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          

          

        

       













































 













































 





 

 

 

 

 

  

  



 

 





 



 

 

 













 

 

 

 

 







 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
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

 





 



 



 

 

 



 







 

 

 

 

 

 

 

 

 

 

 









 



























 







 













  

  

  

 

 

 

  

 

 

  

 


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Chapter 1 

Introduction 

1.1 Motivation and Objective of This Study 

As one of the most critical forms of pre-silicon simulation and verification, transistor-level 

circuit simulation (e.g., SPICE) is essential for the design of a very broad range of integrated 

circuits and systems such as custom digital integrated circuits (ICs), memories, analog, mixed 

signal, and radio-frequency (RF) designs [1]. Circuit simulation predicts circuit performance and 

makes it possible to disqualify a failing design for expensive chip fabrication. Equally, the ability 

of predicting circuit performance through simulation is at the core of any design process; it 

makes the implementation of complex integrated circuits technically feasible and economically 

viable while relaxing any heavy need for prototyping. 

Performing expensive transistor- level circuit analysis consumes lots of CPU time. The 

simulation bottleneck significantly limits pre- silicon verification and design space exploration, 

contributing to long design turnaround time, suboptimal designs and even chip failures. With the 

advent of more complex device models and increased design complexity, high-capacity circuit 

simulation is strongly desirable in order to boost design productivity. One of the most effective 

ways to reduce the computing time is to use parallel processing. The necessary requirement for 

parallel processing is parallel hardware. Traditionally, the parallel processing was performed in 

supercomputers with multiple processors, but these computers were usually very expensive [2]. 

In networked parallel processing, each serial (or parallel) computer is used as a processing unit 

and data is transferred via a local area network, like Ethernet. In the meantime, the industry's 

shift to the multi-core processor technology and emergence of new types of accelerators has 

introduced new challenges and opportunities for addressing today's CAD problems, including 

circuit simulation. Because the slowdown in single-core clock frequency scaling, there are limits 

in the performance of single-threaded CAD applications, new parallel algorithms and tools, 

which are able to utilize parallel hardware, have attracted great renewed interest. Parallel circuit 
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simulation naturally comes into the picture under this context. To this end, the main challenge is 

to develop highly scalable parallel simulation techniques so as to tackle computationally 

challenging simulation tasks while maintaining high accuracy and robustness across a wide range 

of circuit applications. 

Simulation of large circuits suffers from excessive computational cost. In general, simulation 

cost is proportional to ��, where S represents the original matrix size and a depends on the 

sparsity of the circuit matrix. For typical circuits, a varies from 1.1 to 2.4 [3]. The computational 

cost would be high if the S is large. For modern electronic circuits, S can be very large, in the 

range of several millions. Hence, it is desirable to approach the circuit simulation problem by 

dividing the original circuit into several smaller subcircuits, and solving each smaller subcircuit 

independently and in parallel. Merging the subcircuit results will get the solution of the original 

circuit. 

Hence, what is needed is a method for accurate and fast analysis of large circuits and  

formulations that effectively partition the given problem while providing a mechanism requiring 

minimum computational cost to synchronize the solution among different partitions/processors. 

There have been earlier attempts to develop parallel simulation capabilities on multiprocessors, 

and supercomputers, either custom built or commercially available [4], [5], [6], [7], [8], [9]. On 

the other hand, the recent industry’s shift to multi and many core processor technology has 

literally made every modern-day desktop, server, and laptop a parallel computer [10], [11], [12], 

[13]. This shift toward chip multiprocessors (CMPs) reflects the fundamental performance and 

power tradeoffs in lieu of VLSI technology scaling. The main contribution of this thesis is to 

investigate the performance of some circuit decomposition techniques for efficient parallel 

circuit simulation. Effective parallel circuit simulation requires minimal communication between 

processors. This thesis presents two main approaches : Circuit decomposition based on nodal 

variables and based on scattering waves. In the former approach partitioned subcircuits exchange 

nodal variables i.e. voltage and current, while in the latter approach subcircuits exchange 

scattering waves. 

A node-tearing process is used to divide the system Jacobian in blocks. The first formulation is 

based on the nodal voltages and currents at the interface nodes. Although this formulation is not 

new, until recently branch-tearing was preferred because it requires less number of variables. It 
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will be shown in this thesis that the node-tearing approach results in a simpler matrix structure 

that is more convenient for parallel analysis. In addition, the node-tearing formulation can be 

modified to use scattering wave variables at the subcircuit interfaces instead of voltages and 

currents. This approach is also explored in this work. A formulation based on wave variables is 

attractive because they can handle open- and short-circuit conditions without the numerical 

problems that may arise when using voltage and currents. For example, if a non-zero voltage is 

assumed across a short-circuit, the corresponding current is infinite. The use of waves also 

enables the use of a simpler convergent relaxation approach [3] to exchange information between 

subcircuits. Both reference algorithms have been implemented in the Cardoon circuit simulator 

[14]. 

1.2 Thesis Overview 

The thesis is composed of four chapters. The basic concepts and literature review is presented in 

Chapter 2. Chapter 3 shows design procedure and simulation results of circuit decomposition 

based on nodal variables and scattering waves. In the last chapter conclusion and proposed 

direction of future work is discussed.  
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Chapter 2 

Literature Review 

2.1 Introduction 

 

As circuit sizes increase, it is essential to improve the performance of simulations without 

sacrificing the accuracy of the results. The larger the circuit, the larger the computational cost. 

For modern electronics, circuits can be very large, in the range of several millions nodes. Hence 

it is desirable to approach the circuit simulation problem by dividing the original circuit into 

several small subcircuits by decomposition. The decomposition can be performed using specific 

partitioning algorithms. Here, we do not consider how the partition is performed but, as a 

guideline, the optimal partition has only a few connections when compared with the size of the 

subcircuit and subcircuit should be of about the same size for load balancing. This thesis focuses 

on how system of equations can be solved effectively in parallel assuming circuit is partitioned 

into several subsystems and hence this chapter presents different approaches to solve nodal 

equations efficiently in blocks rather than the partitioning approach. In all approaches it is 

assumed that circuit is readily partitioned into subcircuits. 

In the following section, basic concepts like Newton method, nodal analysis and Diakoptics are 

explained, formulations based on domain decomposition are summarized in Section 2.3 and 

other formulations are discussed in Section 2.4. 
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2.2 Basic Concepts                                                       

2.2.1 Newton Method  

Newton’s method often called Newton-Raphson method, particularly in the engineering literature 

is the most successful method for the numerical solution of nonlinear problems provided with 

some differentiability. Because its idea of successive linearization is so fundamental, there are 

many possible applications.  

Suppose that a solution of a nonlinear equation  

     f(x) = 0       (2.1) 

is to be found, where f is a differentiable function for which a root is sought. Newton's Method 

solves this nonlinear equation iteratively. Let, f'(x) be derivative of function f, and iteration index 

is n. At n+1 iteration, by taking first order Taylor's expansion, we approximate nonlinear 

function f(x) into linear function:  

                                               )x(x)(x'f)f(x)f(x
n1nnn1n

−+=
++

.       (2.2) 

This is linearization of f(x) around n+1. Newton's method in one dimension is obtained by 

making x
n+1

 equal to the root of the linear approximation at n+1 iteration. The correction                       

(
1n

x
+

∆ ) at iteration n+1 is given by:           

                                                  
)(x'f

)f(x
xx  x

n

n
n1n1n

−=−=∆
++

.         (2.3) 

Figure 2.1 explains Newton's method. Suppose that solution of the function f(x) is to be found 

then Newton method iterates with initial guess x
0
. x

1
 and x

2 
are the approximations to the 

solution of f(x) at iteration 2 and 3, respectively. x
*
 is the solution of f(x). 
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Now for multidimensional Newton method, consider nonlinear system of equation, 

      

where x is nodal voltage vector, F(x)

iteration is the following: 

            

where JF is Jacobian matrix of F

                                                        

 

Figure 2.1 Newton's Method 

Now for multidimensional Newton method, consider nonlinear system of equation, 

F(x) = 0     

F(x) is a differentiable vector function. The correction at each 

       )F(x)(xJxxΔx
1

F
nnn1n1n −++

−=−=  

F and it is defined as, 
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
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Now for multidimensional Newton method, consider nonlinear system of equation,  

 (2.4) 

is a differentiable vector function. The correction at each 

 (2.5) 

.                                       
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Equation (2.5) is solved iteratively until convergence. Convergence check is done by checking 

condition toleranceΔx ≤ , where 

toleranceΔx ≈  then convergence rate is quadratic. 

2.2.2 Nodal Analysis 

The circuit equations can be created using nodal analysis

formulating Kirchhoff current law (KCL) for all nodes, except for the reference node. These 

nodal voltages are assigned with respect to a reference node. This reference node is denoted as 

ground. A simple circuit example for nod

 

Figure 2.2 

To write a nodal analysis for a circuit shown in Figure 2.2 first identify nodes and assign one 

node as the reference node. After that write KCL at each node. All

expressed as: 

     

Writing KCL for circuit shown in Figure 2.2 for each node except reference node gives:

Equation (2.5) is solved iteratively until convergence. Convergence check is done by checking 

, where 
n1n

xxΔx −=
+

. When iterations get close to the solution 

then convergence rate is quadratic.  

The circuit equations can be created using nodal analysis [15]. Nodal equations are created by 

formulating Kirchhoff current law (KCL) for all nodes, except for the reference node. These 

nodal voltages are assigned with respect to a reference node. This reference node is denoted as 

ground. A simple circuit example for nodal analysis is shown in Figure 2.2. 

 

Figure 2.2 Example circuit to explain Nodal analysis 

 

To write a nodal analysis for a circuit shown in Figure 2.2 first identify nodes and assign one 

node as the reference node. After that write KCL at each node. All nodal equations can be 

 i = f(v).                               

Writing KCL for circuit shown in Figure 2.2 for each node except reference node gives:

8 

Equation (2.5) is solved iteratively until convergence. Convergence check is done by checking 

. When iterations get close to the solution i.e. 

al equations are created by 

formulating Kirchhoff current law (KCL) for all nodes, except for the reference node. These 

nodal voltages are assigned with respect to a reference node. This reference node is denoted as 

 

To write a nodal analysis for a circuit shown in Figure 2.2 first identify nodes and assign one 

nodal equations can be 

                          (2.6)  

Writing KCL for circuit shown in Figure 2.2 for each node except reference node gives: 
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KCL at node 1:  g1 v1  - Is = 0 

KCL at node 2:  h(v1) + g2 v2  + g3(v2 - v3) = 0 

KCL at node 3: -g3(v2 - v3) + f(v1) = 0.            (2.7) 

A set of equations (2.8) can be written in matrix form as: 

  
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          (2.8) 

Now let the nonlinear system of equations be  

     F(x) = s           

         F(x) -  s = 0                (2.9) 

where x is nodal voltage vector, F is a differentiable function and s is source vector. Now 

comparing Equation (2.8) and (2.9) yields : 

  

� �������� ���� ��
i(x)xG
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0

0

I s

s  

Hence from Equation (2.9) 

                      0  s-i(x)+ x G=  s-F(x) =        (2.10) 

where, Gx is linear contribution of the function F and i(x) is nonlinear contribution of function 

F. Applying Newton's method to Equation (2.10) will get : 

       

( )

( ) )i(x  -Gx-ss-)F(x -ΔxJ

s-)F(xJxx

F

1-
F

nnn1n

nn1n

==

−=

+

+

 

But iF + J G=  J . where JF is Jacobian of function F and Ji is Jacobian of current vector i(x). 

Using this relation Equation (2.11) can be written as: 

                   )i(xGxsΔx]J[G i
nn1n

−−=+
+

.        (2.12) 

(2.11) 
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2.2.4 Diakoptics 

Diakoptics [16] is tearing down an electric network into sub-systems, in other words the circuit is 

partitioned into subcircuits. Figure 2.3 shows a circuit network ∏ partitioned into three 

subcircuits. Components outside of subcircuits are part of the interconnect block. 

 

AC

 

 

Figure 2.3 General Circuit Diagram to explain Diakoptics 

 

 

Kron [17], [18] derived the equations resulting after partitioning a network into k subcircuits. 

Now suppose linear circuit network ∏ is defined by: 

      A x = b                    (2.12) 

where A is nodal matrix, x is unknown voltage vector and b is source vector. Now Equation 

(2.12) could be partitioned into k subsystems : 

Subcircuit-1 

Subcircuit-2 

Subcircuit-3 

∏ 
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 where, Aj with j=1, 2, ..., k, is a matrix representing subcircuit j, depending on circuit 

partitioning approach the interconnect network spreads in Aj , Nj , Mj and C, 
k

x,...,
2

x,1x are 

unknown internal nodal voltage vectors of subcircuits, xk+1 is interconnect nodal voltage vector,

k
b,...,

2
b,1b are source vectors of subcircuits and 1k +b  is the source vector for interconnect block. 

There are two types of circuit decomposition is possible: branch tearing and node tearing. If 

circuit decomposition is done using branch tearing, links connecting to subcircuits are distributed 

to Aj , Nj , Mj and C blocks and create dependency between subcircuits. Node tearing will be 

discussed in detail in Chapter 3. 

To solve Equation (2.13), unknown voltage vector for j
th

 subcircuit is found : 

            )xN(bAx
1

1kjjjj +
−

−=                   (2.14) 

Interconnect nodal voltages can be found as follows: 
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Now to evaluate system of equations (2.13), interconnect nodal voltage xk+1 is calculated first 

from Equation (2.15) and then subcircuit nodal voltage xj can be found from Equation (2.14).  

For an example of Diakoptics consider a linear circuit network shown in Figure 2.4. This circuit 

is divided in three subsystems: two subcircuits and one interconnect block.  

(2.13)

(2.15) 
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Figure 2.4 Example Circuit for Diakoptics 

Figure 2.5 shows system of equations corresponding to the circuit shown in Figure 2.4. 
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Figure 2.5 System of Equation  

Likewise, for a nonlinear circuit, Diakoptics is applied to solve each Newton iteration. 

Subcircuit-1 

Subcircuit-2 

Interconnect  

 

Subcircuit blocks 

Interconnect variables 

     (M blocks) 

Interconnect variables  

        (N blocks)  

Contains ±1 

Interconnect variables 

     (C block) 

Source Vector 

Vector of Unknown 

variables 
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2.3 Formulations Based on Domain Decomposition  

Domain decomposition method refer to a collection of divide-and-conquer techniques which 

have been primarily developed for solving Partial Differential Equations [19], [20]. Domain 

decomposition refers to a class of methods for solving linear or nonlinear systems of equations, 

primarily arising from the discretization of partial differential equations (PDEs). In a way that is 

mostly relevant to the focus of this thesis, a domain decomposition method finds the solution to a 

large system by subdividing it into smaller sub-domains and solving these sub-domains 

separately. This section discusses different domain decomposition approaches.  

2.3.1 Multilevel Newton Method [21] 

Multilevel Newton Method 

To speed-up simulation, one possible improvement that can be achieved from NR method is 

parallelization. In order to further improve the speed, other iteration methods than NR iteration 

may be utilized. Digital circuits are usually modular, latent, and unidirectional i.e. loosely 

coupled. Because block, waveform, and nonlinear relaxation methods utilize these properties, 

they have been found suitable for this kind of circuits. These methods cannot apply effectively to 

the analog circuits, which usually are tightly coupled. Multilevel Newton method is one of the 

methods that can be effectively applied in parallel processing [21].  

Two characteristics of many electronic circuits are discussed for a more efficient analysis :  

1. Many electronic circuits consist of identical repetitive sub-networks. This characteristic is 

utilized by macromodeling.  

2. Many electronic networks contain sub-networks which are inactive i.e. their electrical 

variables are constant most of the simulation time. 

 

Macromodels 

A macromodel of a network is defined as a set of nonlinear and/or time varying elements 

simulating external behaviour of the sub-network. It consists of a set of nonlinear and/or time 
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varying elements. Some papers e.g. [22] use macromodels represented by circuit elements or 

equations which approximate the external behaviour of subnetwork whereas reference [21] 

define macromodel such that the external behaviour of the circuit is exactly represented by the 

macromodel.  

Consider an example for macromodel: Let ∏ be the large-scale network composed of 

interconnected sub-networks Si = S1, S2, S3 and S4 (Figure 2.6). 

     

     

 

 

 

  Figure 2.6 Example circuit network ( ∏ ) to explain macromodel 

S1 

S2 

S3 

S4 

∏ 
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Let S be a subnetwork (Figure 2.7(a)) of whole circuit network ∏ (Figure 2.6) to be represented 

by macromodel. Figure 2.7(b) is macromodel of subnetwork S. 

 

 

 

 

 

                                 

 

 

           (a)            (b) 

 

Figure 2.7 Example of macromodel (a) subnetwork S of circuit network ∏ (b) Macromodel 

of subcircuit S which represents its external behaviour. 

 

The algorithm of multilevel newton method using Macromodel is as follows: 

Let the equations describing behaviour of circuit network  ∏  having only one subcircuit S, 

    F(u, G( intx ), extx ) = 0                 (2.16) 

where u is the vector of inputs, intx  is internal variables of subcircuit S, G( intx ) is a 

macromodel of subnetwork S, extx  is the vector of interconnect (external) variables in ∏ not 

communicating with S.  

Applying Newton's algorithm to Equation (2.16) by updating only outer variables and keeping 

internal variables of macromodel G( intx ) constant will get : 

                                            −=
+ n1n

extext xx  (JF )F(x))(x ext
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nn −

                                       (2.17) 

where JF is Jacobian of function F (Equation 2.16) with respect to variable extx  ( intx  is 

constant), 
1n+

extx  is value at next Newton iteration step, 
n
extx  is previous value of Newton 

iteration and n is iteration index. 
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Now, to evaluate macromodel G( intx ) another Newton method is applied to equations 

representing macromodel. Equation (2.18) represents macromodel : 

     H( u , intx , y) = 0                                                     (2.18) 

where y is output vector. In this Newton method only update inner variables intx  and keep outer 

variables u constant : 

                                          −=
+ n1n

intint xx  (JH )H(x))(x int
1

int
nn −

                          (2.19) 

JH is Jacobian of macromodel with respect to intx  and y. Keep iterating until it converges. 

Convergence condition is given by :  

      extΔx
int

Δx <   

where 
n1n
intintint xxΔx −=

+
is error in subcircuit nodal voltages and 

n1n
extextext xxΔx −=

+
 is error 

in interconnect nodal voltages. Here, Newton's algorithm applied twice on Equations (2.16) and 

(2.18), that's why this method is called multilevel Newton's algorithm. 

Latency 

The second characteristic of the network is latency. Suppose that in the electrical network to be 

analyzed, at any particular time t1, most of the subcircuits are latent i.e. the value of their 

electrical variables remain constant. Latency is used to speed up the analysis in logic simulation 

when only the active part of the circuit is analysed which is called event driven simulation. 

Basically, when any subcircuit is found to be latent at a certain instant of time e.g. t2, then 

obviously no function or Jacobian evaluations are needed to find the value of the subcircuit 

variables at all the subsequent time steps until a change in the input variables of the subnetwork 

occurs. In other words, the corresponding element in Jacobian of the circuit equation are not 

evaluated at t2 and the value of the subcircuit variables is set to the one taken at time t1 [21]. 

Latency approach is more effective for digital circuits as they are usually modular and latent. Use 

of latency can achieve significant savings in computer time. An additional advantage is that it 

can easily deal with asynchronous designs. Latency can be used for timing analysis including the 

usage of multi-delay model. This aspect is not implemented in this thesis. 
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2.3.2 New Approach for Parallel Circuit Simulation [23] 

A new approach for parallel simulation of very large scale integration (VLSI) circuit on a 

transistor level is presented [23]. Authors proposed circuit partitioning algorithms along with 

formulation for parallel circuit simulation. Three algorithms are presented: 

I. Parallel Newton Method 

II. Parallel Multilevel Newton Method 

III. Parallel Multilevel Newton Method with Latency  

Supose that linear system of equations to be solved at each Newton iteration is presented by : 

       Ax = b  .                 (2.20) 

Diakoptics [17] is used to implement parallel simulation. These three algorithms are 

implemented on Equations (2.14) and (2.15) mentioned in Section 2.2.4 Diakoptics. For quick 

reference equations are rewritten below : 
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Decomposition of Equation (2.20) leads to the decoupled nonlinear system: 

                   0)x,F(x =+1kj             (2.21) 

                        0)x,G(x =+1kj         (2.22) 

where j = 1, ..., k, F is subcircuits (A blocks) and G is interconnect (coupling) system whose 

elements are spread in M, N and C blocks (Equation 2.13). Every subcircuit j is represented by 

its own nonlinear system (2.21) and dependencies between each subcircuits are given by 

Equation (2.22). Figure 2.8 shows Newton’s method for the decoupled nonlinear equation 

systems (Equations (2.21) and (2.22)) [23]. Computation is divided between master and slave 

processors.  
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Figure 2.8 Parallel Newton's algorithm 

(Serial computation of linear system) 
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The algorithms shown in Figure 2.8 can be classified in three main steps:(i)  Slave processors 

calculate Sj and wj for each subcircuit and sent these variables to master processor. (ii) Master 

processor calculates Sn, wn, interconnect nodal voltage vector xk+1 and send xk+1 to slave 

processors. (iii) Slave processors calculates subcircuit nodal voltages for each subcircuit using 

xk+1. However, this simple approach has the following potential limitation. Since several 

Newton iterations may be needed before the solution to the nonlinear system converges, there 

may be a considerable amount of inter-processor communication, which limits the efficiency of 

the parallel simulation.  

A trade-off can be made between communication and computation by introducing the multilevel 

Newton Method. In this case, one Newton iteration consists of an inner iteration loop and an 

outer Newton update step. In the inner iteration loop, each local nonlinear equation is iteratively 

solved to converge under a fixed outer (interface) variable vector ∆xk+1 to update all local 

variables x1, x2...., xk. Then an outer Newton step is taken to update outer variable vector ∆xk+1 

based on the solutions received from the slaves. Finally, to complete one Newton iteration for the 

entire system, a Newton step is taken to correct all local variables x1, x2...., xk using the updated 

∆xk+1. Since more work is done at the slave level in the above multilevel Newton method, the 

number of top-level Newton iterations may be reduced, leading to less communication between 

the slaves and the master. The conditions under which the multilevel Newton method maintains 

local quadratic convergence was provided in [21]. 

Latency can be also exploited under this multilevel framework [21], [23]. PNAM_MUL method 

is efficient if there is a sufficient decrease of the interconnect variables in the outer iteration, in 

that case slave processors do not need to evaluate the outer derivative. Sending the matrices Sj to 

the master processor causes the main part of the communication. In case of latency, these 

matrices do not have to be sent to the master process. Only the inner variables have to be 

transmitted to the master. One condition latency = true is added in PANEM_MUL algorithm. If 

this condition satisfies then slave neither have to evaluate Sj matrices nor have to send it to the 

master process.  
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Simulation Results 

The parallel multilevel Newton method was demonstrated as part of the TITAN simulator, 

running on both computer clusters and shared-memory multiprocessors [23]. Good parallel 

speedups were demonstrated up to eight processors. Table 2.1 shows the comparison of three 

algorithms PANEM, PANEM_MUL AND PANEM_MUL_L with required number of iterations 

to simulation CPU time to simulate circuit industry 1. Table 2.2 shows the CPU time for 

simulation, speedup and number of interconnect for circuit industry 5.  

  Table 2.1 Simulation results of PANEM, PANEM_MUL and PANEM_MUL_L for circuit industry 

1 

Method #iterations(DC/TR) Real simulation CPU-time 

(min:sec) 

PANEM 59/222 34:35 

PANEM_MUL 11/158 27:28 

PANEM_MUL_L 11/158 21:59 

 

Table 2.2 Simulation results for circuit Industry 5(large industry circuit having approx. 50k 

MOSFETs) 

 1 processor 4 processors 8 processors 

Real simulation 

CPU-

time(hour:min:sec) 

5:07:12 1:17:49 0:39:26 

Speedup - 3.95 7.79 

#interconnect - 7 8 

 

Modified Multilevel Newton Method [24] 

The New Multilevel Newton-Raphson Method is modified from the multilevel Newton method 

[21]. Good global convergence can be achieved by adjusting inner iterations and local quadratic 

convergence is achieved [24].  

Authors used Diakoptics [17] method to implement parallel circuit simulation as discussed in 

Section 2.2.4. This approach is slightly modified from Reference [21]. It is the exact same 

process from Equations (2.10) to (2.12) without defining a macromodel. In New Multilevel 
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Newton Method, instead of taking global NR steps [24], the iterations are taken at multiple 

levels. Between each outer NR step only fixed number of inner iterations (q) are taken to 

synchronise local and global convergence i.e. for load balancing. At each outer iteration instead 

of updating only outer variables, update all variables. In this way overall convergence would be 

faster by achieving local quadratic convergence. 

Simulation Results of modified Multilevel Newton Method 

Simulation Results of modified Multilevel Newton Method for a circuit with 1440 BJTs and 

7746 nodes is shown in Table 2.3, where p is number of outer iterations and q is the number of 

inner iterations. This circuit is partitioned into 3 subcircuits and simulated with three processors. 

Processing time is the time to decompose the whole circuit network into subcircuits, symbolic 

recording of sparse matrix etc. 

Table 2.3 Simulation results of modified multilevel Newton method 

q p Preprocessing  

time 
Iteration time total 

0 19 9.0 s 2.6 s 11.6 

1 13 9.0 s 2.6 s 11.6 

2 6 9.0 s 1.9 s 10.9 

3 5 9.0 s 1.7 s 10.7 

Even though load balancing can be achieved by fixed number of iterations, total number of 

iterations for small subcircuits will be different than big subcircuit blocks i.e. small subcircuit 

may converge faster than big subcircuit block having more internal nodes compare to small 

subcircuits. 

2.3.3 Formulation with Binary Link [25] 

This algorithm formulates the interface vectors between partitions, through binary vectors, 

leading to enhanced parallelism, scalability and reduced CPU costs while synchronizing the 

solutions between various partitions. The CPU cost per iteration as a function of the number of 

links L between subcircuits is in the order of L
2
. That leads to poor scalability as its complexity 

increases. This reference [25] proposed an algorithm that exhibits superior scalability as its 

complexity increases only in order of L.   
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Node tearing (decomposition) technique [16], [26] is used to partition circuit into several 

subcircuits. Consider a circuit divided in two subcircuits using node tearing as shown in Figure 

2.9. Figure 2.9 shows procedure to find out external current along this link (current i1) by finding 

Thévenin equivalent. Open circuit port voltages Vth1 and Vth2 can be found with independent 

sources of subcircuits enabled as show in Figure 2.9 (b). Thévenin equivalent impedance for 

each subcircuit can be calculated by connecting a unit current source to each port and deactivate 

the independent sources of circuits. Now from open circuit voltages Vth1 and Vth2 and Thévenin 

equivalent impedance (Zth1 and Zth2) external current i1 flowing from subcircuit-1 to subcircuit-2 

can be found by  
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         (b) 
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           (c) 

 

Figure 2.9 Thévenin equivalent measurement to find external current (a) Example of node tearing 

(b) Measurement of Vth (c) Link current (i1) measurement (Equation 2.23) 

A binary selector column vector N1 is constructed where the row of node 1 is +1 and rest are 

zero. Number of rows are equal to subcircuit block A1, which is MNA matrix for subcircuit 1. 

Likewise binary selector column vector N2 is constructed for subcircuit 2 where row of node 2 is 

-1 and rest are zero.  

The system of equations for the circuit shown in Figure 2.9 is : 

Subcircuit-1 Subcircuit-2 

i1 

i1 
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Now the overall matrix for k subcircuits will have the following form :  
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where, 
E

i is external current vector flowing from one subcircuit to another. Now rewriting 

Equations (2.14) and (2.15) using notation used in Equation (2.25)  
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Now for more than two subcircuits (e.g. k subcircuits) the Thévenin equivalent impedance 

matrix defined is: 
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and the external currents flowing from one subcircuit to another is given by  
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using relation given in (2.28) in Equation (2.27). Now the entire system can be solved by two 

Equations (2.26) and (2.29) iteratively. Matrices Mj, Nj and C in Equation (2.13) for [21], [23] 

and [24] approaches contain original nodal variables and are non-binary matrices. Consequently, 

solution cost of interconnecting equations (solved on a master processor) as well as the 

(2.27) 
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communication cost among slaves and the master processor grow rapidly with the increasing 

number of partitions. This causes poor scalability with the increasing number of processors and 

partitions. Reference [25] minimizes the computations required for interfacing various parallel 

blocks as well as minimizes the communication overhead between the processors involved. This 

is accomplished by efficient form of node splitting, during Newton Raphson iterations, at any 

time point. At each NR iteration, since the resulting circuit is linear, the technique of node 

tearing can be applied at the identified partitioning nodes, leading to coupling vectors (linking 

various resulting subcircuits) that are purely binary in nature, and an impedance matrix whose 

dimension depends on the number of links between various partitions. 

This approach is similar to the formulations presented in Section 3.1 of this thesis. That 

formulation was developed independently of this reference. 

 

Simulation Results 

Here each circuit network is simulated with two implementations : one using node tearing and 

other using branch tearing. The circuit partitioning is performed by hMETIS [27], [28]. Each 

subcircuit was simulated on a single processor. In reference [25] simulation is done using up to 

16 CPUs but here to summarize simulation result with only 8 processors are shown in Table 2.4 

with analysis time and speed up. The speedup is measured relative to a standard simulation using 

a traditional LU solver, with no parallelism or partitioning. Table 2.4 shows simulation result 

summary of DSP example, SRAM, dual SRAM and Array Multiplier Example.   

 

Table 2.4 Performance results with 8 processors  

Examples Branch Tearing Node Tearing 

Analysis Time Speed up Analysis time Speed up 

DSP 480.4 s 2.0 187.2s 5.1 

SRAM 399.0 s 1.9 148.2s 4.6 

Dual SRAM 378.0s 2.2 139.0s 6.0 

Array Multiplier 682.1s 1.9 261.3s 4.8 
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2.4 Other Formulations

The technique proposed in [29]

delay element is used to partition

can be simulated on different core

subcircuits is used to formulate the whole domain simulation. 

Figure 2.10 shows delay elements. Figure 2.10(a) shows

element and Figure 2.10(b) shows

line. The state variable model replicates a bidirectional delay so that circuit

port of the element does not affect the circuit

 

 

Figure 2.10 Delay Elements. (a) Ideal state variable based delay element. (b) Ideal lossless 

transmission line. 

 

The simulated behavior of the delay element is 

g2, which depend upon the past voltage and current at ports 2 and 1, respectively.

shows two subcircuits connected with a delay element. This

delay elements as shown in figure 2.11 (b) and those partitions can be iterated independently.

 

 

(a) 

Formulations 

[29] exploits the inherent delay present within some

delay element is used to partition a circuit network into several subcircuits and these su

different cores of a shared-memory CPU. A delay element interfacing 

subcircuits is used to formulate the whole domain simulation.  

Figure 2.10 shows delay elements. Figure 2.10(a) shows state-variable model of an ideal delay 

shows electrical circuit equivalent of the ideal lossless transmission 

model replicates a bidirectional delay so that circuit behavior at either

port of the element does not affect the circuit at the opposite port until after a delay,

Figure 2.10 Delay Elements. (a) Ideal state variable based delay element. (b) Ideal lossless 

The simulated behavior of the delay element is given by the behavior of the state variables 

upon the past voltage and current at ports 2 and 1, respectively.

shows two subcircuits connected with a delay element. This delay element partitioned into sub

delay elements as shown in figure 2.11 (b) and those partitions can be iterated independently.

(b) 

Z0, β  
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some circuits. This 

circuit network into several subcircuits and these subcircuits 

memory CPU. A delay element interfacing 

variable model of an ideal delay 

lossless transmission 

behavior at either 

ite port until after a delay, τ . 

 

Figure 2.10 Delay Elements. (a) Ideal state variable based delay element. (b) Ideal lossless 

the behavior of the state variables g1 and 

upon the past voltage and current at ports 2 and 1, respectively. Figure 2.11 (a) 

delay element partitioned into sub-

delay elements as shown in figure 2.11 (b) and those partitions can be iterated independently. 
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Figure 2.11 Par

To interface the NR-based iterations of each of the circuit

scheme is used. In the case of finite delay, the top

until voltages and currents at the delay element ports become consistent with the subcircuits

connected to them. In the case of an instantaneous connection,

solved by means of waveform relaxation 

relaxation iterations at the delay elements match the voltages at the ports of the delay element.

Figure 2.12 shows flowchart of parallel simulation of delay based partitioning

Sub-

                                                                                 (a) 

    (b) 

Partition of two subcircuits with delay element 

based iterations of each of the circuit partitions, a delay

is used. In the case of finite delay, the top-level simulator iterates at the delay elements 

the delay element ports become consistent with the subcircuits

connected to them. In the case of an instantaneous connection, i.e., zero delay, equations are 

solved by means of waveform relaxation [30]. All subcircuits are solved independently 

relaxation iterations at the delay elements match the voltages at the ports of the delay element.

lowchart of parallel simulation of delay based partitioning [29]
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-Delay  Sub-Delay  
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delay-based iterative 

terates at the delay elements 

the delay element ports become consistent with the subcircuits 

, zero delay, equations are 

independently and 

relaxation iterations at the delay elements match the voltages at the ports of the delay element. 

[29]. 



Chapter 2 Literature Review 

 

28 

 

Parent Analysis Routine
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Figure 2.12 Flowchart of parallel simulation of delay based partitioning 

First of all, the netlist is analyzed by the parent analysis routine. Then, the delay elements whose 

two ports belong to different LRGs are identified. These delay elements represent the temporal 

isolation between the subcircuits connected to the corresponding delay element. The delay 

elements are then divided into two sub-delay elements which is also called partner sub-delay 
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elements, as shown in Figure 2.11, resulting in two circuit partitions belonging to different 

LRGs. The circuit partitions thus formed are simulated sequentially in their circuit topological 

order initially for a few time steps (∆T ) within the parent routine. This builds history, which 

enables efficient automated parallel simulation of circuit partitions for the rest of the simulation 

time points. After initial sequential simulation, multiple child threads are allocated from the 

parent routine with the number of threads. The number of allocated threads depends on the 

number of circuit partitions and the number of available cores of the shared-memory multicore 

processor. Each child thread is assigned one circuit partition and directed to one of the available 

cores. Likewise, if N cores are available then N circuit subcircuits can be run in parallel [29]. 

Each circuit partition is simulated for DF∆T time period, where DF is delay factor described by 

relationship show in Equation (2.30) and ∆T is fixed time step. 

                                                  �� =
�	
� (��, ��,.., ��)�

∆�
         (2.30) 

The two partner sub-delay elements exchange their current and past state-variable-based current 

source values (called the interconnect vector) after each ∆T time duration. The interconnect 

vectors are stored in a shared memory data structure. The individual circuit partitions are solved 

using the direct method that comprises three steps: 

1)  Model evaluation (linearization of nonlinear device characteristics and Jacobian matrix  

calculation)  

2)  Matrix build (construction of a sparse matrix equation) 

3)  Matrix solve (The solution of matrix equation coupled in an NR loop) 

An error criterion is formulated in the parent routine to check convergence. In the case of zero 

delay element perform waveform relaxation. Each subcircuit iterates for DF∆T time then sends 

results to the other subcircuits. Each subcircuit then will check whether it is consistent with 

previous solution. If the previous solution is not same as the current solution then iterate again 

till find consistent solution. At the end, subcircuit voltages and currents are mapped to the parent 

circuit voltages and currents after convergence is achieved.  
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Simulation Results 

Simulation results for 8 different circuits are presented in [29] and 4 of them are listed in Table 

2.5 with percentage of total simulation time taken by model evaluation, matrix build and matrix 

solve. Simulation results for unpartitioned chain of 12 frequency divider circuit, chain of 8 

frequency multipliers, soliton line and 20-bit ripple carry adder are shown. Table 2.6 shows 

percentage of total simulation time reduced by partitioning circuit and simulated on different 

number of processors 2 and 8. 

 

Table 2.5 Percentage of Total Simulation Time Taken by Various Steps During Simulation On a 

Single Core 

Circuits Model Evaluation Matrix build Matrix Solve 

Chain of 12 frequency dividers 64 31.53 3.96 

Chain of 8 frequency multiplier 32.20 56.93 10.34 

Soliton Line 2.24 85.26 11.90 

20 Bit Ripple Counter 54.9 40.53 4.21 

 

 

Table 2.6 Percentage reduction in the various steps of simulation in delayed partitioned parallel 

simulation on multiple cores w.r.t. unpartitioned simulation on a single core 
 Model Evaluation Matrix Build Matrix Solve 

Cores 2 8 2 8 2 8 

Chain of 12 frequency 

dividers 

50.81 90.10 74.83 98.6 45.93 90.83 

Chain of 8 frequency 

multiplier 

47.10 86.36 76.81 97.93 48.51 86.23 

Soliton Line 46.73 87.85 73.73 98.02 44.93 85.51 

20 Bit Ripple Counter 56.11 89.33 71.65 96.54 51.61 83.87 

 

There are two main parallelization overheads in proposed method [29]. The first one is 

sequential simulation. In order to create history, sequential simulation has to be performed at the 

beginning of the simulation that enables parallel simulation at subsequent time points. The 

second overhead is locks and barriers implemented at each DF∆T. After every DF∆T time frame 

the circuit is synchronised, which reinitializes the parallel simulation to a sequential simulation. 
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This overhead increases as the number of subcircuits increases, because now more number of  

subcircuits will access the shared memory data, resulting in longer waiting times due to the lock 

on the data structure. Efficiency of this approach depends on partition and it depends on specific 

type of circuits having delay elements. If there is no delay element in circuit then waveform 

relaxation is performed. In waveform relaxation each subcircuit has to iterate for several time for 

the same time interval until it converges and hence it is not efficient. 

HMAPS [31] 

All literature discussed till now suffers two main disadvantages. First one, all parallel approaches 

are intra-algorithm, i.e. parallel computing is only applied to expedite intermediate 

computational steps within a single algorithm. This choice often leads to fine grained parallel 

algorithm which requires a significant amount of data dependency analysis and programming 

efforts.  

Second common disadvantage is load balancing. Circuit may not be partitioned evenly i.e. each 

partitioned subcircuit blocks may have different number of nodes and elements. For example, 

one circuit network is divided in three subcircuits and Subcircuit 1 is smaller than other two. 

These subcircuits are assigned to three different processors. Now, processor with small subcircuit 

will complete its calculations faster than other two processors with big subcircuit blocks. 

Processor with smaller subcircuit has to wait for information from other processors. Hence 

parallel simulation of such circuit is not efficient for all approaches discussed till now. However 

this depends on the circuit partition, which is not the focus of this thesis. 

Circuit behaviours to be simulated are complex functions of circuit types, structures and input 

excitations. Furthermore, for a fixed circuit, the circuit behaviour may vary significantly over the 

time,�exhibiting varying amount of switching activities and because of nonlinearities. It is not 

difficult to predict that the characteristics of circuit behavior have a definite influence on how 

such characteristics may be simulated by different families of simulation algorithms��However, 

in practice, it is difficult to select a single best algorithm that fits all type of circuits or even one 

complete simulation run for a given circuit. 

This observation of variations in the performance of a single simulation algorithm over the time 

and different types of circuit suggests that it is beneficial to run multiple algorithms in parallel 
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[31]. There are four different computing models possible for circuit simulation: (i) single 

algorithm on single core processor (Figure 2.13(a)) (ii) single algorithm on multi

(Figure 2.13(b)) (iii) multialgorithm on multicore CPU and (iv) hierarchical multialgorithm on 

multicore CPU.  

Figure 2.13 Possible computing models of circuit s

single core processor 

multicore CPU and (d

 

In this work, the researchers propose a hierarchical multi

simulation framework for parallel time

(a)

(c) 

. There are four different computing models possible for circuit simulation: (i) single 

algorithm on single core processor (Figure 2.13(a)) (ii) single algorithm on multi

(Figure 2.13(b)) (iii) multialgorithm on multicore CPU and (iv) hierarchical multialgorithm on 

 

3 Possible computing models of circuit simulation approaches (a) Single algorithm on 

single core processor (b) Single algorithm on multi-core CPU (c) Multialgorithm on 

d) Hierarchical multialgorithm on multicore CPU

In this work, the researchers propose a hierarchical multi-algorithm (MA)

simulation framework for parallel time-domain transistor level circuit simulation. Their 
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algorithm on single core processor (Figure 2.13(a)) (ii) single algorithm on multi-core CPU 
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framework exploits the advantageous characteristics of the recent multi-core processor 

computing platforms such as small inter-processor communication cost, flexible shared memory 

programming environment to achieve good runtime performance.  

Unlike conventional approaches where a single (parallel) algorithm is employed for a given 

application, in HMAPS, multiple algorithms with varying characteristics are launched to process 

the same simulation task. In their framework, they implemented two levels of parallelism. For a 

simulation task, multiple different simulation algorithms begin in parallel. Parallel speedups are 

obtained by having these algorithms interact with each other in a cooperative manner on the fly. 

This opens up a somewhat unorthodox angle to approach parallel circuit simulation as it allows 

one to explore a combination of intra- and interalgorithm parallelism. This combination of 

different levels of parallelism not only opens up new opportunities, but also explore advantages 

that are simply not possible when working within one fixed algorithm. Each algorithm in the 

multi-algorithm framework uses multiple CPU cores to do its own computing tasks. By using 

this hierarchical multi-algorithm parallel circuit simulation framework, super-linear speedup is 

achieved for some test circuits [31]. 

Other Contribution in Parallel Circuit Simulation 

An adaptive sparse matrix solver called NICSLU is proposed by paper [33]. They proposed 

matrix solver called NICSLU, which uses multithread parallel LU factorization algorithm on 

shared memory computers with multicore CPUs to accelerate circuit simulators. A simple 

method is proposed to predict whether a matrix is suitable for parallel factorization. 

Another reference [32] proposes a new method for transient analysis of nonlinear circuits based 

on power waves instead of voltages and currents. The circuit is partitioned into two parts : linear 

and nonlinear. This method uses relaxation approach to decouple the calculation in each part. 

The advantage using power waves is that iterations can never diverge to infinity. The use of 

waves results in guaranteed convergence for any linear passive circuit and some types of 

nonlinear circuits. Another advantage using power waves is, this method does not require large 

matrix decomposition if time step is constant. This method was implemented in the fREEDA [29] 

circuit simulator. Because of the concurrent calculations of this approach, the method can be 

adopted to solve in parallel. 



Chapter 3 System Formulation for Parallel Circuit Analysis 

 

Chapter 3 

System Formulation for Parallel 

Circuit Analysis  

 

This chapter discusses the proposed two circuit decomposition methods for efficient parallel 

analysis, one is based on nodal variables and another based on scattering waves. Both approaches 

have been implemented in two analysis types in a circuit simulator: EOP and WAVEOP. 

The formulation for each approach is presented first, followed by details about the software 

implementation. The performance of both formulations is then evaluated with simulation 

examples.   

 

3.1 Formulation Based on Nodal Voltages and Currents 

If circuit partition is performed using branch tearing then elements shared by subcircuit block 

and interconnect block create dependency between each other. Branch tearing causes additional 

process interdependencies and thus increases simulation time. Let's consider an example circuit 

diagram Figure 2.5 and Equation (2.9) used in Section 2.2.4 which is shown again in Figure 3.1 

and Equation (3.1) for quick reference. 
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Figure 3.1 Example Circuit Network 
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Figure 3.2 System of equation 

Subcircuit 1 

Subcircuit 2 

Interconnect  

Subcircuit blocks 

Interconnect variables 

     (M blocks) 

Interconnect variables  

        (N blocks)  

Contains ±1 

Interconnect variables 

     (C block) 

Source vector 

Vector of unknown 

variables 

A1 

M1 

N1 



Chapter 3 System Formulation for Parallel Circuit Analysis 

 

36 

 

From Figure 3.2 it is clear that conductance g2 is shared by Blocks A1, M1, N1 and C. Hence 

change in that element in A1 will affect all other blocks. Linear components will not change after 

each Newton iteration but nonlinear elements change at every Newton iteration which increases 

information exchange between processors sharing same nonlinear element. Furthermore, if 

interconnect network is large it increases amount of information exchange between processors 

and also increases the complexity of the interconnect system. In the proposed method, the 

interconnect block is successfully removed from Jacobian matrix. 

The node tearing approach is described next. The following derivation assumes that: 

1. Circuit network is manually partitioned in blocks. 

2. Each subcircuit has a ground connection. 

Figure 3.3 shows the general circuit diagram using node tearing [17]. Each interface node is 

separated into two nodes by means of ideal voltage source.  

V=0

V=0

 

Figure 3.3 General circuit diagram to explain partition approach 

Connections between subcircuits appear as single node in nodal equations. So, we split these 

nodes by adding ideal voltage sources having 0V. According to MNA, adding an ideal voltage 
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source in circuit needs an extra variable to solve nodal admittance matrix [34] and hence we 

added external current as an extra variable. This addition does not change the overall response of 

the circuit. Adding external subcircuit currents duplicates the amount of common nodal voltages 

between subcircuits and hence dependency between blocks is reduced.  

Now from Figure 3.3 the nodal admittance matrix for circuit partitioned into three subcircuits has 

the form shown in Figure 3.4. A1, A2, and A3 represent individual subcircuits, N1, N2, and N3 are 

incidence matrices. Most entries of incidence matrices are ‘0’, except that there is a ‘±1’ in each 

row corresponding to an external connection (shaded part in ��  and ��
� blocks) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4  Jacobian matrix block (shaded parts are matrix entries that correspond to subcircuit 

interconnections) 
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In Figure 3.4, ��  and ��
� blocks are constant and interconnect block (C) is zero. This not only 

results in less information exchange between processors but also in simpler matrix structure. 

Another advantage of this partitioning approach is that a pair of voltage and current at external 

port of each subcircuit is available. This is useful for a later objective of exchanging information 

between subcircuits using scattering waves and for waves both voltage and current are required.  

This approach is also compatible with the connection where more than two subcircuits are 

connected to one node. This is handled by inserting ideal voltage sources having 0 volts to the 

external ports of any k-1 subcircuits if there are k subcircuits connected to one node. Figure 3.5 

shows such an example where three subcircuits are sharing one node a. In this case two ideal 

voltage sources and two external currents are assigned to Subcircuit 2 and Subcircuit 3.  

 

 

 

 

 

 

 

 

 

Figure 3.5 General circuit diagram of three subcircuits sharing same node a 

Node a would appear in each of three subcircuit blocks A1, A2, A3 (Figure 3.4) and Nj blocks 

would have two columns as shown in Figure 3.6.  
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Figure 3.6 External currents arrangement in N blocks 
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3.1.1 Diakoptics Applied to Node Tearing 

Assume that a circuit is partitioned into k subcircuits separated by zero-volt ideal voltage sources 

as shown in Figure 3.7.  
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Subcircuit-1 Subcircuit (k-1)Subcircuit-2

Subcircuit k

DC

V=0

 

 

 Figure 3.7 General circuit diagram of partitioned circuit for derivation  

From Figure 3.7 a generalized system of equation can be written as: 
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where Gj is subcircuit block, Nj is incidence matrix block, )(xi),...,(xi),(xi kk2211  are internal 

currents of nonlinear components inside subcircuits, Ii is external current vector and 

k21 s,...,s,s are subcircuit source vectors. Notice that there is neither interconnect matrix block 

nor interconnect source vector in Jacobian matrix written in Equation (3.1). 
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Now applying Newton's method on Equation (3.1) and using   i(x)+ x G=  F(x) and hence 

iF + J G=  J , the following is obtained: 
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where Ji is Jacobian matrix of current vector i(x), n is iteration index and 
1n+

IΔi is external 

(interconnect) current vector .  
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Using relations shown in Equations (3.3) in an Equation (3.2) results in: 
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Now consider the system of equation for j
th

 subcircuit. First  

                  )iN-)(xf(sAΔx I
-1* n

j
n
jjjjj −=                  (3.5) 

is found. where, j=1, 2, ..., k. Unknown nodal voltages of subcircuit j can be found using 

Equation (3.5) from: 
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The practical implementation of the above process has been developed to solve system of 

Equation (3.1). First Equation (3.5) is solved, followed by interconnect current vector which can 

be obtained from Equation (3.8) and then subcircuit nodal voltages can be found from Equation 

(3.6) using Equations (3.5) and (3.8). 
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3.1.2 Algorithm Flowchart 

The flowchart of the analysis based on nodal voltages and currents is shown in Figure 3.8.  
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Figure 3.8 Algorithm of analysis based on nodal variables 
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A flow diagram of Newton method is shown in Figure 3.9. It uses Δx variable from analysis 

based on nodal variables and perform Newton method to check convergence. 
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Figure 3.9 Algorithm flowchart of Newton method 
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Inter-processor Communication Analysis   

Since the parallel algorithm is not implemented in this thesis, as a guideline, possible way to 

implement  parallel algorithm is discussed briefly. Parallel algorithm for the proposed approach 

is the same as shown in Figure 2.8. The key difference between algorithm shown in Figure 2.8 

and analysis with nodal variables is that, in proposed approach interconnect block (C) and 

interconnect source vector (����) are zero. In the case of algorithm presented in Figure 2.8, a 

nonlinear element connected to an external node in Subcircuit j, will produce entries in  Nj, Mj 

and C blocks. If this element in Subcircuit j changes then slave processor has to communicate 

this change with master processor to update C block, as interconnect nodal voltage vector is 

solved by master processor (Equation 2.15). But in proposed analysis, Nj blocks are constant and 

C block is zero. So there is less communication between master and slave processors compared 

to algorithm shown in Figure 2.8. And also because of the simpler structure of Nj blocks, there is 

less work for each slave processor to perform. In proposed analysis, �� = ��
� and ∆ ���

��� =

∆!"
���. Slave processors calculate  �

∗, $�
�, %�

� and send that information to master processor 

which calculates  $�, %� and ∆!"
��� (Equation 3.8).  where,  
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And at last, slave processors retrieve 
1n+

IΔi from master processor and calculate 
1n

j
+

Δx

(Equation 3.6). 
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3.1.3 Complete Example 

A linear circuit example is discussed here with the whole process from partitioning 

writing a netlist file for simulation. Figure 3.10 shows linear circuit with conductances, one ideal 

voltage source and 8 nodes. Subcircuits 1 and 2 have 3 nodes each, whereas Subcircuit 3 has 4 

nodes. This circuit is partitioned into three subc

0 volts as shown in Figure 3.10. i

 

  Figure 3.10 Partitioned linear circuit with nodal variables (Numbers shown above square dots are 

node numbers) 

 

To simulate this circuit, it should be described in netlist format. Full netlist file is given in 

Appendix A. For reference Jacobian matrix bl

Figure 3.11. Figure 3.11(b) shows Jacobian matrix of Subcircuit 1 shown in Figure 3.11 (a) 
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Formulation for Parallel Circuit Analysis 

  

A linear circuit example is discussed here with the whole process from partitioning 

writing a netlist file for simulation. Figure 3.10 shows linear circuit with conductances, one ideal 

voltage source and 8 nodes. Subcircuits 1 and 2 have 3 nodes each, whereas Subcircuit 3 has 4 

nodes. This circuit is partitioned into three subcircuits separated using ideal voltage sources with 

0 volts as shown in Figure 3.10. i1 and i2 are the external currents. 

 

 

Figure 3.10 Partitioned linear circuit with nodal variables (Numbers shown above square dots are 

To simulate this circuit, it should be described in netlist format. Full netlist file is given in 

Appendix A. For reference Jacobian matrix block of Subcircuit 1 of Figure 3.10 is shown in 

Figure 3.11. Figure 3.11(b) shows Jacobian matrix of Subcircuit 1 shown in Figure 3.11 (a) 
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A linear circuit example is discussed here with the whole process from partitioning circuit to 

writing a netlist file for simulation. Figure 3.10 shows linear circuit with conductances, one ideal 

voltage source and 8 nodes. Subcircuits 1 and 2 have 3 nodes each, whereas Subcircuit 3 has 4 

ircuits separated using ideal voltage sources with 

 

Figure 3.10 Partitioned linear circuit with nodal variables (Numbers shown above square dots are 

To simulate this circuit, it should be described in netlist format. Full netlist file is given in 

ock of Subcircuit 1 of Figure 3.10 is shown in 

Figure 3.11. Figure 3.11(b) shows Jacobian matrix of Subcircuit 1 shown in Figure 3.11 (a) [34]. 

Subcircuit 3 



Chapter 3 System Formulation for Parallel Circuit Analysis

 

 

 

 

           

 

                       

 

                  

110

2g00

03g1g3g

03g4g3g

−

+−
−+

 

 

 

Figure 3.11  Example

 

 

 

 

2             1          20 

Subcircuit block A1

Formulation for Parallel Circuit Analysis 

 

0

1

1

0

−
 

Example  (a)  Subcircuit  block  (b)  Nodal matrix blocks

2             1          20  

1 

0

0

0

0

0

1

External currents N1 Source vector S

(b) 

(a) 

iv 

iv 

47 

Subcircuit  block  (b)  Nodal matrix blocks 

1

0

0

Source vector S1 



Chapter 3 System Formulation for Parallel Circuit Analysis 

 

48 

 

Now the Jacobian matrix for the whole circuit (Figure 3.11) with system of equation can be 

written as shown in Figure 3.12. 
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Figure 3.12 System of equations 

 

There are two important main differences between equations shown in Figure 3.2 and Figure 

3.12: (i) Interconnect block is zero in Figure 3.12 and (ii) Incidence matrices are independent of 

subcircuit components . Hence proposed partitioning approach reduces dependencies between 

subcircuit blocks. 
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3.2 Formulation Based on Scattering Waves 

Basic Concepts 

This section presents an original formulation for parallel circuit simulation using a combination 

of voltages, currents and scattering waves. Same partitioning approach as analysis with nodal 

variables is used in this implementation with zero volt voltage source and external current. 

Scattering waves are defined in transmission line theory. The voltage and current variables in 

external port are replaced by incident and reflected voltage waves. Figure 3.13 shows the inter 

connection of two subcircuit ports. 

 

 

 

 

 

                                  (a)                                                  (b) 

 

Figure 3.13 Wave transformation from voltage and current variables (a) voltage and current at 

external port (b) voltage waves at external port 

 

As shown in Figure 3.13(b), for Port 1 V
+
 is the reflected wave and V

-
 is incident wave and for 

Port 2 V
+
 is incident wave and V

-
 is reflected wave. If external current (I) direction is same as 

reflected wave V
+
 from Port 1 as shown in Figure 3.13(b) then voltage and current at external 

port one is defined as : 

            
−+

+= VVV                                                 (3.9) 

                )V(V
Z

1I
0

−+
−=        (3.10) 

where Z0 is the reference impedance.  

V
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This transformation has some advantages with respect to voltage-current pairs if relaxation is 

used to exchange results between subcircuits [32]. For relaxation, waves guaranteed convergence 

for any linear passive circuits and some nonlinear circuits. A formulation based on wave 

variables is attractive because they can handle open- and short-circuit conditions without the 

numerical problems that may arise when using voltage and currents. For example, if a non-zero 

voltage is assumed across a short-circuit, the corresponding current is infinite. The use of waves 

also enables the use of a simpler convergent relaxation approach to exchange information 

between subcircuits. One of the objectives of this thesis was to investigate Newton's method 

convergence properties using waves. 

Now to understand role of reference impedance (Z0), add and subtract Equations (3.9) and (3.10) 

to obtain: 

 

   

.
2

2

2
2

IZV
VVIZV

IZV
VVIZV

0
0

0
0

−
=⇒=−

+
=⇒=+

−−

++

     

 

Suppose that current flowing in one subcircuit is very small compared to the voltage of that 

subcircuit, then from Equations (3.11) and (3.12), Z0 should be a large number otherwise, 

numerical problem arises by adding small number to a large value. Here reference impedance 

keep Z0I product in order of voltage. Hence, reference impedance should be in order of 100 Ω to  

1 kΩ, because currents are usually in order of milliamperes. 

A limitation of the current implementation based on waves is that sharing a same node by more 

than two subcircuits is not supported. Figure 3.14 shows general circuit diagram with three 

subcircuit sharing same node a. With this type of connection, formation of Jacobian becomes 

more complex and consequently it makes the code harder to implement.  

 

 

(3.11) 

(3.12) 
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Figure 3.14 General circuit diagram for limitation of analysis based on waves 

 

3.2.1 Formulation Details 

In the decomposition discussed in Section 3.1, there is a pair of voltage and current at external 

port of each subcircuit interconnection, such voltage and current pair is replaced by a pair of 

incident and reflected waves. Each subcircuit exchanges incident and reflected waves with 

neighbour subcircuits. Assumptions for analysis based on waves are same as mentioned in 

Section 3.1 for analysis based on nodal variables, with the additional condition that only two 

subcircuits can share an external node. 

Consider the circuit in Figure 3.15 partitioned into k subcircuits. Each pair of voltage and current 

of external node in subcircuit is divided into two variables: incident and reflected waves. Each 

node connecting to another subcircuit is combined with reference node form one port of 

particular subcircuit as shown in Figure 3.15 and waves are defined for such a port. 

General Jacobian matrix block for the circuit partitioned into k subcircuits is same as shown in 

Figure 3.4 except structure of Nj block.  

 

Subcircuit 1 Subcircuit 2 

Subcircuit 3 

a 
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Figure 3.15 General circuit diagram of partitioned circuit with waves 
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Consider Equation (3.4) for k subcircuits to be used for analysis with waves. Equation (3.4) is 

rewritten as Equation (3.13) for quick reference: 
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Let's take one subcircuit 
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where Aj is the matrix block of subcircuit j, (AEE)j is the corresponding sub-matrix for external 

nodes, (AEI)j and (AIE)j are sub-matrices corresponding to internal and external nodes, (AII)j is 

sub-matrix corresponding to internal nodes, ( EΔv )j is external nodal voltages of subcircuit,             

( iΔx )j is the internal nodal voltages of subcircuit, ( Eb )j and ( ib )j are external and internal 

variable vectors, respectively. Now writing system of equation for subcircuit j from Equation 

(3.13) with variable transformation shown above gives: 

               
( ) ( )
( ) ( )

( )
( )

( )
( ) 










=







+




















j

j
j

j

j

jj

jj

i

EI

i

E

IIEI

IEEE

b

b

0

Δi
N

Δx

Δv

AA

AA
 .      (3.14) 

Using relation described in Equations (3.9) and (3.10) in Equation (3.14) to replace external 

voltages and currents for subcircuit  j will get: 
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Now rearrange equation : 
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where 
*

I j  is diagonal matrix with diagonal elements equal to 1 or -1, depending on the sign of 

the elements in corresponding row of Nj, j)(
*

EEA  and j)(
*

EIA  are matrices obtained by column 

permutation of ( ) jEEA  and ( ) jEIA , respectively. 

 To understand column permutation of ( ) jEEA  and ( ) jEIA , let's take   
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To build 
*

N j , first a zero matrix with same dimensions as Nj is created. Then each column of 

AExt is copied in the column of 
*

N j  corresponding to the respective external currents.  

Equation involving last row (
TTT

NNN k21 ...,,, ) of Equation (3.13):  

    0xN
T
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+
k

1j

1n
jj          (3.17) 

which represents that incident waves for each subcircuit should be equal to reflected wave of 

another subcircuit, in other words sum of waves from connected subcircuits should be equal to 

zero. It is similar to Kirchhoff's voltage law (KVL) that in any close network, sum of voltage is 

zero. Equation (3.17) remain same as analysis based on nodal variables but now sum of waves 

equal to zero instead of voltages.  
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Now to write whole system of equation for general partitioned circuit shown in Figure 3.15, let's 

take 
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The system of equations can be written as: 
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Now apply Diakoptics to Equation (3.18). Equations are the same as Equations (3.5), (3.6) and 

(3.8) of analysis with nodal variables discussed in Section 3.1. First  
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can be found. Then wave vector  
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IΔv  is obtained using ( )*w
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Then unknown internal voltages ( ji )Δx( ) of subcircuit j and unknown waves 
-
jv∆  can be found 

from : 
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Example 

Now for simplicity, consider a circuit network with two subcircuits shown in Figure 3.16.   

 

 

 

 

 

 

       Figure 3.16 General circuit network partitioned into two subcircuits  

 

Now system of equation for this circuit network can be written as: 
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3.2.2 Algorithm Flowchart 

Using Equations (3.19), (3.20) and (3.21) the algorithm with waves is shown in Figure 3.17. 

Newton method is used to solve the nonlinear system of equations. The same flowchart from 

Figure 3.9 is used, but ∆x is calculated using the flowchart of Figure 3.17 instead of Figure 3.8. 

  

Calculate ∆vI
+ from 

Equation (3.20)

return  ∆x 

Solve for (∆xj
w
)

* from 

Equation (3.19)

Calculate waves and subcircuit 

internal nodal voltages from   

Equation (3.21)

Begin 

get ∆x 

 

 

Figure 3.17 Reference algorithm flowchart of analysis based on scattering waves 
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Inter-processor Communication Analysis   

Parallel implementation of analysis with scattering waves is same as analysis with nodal 

variables as discussed in Section 3.1.2. The key difference between analysis with nodal variables 

and analysis with waves variables is structure of &�
' and ��

' blocks. In proposed analysis, the 

structure of  ��
' block is not as simple as Nj block of analysis with nodal variables. Hence slave 

processors have to perform more work compared to work needed for analysis with nodal 

variables. Same as analysis with nodal variables, in analysis with waves interconnect block (C) 

and interconnect source vector (����) are zero. Slave processors calculate ( �
')∗, $�

�, %�
� and 

send that information to master processor which calculates $�, %� and ∆("
� (Equation 3.20).  

where,  
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n
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1j
SS and ∑

=
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k n
j

n

1j
ww .  

And at last slave processors calculate ∆ �
' (Equation 3.21) from ∆("

�. 
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3.2.3 Complete Example 

Now a linear circuit example is presented here again for analysis based on waves. Figure 3.18 

shows linear circuit with wave variables. i

 

Figure 3.18 Partitioned linear circuit with 

Jacobian matrix for analysis with waves is slightly different than analysis 

is more dense than Jacobian matrix of analysis with nodal variables. From Equation (3.18) 

system of equations for analysis based on waves can be written as :

     

where unknown vector ( −
= 2vv

source vector  ( 00V00=s

following page. 

 

 

 

 

Subcircuit 1 

Formulation for Parallel Circuit Analysis 

 

Now a linear circuit example is presented here again for analysis based on waves. Figure 3.18 

shows linear circuit with wave variables. i1 and i2 are external currents. 

 

 

Figure 3.18 Partitioned linear circuit with waves 

Jacobian matrix for analysis with waves is slightly different than analysis with nodal variables. It 

is more dense than Jacobian matrix of analysis with nodal variables. From Equation (3.18) 

system of equations for analysis based on waves can be written as : 

svJ =         

+−−−
26543732v120 vvxxxvxvvixx

)T00000000  and Jacobian matrix J

Subcircuit 2 Subcircuit 3
i1 i2 

+
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−
2V

+
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−
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59 

Now a linear circuit example is presented here again for analysis based on waves. Figure 3.18 

 

with nodal variables. It 

is more dense than Jacobian matrix of analysis with nodal variables. From Equation (3.18) 

   (3.23) 

)T+
3v  , 

J is described on 

Subcircuit 3 
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where Z0 is reference impedance. The difference between jacobian matrix of analysis with waves 

and analysis with nodal variables is in subcircuit blocks Aj and Nj blocks. In analysis based on 

nodal variables Nj blocks contain all entries ‘0’, except for only one or more of the entries in 

them containing ‘±1’ depending on external currents, whereas in analysis with waves, Nj blocks 

are extracted from subcircuit block Aj with sign convention shown in Equations (3.9) and (3.10). 

And hence one of the advantages of the partitioning of analysis with nodal variables i.e. constant 

Nj blocks over each Newton iteration is lost. Modifying Aj and Nj require extra processing time 

compared to analysis based on nodal variables. 
T

N j  blocks structure in analysis with waves are 

same as analysis with nodal variables. 

 

A blocks 
N blocks 

Interconnect block 
N

T
 blocks 
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3.3 Code Implementation 

Cardoon is a general circuit simulator developed in-house. It is coded in Python but uses C/C
++

 

libraries for efficiency. Presently, Cardoon simulator supports nonlinear models such as diode, 

BJT, MESFET and MOSFET. The operating point analysis methods, developed for this research 

are: EOP and WAVEOP. EOP is the operating point analysis based on nodal variables and 

WAVEOP is the operating point analysis based on waves. Code for EOP analysis contains 

approximately 365 lines and code for WAVEOP analysis contains 384 lines of code. These 

codes are written in Python but matrix handling and matrix multiplication have been done by 

C/C
++

 libraries. These libraries perform calculations much faster than writing vector 

multiplication function in Python. This code uses the following libraries: numpy (matrix and 

vector support) [35], pycppad (automatic differentiation) [36], scipy (sparse matrix support) [37] 

and ipython (iterative shells) [38]. These libraries are interfaces between python and C/C
++

 

language. 

Parameters such as maxiter, maxdelta, reltol and abstol are used to control analysis. Parameters 

such as reltol and abstol including sparsity can be changed using .options keyword in netlist. 

Table 3.1 shows such parameters used for simulation with their values and description [14].  

 

Table 3.1 Parameters and their default values  

Variable name Default 

Parameter value 
Description 

maxdelta 50 Maximum allowed deviation in one Newton iteration 

reltol 1e-4 Relative tolerance for nodal variables 

abstol 1e-07 Absolute tolerance for nodal variables 

maxiter 100 Set maximum number of iterations 

gcomp 1e-6 S Add compensation network for EOP analysis 

Sparse 1 Change sparsity of analysis 

 

To simulate a circuit, it must be described in a netlist file. The program reads a netlist file (Figure 

3.19(b)), builds the circuit described there and runs any specified analysis. Figure 3.19(b) shows 

the corresponding netlist of subcircuit shown in Figure 3.19(a). The first line of netlist defines 
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subcircuit with external nodes, elements should be described with node numbers at which they 

are connected and subcircuit description ends with 

 

            (a)                                                         

 

Figure 3.19  Netlist  Example

 

Each analysis type is implemented by adding a specialized class to the code. The formulation 

using nodal variables is implemented in a class named DCOP that contains three main methods:

1. run () : It's main entry point of the reference algorithm and includes Newton's method

� Check convergence for Newton method.

2. init_blocks () : Initialize class attributes that are needed for subcircuit decomposition and                                

create incidence matrices 

�  Initialize ��  , and 

3. get_deltax() : This function creates Jacobian matrix and calculates nodal equations.

� Solve Equations (3.5), (3.6) & (3.8) and send 

convergence, where
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subcircuit with external nodes, elements should be described with node numbers at which they 

are connected and subcircuit description ends with .ends.  

 

(a)                                                                              (b) 

Example  (a)  Subcircuit  block  (b)  Netlist  of  subcircuit

Each analysis type is implemented by adding a specialized class to the code. The formulation 

using nodal variables is implemented in a class named DCOP that contains three main methods:

entry point of the reference algorithm and includes Newton's method

Check convergence for Newton method. 

init_blocks () : Initialize class attributes that are needed for subcircuit decomposition and                                

rices  

and ��
� blocks 

get_deltax() : This function creates Jacobian matrix and calculates nodal equations.

Solve Equations (3.5), (3.6) & (3.8) and send Δx to run() method to check 

where ∆ = (∆ ), ∆ *, … . , ∆ ,, ∆!" )T
. 

.subckt subciruit1 2 

res:r1 1  gnd  r=50 

res:r2 20 gnd  r=50 

res:r3  1   2  r=50 

res:r4  2 gnd  r=50 

vdc:vdd 1  20  vdd=2v

.ends 
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subcircuit with external nodes, elements should be described with node numbers at which they 

Subcircuit  block  (b)  Netlist  of  subcircuit 

Each analysis type is implemented by adding a specialized class to the code. The formulation 

using nodal variables is implemented in a class named DCOP that contains three main methods: 

entry point of the reference algorithm and includes Newton's method 

init_blocks () : Initialize class attributes that are needed for subcircuit decomposition and                                

get_deltax() : This function creates Jacobian matrix and calculates nodal equations. 

to run() method to check 

 

vdd=2v 
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Compensation Network for EOP analysis

Another feature of EOP analysis is to add a 

subcircuits to solve Aj singularity. If a subcircuit has a floating external node or a node internally 

loaded with a very high impedance, it produces an ill

singularity will arise and solution of such circuit network is not possible. EOP analys

parameter called gcomp to add 

Transconductances are added to external nodes of each subcircuits to prevent floating nodes. As 

shown in Figure 3.20, EOP analysis add 

will compensate the effect of gcomp

 

                   

 

Figure 3.20 General circuit diagram with 

 

 

 

 

 

Subcircuit 1 

g
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for EOP analysis 

Another feature of EOP analysis is to add a compensation network to the external nodes of 

singularity. If a subcircuit has a floating external node or a node internally 

loaded with a very high impedance, it produces an ill-conditioned matrix. In such case 

singularity will arise and solution of such circuit network is not possible. EOP analys

to add compensation network at the external nodes of subcircuits. 

Transconductances are added to external nodes of each subcircuits to prevent floating nodes. As 

shown in Figure 3.20, EOP analysis add +gcomp to Subcircuit 1 and -gcomp to Subcircuit 2. 

comp.  

General circuit diagram with compensation network for EOP analysis

 Subcircuit 2 

gcom
-gcomp 
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k to the external nodes of 

singularity. If a subcircuit has a floating external node or a node internally 

conditioned matrix. In such case Aj 

singularity will arise and solution of such circuit network is not possible. EOP analysis has 

k at the external nodes of subcircuits. 

Transconductances are added to external nodes of each subcircuits to prevent floating nodes. As 

to Subcircuit 2. -gcomp 

 

compensation network for EOP analysis 
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A flowchart for this analysis is presented in Figure 3.21. 

 

                                 

Newton’s Method

Figure 3.9

Print Results 

init_blocks()

run()

get_deltax()

Figure 3.8

return

 

 

Figure 3.21  Flowchart of EOP analysis  

 

Now for WAVEOP analysis there are three main methods: 

1. run () : It's main entry point of the reference algorithm and includes Newton's method 

� Check convergence for Newton method. 

� Convert waves back to the nodal voltages for WAVEOP analysis. 

2. init_blocks () : Initialize class attributes that are needed for subcircuit decomposition and                                

create incidence matrices for both analyses 
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�  Initialize �� , ��
�

3. get_deltax() : This function creates Jacobian matrix and calculates nodal equations.

� Create &-
∗  and �

solve Equations (3.19), (3.20) & (3.21) and send 

where, ∆ = ((∆(

The analysis flowchart is presented in Figure 

                                

Figure 3.22

Formulation for Parallel Circuit Analysis 

� blocks and incident waves list 

get_deltax() : This function creates Jacobian matrix and calculates nodal equations.

�-
∗  blocks, perform column permutation of  (A

solve Equations (3.19), (3.20) & (3.21) and send Δx vector to run() method, 

()
., ∆ )), (∆(*

., ∆ *), … . , (∆(/
., ∆ /), (∆()

�, ∆(

The analysis flowchart is presented in Figure 3.22. 

 

Figure 3.22  Flowchart of WAVEOP analysis  
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get_deltax() : This function creates Jacobian matrix and calculates nodal equations. 

(AEE)k and (AEI)k, 

vector to run() method,  

(*
�, … , ∆(/

�) )T
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Overall, this code is proof of concept. It is not most efficient implementation and there is lots of 

unnecessary overheads e.g. handling incidence matrices (Nj blocks). In both analyses, Nj blocks 

are treated as dense matrix, but it is mostly zeros. So, implementation is basic, not optimised. 

To run the analysis, the lines shown in Figure 3.23 can be written in netlist file with convergence 

parameters like maxiter, maxdelta, gcomp for EOP analysis to set required value if default value 

is not sufficient to get convergence and reference impedance (Z0) can be set for WAVEOP 

analysis. Parameter gcomp is for EOP analysis to add compensation network at the port of each 

subcircuit. This compensation network is optional. The reference impedance (Z0) parameter in 

WAVEOP is called z0. This parameter is essential for every circuit that simulates for 

WAVEOP. There is no optimum reference impedance value that works for any circuit. These 

both parameters can be accessed with analysis line shown in Figure 3.23. 

 

.analysis eop gcomp=0.01 maxiter=250 maxdelta=3  

.analysis waveop z0=100 maxiter=250 maxdelta=3  

Figure 3.23 Reference analysis code lines 
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3.4 Simulation Results and Discussion 

Operating point analysis of several circuits performed using the methods proposed in this 

research are presented in this section. The regular operating point analysis without system 

decomposition is named OP analysis. Simulation result comparison of EOP and WAVEOP 

analyses with regular OP analysis are given in this section. All circuit examples are presented 

with a simulation result summary, which compares number of subcircuits, number of iterations 

indicates number of Newton iterative steps required to get solution of circuit network and 

simulation time is the time required by analysis to create matrix blocks, solve Equations (3.5), 

(3.6) & (3.8) for EOP analysis and Equations (3.19), (3.20) & (3.21) for WAVEOP analysis and 

run Newton method till convergence. 

Simulation result of all analyses are tested serially on one processor. Nodal voltages of OP, EOP 

and WAVEOP analysis are same for all circuit examples discussed in this section. Parameters 

like maxdelta, reltol and abstol are kept same for all analyses. All circuit examples presented in 

this section are simulated using sparse matrices. 

3.4.1 Linear Circuit 

Figure 3.10 shows a linear circuit example. This linear circuit is divided in three subcircuits. It is 

excited with an ideal voltage source V = 5 volts and all resistor values are same and equal to 10 

Ω. Table 3.2 shows simulation result summary of EOP and WAVEOP analyses compared with 

OP analysis. Simulation result of WAVEOP is given with different values of reference 

impedance (Z0) in Table 3.2. Here, number of iterations and simulation time with Z0 = 100 Ω and 

Z0=1 kΩ are same. 

Table 3.2 Simulation result summary of linear circuit 

Analysis Number of subcircuits Number of  Iterations 
Simulation 

time 

Operating Point Analysis 0 8 0.01s 

EOP Analysis 3 8 0.02s 

WAVEOP Analysis 3 

(Z0 =10Ω)  20 0.09s 

(Z0 =100Ω, 1kΩ) 18 0.08s 

(Z0 =10kΩ)  22 0.1s 
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3.4.2 Nonlinear Circuit 

This reference approach can also be used to simulate nonlinear circuits. Figure 3.24 shows 

nonlinear circuit with two 2N2222 BJTs in Darlington pair, DC source and three resistors. This 

nonlinear circuit is divided into two subcircuits as shown in Figure 3.24. Subcircuit 1 contains 

BJT Q1, two resistors R1, R2 and Subcircuit 2 has transistor Q

total of 19 nodes. Subcircuit 1 has 9 nodes whereas Subcircuit 2 has 10 nodes. Resistor R

100 kΩ & R3 = 3 kΩ, power supply V

 

 

 

     

       Figure 3.24 Nonlinear circuit 

 

 

Subcircuit 1
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This reference approach can also be used to simulate nonlinear circuits. Figure 3.24 shows 

with two 2N2222 BJTs in Darlington pair, DC source and three resistors. This 

nonlinear circuit is divided into two subcircuits as shown in Figure 3.24. Subcircuit 1 contains 

and Subcircuit 2 has transistor Q2 and resistor R3

total of 19 nodes. Subcircuit 1 has 9 nodes whereas Subcircuit 2 has 10 nodes. Resistor R

, power supply VCC = 5 volts.  

 

Figure 3.24 Nonlinear circuit partitioned into two subcircuits

Subcircuit 1 Subcircuit 2 

VCC 
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This reference approach can also be used to simulate nonlinear circuits. Figure 3.24 shows 

with two 2N2222 BJTs in Darlington pair, DC source and three resistors. This 

nonlinear circuit is divided into two subcircuits as shown in Figure 3.24. Subcircuit 1 contains 

3. This circuit has 

total of 19 nodes. Subcircuit 1 has 9 nodes whereas Subcircuit 2 has 10 nodes. Resistor R1, R2 = 

partitioned into two subcircuits 
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Simulation result of nonlinear circuit (Figure 3.24) for regular operating point analysis and 

reference analysis with nodal variables (EOP) are shown in Table 3.3. Simulation result of 

WAVEOP is given with different values of reference impedance (Z0) in Table 3.3. Here, number 

of iterations and simulation time with Z0= 100 Ω and Z0 =1 kΩ are same. 

Table 3.3 Simulation result summary of nonlinear circuit 

Analysis Number of subcircuits Number of  Iterations 
Simulation 

time 

OP analysis 0 12 0.02s 

EOP Analysis 2 12 0.03s 

WAVEOP Analysis 2 

 (Z0=10Ω)                   26 0.12 

(Z0=100Ω, 1kΩ)        27 0.12s 

(Z0=10kΩ)                 24 0.11s 

 

3.4.3 Soliton Line 

Figure 3.25 shows a soliton network/ nonlinear transmission line. Nonlinear transmission line are 

high impedance waveguides which are periodically loaded with reverse biased diodes. These 

diodes appear as variable capacitors (varactors) [39]. This circuit network can be divided up to 

48 subcircuits. Transmission line is modeled with 20 cascade sections and each section contains 

a R-L-G-C circuit. Transmission line has total of 3025 nodes. Here two separate examples are 

given with soliton network divided into different number of subcircuits. In Figure 3.25 Soliton 

network is divided into 4 subcircuits. Subcircuit 1 has 64 nodes, Subcircuit 2 has 946 nodes, 

Subcircuit 3 has 1009 nodes and Subcircuit 4 has 1006 nodes.   

 

 

 

 

 



Chapter 3 System Formulation for Parallel Circuit Analysis 

 

70 

 

 

VAC

1
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Figure 3.25 Soliton circuit network divided in four subcircuits 

Table 3.4 shows simulation result summary of OP analysis, EOP analysis and WAVEOP 

analysis for soliton circuit divided in four subcircuits. Reference impedance (Z0) for WAVEOP 

analysis is 100 Ω. Simulation result of WAVEOP is given with different values of reference 

impedance (Z0) in Table 3.4. 

 

Table 3.4 Simulation result summary of soliton network divided in 4 subcircuits 

Analysis Number of subcircuits Number of  Iterations 
Simulation 

time 

OP Analysis 0 3  0.18s 

EOP Analysis 4 3 0.17s 

WAVEOP Analysis 4 

(Z0 =10Ω)       17 0.44s 

(Z0 =100Ω)      15 0.32s 

(Z0 =1kΩ)       14 0.32s 

(Z0 =10kΩ)        21 0.44s 

 

Soliton network shown in Figure 3.25 can be further divided into 12 subcircuits. There are total 

of 3034 nodes. Subcircuits 1, 2, 3, 5, 6, 7, 8, 11 and 12 have 253 nodes, Subcircuit 4 has 250 

Subcircuit 1 Subcircuit 4 - - - - -  
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nodes, Subcircuit 9 has 313 nodes and Subcircuit 10 has 194 nodes. Number of iterations and 

simulation time for soliton network partitioned into 12 subcircuits will be same as soliton 

network partitioned into 4 subcircuits for OP analysis. But for EOP and WAVEOP require more 

simulation time for soliton network partitioned into 12 subcircuits compared to soliton network 

partitioned into 4 subcircuits, as now analyses have to construct and calculate 12 subcircuit 

blocks instead of 4. Table 3.5 shows simulation result comparison of regular operating point 

analysis (OP) with reference approaches EOP and WAVEOP for soliton network divided in 12 

subcircuits. Simulation result of WAVEOP is given with different values of reference impedance 

(Z0) in Table 3.5. 

Table 3.5 Simulation result summary of soliton network divided in 12 subcircuits 

Analysis Number of subcircuits Number of  Iterations 
Simulation 

time 

Operating Point Analysis 0 3  0.18 

EOP Analysis 12 3 0.20 

WAVEOP Analysis 12 
(Z0 =1kΩ)          16 0.70s 

(Z0 =10kΩ)        18 0.77s 

 

3.4.4 Summing Amplifier 

Figure 3.26 shows summing amplifier. It is implemented with a 741 operational amplifier 

(LM741) and feedback network with resistors. LM741 has 26 BJTs. This circuit contains large 

number of nonlinear elements (BJTs) and hence it is used to test response of proposed EOP and 

WAVEOP analysis. The resistor values of the summing amplifier are as follows: R1ext = 5 kΩ, 

R2ext = 20 kΩ, R3ext = 20 kΩ, R4ext = 3.3 kΩ. There are total of 192 nodes in this circuit. This 

circuit is divided into 2 subcircuits. Subcircuit 1 consists of 3 external resistors R1ext , R2ext , R3ext 

and voltage sources V1 and V2. This subcircuit has 8 nodes. Subcircuit 2 consists of operational 

amplifier LM741 which has 184 nodes. Because of uneven partitioning blocks, load balancing is 

not good in this circuit partitioning. If these subcircuits are assigned to two different processors 

then processor with three resistors and voltage sources will complete its calculations faster than 

processor with operational amplifier . Processor with smaller subcircuit has to wait for results 

from other processor. Hence parallel simulation of this circuit is not efficient. 
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In EOP analysis compensation network has been added for this circuit example. Results of EOP 

analysis with and without gcomp

analysis is given with different values of reference impedance (

iterations and simulation time with 

summary of summing amplifier (Figure 3.25) with OP, EOP and WAVEOP analysis are shown 

in Table 3.6. maxdelta is 3 for this example.

Table 3.6 Simulation r

Analysis 

OP analysis 

EOP Analysis 

WAVEOP Analysis 

 

For this circuit example adding 

subcircuit 2 containing operational amplifier, base of two BJTs, which are connected at the input 

of LM 741, are floating. These two nodes see infinite impedance, as

Formulation for Parallel Circuit Analysis 

 Figure 3.26 Summing amplifier 

In EOP analysis compensation network has been added for this circuit example. Results of EOP 

gcomp are shown in Table 3.6. Simulation results of WAVEOP 

analysis is given with different values of reference impedance (Z0) in Table 3.6. Here, number of 

iterations and simulation time with Z0 = 100 Ω and Z0 =10 kΩ are same. Simulation result 

summary of summing amplifier (Figure 3.25) with OP, EOP and WAVEOP analysis are shown 

is 3 for this example. 

Simulation result summary of summing amplifier circuit

Number of subcircuits Number of  Iterations

0 59 

2 
72  

42 (gcomp = 1mS) 

2 

(Z0 =10Ω)             62 

(Z0 =100Ω, 10kΩ)  59

   (Z0 =1kΩ)            60

For this circuit example adding gcomp reduces number of iteration for EOP analysis. In the 

subcircuit 2 containing operational amplifier, base of two BJTs, which are connected at the input 

of LM 741, are floating. These two nodes see infinite impedance, as load connecting to those 

72 

 

In EOP analysis compensation network has been added for this circuit example. Results of EOP 

are shown in Table 3.6. Simulation results of WAVEOP 

) in Table 3.6. Here, number of 

 are same. Simulation result 

summary of summing amplifier (Figure 3.25) with OP, EOP and WAVEOP analysis are shown 

summary of summing amplifier circuit 

Number of  Iterations 
Simulation 

time 

0.16s 

0.32s 

0.20s 

 0.56s 

)  59 0.55s 

)            60 0.55s 

reduces number of iteration for EOP analysis. In the 

subcircuit 2 containing operational amplifier, base of two BJTs, which are connected at the input 

load connecting to those 
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nodes are located at Subcircuit 1 with external resistors and voltage sources. If Subcircuit 2 tries 

to deliver current to a load but it cannot deliver, as it is in another subcircuit and hence circuit 

might have convergence problem. If we add 

some load impedance and it helps Newton method for fast convergence. And hence, by adding 

gcomp in the above circuit example number of Newton iteration reduces compare to analysis 

without gcomp. 

3.4.5 Microwave Low Noise Amplifier

The following example is a low noise microwave amplifier which is tested for EOP analysis. 

Figure 3.27 shows low noise amplifier using two LMA411 low noise microwave amplifiers. 0.25 

um CMOS technology is used for 

subcircuits: Subcircuit 1 contains voltage source and resistors, Subcircuits 2 and 3 have low 

noise microwave amplifiers. These two amplifiers and Subcircuit 1 is connected via transmission 

line as shown in Figure 3.27. This circuit has total of 851 nodes. Subcircuit 1 has 5 nodes, 

Subcircuit 2 and 3 have 423 nodes.

 

Figure 3.27 Low noise microwave amplifier circuit

Subcircuit 1 

Subcircuit 2

Formulation for Parallel Circuit Analysis 

nodes are located at Subcircuit 1 with external resistors and voltage sources. If Subcircuit 2 tries 

to deliver current to a load but it cannot deliver, as it is in another subcircuit and hence circuit 

em. If we add gcomp at the floating node, then subcircuit sees 

some load impedance and it helps Newton method for fast convergence. And hence, by adding 

in the above circuit example number of Newton iteration reduces compare to analysis 

3.4.5 Microwave Low Noise Amplifier 

The following example is a low noise microwave amplifier which is tested for EOP analysis. 

Figure 3.27 shows low noise amplifier using two LMA411 low noise microwave amplifiers. 0.25 

um CMOS technology is used for LMA411 amplifier. This circuit network is divided in three 

subcircuits: Subcircuit 1 contains voltage source and resistors, Subcircuits 2 and 3 have low 

noise microwave amplifiers. These two amplifiers and Subcircuit 1 is connected via transmission 

shown in Figure 3.27. This circuit has total of 851 nodes. Subcircuit 1 has 5 nodes, 

Subcircuit 2 and 3 have 423 nodes. 

 

 

Low noise microwave amplifier circuit (double line indicate transmission line)

VCC 

Subcircuit 2 Subcircuit 3 
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nodes are located at Subcircuit 1 with external resistors and voltage sources. If Subcircuit 2 tries 

to deliver current to a load but it cannot deliver, as it is in another subcircuit and hence circuit 

at the floating node, then subcircuit sees 

some load impedance and it helps Newton method for fast convergence. And hence, by adding 

in the above circuit example number of Newton iteration reduces compare to analysis 

The following example is a low noise microwave amplifier which is tested for EOP analysis. 

Figure 3.27 shows low noise amplifier using two LMA411 low noise microwave amplifiers. 0.25 

LMA411 amplifier. This circuit network is divided in three 

subcircuits: Subcircuit 1 contains voltage source and resistors, Subcircuits 2 and 3 have low 

noise microwave amplifiers. These two amplifiers and Subcircuit 1 is connected via transmission 

shown in Figure 3.27. This circuit has total of 851 nodes. Subcircuit 1 has 5 nodes, 

 

(double line indicate transmission line) 

Subcircuit 1 
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Table 3.7 shows simulation results of low noise amplifier circuit compared with OP and EOP 

analysis. To perform EOP analysis, compensation network has been added to each subcircuit as 

there is capacitive coupling between each subcircuit due to transmission line. Capacitors are 

open circuit in DC analysis and hence each subcircuit sees infinite impedance at external ports. 

Compensation network removes capacitive coupling by adding gcomp at external ports of each 

subcircuit. In this circuit example three subcircuits are sharing common node which is power 

supply and hence as explained in Section 3.2, WAVEOP analysis won't work for this circuit. 

With this type of connection, formation of Jacobian matrix becomes more complex and 

consequently it makes the code harder to implement. 

Table 3.7 Simulation result summary of low noise amplifier circuit 

Analysis Number of subcircuits Number of  Iterations 
Simulation 

time 

OP Analysis 0 8 0.05s 

EOP analysis 

 (gcomp = 1mS) 
3 8 0.07s 

 

 

3.4.6 Transistor Amplifier 

Figure 3.28 (a) shows a transistor amplifier circuit schematic. Resistors values are as follows : R1 

= 1.67 kΩ, R2 = 6.66 kΩ and Rc = 900 Ω. Power supply voltage Vcc = 10 V, input voltage V = 5 

V. To test correctness of our code, chain of such amplifier is made with 50 amplifiers (Figure 

3.28 (b)). Each amplifier resides in one subcircuit and hence there are 50 amplifiers connected in 

cascade. Each subcircuit has 14 nodes and total number of nodes in 50 cascade amplifier circuit 

are 700. 
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Figure 3.28 Circuit example (a) 
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V 

 

Formulation for Parallel Circuit Analysis 

 

 

 

(b) 

 

xample (a) Transistor amplifier Circuit (b) 50 cascade amplifier c
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  (a) 
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amplifier chain 

Amplifier-50 RLoad 
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Table 3.8 presents the simulation result summary of OP, EOP and WAVEOP analysis with 

number of iterations and CPU time for 50 cascade amplifier circuit. Simulation result of 

WAVEOP is given with different values of reference impedance (Z0) in Table 3.8.  

 

Table 3.8 Simulation result summary of 50 cascade amplifiers 

Analysis Number of subcircuits Number of  Iterations 
Simulation 

time 

OP analysis 0 4 0.30s 

EOP analysis 50 5 0.42s 

WAVEOP analysis 50 

(Z0 =10Ω)            25 4.06s 

(Z0 =100Ω)            22 3.47s 

(Z0 =10kΩ)            19 2.88s 

 

Now 500 amplifiers are cascaded instead of 50 cascade amplifiers shown in Figure 3.28 and its 

simulation result is shown in Table 3.9. This circuit network has 500 subcircuits and each 

subcircuit has one transistor amplifier. There are around 7000 nodes in this circuit network and 

each subcircuit has 14 nodes. Simulation results of WAVEOP with Z0 = 10 Ω, 100 Ω, and Z0 =10 

kΩ are same. 

 

Table 3.9 Simulation Results Summary of 500 Cascade Amplifiers divided in 500 subcircuits 

Analysis Number of subcircuits Number of  Iterations 
Simulation 

time 

OP analysis 0 4 1.01s 

EOP analysis 500 4 30.33s 

WAVEOP analysis 500 
(Z0 =10Ω, 100 Ω, 10k Ω)            

26 
188.80s 

 

Diakoptics is not implemented in OP analysis. This analysis solves whole Jacobian matrix as is 

without decomposing in blocks, whereas simulation time for EOP and WAVEOP also includes 

the time to decompose the system of equations in blocks, solve each block separately and 

perform global updates.  In both analyses each partition is solved serially and synchronized later 

on to obtain the solution of the original circuit at each NR iteration. Hence, if there are large 
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number of subcircuits then EOP and WAVEOP analysis cannot improve simulation time 

significantly compared to regular OP analysis when executed on a single processor (Tables 3.2 to 

3.9). However performance of EOP analysis is not worse. If it is implemented for parallel 

simulation then it would be a lot faster compared to regular OP analysis except for simulation 

results shown in Table 3.10. 

Now consider 500 cascade amplifier circuit divided in 5 subcircuits. Table 3.10 shows 

simulation result of 500 amplifiers divided in 5 subcircuits. This circuit network has total of 5506 

nodes. Subcircuit 1 has 1102 nodes, Subcircuit  2, 3,4 and 5 have 1101 nodes each. Simulation 

result of WAVEOP is given with different values of reference impedance (Z0) in Table 3.10. 

Here WAVEOP analysis is simulated with different values of reference impedance (Z0). 

 

Table 3.10 Simulation results summary of 500 cascade amplifiers divided in 5 subcircuits 

Analysis Number of subcircuits Number of  Iterations 
Simulation 

time 

OP analysis 0 4 1.05s 

EOP analysis 5 4 1.48s 

WAVEOP analysis 5 

(Z0 =10Ω)            22 3.84s 

(Z0 =100Ω)            19 3.53s 

(Z0 =1kΩ)            16 2.77s 

(Z0 =10kΩ)            14 2.93s 

 

 

From simulation results Table 3.10, it is clear that if the number of partitioned blocks per circuit 

are reduced then EOP analysis can gain significant speed up compared to circuit with more 

number of partitioned blocks. Consider the simulation result (Table 3.9) of 500 amplifiers 

cascade circuit divided into 500 subcircuits. EOP analysis requires 30.33 seconds to get solution. 

Now if the same circuit is partitioned into 5 subcircuits then EOP analysis gets significant 

speedup and takes only 1.48 seconds to get solution (Table 3.10), as there are only 5 subcircuit 

blocks to create and calculate compared to 500 subcircuit blocks. Similarly if any industrial 

circuit has thousands of subcircuits for example then it is impractical to assign each subcircuit to 

one processor. If EOP simulated in parallel by dividing it into a limited number of subcircuits 
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and solve each subcircuit block in parallel, then it will be significant speedup in simulation time. 

Another reason for slow response of EOP analysis is the insufficient handling of Nj blocks. 

Presently code treat Nj blocks as dense matrices despite their most of  the entries are zeros. It 

could be optimised with much better performance. 

All these examples discussed here are simulated with sparse matrix. In EOP and WAVEOP 

analysis, there is sparse parameter to set preference whether this analysis is simulated with sparse 

matrix or without sparse matrix. This variable can be accessed by .options keyword. If equation 

is solved with sparse matrix then analysis won't consider zeros in the calculation and on the other 

hand analysis with dense matrix will consider zeros in the calculation. For example, if system of 

equation shown in Figure 3.12 is solved with sparse matrix then EOP analysis solves only 

nonzero blocks and eliminates lots of blocks which are zeros. Dividing circuits into subcircuits 

gives similar effect as sparse matrix. This would save time as simulator has less work to do and 

would gain speed up compared to regular operating point analysis. Table 3.11 shows simulation 

result of 500 cascade transistor amplifiers circuit simulated with dense matrix. This circuit is 

divided in 5 subcircuits. WAVEOP analysis is simulated with different values of reference 

impedance (Z0) and it is shown in Table 3.11. 

 
Table 3.11 Simulation results summary of  500 cascade amplifiers divided into 5 subcircuits with 

dense matrix 

Analysis Number of subcircuits Number of  Iterations 
Simulation 

time 

OP analysis 0 4 198.71s 

EOP analysis 5 4 6.46s 

WAVEOP analysis 5 

(Z0 =10Ω)            22 29.35s 

(Z0 =100Ω)            19 25.56s 

(Z0 =1kΩ)            16 21.80s 

(Z0 =10kΩ)            14 19.16s 

 

From simulation result shown in Table 3.11, it is clear that simulation using dense matrix is 

much faster for EOP analysis compared to OP and WAVEOP analysis even if it is simulated 

serially on one processor. EOP analysis is approximately 30 times faster than OP analysis. 

WAVEOP analysis needs more simulation time compared to both analyses. As discussed in 
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Chapter 1 simulation cost is proportional to ��, where S represents the original matrix size and a 

depends on the sparsity of the circuit matrix. For sparse matrix a varies from 1.1 to 2.4 and for 

dense matrix a = 3. For 500 cascade amplifiers divided in 5 subcircuits simulated with dense 

matrix,  

       (simulation cost of OP analysis) ∝  (5506)
3
  and, 

      max (simulation cost of EOP analysis) ∝ (1102)
3 

From simulation results, it is clear that WAVEOP analysis is not efficient compared to OP and 

EOP analysis. WAVEOP analysis requires more number of iterations and simulation time for 

solution than OP and EOP analysis. The reason is lying around creating ��
' block. Unlike Nj 

block in EOP analysis, ��
' block in WAVEOP is not an incidence matrix but consists of 

elements that depends on circuit elements connected to external nodes of subcircuit and 

reference impedance. Specially for nonlinear circuits where nonlinear elements change at every 

iteration and hence this Nj matrix has to be rebuilt for each iteration. So, one iteration using 

waves is more expensive. Furthermore, writing code to construct such Nj blocks is complex. As 

subcircuit columns which belong to external nodes should be extracted and placed in Nj block 

depending on external currents with proper sign convention. However, the simulations presented 

here indicate that the concept is correct.  
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Chapter 4 

Conclusion and Future Research 

Techniques for parallel circuit analysis with emphasis in the formulation of equations for a 

circuit decomposed in subcircuit blocks have been reviewed and evaluated. For manually 

decomposed circuit two approaches to formulate circuit equations have been proposed and 

developed in this thesis. Both of them rely on a node-tearing formulation. In the first approach, 

nodal voltages and currents are exchanged between subcircuit blocks. This approach is not new 

but it has been developed independently in this thesis. This approach leads to interfacing vectors 

between various partitioned blocks, �� and ��
�, with all entries ‘0’, except for only one or more 

of the entries in them containing ‘±1’ depending on external currents. This reduces some 

computation and communication cost among processors during parallel computation.  

In second approach, a nodal formulation with waves (WAVEOP) is presented for the first time. 

In this analysis, each subcircuit iterates with incident waves received from another subcircuits 

and send waves back to the neighbour subcircuits. But WAVEOP analysis is not efficient 

compared to OP and EOP analysis. Because of the structure of ��
' block, this analysis requires a 

greater number of iterations and simulation time for convergence than OP and EOP analysis. In 

WAVEOP, ��
' block is not an incidence matrix but consists of elements related to the subcircuit 

components connected to external nodes of subcircuit. For nonlinear circuits nonlinear elements 

change at every iteration and hence this ��
' matrix has to be rebuilt for each Newton iteration. 

So, one iteration using waves is more expensive compared to OP and EOP analysis. 

Furthermore, writing code to construct such ��
' block is complex. Subcircuit columns belonging 

to external nodes must be extracted and placed in ��
' block depending on external currents with 

proper sign convention. 

Both formulations have been implemented in a general circuit simulator (EOP and WAVEOP 

analyses). Currently both implementations use serial code. In this case, each partition is solved 

serially, and synchronized later on to obtain the solution of the original circuit at each NR 
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iteration. EOP and WAVEOP do not yield speed-ups compared to regular OP analysis which 

simulates the original circuit without dividing equations in blocks. However, if parallel version 

of the EOP analysis is implemented, a significant speed-up could be achieved.  

Suggestions for the Future Work 

The main pending issue for this work is to implement a parallel version of the proposed 

algorithms. After that is achieved, a number of research directions will be open for exploration. 

One such direction would be to investigate solving nonlinear equations using a combination of 

fixed-point wave relaxation and Newton method using nodal variables. In this approach, 

subcircuits are iterated with relaxation method using waves for few iterations [32] at the 

beginning of the simulation and once it gets close to the solution, circuit decomposition based on 

nodal variables should be adopted. Another aspect is to implement an optional multilevel 

Newton algorithm [24] in the EOP analysis, in which each subcircuit is iterated for  a fixed 

number of iterations. This may reduce the total number of global Newton iterations and therefore 

achieve a  simulation speed-up. The EOP analysis could also be combined with waveform 

relaxation [30]. Finally, to make the parallel analysis practical, an automatic partitioning 

algorithm must be studied and implemented. Running relaxation method initially gets a good 

initial guess for EOP analysis. We expect that convergence would be faster.  
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Appendix A 

The netlist of source codes of EOP and WAVEOP analysis and circuits used for simulation 

results can be obtained from:  

git clone git://github.com/cechrist/cardoon.git 

The netlist of the linear circuit used to explain complete example is provided below. The source 

codes of EOP and WAVEOP analysis can be found in following repository: src/cardoon/analysis 

and all netlists of circuits can be found from : src/cardoon/workspace/tapan. 

Linear Circuit example 
 

*** OP analysis *** 

#.options maxdelta=50. maxiter= 100 

#.analysis op 

 

*** EOP analysis *** 

.analysis eop  

 

*** WAVEOP analysis *** 

#.analysis waveop z0=10 

 

*** Subcircuit instantiations*** 

x1 2 subcircuit1 

x2 2 3 subcircuit2 

x3 3 subcircuit3 

 

*** Subcircuit definitions*** 

 

.subckt subcircuit1   2    # 2 is external node of Subcircuit 1 (Figure 3.10) 

 

*** Element lines*** 

 

res:r1  1 gnd   r=10 

res:r2 1 2 r=10 

vdc:vdd 1 0 vdc=2 

res:r3 2 0 r=10 

 

.ends 
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.subckt  subcircuit2   2  3   #2 and 3 are external nodes of Subcircuit 2 (Figure 3.10) 

res:r12 2 3 r=10 

res:r4 3 4 r=10 

res:r7 4 0 r=10 

res:r6 5 0 r=10 

res:r5 3 5 r=10 

.ends 

 

.subckt  subcircuit3    3  #3 is external node of Subcircuit 3  (Figure 3.10) 

res:r8 3 6 r=10 

res:r9 6 0 r=10 

res:r10 6 7 r=10 

res:r11 7 0 r=10 

.ends 

 

.end
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