter 3 System Formulation for Parallel Circuit Analysis

37

source in circuit needs an extra variable to solve nodal admittance matrix [34] and hence we

added external current as an extra variable. This addition does not change the overall response of

the circuit. Adding external subcircuit currents duplicates the amount of common nodal voltages

between subcircuits and hence dependency between blocks is reduced.

Now from Figure 3.3 the nodal admittance matrix for circuit partitioned into three subcircuits has

the form shown in Figure 3.4. A1, A2, and A3 represent individual subcircuits, N1, N2, and N3 are

incidence matrices. Most entries of incidence matrices are ‘0’, except that there is a ‘±1’ in each

row corresponding to an external connection (shaded part in �� and ��
� blocks) .

Figure 3.4 Jacobian matrix block (shaded parts are matrix entries that correspond to subcircuit

interconnections)

A1

A3

A2

N1

N2

N3

T
N2

T
N3

[0]

Subcircuit blocks

Interfacing variables ±1

±1

Interconnect block (0s)

±1

Incidence matrices

±1

0 0

0 0

0 0

0

0

0

0

0

0

... 0

... 0
... 0

...

0

... 0

... 0

�

0

�

0

�

0

�

0

�

0

�

0

� � �

...

...

...

...

...

...

T
N1

Chapter 3 System Formulation for Parallel Circuit Analysis

38

In Figure 3.4, �� and ��
� blocks are constant and interconnect block (C) is zero. This not only

results in less information exchange between processors but also in simpler matrix structure.

Another advantage of this partitioning approach is that a pair of voltage and current at external

port of each subcircuit is available. This is useful for a later objective of exchanging information

between subcircuits using scattering waves and for waves both voltage and current are required.

This approach is also compatible with the connection where more than two subcircuits are

connected to one node. This is handled by inserting ideal voltage sources having 0 volts to the

external ports of any k-1 subcircuits if there are k subcircuits connected to one node. Figure 3.5

shows such an example where three subcircuits are sharing one node a. In this case two ideal

voltage sources and two external currents are assigned to Subcircuit 2 and Subcircuit 3.

Figure 3.5 General circuit diagram of three subcircuits sharing same node a

Node a would appear in each of three subcircuit blocks A1, A2, A3 (Figure 3.4) and Nj blocks

would have two columns as shown in Figure 3.6.

Subcircuit 1 Subcircuit 2

Subcircuit 3

a

i1

i2

Chapter 3 System Formulation for Parallel Circuit Analysis

39

Figure 3.6 External currents arrangement in N blocks

N1

N2

N3

i1 i2

-1 -1

1

1 0

0

0

�

0

0

�

0

0

�

0

0

�

0

0

�

0

�

0

0

Chapter 3 System Formulation for Parallel Circuit Analysis

40

3.1.1 Diakoptics Applied to Node Tearing

Assume that a circuit is partitioned into k subcircuits separated by zero-volt ideal voltage sources

as shown in Figure 3.7.

V=0

V=0

Subcircuit-1 Subcircuit (k-1)Subcircuit-2

Subcircuit k

DC

V=0

 Figure 3.7 General circuit diagram of partitioned circuit for derivation

From Figure 3.7 a generalized system of equation can be written as:





















=





















+









































0

s

s

s

0

)(xi

)(xi

)(xi

i

x

x

x

0NNN

NG

NG

NG

I
TTT

k

2

1

kk

22

11

k

2

1

k21

kk

22

11

���

�

�� (3.1)

where Gj is subcircuit block, Nj is incidence matrix block,)(xi),...,(xi),(xi kk2211 are internal

currents of nonlinear components inside subcircuits, Ii is external current vector and

k21 s,...,s,s are subcircuit source vectors. Notice that there is neither interconnect matrix block

nor interconnect source vector in Jacobian matrix written in Equation (3.1).

ik-1

i1

i2

i3

i4

i5

Chapter 3 System Formulation for Parallel Circuit Analysis

41

Now applying Newton's method on Equation (3.1) and using i(x)+ x G= F(x) and hence

iF + J G= J , the following is obtained:

���� ����� ��

�
��

������� �������� ��
�

��

i(x))xG(

T

I

n

I

I

I
iJG

TTT

xN

)(xiiNxG

)(xiiNxG

)(xiiNxG

0

s

s

s

Δi

Δx

Δx

Δx

0NNN

NJG

JG

NJG

+−

=

+

+

+

+

+

+

+

+





























++

++

++

−





















=















































∑
k

1j

n

jj

n

kk

n

k

n

kk

n

222

n

22

n

11

n

1

n

11

k

2

1

1n

1n

k

1n

2

1n

1

k21

kkk

222

111

N

 (3.2)

where Ji is Jacobian matrix of current vector i(x), n is iteration index and
1n+

IΔi is external

(interconnect) current vector .

 For each subcircuit let






+=

+=

.kkk

n
kk

n
kk

n
kk

JGA

)(xixG)(xf
 (3.3)

Using relations shown in Equations (3.3) in an Equation (3.2) results in:





























−

























−





















=















































∑
=

+

+

+

+

k

1j

n

j

T

j

n

k

n

2

n

1

n

kk

n

22

n

11

k

2

1

1n

1n

k

1n

2

1n

1

k21

kk

22

11

xN

iN

iN

iN

0

)(xf

)(xf

)(xf

0

s

s

s

Δi

Δx

Δx

Δx

0NNN

NA

NA

NA

I

I

I

I

TTT

�
��

�

��
�

 . (3.4)

Now consider the system of equation for j
th

 subcircuit. First

)iN-)(xf(sAΔx I
-1* n

j
n
jjjjj −= (3.5)

is found. where, j=1, 2, ..., k. Unknown nodal voltages of subcircuit j can be found using

Equation (3.5) from:

Chapter 3 System Formulation for Parallel Circuit Analysis

42

1n

j
-1
jj

1n
j

++
−= I

*
ΔiNAΔxΔx (3.6)

where,
1n

j
+

Δx is j
th

 subcircuit nodal voltage. The equation related to interconnect blocks is :

 ∑∑
=

+

=

−=
k

1j

n
j

T
j

1n
j

k

1j

T
j xNΔxN (3.7)

Replace
1n

j
+

Δx from Equation (3.6) into Equation (3.7) and rearrange equation to get :

()

(3.8)∑∑

∑∑∑

∑∑∑

=

+

=

==

+

=

=

+

==

+=














+=

−=−

k

1j
j

n
j

T
j

1n
k

1j
j

1-
j

T
j

k

1j

n
j

T
j

k

1j
j

T
j

1n
k

1j
j

1-
j

T
j

k

1j

n
j

T
j

1n
Ij

1-
j

k

1j

T
jj

k

1j

T
j

)Δx(xNΔiNAN

xNΔxNΔiNAN

xNΔi)NAN(ΔxN

*
I

*
I

*

The practical implementation of the above process has been developed to solve system of

Equation (3.1). First Equation (3.5) is solved, followed by interconnect current vector which can

be obtained from Equation (3.8) and then subcircuit nodal voltages can be found from Equation

(3.6) using Equations (3.5) and (3.8).

Chapter 3 System Formulation for Parallel Circuit Analysis

43

3.1.2 Algorithm Flowchart

The flowchart of the analysis based on nodal voltages and currents is shown in Figure 3.8.

Solve for “∆iI ”

(External currents) from Eq. (3.14)

Solve for “∆xj ”

(Subcircuit Nodal Voltages)

From Eq. (3.15)

return ∆x

Solve for ∆xj
*
from

Equation (3.13)

Begin

get ∆x

Figure 3.8 Algorithm of analysis based on nodal variables

Chapter 3 System Formulation for Parallel Circuit Analysis

44

A flow diagram of Newton method is shown in Figure 3.9. It uses Δx variable from analysis

based on nodal variables and perform Newton method to check convergence.

Delta>maxdelta

∆x *= (maxdelta / Delta)

Update ∆x

|∆x| < tol

Get ∆x from Figure 3.8

∆x = (∆x1, ∆x2, …..∆xk , ∆iI)

NO

YES

N ≤ maxiteration

NO

∆x is the

solutionNo Convergence

YES

NO

YES

Begin

Delta=Max(abs(∆x))

Figure 3.9 Algorithm flowchart of Newton method

Chapter 3 System Formulation for Parallel Circuit Analysis

45

Inter-processor Communication Analysis

Since the parallel algorithm is not implemented in this thesis, as a guideline, possible way to

implement parallel algorithm is discussed briefly. Parallel algorithm for the proposed approach

is the same as shown in Figure 2.8. The key difference between algorithm shown in Figure 2.8

and analysis with nodal variables is that, in proposed approach interconnect block (C) and

interconnect source vector (����) are zero. In the case of algorithm presented in Figure 2.8, a

nonlinear element connected to an external node in Subcircuit j, will produce entries in Nj, Mj

and C blocks. If this element in Subcircuit j changes then slave processor has to communicate

this change with master processor to update C block, as interconnect nodal voltage vector is

solved by master processor (Equation 2.15). But in proposed analysis, Nj blocks are constant and

C block is zero. So there is less communication between master and slave processors compared

to algorithm shown in Figure 2.8. And also because of the simpler structure of Nj blocks, there is

less work for each slave processor to perform. In proposed analysis, �� = ��
� and ∆ ���

��� =

∆!"
���. Slave processors calculate �

∗, $�
�, %�

� and send that information to master processor

which calculates $�, %� and ∆!"
��� (Equation 3.8). where,

 ∑
=

−=
k

n
j

n

1j
SS and ∑

=
−=

k n
j

n

1j
ww .

And at last, slave processors retrieve
1n+

IΔi from master processor and calculate
1n

j
+

Δx

(Equation 3.6).

Chapter 3 System Formulation for Parallel Circuit Analysis

3.1.3 Complete Example

A linear circuit example is discussed here with the whole process from partitioning

writing a netlist file for simulation. Figure 3.10 shows linear circuit with conductances, one ideal

voltage source and 8 nodes. Subcircuits 1 and 2 have 3 nodes each, whereas Subcircuit 3 has 4

nodes. This circuit is partitioned into three subc

0 volts as shown in Figure 3.10. i

 Figure 3.10 Partitioned linear circuit with nodal variables (Numbers shown above square dots are

node numbers)

To simulate this circuit, it should be described in netlist format. Full netlist file is given in

Appendix A. For reference Jacobian matrix bl

Figure 3.11. Figure 3.11(b) shows Jacobian matrix of Subcircuit 1 shown in Figure 3.11 (a)

Subcircuit 1

Formulation for Parallel Circuit Analysis

A linear circuit example is discussed here with the whole process from partitioning

writing a netlist file for simulation. Figure 3.10 shows linear circuit with conductances, one ideal

voltage source and 8 nodes. Subcircuits 1 and 2 have 3 nodes each, whereas Subcircuit 3 has 4

nodes. This circuit is partitioned into three subcircuits separated using ideal voltage sources with

0 volts as shown in Figure 3.10. i1 and i2 are the external currents.

Figure 3.10 Partitioned linear circuit with nodal variables (Numbers shown above square dots are

To simulate this circuit, it should be described in netlist format. Full netlist file is given in

Appendix A. For reference Jacobian matrix block of Subcircuit 1 of Figure 3.10 is shown in

Figure 3.11. Figure 3.11(b) shows Jacobian matrix of Subcircuit 1 shown in Figure 3.11 (a)

i1 i2
Subcircuit 2 Subcircuit 3

46

A linear circuit example is discussed here with the whole process from partitioning circuit to

writing a netlist file for simulation. Figure 3.10 shows linear circuit with conductances, one ideal

voltage source and 8 nodes. Subcircuits 1 and 2 have 3 nodes each, whereas Subcircuit 3 has 4

ircuits separated using ideal voltage sources with

Figure 3.10 Partitioned linear circuit with nodal variables (Numbers shown above square dots are

To simulate this circuit, it should be described in netlist format. Full netlist file is given in

ock of Subcircuit 1 of Figure 3.10 is shown in

Figure 3.11. Figure 3.11(b) shows Jacobian matrix of Subcircuit 1 shown in Figure 3.11 (a) [34].

Subcircuit 3

Chapter 3 System Formulation for Parallel Circuit Analysis

110

2g00

03g1g3g

03g4g3g

−

+−
−+

Figure 3.11 Example

2 1 20

Subcircuit block A1

Formulation for Parallel Circuit Analysis

0

1

1

0

−

Example (a) Subcircuit block (b) Nodal matrix blocks

2 1 20

1

0

0

0

0

0

1

External currents N1 Source vector S

(b)

(a)

iv

iv

47

Subcircuit block (b) Nodal matrix blocks

1

0

0

Source vector S1

Chapter 3 System Formulation for Parallel Circuit Analysis

48

Now the Jacobian matrix for the whole circuit (Figure 3.11) with system of equation can be

written as shown in Figure 3.12.











































=





















































































−
−

−
−

+

−−
−

−

+
+−

−−++−
−

−
+−

−+

+−
−+

0

0

0

0

0

0

0

0

0

0

1

0

0

i

i

x

x

x

x

x

x

x

i

x

x

x

00001-00100000

0000000010001

000g1200000000

000g70000000

10g90000000

00000000000

000000g6g500000

10000000000

010000g60000

0000000000110

000000000100

00000000010

01000000000

2

1

6

5

4

3

7

3

2

v

20

1

2

g13g12
g11g10g10

g12g10g11g10g9
g9g9

g6
g8g7g7

g7g7g6

g2
g3g1g3

g3g4g3

Figure 3.12 System of equations

There are two important main differences between equations shown in Figure 3.2 and Figure

3.12: (i) Interconnect block is zero in Figure 3.12 and (ii) Incidence matrices are independent of

subcircuit components . Hence proposed partitioning approach reduces dependencies between

subcircuit blocks.

Subcircuit blocks

KVL Equations

Incidence Matrices

Interconnect block

Chapter 3 System Formulation for Parallel Circuit Analysis

49

3.2 Formulation Based on Scattering Waves

Basic Concepts

This section presents an original formulation for parallel circuit simulation using a combination

of voltages, currents and scattering waves. Same partitioning approach as analysis with nodal

variables is used in this implementation with zero volt voltage source and external current.

Scattering waves are defined in transmission line theory. The voltage and current variables in

external port are replaced by incident and reflected voltage waves. Figure 3.13 shows the inter

connection of two subcircuit ports.

 (a) (b)

Figure 3.13 Wave transformation from voltage and current variables (a) voltage and current at

external port (b) voltage waves at external port

As shown in Figure 3.13(b), for Port 1 V
+
 is the reflected wave and V

-
 is incident wave and for

Port 2 V
+
 is incident wave and V

-
 is reflected wave. If external current (I) direction is same as

reflected wave V
+
 from Port 1 as shown in Figure 3.13(b) then voltage and current at external

port one is defined as :

−+

+= VVV (3.9)

)V(V
Z

1I
0

−+
−= (3.10)

where Z0 is the reference impedance.

V
-

V

V
+ I

Port 1

Port 2

Port 1
 Port 2

Chapter 3 System Formulation for Parallel Circuit Analysis

50

This transformation has some advantages with respect to voltage-current pairs if relaxation is

used to exchange results between subcircuits [32]. For relaxation, waves guaranteed convergence

for any linear passive circuits and some nonlinear circuits. A formulation based on wave

variables is attractive because they can handle open- and short-circuit conditions without the

numerical problems that may arise when using voltage and currents. For example, if a non-zero

voltage is assumed across a short-circuit, the corresponding current is infinite. The use of waves

also enables the use of a simpler convergent relaxation approach to exchange information

between subcircuits. One of the objectives of this thesis was to investigate Newton's method

convergence properties using waves.

Now to understand role of reference impedance (Z0), add and subtract Equations (3.9) and (3.10)

to obtain:

.
2

2

2
2

IZV
VVIZV

IZV
VVIZV

0
0

0
0

−
=⇒=−

+
=⇒=+

−−

++

Suppose that current flowing in one subcircuit is very small compared to the voltage of that

subcircuit, then from Equations (3.11) and (3.12), Z0 should be a large number otherwise,

numerical problem arises by adding small number to a large value. Here reference impedance

keep Z0I product in order of voltage. Hence, reference impedance should be in order of 100 Ω to

1 kΩ, because currents are usually in order of milliamperes.

A limitation of the current implementation based on waves is that sharing a same node by more

than two subcircuits is not supported. Figure 3.14 shows general circuit diagram with three

subcircuit sharing same node a. With this type of connection, formation of Jacobian becomes

more complex and consequently it makes the code harder to implement.

(3.11)

(3.12)

Chapter 3 System Formulation for Parallel Circuit Analysis

51

Figure 3.14 General circuit diagram for limitation of analysis based on waves

3.2.1 Formulation Details

In the decomposition discussed in Section 3.1, there is a pair of voltage and current at external

port of each subcircuit interconnection, such voltage and current pair is replaced by a pair of

incident and reflected waves. Each subcircuit exchanges incident and reflected waves with

neighbour subcircuits. Assumptions for analysis based on waves are same as mentioned in

Section 3.1 for analysis based on nodal variables, with the additional condition that only two

subcircuits can share an external node.

Consider the circuit in Figure 3.15 partitioned into k subcircuits. Each pair of voltage and current

of external node in subcircuit is divided into two variables: incident and reflected waves. Each

node connecting to another subcircuit is combined with reference node form one port of

particular subcircuit as shown in Figure 3.15 and waves are defined for such a port.

General Jacobian matrix block for the circuit partitioned into k subcircuits is same as shown in

Figure 3.4 except structure of Nj block.

Subcircuit 1 Subcircuit 2

Subcircuit 3

a

Chapter 3 System Formulation for Parallel Circuit Analysis

52

Figure 3.15 General circuit diagram of partitioned circuit with waves

Subcircuit j
Subcircuit 1

Subcircuit 2

−
1V

i1

i2

i3

Subcircuit k

+
1V

+
2V

−
2V

−
3V

+
3V

Chapter 3 System Formulation for Parallel Circuit Analysis

53

Consider Equation (3.4) for k subcircuits to be used for analysis with waves. Equation (3.4) is

rewritten as Equation (3.13) for quick reference:





























−

























−





















=















































∑
=

+

+

+

+

k

1j

n

j

T

j

n

k

n

2

n

1

n

kk

n

22

n

11

k

2

1

1n

1n

k

1n

2

1n

1

k21

kk

22

11

xN

iN

iN

iN

0

)(xf

)(xf

)(xf

0

s

s

s

Δi

Δx

Δx

Δx

0NNN

NA

NA

NA

I

I

I

I

TTT

�
��

�

��
�

 . (3.13)

Let's take one subcircuit
() ()
() () 










=

jj

jj
j

IIEI

IEEE
A

AA

AA
 ,

()
() 










=

j

j
j

i

E

Δx

Δv
Δx and

()
() 










==−

j

j
j

n
j

n
jjj

i

E
I b

b
biN-)(xfs

where Aj is the matrix block of subcircuit j, (AEE)j is the corresponding sub-matrix for external

nodes, (AEI)j and (AIE)j are sub-matrices corresponding to internal and external nodes, (AII)j is

sub-matrix corresponding to internal nodes, (EΔv)j is external nodal voltages of subcircuit,

(iΔx)j is the internal nodal voltages of subcircuit, (Eb)j and (ib)j are external and internal

variable vectors, respectively. Now writing system of equation for subcircuit j from Equation

(3.13) with variable transformation shown above gives:

() ()
() ()

()
()

()
() 










=







+




















j

j
j

j

j

jj

jj

i

EI

i

E

IIEI

IEEE

b

b

0

Δi
N

Δx

Δv

AA

AA
 . (3.14)

Using relation described in Equations (3.9) and (3.10) in Equation (3.14) to replace external

voltages and currents for subcircuit j will get:

() ()
() ()

()
() 










=








 −+












 +









 ++

j

jjj
j

j

jj

jj

jj

i

E-

0i

-

IIEI

IEEE

b

b

0

ΔvΔv

Z

1
N

Δx

ΔvΔv

AA

AA

)(
. (3.15)

Chapter 3 System Formulation for Parallel Circuit Analysis

54

Now rearrange equation :

() ()

() ()

()
()

+














+













−









=



































 −

jj

j

j

j

j

j

j

jj

jjj
ΔvN)

Z
1(

A

A

b

b

Δx

Δv

AA

AI)
Z

1(A

0*
EI

*
EE

i

E

i

-

IIEI

IE
*

0
EE

)(

)(

)(
 (3.16)

where
*

I j is diagonal matrix with diagonal elements equal to 1 or -1, depending on the sign of

the elements in corresponding row of Nj, j)(
*

EEA and j)(
*

EIA are matrices obtained by column

permutation of () jEEA and () jEIA , respectively.

 To understand column permutation of () jEEA and () jEIA , let's take

*

*
EI

*
EE

N
A

A
j

j

j
=














)(

)(
 and Ext

EI

EE A
A

A
=














j

j

)(

)(
.

To build
*

N j , first a zero matrix with same dimensions as Nj is created. Then each column of

AExt is copied in the column of
*

N j corresponding to the respective external currents.

Equation involving last row (
TTT

NNN k21 ...,,,) of Equation (3.13):

 0xN
T

=∆∑
=

+
k

1j

1n
jj (3.17)

which represents that incident waves for each subcircuit should be equal to reflected wave of

another subcircuit, in other words sum of waves from connected subcircuits should be equal to

zero. It is similar to Kirchhoff's voltage law (KVL) that in any close network, sum of voltage is

zero. Equation (3.17) remain same as analysis based on nodal variables but now sum of waves

equal to zero instead of voltages.

Chapter 3 System Formulation for Parallel Circuit Analysis

55

Now to write whole system of equation for general partitioned circuit shown in Figure 3.15, let's

take

() ()

() () 




















 −

=

jj

jjjw
j

IIEI

IE
*

0
EE

AA

AI)
Z

1(A
A ,














=

ji

-
jw

j
)(Δx

Δv
Δx and














+













= j

j

jw
j

N)
Z

1(
A

A
N

0*
EI

*
EE

)(

)(

The system of equations can be written as:

[] 

























−























−





















=





















=















































∑
=

+
k

1j

n
jj

n
k

n
2

n
1

n
kk

n
22

n
11

k

2

1

k

2

1

I

w
k

w
2

w
1

T
k

T
2

T
1

w
k

w
1

w
1

w
k

w
2

w
1

xN

iN

iN

iN

0

)(xf

)(xf

)(xf

0

s

s

s

0

b

b

b

Δv

Δx

Δx

Δx

0NNN

NA

NA

NA

T

I

I

I

�
���

�

�� � (3.18)

Now apply Diakoptics to Equation (3.18). Equations are the same as Equations (3.5), (3.6) and

(3.8) of analysis with nodal variables discussed in Section 3.1. First

 ())
n

j
n
jjj

1-
j

w
j IiN-)(xf(sAΔx −=

*
 (3.19)

can be found. Then wave vector
+
IΔv is obtained using ()*w

jΔx from :

 ∑∑
=

+

=









+=





















 k

1j

w

j

w

jj

k

1j

w

j

w

jj)Δx(xNΔvNAN

*
T

I

1-
T

 (3.20)

Then unknown internal voltages (ji)Δx() of subcircuit j and unknown waves
-
jv∆ can be found

from :

 () () 







−=














=

+−

IΔvNAΔx
Δx

Δv
Δx

w
j

1w
j

w
j

ji

-
jw

j
)

*

(
 (3.21)

Chapter 3 System Formulation for Parallel Circuit Analysis

56

Example

Now for simplicity, consider a circuit network with two subcircuits shown in Figure 3.16.

 Figure 3.16 General circuit network partitioned into two subcircuits

Now system of equation for this circuit network can be written as:

[]

[]

[]

()

.












=





















































































−














−

































 +














+

































 −

+

−

−

0

s

s

x

x

0

Z
1

A

A

AA

A
Z

1A
0

Z
1

A

A
0

AA

A
Z

1A

2

1

2i

1i

0
*

1EI

*

1EE

2II2EI

2IE
02EE

0
*

1EI

*

1EE

1II1EI

1IE
01EE

v

v

v

0101

0

0

 (3.22)

v
+ v

-

i1

Subcircuit 1
Subcircuit 2

Chapter 3 System Formulation for Parallel Circuit Analysis

57

3.2.2 Algorithm Flowchart

Using Equations (3.19), (3.20) and (3.21) the algorithm with waves is shown in Figure 3.17.

Newton method is used to solve the nonlinear system of equations. The same flowchart from

Figure 3.9 is used, but ∆x is calculated using the flowchart of Figure 3.17 instead of Figure 3.8.

Calculate ∆vI
+ from

Equation (3.20)

return ∆x

Solve for (∆xj
w
)

* from

Equation (3.19)

Calculate waves and subcircuit

internal nodal voltages from

Equation (3.21)

Begin

get ∆x

Figure 3.17 Reference algorithm flowchart of analysis based on scattering waves

Chapter 3 System Formulation for Parallel Circuit Analysis

58

Inter-processor Communication Analysis

Parallel implementation of analysis with scattering waves is same as analysis with nodal

variables as discussed in Section 3.1.2. The key difference between analysis with nodal variables

and analysis with waves variables is structure of &�
' and ��

' blocks. In proposed analysis, the

structure of ��
' block is not as simple as Nj block of analysis with nodal variables. Hence slave

processors have to perform more work compared to work needed for analysis with nodal

variables. Same as analysis with nodal variables, in analysis with waves interconnect block (C)

and interconnect source vector (����) are zero. Slave processors calculate (�
')∗, $�

�, %�
� and

send that information to master processor which calculates $�, %� and ∆("
� (Equation 3.20).

where,

 ∑
=

−=
k

n
j

n

1j
SS and ∑

=
−=

k n
j

n

1j
ww .

And at last slave processors calculate ∆ �
' (Equation 3.21) from ∆("

�.

Chapter 3 System Formulation for Parallel Circuit Analysis

3.2.3 Complete Example

Now a linear circuit example is presented here again for analysis based on waves. Figure 3.18

shows linear circuit with wave variables. i

Figure 3.18 Partitioned linear circuit with

Jacobian matrix for analysis with waves is slightly different than analysis

is more dense than Jacobian matrix of analysis with nodal variables. From Equation (3.18)

system of equations for analysis based on waves can be written as :

where unknown vector (−
= 2vv

source vector (00V00=s

following page.

Subcircuit 1

Formulation for Parallel Circuit Analysis

Now a linear circuit example is presented here again for analysis based on waves. Figure 3.18

shows linear circuit with wave variables. i1 and i2 are external currents.

Figure 3.18 Partitioned linear circuit with waves

Jacobian matrix for analysis with waves is slightly different than analysis with nodal variables. It

is more dense than Jacobian matrix of analysis with nodal variables. From Equation (3.18)

system of equations for analysis based on waves can be written as :

svJ =

+−−−
26543732v120 vvxxxvxvvixx

)T00000000 and Jacobian matrix J

Subcircuit 2 Subcircuit 3
i1 i2

+
2V

−
2V

+
3V

−
3V

59

Now a linear circuit example is presented here again for analysis based on waves. Figure 3.18

with nodal variables. It

is more dense than Jacobian matrix of analysis with nodal variables. From Equation (3.18)

 (3.23)

)T+
3v ,

J is described on

Subcircuit 3

Chapter 3 System Formulation for Parallel Circuit Analysis

60

















































−
−

−
−−

+

−
−

−

=

+
+−

−−−++−

−−+

−−

−+−++−

−++−−+

−+−

−+−++

0000100100000

0000000010001

000g1200000000

g700g70000000

0g90000000

0000000000

00000g6g500000

000000000

0000g60000

0000000000110

000000000100

0000000010

0000000000

g13g12
g11g10g10

g9g12g10g11g10g9
Z0

1g9g9
Z0

1g9

g6g6
0Z

1g8)(g7g7
Z0

1g8)(g7g7

g7
0Z

1g7)(g6g7
Z0

1g7)(g6

g2
g3g3g1g3

0Z
1g4)(g3g3

Z0
1g4)(g3

J

where Z0 is reference impedance. The difference between jacobian matrix of analysis with waves

and analysis with nodal variables is in subcircuit blocks Aj and Nj blocks. In analysis based on

nodal variables Nj blocks contain all entries ‘0’, except for only one or more of the entries in

them containing ‘±1’ depending on external currents, whereas in analysis with waves, Nj blocks

are extracted from subcircuit block Aj with sign convention shown in Equations (3.9) and (3.10).

And hence one of the advantages of the partitioning of analysis with nodal variables i.e. constant

Nj blocks over each Newton iteration is lost. Modifying Aj and Nj require extra processing time

compared to analysis based on nodal variables.
T

N j blocks structure in analysis with waves are

same as analysis with nodal variables.

A blocks
N blocks

Interconnect block
N

T
 blocks

Chapter 3 System Formulation for Parallel Circuit Analysis

61

3.3 Code Implementation

Cardoon is a general circuit simulator developed in-house. It is coded in Python but uses C/C
++

libraries for efficiency. Presently, Cardoon simulator supports nonlinear models such as diode,

BJT, MESFET and MOSFET. The operating point analysis methods, developed for this research

are: EOP and WAVEOP. EOP is the operating point analysis based on nodal variables and

WAVEOP is the operating point analysis based on waves. Code for EOP analysis contains

approximately 365 lines and code for WAVEOP analysis contains 384 lines of code. These

codes are written in Python but matrix handling and matrix multiplication have been done by

C/C
++

 libraries. These libraries perform calculations much faster than writing vector

multiplication function in Python. This code uses the following libraries: numpy (matrix and

vector support) [35], pycppad (automatic differentiation) [36], scipy (sparse matrix support) [37]

and ipython (iterative shells) [38]. These libraries are interfaces between python and C/C
++

language.

Parameters such as maxiter, maxdelta, reltol and abstol are used to control analysis. Parameters

such as reltol and abstol including sparsity can be changed using .options keyword in netlist.

Table 3.1 shows such parameters used for simulation with their values and description [14].

Table 3.1 Parameters and their default values

Variable name Default

Parameter value
Description

maxdelta 50 Maximum allowed deviation in one Newton iteration

reltol 1e-4 Relative tolerance for nodal variables

abstol 1e-07 Absolute tolerance for nodal variables

maxiter 100 Set maximum number of iterations

gcomp 1e-6 S Add compensation network for EOP analysis

Sparse 1 Change sparsity of analysis

To simulate a circuit, it must be described in a netlist file. The program reads a netlist file (Figure

3.19(b)), builds the circuit described there and runs any specified analysis. Figure 3.19(b) shows

the corresponding netlist of subcircuit shown in Figure 3.19(a). The first line of netlist defines

Chapter 3 System Formulation for Parallel Circuit Analysis

subcircuit with external nodes, elements should be described with node numbers at which they

are connected and subcircuit description ends with

 (a)

Figure 3.19 Netlist Example

Each analysis type is implemented by adding a specialized class to the code. The formulation

using nodal variables is implemented in a class named DCOP that contains three main methods:

1. run () : It's main entry point of the reference algorithm and includes Newton's method

� Check convergence for Newton method.

2. init_blocks () : Initialize class attributes that are needed for subcircuit decomposition and

create incidence matrices

� Initialize �� , and

3. get_deltax() : This function creates Jacobian matrix and calculates nodal equations.

� Solve Equations (3.5), (3.6) & (3.8) and send

convergence, where

Formulation for Parallel Circuit Analysis

subcircuit with external nodes, elements should be described with node numbers at which they

are connected and subcircuit description ends with .ends.

(a) (b)

Example (a) Subcircuit block (b) Netlist of subcircuit

Each analysis type is implemented by adding a specialized class to the code. The formulation

using nodal variables is implemented in a class named DCOP that contains three main methods:

entry point of the reference algorithm and includes Newton's method

Check convergence for Newton method.

init_blocks () : Initialize class attributes that are needed for subcircuit decomposition and

rices

and ��
� blocks

get_deltax() : This function creates Jacobian matrix and calculates nodal equations.

Solve Equations (3.5), (3.6) & (3.8) and send Δx to run() method to check

where ∆ = (∆), ∆ *, … . , ∆ ,, ∆!")T
.

.subckt subciruit1 2

res:r1 1 gnd r=50

res:r2 20 gnd r=50

res:r3 1 2 r=50

res:r4 2 gnd r=50

vdc:vdd 1 20 vdd=2v

.ends

62

subcircuit with external nodes, elements should be described with node numbers at which they

Subcircuit block (b) Netlist of subcircuit

Each analysis type is implemented by adding a specialized class to the code. The formulation

using nodal variables is implemented in a class named DCOP that contains three main methods:

entry point of the reference algorithm and includes Newton's method

init_blocks () : Initialize class attributes that are needed for subcircuit decomposition and

get_deltax() : This function creates Jacobian matrix and calculates nodal equations.

to run() method to check

vdd=2v

Chapter 3 System Formulation for Parallel Circuit Analysis

Compensation Network for EOP analysis

Another feature of EOP analysis is to add a

subcircuits to solve Aj singularity. If a subcircuit has a floating external node or a node internally

loaded with a very high impedance, it produces an ill

singularity will arise and solution of such circuit network is not possible. EOP analys

parameter called gcomp to add

Transconductances are added to external nodes of each subcircuits to prevent floating nodes. As

shown in Figure 3.20, EOP analysis add

will compensate the effect of gcomp

Figure 3.20 General circuit diagram with

Subcircuit 1

g

Formulation for Parallel Circuit Analysis

for EOP analysis

Another feature of EOP analysis is to add a compensation network to the external nodes of

singularity. If a subcircuit has a floating external node or a node internally

loaded with a very high impedance, it produces an ill-conditioned matrix. In such case

singularity will arise and solution of such circuit network is not possible. EOP analys

to add compensation network at the external nodes of subcircuits.

Transconductances are added to external nodes of each subcircuits to prevent floating nodes. As

shown in Figure 3.20, EOP analysis add +gcomp to Subcircuit 1 and -gcomp to Subcircuit 2.

comp.

General circuit diagram with compensation network for EOP analysis

 Subcircuit 2

gcom
-gcomp

63

k to the external nodes of

singularity. If a subcircuit has a floating external node or a node internally

conditioned matrix. In such case Aj

singularity will arise and solution of such circuit network is not possible. EOP analysis has

k at the external nodes of subcircuits.

Transconductances are added to external nodes of each subcircuits to prevent floating nodes. As

to Subcircuit 2. -gcomp

compensation network for EOP analysis

Chapter 3 System Formulation for Parallel Circuit Analysis

64

A flowchart for this analysis is presented in Figure 3.21.

Newton’s Method

Figure 3.9

Print Results

init_blocks()

run()

get_deltax()

Figure 3.8

return

Figure 3.21 Flowchart of EOP analysis

Now for WAVEOP analysis there are three main methods:

1. run () : It's main entry point of the reference algorithm and includes Newton's method

� Check convergence for Newton method.

� Convert waves back to the nodal voltages for WAVEOP analysis.

2. init_blocks () : Initialize class attributes that are needed for subcircuit decomposition and

create incidence matrices for both analyses

Chapter 3 System Formulation for Parallel Circuit Analysis

� Initialize �� , ��
�

3. get_deltax() : This function creates Jacobian matrix and calculates nodal equations.

� Create &-
∗ and �

solve Equations (3.19), (3.20) & (3.21) and send

where, ∆ = ((∆(

The analysis flowchart is presented in Figure

Figure 3.22

Formulation for Parallel Circuit Analysis

� blocks and incident waves list

get_deltax() : This function creates Jacobian matrix and calculates nodal equations.

�-
∗ blocks, perform column permutation of (A

solve Equations (3.19), (3.20) & (3.21) and send Δx vector to run() method,

()
., ∆)), (∆(*

., ∆ *), … . , (∆(/
., ∆ /), (∆()

�, ∆(

The analysis flowchart is presented in Figure 3.22.

Figure 3.22 Flowchart of WAVEOP analysis

65

get_deltax() : This function creates Jacobian matrix and calculates nodal equations.

(AEE)k and (AEI)k,

vector to run() method,

(*
�, … , ∆(/

�))T

Chapter 3 System Formulation for Parallel Circuit Analysis

66

Overall, this code is proof of concept. It is not most efficient implementation and there is lots of

unnecessary overheads e.g. handling incidence matrices (Nj blocks). In both analyses, Nj blocks

are treated as dense matrix, but it is mostly zeros. So, implementation is basic, not optimised.

To run the analysis, the lines shown in Figure 3.23 can be written in netlist file with convergence

parameters like maxiter, maxdelta, gcomp for EOP analysis to set required value if default value

is not sufficient to get convergence and reference impedance (Z0) can be set for WAVEOP

analysis. Parameter gcomp is for EOP analysis to add compensation network at the port of each

subcircuit. This compensation network is optional. The reference impedance (Z0) parameter in

WAVEOP is called z0. This parameter is essential for every circuit that simulates for

WAVEOP. There is no optimum reference impedance value that works for any circuit. These

both parameters can be accessed with analysis line shown in Figure 3.23.

.analysis eop gcomp=0.01 maxiter=250 maxdelta=3

.analysis waveop z0=100 maxiter=250 maxdelta=3

Figure 3.23 Reference analysis code lines

Chapter 3 System Formulation for Parallel Circuit Analysis

67

3.4 Simulation Results and Discussion

Operating point analysis of several circuits performed using the methods proposed in this

research are presented in this section. The regular operating point analysis without system

decomposition is named OP analysis. Simulation result comparison of EOP and WAVEOP

analyses with regular OP analysis are given in this section. All circuit examples are presented

with a simulation result summary, which compares number of subcircuits, number of iterations

indicates number of Newton iterative steps required to get solution of circuit network and

simulation time is the time required by analysis to create matrix blocks, solve Equations (3.5),

(3.6) & (3.8) for EOP analysis and Equations (3.19), (3.20) & (3.21) for WAVEOP analysis and

run Newton method till convergence.

Simulation result of all analyses are tested serially on one processor. Nodal voltages of OP, EOP

and WAVEOP analysis are same for all circuit examples discussed in this section. Parameters

like maxdelta, reltol and abstol are kept same for all analyses. All circuit examples presented in

this section are simulated using sparse matrices.

3.4.1 Linear Circuit

Figure 3.10 shows a linear circuit example. This linear circuit is divided in three subcircuits. It is

excited with an ideal voltage source V = 5 volts and all resistor values are same and equal to 10

Ω. Table 3.2 shows simulation result summary of EOP and WAVEOP analyses compared with

OP analysis. Simulation result of WAVEOP is given with different values of reference

impedance (Z0) in Table 3.2. Here, number of iterations and simulation time with Z0 = 100 Ω and

Z0=1 kΩ are same.

Table 3.2 Simulation result summary of linear circuit

Analysis Number of subcircuits Number of Iterations
Simulation

time

Operating Point Analysis 0 8 0.01s

EOP Analysis 3 8 0.02s

WAVEOP Analysis 3

(Z0 =10Ω) 20 0.09s

(Z0 =100Ω, 1kΩ) 18 0.08s

(Z0 =10kΩ) 22 0.1s

Chapter 3 System Formulation for Parallel Circuit Analysis

3.4.2 Nonlinear Circuit

This reference approach can also be used to simulate nonlinear circuits. Figure 3.24 shows

nonlinear circuit with two 2N2222 BJTs in Darlington pair, DC source and three resistors. This

nonlinear circuit is divided into two subcircuits as shown in Figure 3.24. Subcircuit 1 contains

BJT Q1, two resistors R1, R2 and Subcircuit 2 has transistor Q

total of 19 nodes. Subcircuit 1 has 9 nodes whereas Subcircuit 2 has 10 nodes. Resistor R

100 kΩ & R3 = 3 kΩ, power supply V

 Figure 3.24 Nonlinear circuit

Subcircuit 1

Formulation for Parallel Circuit Analysis

This reference approach can also be used to simulate nonlinear circuits. Figure 3.24 shows

with two 2N2222 BJTs in Darlington pair, DC source and three resistors. This

nonlinear circuit is divided into two subcircuits as shown in Figure 3.24. Subcircuit 1 contains

and Subcircuit 2 has transistor Q2 and resistor R3

total of 19 nodes. Subcircuit 1 has 9 nodes whereas Subcircuit 2 has 10 nodes. Resistor R

, power supply VCC = 5 volts.

Figure 3.24 Nonlinear circuit partitioned into two subcircuits

Subcircuit 1 Subcircuit 2

VCC

68

This reference approach can also be used to simulate nonlinear circuits. Figure 3.24 shows

with two 2N2222 BJTs in Darlington pair, DC source and three resistors. This

nonlinear circuit is divided into two subcircuits as shown in Figure 3.24. Subcircuit 1 contains

3. This circuit has

total of 19 nodes. Subcircuit 1 has 9 nodes whereas Subcircuit 2 has 10 nodes. Resistor R1, R2 =

partitioned into two subcircuits

Chapter 3 System Formulation for Parallel Circuit Analysis

69

Simulation result of nonlinear circuit (Figure 3.24) for regular operating point analysis and

reference analysis with nodal variables (EOP) are shown in Table 3.3. Simulation result of

WAVEOP is given with different values of reference impedance (Z0) in Table 3.3. Here, number

of iterations and simulation time with Z0= 100 Ω and Z0 =1 kΩ are same.

Table 3.3 Simulation result summary of nonlinear circuit

Analysis Number of subcircuits Number of Iterations
Simulation

time

OP analysis 0 12 0.02s

EOP Analysis 2 12 0.03s

WAVEOP Analysis 2

 (Z0=10Ω) 26 0.12

(Z0=100Ω, 1kΩ) 27 0.12s

(Z0=10kΩ) 24 0.11s

3.4.3 Soliton Line

Figure 3.25 shows a soliton network/ nonlinear transmission line. Nonlinear transmission line are

high impedance waveguides which are periodically loaded with reverse biased diodes. These

diodes appear as variable capacitors (varactors) [39]. This circuit network can be divided up to

48 subcircuits. Transmission line is modeled with 20 cascade sections and each section contains

a R-L-G-C circuit. Transmission line has total of 3025 nodes. Here two separate examples are

given with soliton network divided into different number of subcircuits. In Figure 3.25 Soliton

network is divided into 4 subcircuits. Subcircuit 1 has 64 nodes, Subcircuit 2 has 946 nodes,

Subcircuit 3 has 1009 nodes and Subcircuit 4 has 1006 nodes.

Chapter 3 System Formulation for Parallel Circuit Analysis

70

VAC

1

Rint

VDC

2 48

101 102

RLOAD

Figure 3.25 Soliton circuit network divided in four subcircuits

Table 3.4 shows simulation result summary of OP analysis, EOP analysis and WAVEOP

analysis for soliton circuit divided in four subcircuits. Reference impedance (Z0) for WAVEOP

analysis is 100 Ω. Simulation result of WAVEOP is given with different values of reference

impedance (Z0) in Table 3.4.

Table 3.4 Simulation result summary of soliton network divided in 4 subcircuits

Analysis Number of subcircuits Number of Iterations
Simulation

time

OP Analysis 0 3 0.18s

EOP Analysis 4 3 0.17s

WAVEOP Analysis 4

(Z0 =10Ω) 17 0.44s

(Z0 =100Ω) 15 0.32s

(Z0 =1kΩ) 14 0.32s

(Z0 =10kΩ) 21 0.44s

Soliton network shown in Figure 3.25 can be further divided into 12 subcircuits. There are total

of 3034 nodes. Subcircuits 1, 2, 3, 5, 6, 7, 8, 11 and 12 have 253 nodes, Subcircuit 4 has 250

Subcircuit 1 Subcircuit 4 - - - - -

Chapter 3 System Formulation for Parallel Circuit Analysis

71

nodes, Subcircuit 9 has 313 nodes and Subcircuit 10 has 194 nodes. Number of iterations and

simulation time for soliton network partitioned into 12 subcircuits will be same as soliton

network partitioned into 4 subcircuits for OP analysis. But for EOP and WAVEOP require more

simulation time for soliton network partitioned into 12 subcircuits compared to soliton network

partitioned into 4 subcircuits, as now analyses have to construct and calculate 12 subcircuit

blocks instead of 4. Table 3.5 shows simulation result comparison of regular operating point

analysis (OP) with reference approaches EOP and WAVEOP for soliton network divided in 12

subcircuits. Simulation result of WAVEOP is given with different values of reference impedance

(Z0) in Table 3.5.

Table 3.5 Simulation result summary of soliton network divided in 12 subcircuits

Analysis Number of subcircuits Number of Iterations
Simulation

time

Operating Point Analysis 0 3 0.18

EOP Analysis 12 3 0.20

WAVEOP Analysis 12
(Z0 =1kΩ) 16 0.70s

(Z0 =10kΩ) 18 0.77s

3.4.4 Summing Amplifier

Figure 3.26 shows summing amplifier. It is implemented with a 741 operational amplifier

(LM741) and feedback network with resistors. LM741 has 26 BJTs. This circuit contains large

number of nonlinear elements (BJTs) and hence it is used to test response of proposed EOP and

WAVEOP analysis. The resistor values of the summing amplifier are as follows: R1ext = 5 kΩ,

R2ext = 20 kΩ, R3ext = 20 kΩ, R4ext = 3.3 kΩ. There are total of 192 nodes in this circuit. This

circuit is divided into 2 subcircuits. Subcircuit 1 consists of 3 external resistors R1ext , R2ext , R3ext

and voltage sources V1 and V2. This subcircuit has 8 nodes. Subcircuit 2 consists of operational

amplifier LM741 which has 184 nodes. Because of uneven partitioning blocks, load balancing is

not good in this circuit partitioning. If these subcircuits are assigned to two different processors

then processor with three resistors and voltage sources will complete its calculations faster than

processor with operational amplifier . Processor with smaller subcircuit has to wait for results

from other processor. Hence parallel simulation of this circuit is not efficient.

Chapter 3 System Formulation for Parallel Circuit Analysis

In EOP analysis compensation network has been added for this circuit example. Results of EOP

analysis with and without gcomp

analysis is given with different values of reference impedance (

iterations and simulation time with

summary of summing amplifier (Figure 3.25) with OP, EOP and WAVEOP analysis are shown

in Table 3.6. maxdelta is 3 for this example.

Table 3.6 Simulation r

Analysis

OP analysis

EOP Analysis

WAVEOP Analysis

For this circuit example adding

subcircuit 2 containing operational amplifier, base of two BJTs, which are connected at the input

of LM 741, are floating. These two nodes see infinite impedance, as

Formulation for Parallel Circuit Analysis

 Figure 3.26 Summing amplifier

In EOP analysis compensation network has been added for this circuit example. Results of EOP

gcomp are shown in Table 3.6. Simulation results of WAVEOP

analysis is given with different values of reference impedance (Z0) in Table 3.6. Here, number of

iterations and simulation time with Z0 = 100 Ω and Z0 =10 kΩ are same. Simulation result

summary of summing amplifier (Figure 3.25) with OP, EOP and WAVEOP analysis are shown

is 3 for this example.

Simulation result summary of summing amplifier circuit

Number of subcircuits Number of Iterations

0 59

2
72

42 (gcomp = 1mS)

2

(Z0 =10Ω) 62

(Z0 =100Ω, 10kΩ) 59

 (Z0 =1kΩ) 60

For this circuit example adding gcomp reduces number of iteration for EOP analysis. In the

subcircuit 2 containing operational amplifier, base of two BJTs, which are connected at the input

of LM 741, are floating. These two nodes see infinite impedance, as load connecting to those

72

In EOP analysis compensation network has been added for this circuit example. Results of EOP

are shown in Table 3.6. Simulation results of WAVEOP

) in Table 3.6. Here, number of

 are same. Simulation result

summary of summing amplifier (Figure 3.25) with OP, EOP and WAVEOP analysis are shown

summary of summing amplifier circuit

Number of Iterations
Simulation

time

0.16s

0.32s

0.20s

 0.56s

) 59 0.55s

) 60 0.55s

reduces number of iteration for EOP analysis. In the

subcircuit 2 containing operational amplifier, base of two BJTs, which are connected at the input

load connecting to those

Chapter 3 System Formulation for Parallel Circuit Analysis

nodes are located at Subcircuit 1 with external resistors and voltage sources. If Subcircuit 2 tries

to deliver current to a load but it cannot deliver, as it is in another subcircuit and hence circuit

might have convergence problem. If we add

some load impedance and it helps Newton method for fast convergence. And hence, by adding

gcomp in the above circuit example number of Newton iteration reduces compare to analysis

without gcomp.

3.4.5 Microwave Low Noise Amplifier

The following example is a low noise microwave amplifier which is tested for EOP analysis.

Figure 3.27 shows low noise amplifier using two LMA411 low noise microwave amplifiers. 0.25

um CMOS technology is used for

subcircuits: Subcircuit 1 contains voltage source and resistors, Subcircuits 2 and 3 have low

noise microwave amplifiers. These two amplifiers and Subcircuit 1 is connected via transmission

line as shown in Figure 3.27. This circuit has total of 851 nodes. Subcircuit 1 has 5 nodes,

Subcircuit 2 and 3 have 423 nodes.

Figure 3.27 Low noise microwave amplifier circuit

Subcircuit 1

Subcircuit 2

Formulation for Parallel Circuit Analysis

nodes are located at Subcircuit 1 with external resistors and voltage sources. If Subcircuit 2 tries

to deliver current to a load but it cannot deliver, as it is in another subcircuit and hence circuit

em. If we add gcomp at the floating node, then subcircuit sees

some load impedance and it helps Newton method for fast convergence. And hence, by adding

in the above circuit example number of Newton iteration reduces compare to analysis

3.4.5 Microwave Low Noise Amplifier

The following example is a low noise microwave amplifier which is tested for EOP analysis.

Figure 3.27 shows low noise amplifier using two LMA411 low noise microwave amplifiers. 0.25

um CMOS technology is used for LMA411 amplifier. This circuit network is divided in three

subcircuits: Subcircuit 1 contains voltage source and resistors, Subcircuits 2 and 3 have low

noise microwave amplifiers. These two amplifiers and Subcircuit 1 is connected via transmission

shown in Figure 3.27. This circuit has total of 851 nodes. Subcircuit 1 has 5 nodes,

Subcircuit 2 and 3 have 423 nodes.

Low noise microwave amplifier circuit (double line indicate transmission line)

VCC

Subcircuit 2 Subcircuit 3

73

nodes are located at Subcircuit 1 with external resistors and voltage sources. If Subcircuit 2 tries

to deliver current to a load but it cannot deliver, as it is in another subcircuit and hence circuit

at the floating node, then subcircuit sees

some load impedance and it helps Newton method for fast convergence. And hence, by adding

in the above circuit example number of Newton iteration reduces compare to analysis

The following example is a low noise microwave amplifier which is tested for EOP analysis.

Figure 3.27 shows low noise amplifier using two LMA411 low noise microwave amplifiers. 0.25

LMA411 amplifier. This circuit network is divided in three

subcircuits: Subcircuit 1 contains voltage source and resistors, Subcircuits 2 and 3 have low

noise microwave amplifiers. These two amplifiers and Subcircuit 1 is connected via transmission

shown in Figure 3.27. This circuit has total of 851 nodes. Subcircuit 1 has 5 nodes,

(double line indicate transmission line)

Subcircuit 1

Chapter 3 System Formulation for Parallel Circuit Analysis

74

Table 3.7 shows simulation results of low noise amplifier circuit compared with OP and EOP

analysis. To perform EOP analysis, compensation network has been added to each subcircuit as

there is capacitive coupling between each subcircuit due to transmission line. Capacitors are

open circuit in DC analysis and hence each subcircuit sees infinite impedance at external ports.

Compensation network removes capacitive coupling by adding gcomp at external ports of each

subcircuit. In this circuit example three subcircuits are sharing common node which is power

supply and hence as explained in Section 3.2, WAVEOP analysis won't work for this circuit.

With this type of connection, formation of Jacobian matrix becomes more complex and

consequently it makes the code harder to implement.

Table 3.7 Simulation result summary of low noise amplifier circuit

Analysis Number of subcircuits Number of Iterations
Simulation

time

OP Analysis 0 8 0.05s

EOP analysis

 (gcomp = 1mS)
3 8 0.07s

3.4.6 Transistor Amplifier

Figure 3.28 (a) shows a transistor amplifier circuit schematic. Resistors values are as follows : R1

= 1.67 kΩ, R2 = 6.66 kΩ and Rc = 900 Ω. Power supply voltage Vcc = 10 V, input voltage V = 5

V. To test correctness of our code, chain of such amplifier is made with 50 amplifiers (Figure

3.28 (b)). Each amplifier resides in one subcircuit and hence there are 50 amplifiers connected in

cascade. Each subcircuit has 14 nodes and total number of nodes in 50 cascade amplifier circuit

are 700.

Chapter 3 System Formulation for Parallel Circuit Analysis

Figure 3.28 Circuit example (a)

Amplifier-1

V

Formulation for Parallel Circuit Analysis

(b)

xample (a) Transistor amplifier Circuit (b) 50 cascade amplifier c

Amplifier-2 Amplifier

VCC

 (a)

Vout

75

amplifier chain

Amplifier-50 RLoad

Chapter 3 System Formulation for Parallel Circuit Analysis

76

Table 3.8 presents the simulation result summary of OP, EOP and WAVEOP analysis with

number of iterations and CPU time for 50 cascade amplifier circuit. Simulation result of

WAVEOP is given with different values of reference impedance (Z0) in Table 3.8.

Table 3.8 Simulation result summary of 50 cascade amplifiers

Analysis Number of subcircuits Number of Iterations
Simulation

time

OP analysis 0 4 0.30s

EOP analysis 50 5 0.42s

WAVEOP analysis 50

(Z0 =10Ω) 25 4.06s

(Z0 =100Ω) 22 3.47s

(Z0 =10kΩ) 19 2.88s

Now 500 amplifiers are cascaded instead of 50 cascade amplifiers shown in Figure 3.28 and its

simulation result is shown in Table 3.9. This circuit network has 500 subcircuits and each

subcircuit has one transistor amplifier. There are around 7000 nodes in this circuit network and

each subcircuit has 14 nodes. Simulation results of WAVEOP with Z0 = 10 Ω, 100 Ω, and Z0 =10

kΩ are same.

Table 3.9 Simulation Results Summary of 500 Cascade Amplifiers divided in 500 subcircuits

Analysis Number of subcircuits Number of Iterations
Simulation

time

OP analysis 0 4 1.01s

EOP analysis 500 4 30.33s

WAVEOP analysis 500
(Z0 =10Ω, 100 Ω, 10k Ω)

26
188.80s

Diakoptics is not implemented in OP analysis. This analysis solves whole Jacobian matrix as is

without decomposing in blocks, whereas simulation time for EOP and WAVEOP also includes

the time to decompose the system of equations in blocks, solve each block separately and

perform global updates. In both analyses each partition is solved serially and synchronized later

on to obtain the solution of the original circuit at each NR iteration. Hence, if there are large

Chapter 3 System Formulation for Parallel Circuit Analysis

77

number of subcircuits then EOP and WAVEOP analysis cannot improve simulation time

significantly compared to regular OP analysis when executed on a single processor (Tables 3.2 to

3.9). However performance of EOP analysis is not worse. If it is implemented for parallel

simulation then it would be a lot faster compared to regular OP analysis except for simulation

results shown in Table 3.10.

Now consider 500 cascade amplifier circuit divided in 5 subcircuits. Table 3.10 shows

simulation result of 500 amplifiers divided in 5 subcircuits. This circuit network has total of 5506

nodes. Subcircuit 1 has 1102 nodes, Subcircuit 2, 3,4 and 5 have 1101 nodes each. Simulation

result of WAVEOP is given with different values of reference impedance (Z0) in Table 3.10.

Here WAVEOP analysis is simulated with different values of reference impedance (Z0).

Table 3.10 Simulation results summary of 500 cascade amplifiers divided in 5 subcircuits

Analysis Number of subcircuits Number of Iterations
Simulation

time

OP analysis 0 4 1.05s

EOP analysis 5 4 1.48s

WAVEOP analysis 5

(Z0 =10Ω) 22 3.84s

(Z0 =100Ω) 19 3.53s

(Z0 =1kΩ) 16 2.77s

(Z0 =10kΩ) 14 2.93s

From simulation results Table 3.10, it is clear that if the number of partitioned blocks per circuit

are reduced then EOP analysis can gain significant speed up compared to circuit with more

number of partitioned blocks. Consider the simulation result (Table 3.9) of 500 amplifiers

cascade circuit divided into 500 subcircuits. EOP analysis requires 30.33 seconds to get solution.

Now if the same circuit is partitioned into 5 subcircuits then EOP analysis gets significant

speedup and takes only 1.48 seconds to get solution (Table 3.10), as there are only 5 subcircuit

blocks to create and calculate compared to 500 subcircuit blocks. Similarly if any industrial

circuit has thousands of subcircuits for example then it is impractical to assign each subcircuit to

one processor. If EOP simulated in parallel by dividing it into a limited number of subcircuits

Chapter 3 System Formulation for Parallel Circuit Analysis

78

and solve each subcircuit block in parallel, then it will be significant speedup in simulation time.

Another reason for slow response of EOP analysis is the insufficient handling of Nj blocks.

Presently code treat Nj blocks as dense matrices despite their most of the entries are zeros. It

could be optimised with much better performance.

All these examples discussed here are simulated with sparse matrix. In EOP and WAVEOP

analysis, there is sparse parameter to set preference whether this analysis is simulated with sparse

matrix or without sparse matrix. This variable can be accessed by .options keyword. If equation

is solved with sparse matrix then analysis won't consider zeros in the calculation and on the other

hand analysis with dense matrix will consider zeros in the calculation. For example, if system of

equation shown in Figure 3.12 is solved with sparse matrix then EOP analysis solves only

nonzero blocks and eliminates lots of blocks which are zeros. Dividing circuits into subcircuits

gives similar effect as sparse matrix. This would save time as simulator has less work to do and

would gain speed up compared to regular operating point analysis. Table 3.11 shows simulation

result of 500 cascade transistor amplifiers circuit simulated with dense matrix. This circuit is

divided in 5 subcircuits. WAVEOP analysis is simulated with different values of reference

impedance (Z0) and it is shown in Table 3.11.

Table 3.11 Simulation results summary of 500 cascade amplifiers divided into 5 subcircuits with

dense matrix

Analysis Number of subcircuits Number of Iterations
Simulation

time

OP analysis 0 4 198.71s

EOP analysis 5 4 6.46s

WAVEOP analysis 5

(Z0 =10Ω) 22 29.35s

(Z0 =100Ω) 19 25.56s

(Z0 =1kΩ) 16 21.80s

(Z0 =10kΩ) 14 19.16s

From simulation result shown in Table 3.11, it is clear that simulation using dense matrix is

much faster for EOP analysis compared to OP and WAVEOP analysis even if it is simulated

serially on one processor. EOP analysis is approximately 30 times faster than OP analysis.

WAVEOP analysis needs more simulation time compared to both analyses. As discussed in

Chapter 3 System Formulation for Parallel Circuit Analysis

79

Chapter 1 simulation cost is proportional to ��, where S represents the original matrix size and a

depends on the sparsity of the circuit matrix. For sparse matrix a varies from 1.1 to 2.4 and for

dense matrix a = 3. For 500 cascade amplifiers divided in 5 subcircuits simulated with dense

matrix,

 (simulation cost of OP analysis) ∝ (5506)
3
 and,

 max (simulation cost of EOP analysis) ∝ (1102)
3

From simulation results, it is clear that WAVEOP analysis is not efficient compared to OP and

EOP analysis. WAVEOP analysis requires more number of iterations and simulation time for

solution than OP and EOP analysis. The reason is lying around creating ��
' block. Unlike Nj

block in EOP analysis, ��
' block in WAVEOP is not an incidence matrix but consists of

elements that depends on circuit elements connected to external nodes of subcircuit and

reference impedance. Specially for nonlinear circuits where nonlinear elements change at every

iteration and hence this Nj matrix has to be rebuilt for each iteration. So, one iteration using

waves is more expensive. Furthermore, writing code to construct such Nj blocks is complex. As

subcircuit columns which belong to external nodes should be extracted and placed in Nj block

depending on external currents with proper sign convention. However, the simulations presented

here indicate that the concept is correct.

Chapter 4 Conclusion and Future Research

Chapter 4

Conclusion and Future Research

Techniques for parallel circuit analysis with emphasis in the formulation of equations for a

circuit decomposed in subcircuit blocks have been reviewed and evaluated. For manually

decomposed circuit two approaches to formulate circuit equations have been proposed and

developed in this thesis. Both of them rely on a node-tearing formulation. In the first approach,

nodal voltages and currents are exchanged between subcircuit blocks. This approach is not new

but it has been developed independently in this thesis. This approach leads to interfacing vectors

between various partitioned blocks, �� and ��
�, with all entries ‘0’, except for only one or more

of the entries in them containing ‘±1’ depending on external currents. This reduces some

computation and communication cost among processors during parallel computation.

In second approach, a nodal formulation with waves (WAVEOP) is presented for the first time.

In this analysis, each subcircuit iterates with incident waves received from another subcircuits

and send waves back to the neighbour subcircuits. But WAVEOP analysis is not efficient

compared to OP and EOP analysis. Because of the structure of ��
' block, this analysis requires a

greater number of iterations and simulation time for convergence than OP and EOP analysis. In

WAVEOP, ��
' block is not an incidence matrix but consists of elements related to the subcircuit

components connected to external nodes of subcircuit. For nonlinear circuits nonlinear elements

change at every iteration and hence this ��
' matrix has to be rebuilt for each Newton iteration.

So, one iteration using waves is more expensive compared to OP and EOP analysis.

Furthermore, writing code to construct such ��
' block is complex. Subcircuit columns belonging

to external nodes must be extracted and placed in ��
' block depending on external currents with

proper sign convention.

Both formulations have been implemented in a general circuit simulator (EOP and WAVEOP

analyses). Currently both implementations use serial code. In this case, each partition is solved

serially, and synchronized later on to obtain the solution of the original circuit at each NR

Chapter 4 Conclusion and Future Research

81

iteration. EOP and WAVEOP do not yield speed-ups compared to regular OP analysis which

simulates the original circuit without dividing equations in blocks. However, if parallel version

of the EOP analysis is implemented, a significant speed-up could be achieved.

Suggestions for the Future Work

The main pending issue for this work is to implement a parallel version of the proposed

algorithms. After that is achieved, a number of research directions will be open for exploration.

One such direction would be to investigate solving nonlinear equations using a combination of

fixed-point wave relaxation and Newton method using nodal variables. In this approach,

subcircuits are iterated with relaxation method using waves for few iterations [32] at the

beginning of the simulation and once it gets close to the solution, circuit decomposition based on

nodal variables should be adopted. Another aspect is to implement an optional multilevel

Newton algorithm [24] in the EOP analysis, in which each subcircuit is iterated for a fixed

number of iterations. This may reduce the total number of global Newton iterations and therefore

achieve a simulation speed-up. The EOP analysis could also be combined with waveform

relaxation [30]. Finally, to make the parallel analysis practical, an automatic partitioning

algorithm must be studied and implemented. Running relaxation method initially gets a good

initial guess for EOP analysis. We expect that convergence would be faster.

Appendix A

Appendix A

The netlist of source codes of EOP and WAVEOP analysis and circuits used for simulation

results can be obtained from:

git clone git://github.com/cechrist/cardoon.git

The netlist of the linear circuit used to explain complete example is provided below. The source

codes of EOP and WAVEOP analysis can be found in following repository: src/cardoon/analysis

and all netlists of circuits can be found from : src/cardoon/workspace/tapan.

Linear Circuit example

*** OP analysis ***

#.options maxdelta=50. maxiter= 100

#.analysis op

*** EOP analysis ***

.analysis eop

*** WAVEOP analysis ***

#.analysis waveop z0=10

*** Subcircuit instantiations***

x1 2 subcircuit1

x2 2 3 subcircuit2

x3 3 subcircuit3

*** Subcircuit definitions***

.subckt subcircuit1 2 # 2 is external node of Subcircuit 1 (Figure 3.10)

*** Element lines***

res:r1 1 gnd r=10

res:r2 1 2 r=10

vdc:vdd 1 0 vdc=2

res:r3 2 0 r=10

.ends

Appendix A

83

.subckt subcircuit2 2 3 #2 and 3 are external nodes of Subcircuit 2 (Figure 3.10)

res:r12 2 3 r=10

res:r4 3 4 r=10

res:r7 4 0 r=10

res:r6 5 0 r=10

res:r5 3 5 r=10

.ends

.subckt subcircuit3 3 #3 is external node of Subcircuit 3 (Figure 3.10)

res:r8 3 6 r=10

res:r9 6 0 r=10

res:r10 6 7 r=10

res:r11 7 0 r=10

.ends

.end

Bibliography

84

Bibliography

[1] L. W. Nagel, SPICE2: A Computer Program to Simulate Semiconductor Circuits, CA, USA:

University of California, Berkeley, 1975.

[2] U. Wever and Q. Zheng, "Parallel Transient Analysis for Circuit Simulation," in IEEE

Hawaii International Conference on System Sciences, pp. 442-447, January 1996.

[3] J. Vlach and K. Singhal, Comput. Methods for Circuit Analysis and Design 2nd ed., Boston,

USA: Kluwer, 1993.

[4] M. Chang and I. Hajj, "iPRIDE: A parallel integrated circuit simulator," IEEE International

Conference on Computer-Aided Design of Integrated Circuits and Systems, pp. 304-307,

November 1988.

[5] P. F. Cox, R. G. Burch, D. E. Hocevar, P. Yang and B. D. Epler, "Direct Circuit Simulation

Algorithms for Parallel Processing [VLSI]," in IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 10. no. 6, pp. 714-725, June 1991.

[6] J. T. Deutschand and A. R. Newton, "A Multiprocessor Implementation of Relaxation-based

Electrical Circuit Simulation," in 21st Conference on Design Automation, pp. 350-357, June

1984.

[7] G. K. Jacob, A. R. Newton and D. O. Pederson, "An Empirical Analysis of the Performance

of a Multiprocessor-based Circuit Simulator," in 23rd Conference on Design Automation,

pp. 588-593, June 1986.

[8] R. A. Saleh, K. A. Gallivan, M. C. Chang, I. N. Haji, Smart, D. and T. N. Trick, "Parallel

Circuit Simulation on Supercomputers," in Proceedings of the IEEE, vol. 77, no. 12, pp.

1915-1931, December 1989.

Bibliography

85

[9] C. P. Yuan, R. Lucas, P. Chan and R. Dutton, "Parallel Electronic Circuit Simulation on the

IPSC System," in IEEE Custom Integrated Circuits Conference, pp. 6.5/1-6.5/4, May 1988.

[10] U. Gajanan, M. Hassan, L. Warriner, K. Yen, B. Upputuri, D. Greenhill, A. Kumar and H.

Park, "“An 8-core 64-thread 64b Power-efficient SPARC, SoC," IEEE International Solid-

State Circuits Conference (ISSCC), pp. 108-109, February 2007.

[11] N. A. Kurd, S. Bhamidipati, C. Mozak, J. L. Miller, T. M. Wilson, M. Nemani and M.

Chowdhury, "Westmere: A family of 32nm IA Processors," in in IEEE International Solid-

State Circuits Conference (ISSCC), pp. 96-97, February 2010.

[12] C. McNairy and R. Bhatia, "Montecito: A Dual-Core, Dual-Thread Itanium Processor," in

IEEE Micro, vol. 25, no. 1, pp. 10-20, March 2005.

[13] D. F. Wendel, R. Kalla, J. Warnock, R. Cargnoni, S. Chu, J. Clabes, D. Dreps, D. Hrusecky,

J. Friedrich, S. Islam, J. Kahle, J. Leenstra, G. Mittal, J. Paredes, J. Pille, P. Restle, B.

Sinharoy, G. Smith, W. Starke, S. Taylor, J. Van Norstrand, S. Weitzel, P. Williams and V.

Zyuban, "Power7TM: A Highly Parallel, Ccalable Multi-core High End Server Processor,"

IEEE Journal of Solid-State Circuits, vol. 46, no. 1, pp. 145-161, January 2011.

[14] D. C. E. Christoffersen, "Cardoon Simulator," [Online].

Available: http://vision.lakeheadu.ca/cardoon/.

[15] P. J. Rodrigues, Computer-aided analysis of onlinear microwave circuits, London: Artech

House Publishers, 1998.

[16] G. Kron, Tensor Analysis of Networks, New York, 1939.

[17] G. Kron, Diakoptics, The Piecewise Solution of Large-Scale Systems, London: MacDonald

& Co., 1963.

[18] A. Brameller, M. N. John and M. R. Scott, "Practical Diakoptics for Electrical Networks,"

London, Chapman & Hall, 1969.

Bibliography

86

[19] B. Smith, P. Bjørstad and W. Gropp, Domain Decomposition: Parallel Multilevel Methods

for Elliptic Partial Differential Equations, Cambridge University Press, 2004.

[20] Y. Saad, Iterative methods for sparse linear systems, SIAM, 2003.

[21] N. B. Rabbat, A. L. Sangiovanni- Vincentelli and H. Y. Hsieh, "A Multilevel Newton

Algorithm with Macromodeling and Latency for the Analysis of Large-Scale Nonlinear

Circuits in the Time Domain," in IEEE Transactions on Circuit and Systems, vol. cas-26,

no. 9, pp. 733-741, September 1979.

[22] M. Heydemann, in Functional Macromodeling of Electrical Circuits, ibid., pp. 532-535.

[23] N. Frohlich, B. M. Riess, U. A. Wever and Q. Zheng, "A New Approach for Parallel

Simulation of VLSI Circuits on a Transistor Level," in IEEE Transactions on Circuits and

Systems: Fundamental Theory and Applications, vol. 45, no. 6, pp. 601-613, June 1998.

[24] M. Honkala, J. Ross and M. Valtonen, "New Multilevel Newton-Raphson Method for

Parallel Circuit Simulation," in European Conference on Circuit Theory and Design, Espoo,

Finland, pp. 113-116, Aug 28-31, 2001.

[25] D. Paul, M. S. Nakhla, R. Achar and N. M. Nakhla, "Parallel Circuit Simulation via Binary

Link Formulations (PvB)," IEEE Transactions on Components, Packaging and

Manufacturing Technology, vol. 3, no. 5, May 2013.

[26] R. A. Rohrer, "Circuit partitioning simplified," in IEEE Trans. Circuit System, pp. 2-5,

January 1988.

[27] G. Karypis, "hMETIS," 1998. [Online].

Available: http://glaros.dtc.umn.edu/gkhome/metis/hmetis/overview.

[28] N. Selvakkumaran and G. Karypis, "Multiobjective hypergraph partitioning algorithms for

cut and maximum subdomain degree minimization," vol. 26, no. 3, pp. 504-517, March

2006.

Bibliography

87

[29] S. Priyadarshi, C. S. Saunders, N. M. Kriplani, H. Demircioglu, W. R. Davis, P. D. Franzon

and M. B. Steer, "Parallel Transient Simulation of Multiphysics Circuits Using Delay-Based

Partitioning," in IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 31, no. 10, pp. 1522-1535, October 2012.

[30] E. Lelarasmee, A. E. Ruehli and A. L. Sangiovanni-Vincentelli, "The Waveform Relaxation

Method for Time-domain Analysis of Large Scale Integrated Circuits," in IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. cad-1, no.

3, pp. 131-145, July 1982.

[31] X. Ye, P. Li and S. Nassif, "Hierarchical Multialgorithm Parallel Circuit Simulation," in

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 30,

no. 1, pp. 45-58, January 2011.

[32] M. Kabir, C. Christoffersen and N. Kriplani, "Transient Simulation Based on State

Variables and Waves," Inernational Journal of RF and Microwave Computer-Aided

Engineering, vols. 21, no. 3, pp. 314-324, May 2011.

[33] X. Chen and Y. Wang, "NICSLU: An Adaptive Sparse Matrix Solver For Parallel Circuit

Simulation," in IEEE Transaction on Computer-Aided Design of Integrated Circuits and

Systems, vol. 32, no. 2, pp. 261-274, February 2013.

[34] C.W. Ho, A. E. Ruehli and P. A. Brennan, "The Modified Nodal Approach to Network

Analysis," in IEEE Transactions on Circuits and Systems, vol. cas-22, no. 6, pp. 504-509,

June 1975.

[35] "NumPy," [Online]. Available: http://www.numpy.org/.

[36] "pycppad-20121020: A Python Algorithm Derivative Package," [Online]. Available:

http://www.seanet.com/~bradbell/pycppad/pycppad.xml.

[37] [Online]. Available: http://www.scipy.org/ .

Bibliography

88

[38] [Online]. Available: http://ipython.org/.

[39] D. M. Pozar, in Microwave Engneering, United States of America, 1998.

[40] J. Vlach and K. Singhal, Computer Methods for Circuit Analysis and Design, 2
nd

 ed.,

Boston, USA: Kluwer, 1993.

[41] C. E. Christoffersen, "Transient Analysis of Nonlinear Circuits Based on Waves," in

Proceeedings of the 7th International Conference on Scientific Computing in Electrical

Engineering (SCEE 2008), Helsinki Institute of Technology, Finland, pp. 1-2, September 28

- October 3 2008.

[42] R. A. ROHRER, "Circuit Partitioning Simplified," in IEEE Transactions on Circuits and

System, vol. 35, no. 1, pp. 2-5, January 1988.

[43] Y. W. Xiaoming Chen, "NICSLU: An Adaptive Sparse Matrix Solver For Parallel Circuit

Simulation," in IEEE Transaction on Computer-Aided Design of Integrated Circuits and

Systems, vol. 32, no. 2, pp. 261-274, February 2013.

[44] C. E. Christoffersen and M. B. Steer, "Implementation of the Local Reference Node

Concept for Spatially Distributed Circuits," in Inernational Journal of RF and Microwave

Computer-Aided Engineering, vol. 9, no. 5, pp. 376-384, July 199.

[45] P. Gray, P. Hurst, S. Lewis and R. Meyer, in Analysis and Design of Analog Integrated

Circuits, John Wiley & Sons, Inc., 2009.

