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ABSTRACT 

Tanney, J.B. 2010. The antifeedant action of Climacodon septentrionalis and two 
species of Sphaerobolus to hyphal grazing by the fungus-feeding nematode 
Aphelenchoides sp. 90 pp. 

Keywords: Antifeedant, defence mechanism, fungivory, grazing responses, mycology, 
mycophagy, perennial mycelium. 

 Fungi are ubiquitous in forest ecosystems and are, collectively, a major force in 

driving nutrient and organic matter availability and cycling.  Some saprotrophic and 

mycorrhizal fungi are characterized by a perennial vegetative body, delayed sexual 

reproduction, and a relatively long lifespan.  Such fungi are exposed to a barrage of 

antagonistic forces throughout their existence, one notable stress being invertebrate 

grazing.  It is suggested that fungi with perennial mycelia must have developed means to 

deter grazing of their hyphal networks by pervasive mycophagist invertebrates. 

 Controlled inoculation studies with a mycophagous nematode, Aphelenchoides 

sp., and isolates representing 78 fungal species were conducted to investigate the 

presence of possible antifeedants.  These in vitro pairings resulted in the discovery of 

two novel antifeedant mechanisms in three species of fungi.  In the presence of the 

saprotrophic fungi Sphaerobolus stellatus and S. iowensis, the anterior portion of 

nematodes became encapsulated in a material of unknown composition.  This 

encapsulation phenomenon effectively prevented further hyphal grazing by obstructing 

stylet extension, which resulted in the eventual death of the nematode.  Nematodes that 

died as a result of the encapsulation were never colonized or consumed by the fungus.  It 

is hypothesized that the encapsulating material originates from modified hyphal cells, 

referred to as gloeocystidia, and is liberated when the cells are punctured by the 

nematode stylet. 
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 The wood-decaying fungus Climacodon septentrionalis was found to produce 

tall, stalked secretory cells in abundance on the aerial mycelia of the colony.  Nematodes 

were enveloped and immobilized by droplets produced at the apices of the secretory 

cells.  Immobilized nematodes were rarely colonized by the fungus and dead individuals 

persisted for weeks.  A media study was employed to investigate the effect of nutrient 

concentration on the in vitro production of secretory cells.  The discovery of novel 

antifeedants which mitigate damage caused to the mycelial network by grazing 

invertebrates offers a stimulus for further investigation into the interactions between 

fungi and their co-inhabiting microfauna. 
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GENERAL INTRODUCTION 

 Fungi with perennial mycelia may be characterized by a relatively long existence 

with delayed sexual reproduction.   As a consequence of the ubiquity of fungus-feeding 

invertebrates in the soil and litter, it is suggested that such long-lived fungi must have 

been compelled to develop deterrents to combat the constant threat of grazing.  The 

intent of this thesis is to investigate possible antifeedant mechanisms which may be 

exhibited by various forest soil fungi with perennial mycelia. 

 Identifying potential antifeedant mechanisms is an important step in elucidating 

the interactions between fungi and their grazing co-inhabitants.  Despite the ancient 

association between soil invertebrates and fungi since the early colonization of land, 

there are few examples of, and little clear evidence for, co-evolutionary relationships 

between fungi and invertebrates feeding on them.  The results from this research will 

provide evidence of co-evolution between these two groups of organisms via the 

antifeedant responses of fungi to a feeding antagonist.  The screening of fungi as 

possible biological control agents is also of importance in an era which is witnessing the 

continual introduction of invasive diseases and pests. 

 The research question was addressed by performing controlled in vitro 

inoculation studies.  A mycophagous nematode (Aphelenchoides sp.) was isolated from 

the Thunder Bay District and selected as a model organism representing an antagonistic 

grazing invertebrate.  The nematodes were introduced to isolates representing 78 species 

of fungi by means of controlled inoculation.  Following inoculation, qualitative 

observations were made every 24 hours to assess for the presence of a possible 

antifeedant reaction.  These reactions included the immobilization of nematodes, a 
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decrease in nematode population growth, or the direct parasitism of nematodes by the 

host fungus.  Interesting interactions were selected for further investigation. 

 Of the 78 species of fungi included in this investigation, five exhibited apparent 

responses to the grazing nematodes.  Three of these species were selected for further 

exploration: Climacodon septentrionalis (Fr.) P. Karst, Sphaerobolus stellatus Tode, and 

S. iowensis L.B. Walker.  The responses of these fungi to the mycophagous nematode 

represent novel observations, which have not been previously described.    
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ABSTRACT 

Tanney, J.B. 2010. Mycelial grazing: Interactions between mycophagist invertebrates 
and fungi. Pp. 3-39. 

Keywords: Antifeedant, defence mechanism, fungivory, grazing responses, hyphal 
grazing, mycology, mycophagy. 

 Fungal mycelium is ubiquitous to the forest ecosystem and provides a potential 

nutrient source for invertebrate mycophagists such as collembola, mites, and nematodes.  

The effects of grazing on vegetative fungal mycelium may have cascading consequences 

for the fungal individual, community, and ecosystem processes driven by fungi.  In turn, 

fungi may alter the effects of grazing by adjusting their growth strategies or by the 

presence of antifeedant mechanisms. Such deterrents may include physical antifeedant 

structures and the production of toxic secondary metabolites.  A review of the literature 

concerning grazers and their fungal resources has offered a glimpse into these complex 

interactions; however, our current understanding is ambiguous at best.  Investigating 

how fungi are able to respond to the relentless threat of grazing and mitigate damage 

may offer insight into the evolution and success of these robust organisms. 
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INTRODUCTION 

The consumption of any fungal matter, whether it be vegetative mycelium or 

fruiting body tissue, is frequently referred to as “mycophagy” or “fungivory”.  Grazing 

refers to the consumption of vegetative hyphae through selective cropping or feeding.  

The grazing of fungal mycelia by microorganisms is an ancient interaction which must 

have had a significant impact on the evolution of both fungus and grazer (Schmidt et al. 

2008).  Compared to the extensive literature regarding plant herbivory, relatively little is 

known about the phenomenon of grazing on fungal mycelium.  This is despite the 

incredible diversity and abundance of grazing organisms present in terrestrial 

ecosystems.  The destruction of fungal mycelium by grazing may significantly affect the 

growth and respiration of the colony and subsequently alter interactions within the 

fungal community.  It is conceivable that such effects may influence fungal-driven 

processes including decomposition, mycorrhiza formation and function, and 

phytopathogen interactions.  

The focus of this chapter is restricted to the forest soil-, litter-, and woody debris-

inhabiting invertebrates which feed on vegetative mycelium.  The effects of mycophagy 

on the fungal community and on the fungus as an individual will be examined with 

emphasis on responses of fungi with perennial mycelium to such grazing.  This literature 

review attempts to (1) illustrate the ubiquity of fungal grazing in the natural environment 

and (2) address the defence response of fungi to constant grazing pressures. 

 

 



6 
 

FUNGI AS FOOD 

As much as 10% of soil and litter may be composed of fungal biomass (Dighton 

2003).  Flanagan and Van Cleve (1977) estimated the microbial biomass in the forest 

floor of a black spruce (Picea mariana (Mill.) BSP) taiga ecosystem was composed of 

85% fungi, while Högberg and Högberg (2002) estimated at least 32% of the soil 

microbial biomass in a Swedish Pinus sylvestris L. forest was contributed by 

extramatrical ectomycorrhizal mycelium alone.  Fungal hyphal length was estimated at 

2,500 m/g soil in a lodgepole pine (Pinus contorta Douglas ex Loudon) forest (Ingham 

et al. 1989) and up to 26,000 m/g soil in a Swedish P. sylvestris forest (Söderström 

1979).   

Representing over 99% of the fungal colony biomass, vegetative mycelium 

offers an enticing and valuable source of nutrients for soil fauna (Frankland 1982). 

Carbohydrates, primarily in the form of polysaccharides, usually comprise half of the 

dry weight of fungi (Lundgren 2009).  The average N and P content of fungal mycelium 

can range from 3.7 to 5.32% and 0.55 to 0.7%, respectively (Flanagan and Van Cleve 

1977; Bååth and Söderström 1979).  In a comparison of nutrient content as a percentage 

of dry weight, Swift (1977) found that Stereum hirsutum (Willd.) Pers. mycelium had 

approximately 8.2 times more nitrogen and 9.4 times more phosphorus than living oak 

wood.  The profusion of mycelia in the soil environment has spurred the development of 

a plethora of organisms which take advantage of this substantial nutrient source.  
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MYCOPHAGOUS FAUNA BIODIVERSITY 

The abundance and inherent nutritional content of hyphae in soil ecosystems has 

resulted in the proliferation of organisms which use fungal biomass as food; between 

21% and 76% of soil fauna biomass is comprised of mycophagists (McGonigle 1995).   

Soil fauna may be grouped into three diameter size classes (Swift et al. 1979).  

Mycophagous macrofauna (>2 mm diameter) include earthworms (Nasim and Zahoor 

1994), diplopods (Taylor 1982), and gastropods (Silliman and Newell 2003).  This size 

class may also include some insects and insect larvae (Shaw 1992), which graze 

mycelium.  The mesofauna (0.1 mm to 2 mm diameter) are composed of invertebrates 

including mites (Mitchell and Parkinson 1976), collembola (Visser and Whittaker 1977; 

Shaw 1985), and enchytraeids (Hedlund and Augustsson 1995; Jaffee et al. 1997).  

Microfauna (<0.1 mm diameter) include nematodes (Townshend 1964) and protozoa 

such as amoebae (Chakraborty et al. 1985) and ciliates (Foissner 1998).  The model 

organisms used in the majority of fungal grazing studies are primarily collembola, mites, 

and nematodes.  These will be briefly summarized below. 

COLLEMBOLA 

 Collembola (springtails) are extremely abundant in soil, leaf litter, and woody 

debris.  In most terrestrial ecosystems, they occur at densities of 10,000 to 100,000 

individuals/m2, although seasonal population fluctuations between 145,000 and 244,000 

individuals/m2 were recorded in a Norwegian spruce forest (Petersen and Luxton 1982).  

Despite their abundance, collembola contribute only 1 to 5% to total soil animal biomass 

and respiration in temperate ecosystems due to their small size, although they may 
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contribute as much as 33% of the total soil animal biomass and respiration in early 

stages of succession (Petersen 1994).  Regardless of their low biomass, collembola play 

an important role in the structure of some soils and influence decomposition and soil 

respiration (Filser 2002).   

Collembola are typically omnivorous, although different species are 

morphologically and ecologically differentiated into feeding guilds (Rusek 1998).  Many 

primarily feed on fungal hyphae or decaying plant material, but others appear to be 

generalists, also feeding on nematodes, bacteria, algae, detritus, and fine roots and root 

hairs (De Ruiter et al. 1994; Lee and Widden 1996; Hopkin 1997; Endlweber et al. 

2009).  Collembola graze fungi growing on leaf litter, fecal pellets, and soil (Sadaka-

Laulan et al. 1998; van der Drift and Jansen 1977; Ponge 1991), as well as on 

mycorrhizal species (Moore et al. 1985).    

ACARI 

 Oribatid mites (Acari, Oribatida) may be one of the most abundant forest soil 

arthropods, reaching densities of up to 400,000 individuals/m2 in temperate forests and 

comprise about 10,000 described species worldwide (Schatz 2002).  Mites typically 

dominate forest soils and undisturbed habitats (Filser 2002).  All life stages may feed on 

fungi (Mitchell and Parkinson 1976) and mycophagous mites have been observed to 

feed on foliar pathogens (Norton et al. 2000), soil fungi (Mitchell and Parkinson 1976), 

leaf litter (Santos et al. 1981), and mycorrhizae (Schneider et al. 2005). 
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NEMATODES 

Nematodes are the most abundant multicellular organisms in the world and are of 

great ecological importance (Bongers and Bongers, 1998).  It is estimated that there are 

approximately 29 million nematodes per m2 of mixed deciduous forest soil, and that 

their species diversity is exceeded only by the arthropods (Bernard 1992).  Nematodes 

comprise the majority of mycophagous microfauna and feed by piercing hyphae and 

ingesting fungal cytoplasm (Ruess and Lussenhop 2006).  

FEEDING BEHAVIOUR AND STYLE OF MYCOPHAGOUS FAUNA 

Mycophagous fauna may be also divided into either of two categories: particulate 

fungivores or fluid-feeding fungivores (Moore et al. 1988).  However, there are many 

examples of diverse feeding methods within both categories.  Mandibular mouthparts 

may be modified for various feeding styles such as cutting, scraping, grinding, sucking, 

and piercing (Ruess and Lussenhop 2006).  Mycelium may be scraped from leaves and 

ingested, as observed in Lauxaniid flies (Broadhead 1984).  Anas and Reeleder (1988) 

found that Bradysia coprophila (Lintner) larvae were able to remove the outer rind of 

Sclerotinia sclerotiorum (Lib.) de Bary sclerotia and consume the contents.  Oribatid 

mites have been observed to sever hyphae and ingest them „like spaghetti‟ (Ruess and 

Lussenhop 2006).   

Mycophagous amoebae are able to perforate fungal spores and hyphae and ingest 

the cytoplasm within (Anderson and Patrick 1978).  Protura and collembola may 

penetrate and suck hyphal contents out with modified mandibles (Sturm 1959; Rusek 

1998).  Mycophagous nematodes feed on fungal hyphae by inserting a retractable stylet 
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into the fungal cell and actively pumping out cytoplasm (Siddiqui and Taylor 1969).  

Following feeding, hyphal cells may have virtually all cytoplasm removed, which 

typically results in cell death and collapse (Doncaster 1966; Siddiqui and Taylor 1969; 

Avery and Thomas 1997).    

Selective Mycophagy  

 Grazing organisms with a strong selective preference for certain fungal species 

over others may have an important effect on the adaptation of target fungi over 

ecological time.  Preferential feeding may affect the fungal community and alter fungal-

driven ecological functions by promoting the proliferation of unpalatable species over 

preferred species.  Consequently, this research topic has garnered a substantial amount 

of interest over the past 30 years.  The usual approach is to analyze mycophagist gut 

contents or investigate food preferences. 

Gut Content Analysis 

Gut content analysis, through dissection or observations of living specimens, 

may be used in conjunction with food preference tests.  Thimm and Larink (1995) 

assessed the food preference of 5 collembola species by simultaneously offering them 

dyed parsley roots infected with one of 5 vesicular arbuscular mychorrhizae (VAM) 

species.  Preference was determined by observing the differentially dyed roots in the 

collembolan gut with the corresponding VAM species.  A benefit of gut content analysis 

is the ability to evaluate the diet of field specimens, as opposed to food preference tests, 

which are typically constrained to the laboratory.   
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Gut content analysis proves difficult when contents are unidentifiable or rapidly 

digested and also fail to detect the consumption of fungal cytoplasm in the guts of fluid-

feeding invertebrates, such as nematodes and some collembola.  Bardgett et al. (1993) 

were unable to identify fungal hyphae in the guts of the collembola Onychiurus 

procampatus Gisin collected from the field, or in captive specimens reared on a fungal 

diet.  It is, therefore, difficult to make solid conclusions regarding food preferences 

based on gut contents alone, as the analysis represents only recent and identifiable 

feedings. 

Food Preference Tests 

Food preference tests are conducted in “choice chambers” with 2 or more fungal 

species or isolates.  The numbers of invertebrates occupying the offered fungal colonies 

are counted over a period of time, offering direct observations of test subject feeding 

behaviour and preference.   Food preference tests may not reflect realistic field 

conditions for a number of reasons.  The movement of individuals may not be 

considered independent; the presence of feeding microfauna may stimulate others in 

proximity to feed or increase explorative activity (Doncaster 1966).  Collembola are 

known to aggregate in response to pheromonal cues (Shaw 1988), although Bardgett et 

al. (1993) found their test subjects appeared to disperse randomly and independently of 

one another.  Some studies have used the presence of faecal pellets to determine the 

preferred food; however pellets may not be deposited on the exact grazing location due 

to gut-passage time, organism mobility, or coprophagy exhibited by the grazer (Koukol 

et al. 2009).   
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Food choice studies involving nematodes are rare (Townshend 1964; Pillai and 

Taylor 1967; Ruess et al. 2000; Hasna et al. 2007).  Nematodes may be attracted to 

fungal species which cannot support their population growth (Ruess et al. 2000) and 

even to nematophagous fungi (Jansson and Nordbring-Hertz 1979; Wang et al. 2009).  

Evidence suggests that although nematodes demonstrate a marked preference towards 

certain fungi, they tend to favour a mixed diet (Doncaster 1966; Ruess et al. 2000; Scheu 

and Folger 2004).  A mixed diet may be beneficial to a grazer by keeping undesirable 

toxins inherent to each food type within acceptable limits (Begon et al. 1996).    

Therefore, food preference may be based on the concentration of toxins rather than 

energy or nutrition content of the potential food choice (Bryant and Kuropat 1980).  

Scheu and Folger (2004) noted an increase in fitness when collembola were offered a 

mixed diet, possibly due to the lack of essential nutrients when provided a single food 

item diet.   

The Dematiaceous Preference? 

 Preferential feeding behaviour has been observed in several food preference 

experiments concerning collembola (Shaw 1988; Chen et al. 1995), nematodes (Ruess et 

al. 2000), oribatid mites (Luxton 1966), and astigmatid mites (Hubert et al. 2004).  

Preferences will most likely differ among species and organisms with varying feeding 

habits, however a phenomenon frequently observed in food choice tests is the preference 

for dark-pigmented (dematiaceous) fungi over hyaline forms by collembola (Mills and 

Sinha 1971; Visser and Whittaker 1977; Klironomos and Kendrick 1995; Sadaka-Laulan 

et al. 1998; Maraun et al. 1998) and mites (Luxton 1966; Klironomos and Kendrick 

1995; Hubert et al. 2004; Koukol et al. 2009).  Gut content analyses of field specimens 
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have also yielded a higher proportion of pigmented hyphae in the guts of collembola 

(Kaneko et al. 1995) and oribatid mites (Mitchell and Parkinson 1976).  Maraun et al. 

(2003) suggested several possible hypotheses which may explain the preference of dark 

hyphae as a food source for mycophagous animals including: nutritive value, absence of 

toxicity, or superior exoenzymes which are exploited by mycophagous fauna. 

This is a surprising trend, as melanins are implicated in the protection of fungal 

hyphae and propagules against a variety of environmental stresses (Bell and Wheeler 

1986; Gadd 1993; Jacobson and Tinnell 1993; Butler and Day 1999).  Gut content 

studies involving field animals may not be indicative of feeding preferences towards 

dark hyphae as melanized hyphal walls may be difficult to digest, therefore appearing 

more evident and abundant than hyaline hyphae in the animal gut.  In many food 

preference studies hyaline species are represented by Penicillium or Paecilomyces 

species (Dash and Cragg 1972; Luxton 1972; Mitchell and Parkinson 1976; Moore et al. 

1987; Scheu and Simmerling 2004), which have been found to produce secondary 

metabolites toxic to many soil invertebrates (Cram and Tishler 1948; Cayrol et al. 1989; 

Kwok et al. 1992; Chandler et al. 2000; Scheu and Simmerling 2004; Rohlfs et al. 2007; 

Liu et al. 2009; but see Rusek 1989).  Rearing Aphelenchus avenae Bastian or 

Aphelenchoides composticola Franklin nematodes on species of Penicillium may be 

unsuitable for population growth and even repel grazing nematodes (Mankau and 

Mankau 1963; Chen and Ferris 2000).  Visser and Whittaker (1977) reported a 

preference for pigmented fungi by the collembola Onychiurus subtenuis Folsom, 

however the two unknown basidiomycetes which comprised the hyaline species in their 

study were found to be toxic.   
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Possible flaws in experimental design suggest the preference of pigmented fungi 

by mycophagous invertebrates may be a result of representing hyaline fungi with species 

which are known to produce toxic secondary metabolites.  The majority of studies also 

utilize ubiquitous fungal species, with little attention given to more specialized species, 

which may be of more interest.  Future studies should also incorporate not only food 

selection as a factor for preference, but also animal fitness (Scheu and Folger 2004).    

Food Preference Conclusions 

Despite the expected ambiguity in feeding preferences among different 

mycophagist species at various life stages, evidence suggests collembola, mites, and 

nematodes are best described as “choosy generalists” (Schneider and Maraun 2005).  

They are able to feed on a wide variety of resources, but show preference for certain 

materials over others in food choice experiments.  Continued research is expected in this 

area of mycophagy, as selective grazing pressure may have profound effects on fungal 

communities and the diversity and spatial distribution of mycophagous organisms.   

EFFECTS OF GRAZING ON FUNGI 

In a microcosm study with the fungus Fusarium oxysporum E.F. Sm. & Swingle, 

the consumption of fungal cytoplasm by the nematode Aphelenchus avenae ranged from 

9.2 to 32.8% of the total standing crop per day (Ingham et al. 1985).  Shafer et al. (1981) 

reported the presence of grazing Aphelenchoides bicaudatus (Imamura) Fil. and Sch. 

Stek nematodes limited the in vitro growth of 5 ericoid mycorrhizal fungus isolates from 

47 to 70% of the mycelial areas of the ungrazed controls and that grazing caused 

fragmentation of hyphae.  The destruction of aerial mycelia is frequently observed in 
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cultures inoculated with mycophagous nematodes (Riffle 1967; Sutherland and Fortin 

1968; Ruess and Dighton 1996).  

PHYSIOLOGICAL EFFECTS 

Fungal respiration and growth may increase when a fungus is subjected to low 

intensity grazing or decrease under high intensity grazing (Hanlon and Anderson 1979; 

Hanlon 1981; Ingham et al. 1985; Moore 1988; Hedlund and Augustsson 1995).  This 

bell-shaped response of fungal activity to increasing grazing intensity suggests that 

activity is increased up to an optimum value, after which further increases in grazing 

intensity begin to reduce fungal activity (Hanlon 1981).  Grazing at optimal densities 

may enhance fungal growth and respiration through selective pruning of senescent 

hyphae, thereby releasing immobilized nutrients (Hanlon 1981; Moore et al. 1987).  

Hanlon (1981) suggested grazing might remove toxin-accumulating hyphae, thus 

permitting the further utilization of nutrients by new fungal growth.  This compensatory 

growth is discussed in the context of a grazing response strategy later on. 

Grazing intensity is not the only factor dictating the fungal response.  Hanlon 

(1981) found that fungal respiration increased by as much as 100% in the presence of 

grazing collembola on high nutrient agar; however respiration decreased when the 

grazed fungus was cultured on low nutrient agar.  Okada et al. (2005) also found that 

culture media had a significant effect on nematode population growth rates.  Other 

factors such as the fungal species (Ruess and Dighton 1996), spatial distribution of 

fungal mycelium (Bengtsson and Rundgren 1983), grazing species (Tordoff et al. 2008), 

age (Moore et al. 1987), and behaviour (McMillan 1976) may result in differential 
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effects of grazing on a fungus.  Research supports the notion that fungi are not passive 

organisms simply susceptible to grazing; rather, they are capable of responding to 

grazing damage to their mycelial network. 

Mycelial Growth Responses to Grazing 

Compensatory growth, a phenomenon observed in plants subjected to grazing 

(Paige and Whitham 1987), has also been described in microcosm and in vitro studies 

involving fungi and grazing collembola species (Hanlon and Anderson 1979; Bengtsson 

and Rundgren 1983; Bengtsson et al. 1993; Hedlund and Augustsson 1995; Bretherton 

et al. 2006).  This is typically caused by low to moderate densities of grazing animals 

and is also affected by the nutritional quality of the medium (Hanlon 1981).  Bretherton 

et al. (2006) hypothesized that the compensatory growth observed in grazed 

Phanerochaete velutina (DC.) Parmasto may be a result of apical pruning and/or 

decreased competition for water and nutrients by mycelia.  Whether compensatory 

growth is a specific response to grazing or a strategy evolved to mitigate detrimental 

effects of all types of damage is debatable (Belsky et al. 1993).   

           Harold et al. (2005) found grazing Folsomia candida (Willem) significantly 

reduced the coverage and extension of the cord-forming basidiomycete Hypholoma 

fasciculare (Huds.) P. Kumm.  Collembolan grazing is typically concentrated on fine 

mycelium within the colony and hyphal tips (Wood et al. 2006; Tordoff et al. 2008; 

Harold et al. 2005).  Thick mycelial cords may be less palatable due to a thick outer rind 

or the possible presence of encrusting crystals and secondary chemicals (Tordoff et al. 

http://www.indexfungorum.org/Names/NamesRecord.asp?RecordID=114692
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2006).  However, grazing on thick cords has been observed, sometimes completely 

severing them from their source (Wood et al. 2006; Tordoff et al. 2006). 

Wood et al. (2006) conducted a series of relatively large (57 x 57 cm) microcosm 

experiments exploring the changes in mycelial networks of the cord-forming 

Phanerochaete velutina, quantified by hyphal coverage and estimated mass fractal 

dimension, following the addition of new resources (2 x 2 x 1 cm Fagus sylvatica L. 

blocks) and/or collembola (F. candida).  The authors found both the addition of 

resources and collembola grazing had interactive effects on mycelial morphology.  For 

example, the hyphal coverage and mass fractal dimension of grazed systems without 

additional resources were not significantly different from ungrazed systems without 

additional resources.  In contrast, grazed fungi with additional resources grew 

significantly less than ungrazed systems with additional resources. 

The mycelial network may spatially respond to grazing pressures.  Collembola 

grazing caused H. fasciculare to switch from a growth pattern with a broad, continuous 

foraging front and uniform growth in all directions to a pattern with fast growing sectors 

while growth in some sectors completely ceased (Kampichler et al. 2004).  The authors 

interpreted this phalanx growth strategy (sensu Schmid and Harper 1985) as a fugitive 

response and a growth strategy employed to quickly escape from localized areas where 

grazing pressure is present.  This differential growth, in conjunction with increased 

protease activity, was also observed in the grazing of Mortierella isabellina Oudem. by 

the collembola Protaphorura armata Tullberg (Hedlund et al. 1991).     
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Hyphal fungi are modular organisms characterized by a complex network, which 

may effectively diminish the significance of localized damage and senescence (Carlile 

1995).  Exploring how fungi spatially respond to grazing pressures may offer further 

insight into the mechanisms which have allowed this group of organisms to thrive in an 

antagonistic environment.  The impact of grazing on the fungal host is complex and 

becomes even less apparent in the context of the fungal community.   

THE FUNGAL COMMUNITY 

Selective grazing may alter the species composition and distribution within a site 

(Wicklow and Yocom 1982).  Grazing on Trametes versicolor (L.) Lloyd by Folsomia 

candida growing in oak litter reduced fungal biomass while increasing bacterial biomass 

(Hanlon and Anderson 1979).  Newell (1984a,b) found that preferential feeding by the 

collembola Onychiurus latus Gisin suppressed the dominant litter-decomposer 

Marasmius androsaceus (L.) Fr., allowing the proliferation of the less competitive 

fungus Mycena galopus (Pers ex Fr.) Kummer when grazing was present.  The grazing 

on Marasmius androsaceus stimulated litter decomposition.  Grazing by Onychiurus 

subtenuis reduced the ability of an unknown dematiaceous fungus (Sterile dark form 

298) to colonize leaf litter when competing with a basidiomycete fungus (Basidiomycete 

290) (Parkinson et al. 1977).  

The selective grazing behaviour of mycophagists combined with their inherent 

abundance suggests the ability of grazers to influence the fungal community.  This 

phenomenon must be investigated further as changes to the fungal community may have 
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cascading effects on the various functions which fungi contribute to in the forest 

ecosystem.    

FUNGAL DEFENCE 

Due to the longevity of the mycelial network and delayed sexual reproduction, it 

is plausible that grazing damage to late-successional fungi with “perennial mycelium” is 

more detrimental than such damage to ruderal species. Rather than relying on a rapid 

colonization and reproduction type of life cycle to avoid grazing and other stresses, 

fungi with perennial mycelia must expend more energy on the maintenance of their 

persistent vegetative hyphae before they may successfully reproduce.  It is conceivable 

that species which are “bound to be found” (sensu Feeny 1976) by grazers must have 

evolved antifeedant mechanisms to mitigate damage caused to their mycelial network by 

grazing organisms.   

Despite the plausibility of attributing a defensive role to morphological structures 

and toxic compounds, few papers provide conclusive data.  The conclusions of many 

papers (e.g.: Böllmann et al. 2010) are correlative and do not provide conclusive data 

which show a causal relationship between the proposed defensive traits and their effects 

on invertebrate or fungal fitness (see Rohlfs et al. 2007; Kempken and Rohlfs 2010).  

The identification of apparent antifeedants provides important evidence for possible 

defensive mechanisms in fungi; however, experimental verification is the next step 

which must be fulfilled to confidently address the role of such mechanisms in fungal 

defence.  This step presents many underlying methodological obstacles which may be 

overcome using transgenic model organisms (Rohlfs et al. 2007) to suppress the 
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production of apparent antifeedant traits, which may enable the validation of their 

function as defence characters. 

Examples of fungal antifeedants will be presented according to the nature of their 

defence:  mechanical or chemical.   

MECHANICAL ANTIFEEDANT STRUCTURES 

 Wicklow (1979) suggested the ascomata of Chaetomium bostrychodes Zopf are 

avoided by larvae of Lycoriella mali Fitch. due to the ornamented perithecial hairs 

which act as a mechanical deterrent against grazing by larger mycophagist arthropods.  

Mechanical defences may persist over longer periods of time compared to volatile 

secondary metabolites.  Antifeedant mechanisms which physically deter grazing are 

differentiated by their mode of inhibition and briefly summarized below.   

Adhesive Structures 

 The adhesive structures of nematophagous fungi are one of the most well-known 

trapping devices and have been reviewed in detail (Barron 1977).  These structures are 

diverse in size and shape, ranging from unmodified adhesive hyphae to adhesive knobs 

and three-dimensional nets (Gray 1987).  Stephanocysts are two-celled appendages, 

which function as both asexual reproductive propagules and adhesive structures in 

Hyphoderma species (Liou and Tzean 1992). Hourglass-shaped adhesive appendages are 

found in members of the genus Nematoctonus and its teleomorph Hohenbuehelia 

(Barron 1977).  The recognition and subsequent attachment of the nematode cuticle to 

the fungal surface appears to be mediated by a lectin-carbohydrate interaction (Tunlid et 

al. 1992).   
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Constricting Rings 

 One of the most dramatic and sophisticated structures employed by fungi to 

disable nematodes are the constricting rings produced by some species, including 

Arthrobotrys dactyloides Drechsler.  Induced by the presence of nematodes, the rings are 

comprised of three curved cells on a short two-celled stalk.  Mechanical stimulation of 

the rings induces the rapid (0.1 s) inflation of the cells, effectively snaring nematodes 

which may have entered the rings (Higgins and Pramer 1967).  Ring-forming fungi are 

very efficient nematode predators and were found to have a lower saprotrophic 

capability than other nematode-trapping fungi, suggesting an ecological adaptation as a 

predominant predator (Cooke 1963).   

Crystalline Structures 

Spiny balls, the sharp, crystal structures produced along the hyphae of Coprinus 

comatus (O.F. Müll.) Pers. mechanically damage the cuticle of nematodes (Luo et al. 

2004; Luo et al. 2007).  These structures appear to be analogous to thorns in some 

plants, lacerating the nematode cuticle and, in severe cases, causing the leakage of inner 

materials through extensive wounds.  The authors created „regenerating plates‟ by 

removing aerial fungal hyphae with a scalpel, which induced the growth of special aerial 

hyphae with abundant spiny balls.  This suggests that the antifeedant is stimulated by 

mechanical damage to the colony, possibly indicating a general defence mechanism 

induced by the destructive presence of nonspecific grazers.    

Acanthocytes, the stellate cells produced by Stropharia rugosoannulata Farl. ex 

Murrill, have a similar function to the spiny balls of C. coprinus, immobilizing 
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nematodes via physical damage to the cuticle (Luo et al. 2006).  The authors observed 

the colonization and rapid digestion of injured Panagrellus redivivus L. nematodes by S. 

rugosoannulata, however the fungus could kill but not consume Bursaphelenchus 

xylophilus (Steiner and Buhrer) Nickle nematodes.  

 The formation of crystals, frequently composed of calcium oxalate, along the 

hyphae has been observed in many species of fungi (Whitney and Arnott 1987; Connolly 

1997).  Several functions have been attributed to oxalic acid and oxalate, including 

pathogenicity (Godoy et al. 1990; Cessna et al. 2000), wood decomposition (Dutton et 

al. 1993), mineral weathering (Wilson et al. 1981), and reducing deleterious effects of 

excess calcium ions (Whitney and Arnott 1987).   

 Thompson (1984) suggested an antifeedant role in calcium oxalate crystals on 

fungal hyphae.  This is a reasonable assertion, as calcium oxalate crystals have 

antifeedant properties in plant leaves (Molano-Flores 2001) and the presence of sharp, 

needle-like raphides encrusting the mature hyphae of some fungi suggests a potential 

physical barrier to mycophagists.  The lack of grazing in pruinose lichen specimens by 

the coleopteran Lasioderma serricorne (F.) was attributed to the presence of a 

superficial layer of calcium oxalate (Nimis and Skert 2006).  In a rare study focusing on 

fungal defence against grazing, Böllmann et al. (2010) attributed an antifeedant function 

to hyphal crystals against the collembola F. candida, although the evidence was largely 

anecdotal.  The presence of crystals on fruiting body cystidia may also serve a protective 

function (Nakamori and Suzuki 2007).  Crystals may physically impede grazing by 

acting as a protective covering and/or deterring microorganisms via sharp structures. 
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CHEMICAL ANTIFEEDANTS  

Janzen (1977) suggested that the role of toxic secondary metabolites of fungi is 

analogous to that of the chemical defence systems of higher plants: deter predators and 

protect substrate territory.  Toxins found concentrated in fruiting body tissues possibly 

play a role in protection from predation (Gloer et al. 1988; Wang et al. 1995).   

  The discovery of fungal-derived nematicidal compounds has generated 

considerable interest from ecological and biological control perspectives.  A large 

number of nematicidal substances have been described (see Li et al. 2007b for a review 

of 179 nematicidal compounds).  Despite investigations into the consequences of fungal 

secondary metabolite formation, a causal link between the biosynthesis of such 

metabolites and its role in fungal defence is rarely supported by experimental evidence 

(Rohlfs et al. 2007).  Possible fungal chemical antifeedants may be presented to the 

potential grazer in three ways.  

Exotoxins 

 Fungi produce an array of extracellular enzymes and metabolites, some of which 

have been exploited for our own purposes.  Mycotoxins have been the subject of 

scrutiny due to their deleterious effects on human and livestock health.  Toxic secondary 

metabolites may be secreted extracellularly, or may present in specific tissues such as 

developing stroma (Stadler et al. 2006), or in injured fruiting bodies (Stadler and Sterner 

1998).  Exotoxins are secreted from hyphae into the surrounding environment, creating a 

gradient which may prevent grazing before contact occurs.  In contrast, some toxins are 

secreted by specific structures. 
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Secretory Cells 

 Rather than excreting toxins directly into the environment surrounding vegetative 

tissue, concentrated toxins may be produced in specialized structures, equivalent to 

glandular trichomes in some plants.  Many Pleurotus species immobilize nematodes via 

toxin-producing secretory cells called toxocysts (Thorn and Barron 1984; Hibbett and 

Thorn 1994; Mamiya et al. 2005).  When a nematode comes into contact with the 

toxocyst its body adheres to the balloon envelope, typically causing it to burst, which 

may facilitate the delivery of toxins (Truong et al. 2007).  Within 30 to 60 s of contact 

with the toxocyst the nematodes are completely immobilized and soon thereafter 

directional hyphae invade the body orifices and begin to digest the nematode (Thorn and 

Barron 1984; Truong et al. 2007).     

Kwok et al. (1992) identified the nematicidal compound trans-2-decenedioic 

acid, which immobilized 95% of test nematodes (Panagrellus redivivus) within 1 hour, 

and suggested the toxin destroys nerve and muscle function in nematodes by affecting 

membrane permeability.  Immobilized nematodes which are rinsed in deionized water or 

transferred to a fresh water agar plate rarely recover (Barron and Thorn 1987; Kwok et 

al. 1992).  Truong et al. (2007) found that nematodes were paralyzed but not consumed 

when Pleurotus cystidiosus O.K. Miller subsp. abalonus (Y.H. Han, K.M. Chen & S. 

Cheng) O. Hilber was grown on a rich medium (potato dextrose agar).  These paralyzed 

nematodes lived for a long period of time, suggesting death is ultimately caused by 

directional hyphae.  Li et al. (2007a) identified the toxin linoleic acid in P. ostreatus, 

which appears to reduce the size of the nematode head (Satou et al. 2008).     
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Truong et al. (2007) observed the consumption of immobilized nematodes by 

Pleurotus cystidiosus O.K. Mill. when the colony was nutritionally starved on water 

agar.  However, when grown on rich media (PDA) the nematodes were immobilized but 

not penetrated by hyphae despite the induction of toxocysts on the media.  These 

observations support the idea that the role of the toxocyst is not limited to nutrient 

acquisition but also protection against mycophagous nematodes and other microfauna.  

The agarics Conocybe lactea (J.E. Lange) Métrod and Panaeolina foenisecii (Pers.:Fr.) 

R. Maire produce droplets of toxins on conspicuous secretory cells (Hutchison et al. 

1996).  These cells were shown to have an antifeedant function against a mycophagous 

Aphelenchoides species.  Both fungi did not colonize or consume immobilized 

nematodes when cultured on water agar, suggesting an antifeedant function in the 

strictest sense.   

Secretory cells occurring at various densities within the fungal colony may allow 

the fungus to mitigate costs of producing ubiquitous toxins; however the grazer must 

come into contact with them, whether by attraction or chance, for immobilization to 

occur.  Truong et al. (2007) suggested that the storage and production of toxins might be 

more suitable if restricted within the toxocyst, especially if the toxin is potentially 

detrimental to the fungus itself (Kwok et al. 1992).  Secretory cells may therefore be 

advantageous as a means of defence as they allow the production of more toxic 

compounds which are delivered to the grazer at higher concentrations.     
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Endotoxins 

 Tzean and Liou (1993) described two major modes of nematode immobilization 

in 18 Hyphoderma species.  The first mode, involving adhesive stephanocysts, has been 

previously mentioned.  The second mode involves the ingestion of fungal cytoplasmic 

toxins.  Mycophagous nematodes became sluggish and died within 2 h following 

ingestion, while non-mycophagous, free-living nematodes remained unaffected.  

Immobilized nematodes were penetrated by hyphae and consumed within 24h.  Dong et 

al. (2004) identified 13 freshwater fungi which produced endotoxins that were capable 

of immobilizing the nematode B. xylophilus.  Endotoxins require ingestion and therefore 

expose the fungus to some grazing damage before the grazer is immobilized.  However, 

this strategy may be more efficient in terms of metabolic cost than exotoxins, which 

must be constantly secreted to maintain an effective concentration in the substrate.        

CONCLUSION 

An exploration of the current literature reveals a longstanding interest in 

invertebrate mycophagy.  Research interests include assessing the impact of grazing on 

fungal fitness and on the ability of fungi to perform ecological functions.  Despite 

substantial efforts to understand this phenomenon in both laboratory and natural settings, 

our insight into the importance and mechanisms of grazing is very limited.  

Unravelling the complex interactions between grazing invertebrates and their 

fungal prey offers many challenges and exciting possibilities.  Future approaches should 

be directed to microcosm studies which investigate the fitness effects of grazing on both 

the fungus and grazer.  Quantifying the impact of grazing on the fungus must 
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incorporate factors beyond growth rate, such as reproduction capability, competition 

potential, and nutrient acquisition.      

It is evident that neither invertebrates nor fungi are passive participants and that 

their co-existence over the millennia is evidence of both organisms‟ ability to respond to 

one another.  The tremendous success of filamentous fungi in the face of adversity 

suggests the employment of various mechanisms to mitigate general and specific 

damage caused to their hyphal network without risk to the integrity of the entire 

organism.  Robust growth strategies combined with an arsenal of both general and 

specific chemical and physical defence responses may have enabled fungi as a whole to 

flourish while subjected to various environmental pressures including grazing.   
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ABSTRACT 

Tanney, J.B. 2010. The ability of two Sphaerobolus species to encapsulate and 
immobilize the mycophagous nematode Aphelenchoides sp. Pp. 40-71. 

Keywords: Aphelenchoides, defence mechanism, fungivory, gloeocystidium, grazing 
inhibition, hyphal grazing, mycology, mycophagy, nematode, perennial mycelia.  

 The presence of a defence mechanism against nematodes produced by cultures of 

Sphaerobolus stellatus Tode and S. iowensis L.B. Walker is described for the first time.  

Within 3 days of introduction, a mycophagous nematode (Aphelenchoides sp.) exhibited 

lethargic behaviour marked by the cessation of feeding and a reduction in locomotion.  

The anterior portion of the infected nematodes appeared swollen and was observed to be 

encapsulated with a material of unknown composition.  The nematode stylet cannot 

penetrate the cap matrix, preventing further hyphal grazing and subsequently death of 

the nematode occurs through starvation.  Immobilized nematodes are not consumed by 

the fungi.  It is hypothesized that when the nematode pierces a gloeocystidium with its 

stylet the oleaginous contents are released and solidify on the nematode‟s head.  It is 

proposed that the gloeocystidia function to protect the hyphal system and act as an 

antifeedant mechanism to prevent hyphal grazing by mycophagous nematodes and 

possibly other fungus-feeding microfauna.  The identification of such a mechanism 

provides an example of co-evolution between fungi and co-inhabiting microfauna. 
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INTRODUCTION 

 Fungi fulfill critical roles which drive terrestrial ecosystem processes.  

Decomposition of organic matter provides saprotrophic fungi with an energy source 

while providing fertility for primary productivity.  Members of the Basidiomycota and 

Ascomycota that colonize litter and wood are the primary organisms responsible for the 

biological decay of organic carbon compounds (most abundant being cellulose, 

hemicellulose, and lignin) found in these substrates under well oxygenated conditions 

(Rayner and Boddy 1988).   

The extensive hyphal systems produced by these fungi may persist for 

considerable periods of time.  Due to the nutritive value of hyphae, lignicolous fungi 

may be subjected to intensive grazing by invertebrates during this extended mycelial 

phase.  Mycophagous invertebrates include nematodes (Townshend 1964; Riffle 1971), 

enchytraeids (Hedlund and Augustsson 1995; Jaffee et al. 1997), mites (Mitchell and 

Parkinson 1976), collembola (Visser and Whittaker 1977; Shaw 1985), insects (Weber 

1966; Newton 1984), insect larvae (Fletcher et al. 1989; Shaw 1992), mollusks (Silliman 

and Newell 2003), and amoebae (Chakraborty et al. 1985). 

 Grazing is an important factor in regulating higher plant community structure 

and biomass.  Despite the wealth of knowledge accrued over several decades of plant 

ecology research, relatively little attention has been paid to fungal grazing until recently.  

Fungal grazers may alter fungal species richness by selectively eliminating or promoting 

certain species over others (Newell 1984ab; McGonigle 2007).  Invertebrate grazing has 

been shown to impact fungal growth and respiration (Hedlund and Augustsson 1995; 
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Hanlon and Anderson, 1979; Bengtsson et al. 1993; Bretherton et al. 2006; Tordoff et 

al. 2007).  Reproduction may also be adversely affected due to colony grazing 

(Melidossian et al. 2005; Rohlfs 2005) or sporophagy (Gochenaur 1987; Nakamori and 

Suzuki 2007).  

Nematodes are among the most abundant multicellular organisms in the world 

and are of great ecological importance (Bongers and Bongers 1998).  It is estimated that 

there are approximately 29 million nematodes per m2 of mixed deciduous forest soil, and 

that their species diversity worldwide is exceeded only by the arthropods (Bernard 1992; 

Liang et al. 2000).  Mycophagous nematodes feed on fungal hyphae by inserting a 

retractable stylet into the fungal cell and actively pumping out cytoplasm (Siddiqui and 

Taylor 1969).  Extensive feeding by mycophagous nematodes can detrimentally affect 

mycelial networks and, consequently, ecological functions such as decomposition and 

mycorrhizal relationships (Ingham 1988; Gera Hol and Cook 2005; Boddy and Jones 

2008). 

The selection pressures exerted by mycophagous nematodes and other 

invertebrates must have caused fungi to evolve antifeedant mechanisms and other 

appropriate responses to grazing.  These responses may include compensatory growth, 

avoidance, decrease in palatability, or the production of toxic secondary metabolites or 

appendages which physically deter grazing.  Both chemical and physical nematode 

immobilizing and/or killing structures have been described, including almost 200 

nematicidal substances of fungal origin (Li et al. 2007).  With few exceptions, the 

research premise has been that the role of these devices in fungi is to trap nematodes as a 

supplementary nutritional source.  The utilization of nematodes as an exogenous source 
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of nitrogen has been proposed, which may be of importance in relatively nitrogen poor 

woody substrates (Barron and Dierkes 1977; Thorn and Barron 1984). 

Hutchison et al. (1996) identified toxin-producing secretory cells on hyphae of 

Conocybe lactea (J.E. Lange) Métrod and Panaeolus foenisecii (Pers.) Maire but found 

that the fungi did not colonize immobilized nematodes, suggesting an antifeedant 

function.  Rohlfs et al. (2007) found that the collembola Folsomia candida (Willem) 

preferentially grazed upon a mutant Aspergillus nidulans (Eidam) G. Winter strain, 

which was unable to produce many secondary metabolites including mycotoxins, over 

the wild-type strain which was capable of producing an array of secondary metabolites.  

Repellent metabolites and the presence of crystals on the surface of hyphae were 

suggested to be part of the defensive strategies of fungi subjected to grazing by 

Folsomia candida (Böllmann et al. 2010).   

 While conducting antifeedant studies with mycophagous nematodes and various 

decay and mycorrhizal fungi, a novel defence mechanism was observed in Sphaerobolus 

stellatus Tode and S. iowensis Walker.  The genus Sphaerobolus caught the attention of 

early mycologists who recognized its novel and dramatic spore dispersal method (Buller 

1933; Ingold 1972), and has recently attracted notoriety as a nuisance among home and 

vehicle owners (Davis et al. 2005; Grossman 2005).   

Following inoculation onto cultures of Sphaerobolus stellatus and S. iowensis, 

the feeding nematodes soon developed swollen heads which became encapsulated with 

an unknown material that effectively prevented stylet extension and subsequent feeding 
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behaviour.  This study investigates the efficacy and mechanistic evidence of this unique 

antifeedant strategy. 

MATERIALS AND METHODS 

FUNGI 

 Cultures were obtained from peridioles of fresh basidiomata of Sphaerobolus 

stellatus and S. iowensis.  The isolate of S. iowensis (DAOM 232081) and one isolate of 

S. stellatus (DAOM 2343082) originated in Guelph, Ontario and additional cultures of S. 

stellatus (DAOM XXXXXX [#589] and DAOM XXXXXX) were isolated from 

specimens collected in Thunder Bay, Ontario.  Peridioles were removed, surface 

sterilized in 30% hydrogen peroxide for one minute, then washed several times in sterile 

water before being transferred to individual Petri dishes containing modified 2% malt 

extract agar (MEA) (20 g malt extract, 1 g yeast extract, 15 g agar, 1 L distilled water).  

Cultures were maintained on MEA at 20°C and transferred using 7 mm plugs cut with a 

sterile cork borer.  A culture of Coprinopsis macrocephala (Berk.) Redhead, Vilgalys & 

Moncalvo (DAOM 232080) was obtained from tissue pieces of basidiomata originating 

from Guelph, Ontario and maintained on MEA.  Voucher specimens for material from 

Guelph and Thunder Bay were deposited in the University of Guelph Mycological 

Herbarium and the Lakehead University Mycological Herbarium, respectively.  All 

isolates were deposited in the Canadian Collection of Fungal Cultures, Ottawa. 

NEMATODES 

 The mycophagous Aphelenchoides sp. (Figure 2.1) was isolated from forest soil 

on the campus of Lakehead University (Thunder Bay, Ontario).  Basidiomata of 



46 
 

Piptoporus betulinus (Bull.) P. Karst. were cut into pieces and used to bait for 

nematodes.  Nematodes were extracted from the fruiting body pieces using a modified 

Baermann funnel technique (Barron 1977).  Contaminating organisms were overcome 

using a combination of an antibiotic solution (1000 mL water, 300 mg penicillin G, 30 

mg streptomycin) and surface sterilization using 1% NaClO.  Nematodes were selected 

and reared monoaxenically on cultures of Coprinopsis macrocephala and transferred 

once a month.  A culture of nematodes was submitted to Agriculture and Agri-Food 

Canada (Ottawa, Ontario) to confirm the identification of the taxon at the genus level 

based on morphological characteristics. 

FUNGUS-NEMATODE PAIRING 

 All isolates of S. stellatus and S. iowensis were transferred to 1.5% water agar 

(WA) (15 g agar, 1 L tap water) to facilitate initial observations.  After reaching 

approximately two-thirds diameter of the Petri dish, cultures were inoculated with a 

suspension of nematodes in sterile tap water and observed every 24 hours using a 

dissecting microscope.      

Nematodes used for detailed inoculation studies were extracted from C. 

macrocephala cultures using a modified Baermann funnel method (Ruess 1995) and 

nematode concentrations were calculated and adjusted using a haemocytometer.  Fifty µl 

of the nematode suspension in sterile tap water, containing approximately 250 

nematodes, were inoculated onto 4-week-old cultures of DAOM 232082 growing on 

MEA and incubated at 20° C.  Three plates were harvested every 10, 20, and 30 days 

using the modified Baermann funnel method to quantify the number of infected 
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nematodes over time.  Both healthy and encapsulated individuals were counted using a 

Nikon Eclipse E400 phase contrast light compound microscope.   The proportion of 

encapsulated-to-healthy nematodes was calculated by dividing the number of 

encapsulated nematodes by the total number of observed nematodes for each sampling.   

The effect of encapsulation on nematode locomotion was quantified by counting 

the number of lateral head movements per minute of infected and healthy adult 

nematodes.  Approximately 250 nematodes were inoculated on five MEA plates 

containing 4 week-old cultures of DAOM 232082.  Two weeks after inoculation the 

number of movements per minute of 10 encapsulated and 10 healthy individuals was 

recorded for each plate. 

SCANNING ELECTRON MICROSCOPY 

 Infected nematodes were extracted using the modified Baermann funnel method 

(Ruess et al. 1995).  The nematode suspension was transferred to 2 mL Eppendorf tubes 

and centrifuged for 12 minutes at 2000 rpm.  After the supernatant was removed, a 

solution of 4% glutaraldehyde and 0.2 M phosphate buffer (pH 7.0) was added to the 

nematode pellet to obtain a final concentration of 2% glutaraldehyde.  The tubes were 

shaken for 5 minutes and nematodes were fixed in the glutaraldehyde solution for 3 

hours at 4°C.  The suspension was centrifuged for 12 minutes at 2000 rpm and the 

supernatant was removed and replaced with buffer (pH 7.0).  This washing process was 

repeated three times to remove residual glutaraldehyde.  Following washing, the 

suspension was pelletized again and dehydrated in a graded series of ethanol (10, 20, 40, 

60, 80, 100, 100, 100% for 15 minutes each).  Drops of the nematode suspension were 
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placed directly on aluminum stubs and air-dried in a dessicator.  Specimens were 

sputter-coated with gold and examined using a JEOL JSM-5900LV scanning electron 

microscope located at the Lakehead University Instrumentation Laboratory (LUIL).   

LIGHT MICROSCOPY 

Observations of fungal colonies and interactions with nematodes were made using a 

Wild Heerbrugg M5 stereoscope, a Nikon Eclipse E400 phase contrast compound 

microscope, and an Olympus IX51 inverted differential interference contrast 

microscope.  Various mounting media, including Phloxine B (1% aqueous solution), 

lactophenol cotton blue, and Melzer‟s reagent, were used to stain samples (Malloch 

1981).  Measurements were made on material mounted in Phloxine B.  Digital 

micrographs were captured with an Olympus EVOLT E-330. 

STATISTICS 

The experimental design investigating the effect of time on the proportion of 

encapsulated nematodes is illustrated in the following linear model .  

Yijk = µ + Di + S(i)j + ε(ij)k   Equation (1) 

i = 1, 2, 3     j = 1, 2, 3, 4, 5     k = 3 

Where: 

Yijk(l)    = the proportion of encapsulated nematodes from the lth replicate in 
the kth sample of the jth Petri dish on the ith day. 

 µ = the overall mean. 

Di  = the fixed effect of the ith of three levels of factor D. 

S(ij)k  = the nested effected of the kth of five levels of factor S in factors D 
 and P. 
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ε(ijk)l  = the random effect of the lth of 1 experimental unit in the ijkth 
   treatment combination.  The ε(ijk)l are assumed to be i.i.d. N(0, σ2). 

Residuals (εijk) were explored visually with mean frequency histograms and 

quantile-quantile (Q-Q) plots and further tested using the Shapiro-Wilk test for 

normality.  The dependent variables (Yijk) which were not normally distributed were 

transformed respectively.  The Mann-Whitney U-Test (α = 0.05) was used to determine 

the significance of treatments when data were non-normal and could not be sufficiently 

transformed into a normal distribution.  All tests were performed using SPSS Statistics 

17.0 software (SPSS, Chicago, IL, USA).   

RESULTS 

NEMATODE-SPHAEROBOLUS OBSERVATIONS  

 Observations on the feeding habits of Aphelenchoides sp. showed that nematodes 

tended to move along an individual hypha while simultaneously using their heads to 

probe the hypha, presumably testing the turgidity which is indicative of the presence of 

cytoplasm.  Aphelenchoides sp. possess a specialized mouthpart called a stylet, which 

they use to penetrate the hyphal wall and actively pump out the cytoplasm.  After 

feeding, the stylet is retracted and the hyphal cell may appear empty or shrunken.  

Colonies of C. macrocephala supported the rapid population growth of Aphelenchoides 

sp., with subsequent feeding causing the destruction of virtually all aerial mycelium, 

resulting in a characteristic moist and appressed colony appearance.  These observations 

on the impact of grazing nematodes were parallel to those made by other authors (Riffle 

1967; Sutherland and Fortin 1968; Ruess and Dighton 1996). 
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Following inoculation onto cultures of S. stellatus and S. iowensis, nematodes 

migrated to the margins of colonies or into the agar below the colonies.  Within 24 hours 

after introduction, a few of the nematodes occupying the colony surface exhibited a 

decrease in locomotion, a complete cessation of feeding behaviour, and the 

encapsulation of their anterior portion with a material of unknown composition (Figure 

2.5).  The encapsulating material was always found concentrated on the anterior end of 

the nematode with a lesser amount occasionally found adhering along the lateral portion 

(Figure 2.4).  The caps were accentuated when mounted in lactophenol cotton blue and 

phloxine B, indicating the absorption of both dyes by the encapsulating matter.   

Surface hyphae of S. stellatus and S. iowensis growing on MEA produced 

conspicuous upright cells, similar in morphology to gloeocystidia (Figures 2.2 and 2.3).  

The gloeocystidia were erect and narrow, approximately 40.0-110.0 µm tall and 2.0-4.0 

µm wide.  The apex of the gloeocystidia possessed numerous bulbous, knob-like 

projections (3-25 per gloeocystidium), with each knob being 1.5-2.0 × 2.0-8.0 µm. The 

gloeocystidia were variable in shape and found at concentrations of up to 8000/cm2 on 

water agar.  Contents of the gloeocystidia possessed a refractive index different from the 

subtending hyphae, appearing oily.  Crystals were found encrusting both hyphae (Figure 

2.4) and the knob-like projections of the gloeocystidia when cultures were grown on 

water agar for several weeks.  Gloeocystidia were sometimes found detached and 

adhering to the globular material encapsulating the infected nematodes.  
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FIGS 2.1-2.5. 2.1. SEM micrograph of control Aphelenchoides sp. reared on C. 

macrocephala (bar = 5 µm).  2.2-2.3. Gloeocystidia on aerial hyphae of S. stellatus (bar 

= 20 µm).  2.4. Encapsulated nematode with adhering material along the body (bar = 120 

µm).  2.5. SEM micrograph of encapsulated nematode head (bar = 10 µm).
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Rate of Encapsulation 

 Variable proportions of encapsulated nematodes were observed among dishes 

and the three time treatments (Table 2.1).  The total observed nematodes on day 10, 20, 

and 30 were 962, 6359, and 10240 individuals, respectively, indicating a rapid 

population growth.    

Table 2.1. Nematode encapsulation rates observed with time treatments. 

Day Dish Proportion of Encapsulated 
Nematodes (%) 

10 1 21.80 
10 2 11.12 
10 3 14.92 

Average 15.95 

 
20 1 31.82 
20 2 16.09 
20 3 12.43 

Average 20.12 

 
30 1 21.74 
30 2 20.58 
30 3 17.97 

Average 20.09 
 

The data representing the proportion of encapsulated nematodes over time was 

explored prior to further analysis.  A visual test using a data frequency histogram and 

quantile-quantile plot (Q-Q plot) shows that the residuals do not appear to conform to a 

normal distribution (Figure 2.6 and 2.7).   
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Figure 2.6. Mean frequency histogram for proportion of encapsulated nematodes. 
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Figure 2.7. Normal Q-Q plot for proportion of encapsulated nematodes data. 

The Shapiro-Wilk test for normality was used to quantitatively assess the 

distribution of residuals.  The skewness value indicated a highly positive skew, 

indicative of a non-symmetric distribution.  The Shapiro-Wilk test with a p-value < 0.05 

rejected the null hypothesis that the residuals are normally distributed.  The proportional 

data are therefore not normally distributed and do not meet the assumptions of an 

ANOVA test. 

Table 2.2. Normality test statistics for the proportion of encapsulated nematodes data. 
 

Skewness Kurtosis Shapiro-Wilk 
Statistic Statistic Statistic df Sig. 
1.400 2.703 .893 45 .001 
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The data ( proportion of encapsulated nematodes %) were transformed using a 

base-10 logarithmic transformation.  The mean frequency histogram and Q-Q plot 

demonstrated an acceptable degree of normality for the transformed data (Figure 2.8 and 

2.9). 

Figure 2.8. Mean frequency histogram for transformed proportion of encapsulated 
 nematodes. 
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Figure 2.9. Normal Q-Q plot for transformed proportion of encapsulated nematodes 
 data. 

The skewness and kurtosis values indicated an improvement in the normality of 

the data (Table 2.3).  The Shapiro-Wilk test with a p-value > 0.05 fails to reject the null 

hypothesis that the residuals are normally distributed.   

Table 2.3. Normality test statistics for the transformed proportion of encapsulated 
 nematodes data. 
 

Skewness Kurtosis Shapiro-Wilk 
Statistic Statistic Statistic df Sig. 

-.111 .197 .986 45 .858 
 

 The number of days after nematode inoculation did not have a significant effect 

on the proportion of encapsulated nematodes (Table 2.4).   
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Table 2.4. ANOVA results for proportion of encapsulated nematodes data. 
 

 
An increase in the proportion of encapsulated nematodes over time is observed in 

Figure 2.10, however this trend is not as readily apparent when the average proportion of 

infected nematodes per dish over time are viewed (Figure 2.11).  An increase in the 

number of replicates used in the experiment may help reduce the error associated with 

the dish effect. 

Source Type III Sum 
of Squares df Mean Square F Sig. 

Intercept Hypothesis 27.038 1 27.038 786.572 .000 
Error .412 126 .034   

Day Hypothesis .180 2 .090 2.623 .113 
Error .412 2 .034   

Sample(Day) Hypothesis .412 12 .034 .799 .648 
Error 1.291 30 .043   
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Figure 2.10. Proportion of encapsulated nematodes over 3 sample periods. 
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Figure 2.11. Proportion of encapsulated nematodes over time for each Petri dish count. 
 

The matrix of the cap obstructed stylet extension, preventing infected nematodes 

from feeding on fungal hyphae.  Affected nematodes demonstrated reduced activity and 

eventually appeared dead when physical stimulation did not incite a physical response.  

There was no reaction by the hyphae of either S. stellatus or S. iowensis to the presence 

of dead nematodes.  Nematodes eventually degraded over time; however, the 

encapsulating material persisted.  The infection rate was not high enough to prevent the 

reproduction and subsequent development of low and apparently sustainable nematode 

populations over time.  The encapsulation phenomenon was never observed with an 

unidentified bacterial-feeding nematode introduced onto Sphaerobolus cultures.   
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Effect of Encapsulation on Nematode Movement 

To determine the effect of encapsulation on the number of lateral turns, a Mann-

Whitney U-Test was performed due to the non-normal dataset and inability to transform 

the data into a normal distribution.  The data were ranked accordingly prior to the test.  

The encapsulation phenomenon had a significant effect on the number of lateral head 

turns made by the affected nematodes (Table 2.5).  

Table 2.5. Mann-Whitney U-Test results for effects of encapsulation on number of 
lateral  head turns. 

 Health Status N Mean Rank Sum of Ranks 
Movement Healthy 50 75.23 3761.50 

Encapsulated 50 25.77 1288.50 
Total 100   

Test Statistics Movement   
Mann-Whitney U 13.500   
Wilcoxon W 1288.500   
Z -8.532   
Asymp. Sig (2-tailed) .000   

 
Nematodes with encapsulated heads displayed a 75% decrease in lateral head 

turns per minute (5.1 ± 3.4) compared to healthy specimens (20.1 ± 6.0) (Figure 2.12).  

Head turns often resulted in a full sigmoid wave in healthy individuals but rarely so in 

infected nematodes, whose movements were restricted to feeble gestures of the head, 

infrequently resulting in actual locomotion.  Encapsulated nematodes were always found 

occupying the agar surface and appeared unable to penetrate and move into the 

substrate, which healthy nematodes frequently inhabited. 

 



62 
 

Figure 2.12. Effect of encapsulation on nematode movement (error bars = 2 standard 
 errors). 

 

DISCUSSION 

 It is hypothesized that the encapsulating material originates from the 

gloeocystidia produced on the surface mycelium of Sphaerobolus colonies.  When a 

fungus-feeding nematode such as Aphelenchoides sp. inserts its stylet into the 

gloeocystidium, the oleaginous-like contents are liberated and come into contact with 

the nematode head.  The oleaginous contents solidify and form a persistent cap on the 

head of the nematode.  Although the composition of the cap is unknown at present, the 

matrix is of a nature which incapacitates the stylet so that it is no longer functional.  As 

the nematode can no longer feed and movement is restricted, it is eliminated as a threat 
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to the hyphal network.  The free-living bacterial-feeding nematodes possess sucking 

mouthparts for consuming bacteria and detritus as nutrient sources and are unable to 

pierce fungal hyphae.  These nematodes were never encapsulated in the presence of 

gloeocystidia, suggesting the feeding behaviour of the Aphelenchoides sp. may play a 

key role in the antifeedant process.  The gloeocystidia are therefore presented as a novel 

antifeedant mechanism which enables S. iowensis and S. stellatus to protect their hyphal 

network from grazing mycophagous nematodes.   

 Although gloeocystidia occur at relatively high densities on MEA and WA, the 

infection rates were not observed to be proportionally high.  Gloeocystidia were 

restricted to the agar surface, permitting the relative safety of grazing nematodes when 

feeding on hyphae submerged in the agar.  The observed immobilization rates over time 

do not represent an absolute proportion of infected individuals, as the fecund nematodes 

are able to rapidly reproduce on Sphaerobolus cultures, which also indicates that 

Sphaerobolus hyphae is of sufficient nutritional content to sustain Aphelenchoides sp.  

The majority of immobilized nematodes appeared to be adults.  It is plausible that 

juvenile nematodes are able to shed the encapsulating material through moulting, which 

might account for the low number of infected juveniles.  Moulting has been found to 

facilitate the removal of parasites in other organisms (Whitney 1982), an inadvertent or 

deliberate benefit of moulting which may also be applicable to nematodes.  The high 

variability found in the plate counts over the three time periods suggests a larger sample 

size is required to more accurately determine the effect of time on the proportion of 

infected nematodes.   

Agerer et al. (1994) reported that the cystidia on the ectomycorrhizae formed by 
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species of Russula exuded an oily substance when the apical knob was broken off.  

These ectomycorrhizal cystidia were suggested by Agerer et al. (1994) to function as a 

possible defence mechanism against grazing soil invertebrates.  The sticky cystidial 

secretions on Russula bella Hongo fruiting bodies were implicated in the deaths of two 

grazing collembolan species, although the exact mechanism remains unclear (Nakamori 

and Suzuki 2007).  Because gloeocystidia have evolved independently among many 

different taxonomic groups within the Basidiomycota, particularly among members of 

the Corticiaceae s.l. (Talbot 1954; Jülich and Stalpers 1980, Maekawa 1994), it is 

suggested that they possibly play some sort of similar defensive role as that observed 

with S. stellatus and S. iowensis.  Future research directions may involve investigating 

the interactions between grazing invertebrates and the lactiferous hyphae of some fungi, 

including species of Lactarius.   

Although the ability of Sphaerobolus to defend itself against grazing by 

obstructing the mouthparts of the grazer may be the only known example among fungi, 

this strategy has been observed in other organisms.  Darby et al. (2002) found that the 

bacterium Yersinia pestis (Lehmann & Neumann) produced an extracellular biofilm 

which obstructed the mouthparts and inhibited feeding in the bacteria-feeding nematode 

Caenorhabditis elegans Maupas.  Almost 8% of all plant species bear laticiferous 

structures, which have been implicated in both chemical and physical defence roles, 

including the gumming up of feeding insect mouthparts (Lewinsohn 1991).  Such 

defensive phenomena are referred to as “antifeedants”, which are counter predation 

measures that are either chemical or physical in nature, and are utilized by one organism 

to prevent or deter being eaten by another.  The occurrence of antifeedants among 
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animals (e.g.: Eisner et al. 1996) and vascular plants (e.g.: Cooper and Owen-Smith 

1986, Dalin and Björkman 2003, Rhoades 1979) is well recognized, but such 

observations among Ascomycetous and Basidiomycetous fungi have been few.  Apart 

from the present report on the function of gloeocystidia, other such antifeedant 

mechanisms also include the presence of setae on perithecia of Chaetomium spp. 

(Wicklow 1979), the production of toxin droplets from secretory cells of Conocybe 

lactea and Panaeolina foenisecii (Hutchison et al. 1996), the production of cytoplasmic 

toxins in fungal hyphae (Shaw 1985; Tzean and Liou 1993), the release of toxic volatiles 

and antibiotics from fungal hyphae (e.g.: Hayashi et al. 1981, Riffle 1971, Stadler et al. 

1993; Stadler et al. 1994; Rohlfs et al. 2007), and the presence of calcium oxalate 

crystals on hyphae (Böllmann et al. 2010).  All of these types of known or possible 

antifeedants among fungi must have evolved in response to grazing by fungus-feeding 

invertebrates including mycophagous nematodes. 

There are many more facets of this interaction which demand further 

investigation.  The model organism used in this study, a species of Aphelenchoides, is 

most likely one of several “target organisms” of this defence mechanism, as there are 

many other mycophagists which may graze on Sphaerobolus colonies in situ.  The 

effects of gloeocystidia on other mycophagist microorganisms with various feeding 

mouthparts, such as collembola and mites, might offer more insight into this defensive 

interaction.  The chemical composition of the encapsulating material on infected 

specimens must also be identified to further the understanding of this unique defence 

mechanism.  The evidence of antifeedants in fungi offers an exciting opportunity to 
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investigate potentially novel mechanisms which are of systematic, ecological, and 

possibly applied significance.  
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ABSTRACT 

Tanney, J.B. 2010. The production of nematode-immobilizing secretory cells by 
Climacodon septentrionalis. Pp. 72-87. 

Keywords: Aphelenchoides, defence mechanism, fungivory, grazing inhibition, hyphal 
grazing, mycophagy, nematode, perennial mycelia, secretory cell, wood-decay.  

 The ability of Climacodon septentrionalis (Fr.) P. Karst to immobilize and kill a 

mycophagous nematode (Aphelenchoides sp.) in vitro is described for the first time.  

Two isolates produced droplets which formed at the apices of tall, stalked, and 

branching secretory cells.  On 2% modified malt extract agar, nematodes became 

enveloped in the droplets, which restricted their ability to move and resulted in complete 

immobilization and death within several hours of contact.   Immobilized or killed 

nematodes were rarely colonized by dense hyphal growth, with some individuals 

persisting for weeks while others were degraded within several days.  The exact 

mechanism which causes the immobilization of nematodes is currently unknown.  This 

study, involving 14 growth media, demonstrated the effect of the growth media 

composition and concentrations on secretory cell production.  This study provides the 

first documentation of a non-agaricoid fungus producing secretory cells which are able 

to immobilize nematodes. 
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INTRODUCTION 

 The ability of fungi to immobilize and kill co-inhabiting microorganisms has 

captured the interests of researchers for over a century (Zopf 1888).  Some soil-

inhabiting members of the Ascomycota may trap and consume invertebrates such as 

tardigrades, nematodes, rotifers, and amoebae via the employment of constricting rings 

or modified adhesive hyphae and conidia (Gray 1987).  The list of basidiomycetous 

fungi which consume invertebrates has continued to grow, since it was first discovered 

that Nematoctonus was capable of capturing nematodes with hourglass-shaped adhesive 

knobs (Drechsler 1949).  The stephanocysts of Hyphoderma serve a similar function by 

acting as adhesive trapping devices (Liou and Tzean 1992).  Toxic droplets produced by 

secretory structures (“toxocysts”) on hyphae of members of the genus Pleurotus 

immobilize nematodes, enabling rapid penetration and consumption via directional 

hyphae (Barron and Thorn 1987; Hibbett and Thorn, 1994; Mamiya et al. 2005).  Sharp 

crystalline structures, such as the spiny balls produced by Coprinus comatus (O.F. 

Müll.:Fr.) Pers. and the acanthocytes of Stropharia rugosoannulata Farlow ex Murrill, 

can immobilize nematodes by physically damaging the cuticle and causing the leakage 

of inner contents (Luo et al. 2007; Luo et al. 2006). 

 It has been suggested that the ability of wood-decaying basidiomycetous fungi to 

immobilize and consume nematodes and other invertebrates is analogous to that of 

carnivorous plants (Thorn and Barron 1984).   The relatively nitrogen-poor substrate 

which these fungi subsist on may be supplemented with exogenous sources of nutrients 

including yeasts, bacteria, pollen grains, spores, and the various invertebrates which 
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occupy their environment (Hutchison and Barron 1996; Barron 1988; Hutchison and 

Barron 1997; Fries and Swedjemark 1985).   

It is also proposed that the ability to immobilize invertebrates may also serve as a 

defensive function by preventing the subsequent grazing by fungivorous invertebrates on 

the fungus colony.  Hutchison et al. (1996) found that the lawn-inhabiting agarics 

Conocybe lactea (Lange) Métrod and Panaeolina foenisecii (Pers.: Fr.) R. Maire 

produced secretory cells which immobilized nematodes.  These fungi did not consume 

the nematodes after immobilizing and killing them, suggesting a defensive function. 

An ongoing study investigating the presence of possible antifeedant mechanisms 

in fungi with perennial mycelia spurred interest in the interactions between Climacodon 

septentrionalis (Fr.) P. Karst and a mycophagist nematode.  The white rot fungus C. 

septentrionalis causes heart rot in living hardwoods, notably species of Acer (Farr et al. 

1989; Ginns and Lefebvre 1993).  The presence of its very large, shelving hydnoid 

basidiome is indicative of extensive decay within the host tree (Coker and Beers 1951; 

Koski-Kotiranta and Niemelä 1987).  Relatively little research has been conducted 

regarding the biology and ecology of this hemerophilous fungus, presumably due to its 

low economic impact.  However, C. septentrionalis may be an aggressive parasite of 

mature hardwoods in the urban environment (Koski-Kotiranta and Niemelä 1988). 

When nematodes were introduced to cultures of C. septentionalis they quickly 

became immobilized in the aerial mycelia.  This paper describes the previously unknown 

ability of C. septentrionalis to immobilize nematodes in vitro and the possible 

mechanisms involved. 
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MATERIALS AND METHODS 

SOURCE OF FUNGAL CULTURES 

 Experiments were conducted using two isolates of Climacodon septentrionalis 

(DAOM XXXXXX, XXXXXX).  Isolate DAOM XXXXXX was derived from tissue of 

a fresh basidiome growing on a declining Acer saccharinum L. tree in Thunder Bay, 

Ontario.  The second isolate originated from basidiome tissue collected from the base of 

a mature Acer nigrum Michx. tree in London, Ontario.  Cultures were grown on 

modified 2% malt extract agar (MEA) (20 g malt extract, 15 g agar, 1 g yeast extract, 

1000 mL sterile distilled water) and transferred monthly.  All isolates were deposited in 

the Canadian Collection of Fungal Cultures, Ottawa. 

NEMATODE ISOLATION AND COLLECTION 

The mycophagist nematodes used in this study were a species of Aphelenchoides 

isolated from forest soil in Thunder Bay, Ontario.  Basidiomata of Piptoporus betulinus 

(Bull.) P. Karst. were cut into pieces and used to bait the soil for nematodes.  Nematodes 

were extracted from the fruiting body pieces using a modified Baermann funnel 

technique (Barron 1977) and surface sterilized using a combination of an antibiotic 

solution (1000 ml water, 300 mg penicillin G, 30 mg streptomycin) and 1 % NaClO.  

Nematodes were selected and reared monoaxenically on cultures of Coprinopsis 

macrocephala (Berk.) Redhead, Vilgalys & Moncalvo (DAOM 232080) and transferred 

monthly.   

 Nematodes were harvested from C. macrocephala colonies using a modified 

Baermann funnel technique described by Ruess (1995).  The nematode and tap water 
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suspension was calculated and adjusted using a haemocytometer.  Fifty µl of the 

suspension containing approximately 250 nematodes were inoculated onto cultures of 

the two C. septentrionalis isolates growing on both MEA and water agar (WA) (15g 

agar, 1000 mL distilled water). 

MEDIA STUDY 

 Isolate DAOM XXXXXX was cultured on various MEA and Czapek‟s solution 

agar (CSA) (Malloch 1981) concentrations, where either the sucrose and/or NaNO3 

levels were altered (as in CSA) or the malt extract levels were altered (as in MEA), to 

assess the effect of nutrients on secretory cell production.  Individual water agar plugs 

containing 4-week-old mycelia were placed in the centre of Petri dishes containing the 

various media concentrations (Table 3.1).  For each media treatment, two 1 mm2 areas of 

the colony were randomly selected and the number of droplet-forming secretory cells 

was counted using a dissecting microscope.  The experiment was conducted in triplicate 

for each medium and the results expressed as means.  The effect of media on the number 

of observed secretory cells was explored using the Kruskal-Wallis H-Test and Mann-

Whitney U-Test with SPSS Statistics 17.0 software (SPSS Inc. 2008). 

MICROSCOPY 

Specimens were mounted in several stains including Phloxine B, lactophenol 

cotton blue, and Melzer‟s reagent.  Observations were made using a Wild Heerbrugg M5 

stereoscope and a Nikon Eclipse E400 phase contrast light compound microscope.  

Measurements were made on material mounted in Phloxine B.  Digital micrographs 

were captured with an Olympus EVOLT E-330.  
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RESULTS 

SECRETORY CELL OBSERVATIONS 

 Secretory cells were produced on aerial mycelia in great abundance by the two 

Climacodon septentrionalis isolates on MEA.  The cells were first produced in the 

centre of young colonies and later covered the entire surface of mature colonies.  The 

secretory cell apices were swollen and obovoid to spathulate, approximately 8-18 µm (  

= 11 µm) wide, and produced on tall, septate, single-celled stalks which branched 1-3 

times (Figure 3.2).  Individual stalks were 700-1500 µm tall; however the branches were 

often many times taller but difficult to measure due to their dense growth.  Large, 

transparent droplets, approximately 20-45 µm (  = 33 µm) in diameter, were produced at 

the apex of the secretory cells and appeared to be insoluble in water.  In the presence of 

nematodes or when cultures were mechanically damaged, the droplets became reddish in 

colour as the colony matured and appeared to solidify when the stalks collapsed and 

came into contact with the agar surface.  A change in the colour of droplets was not 

observed in cultures not inoculated with nematodes or not mechanically damaged.  

NEMATODE-FUNGUS INTERACTIONS 

 Following inoculation, nematodes descended into the agar substrate or moved 

along aerial hyphae.  Nematodes occupying the younger colony margins, where 

secretory cells were absent, were able to move freely and feed on hyphae.  When 

nematodes came into contact with secretory cell droplets their movement was restricted.  

The droplets enveloped portions of the nematode body, resulting in struggling motions 

and a decrease in locomotion.  Head-waving was frequently observed in the confined 
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nematodes in an attempt to locate adjacent hyphae.  The movement of nematodes 

frequently caused droplets to coalesce, further ensnaring them (Figures 3.1 and 3.3).  

Individuals enveloped by a small number of droplets were sometimes able to liberate 

themselves. 

 The movements of nematodes became feeble within an hour after immobilization 

occurred.  When movement ceased, the nematodes appeared dead and did not react to 

contact stimuli.  Nematodes which were put into contact with droplets and removed to a 

clean water agar Petri dish rarely recovered and appeared immobilized or dead.  Hyphae 

were never found penetrating the nematode cuticle or orifices, however dense hyphal 

growth around the immobilized nematodes was infrequently observed 24-72 hours after 

immobilization.  Nematodes degraded at a variable rate, with some persisting for weeks 

while those enveloped in hyphae becoming unrecognizable within 72 hours.  The 

production of secretory cells was not observed when isolates were when grown on 

Czapek Solution Agar (Malloch 1981) or WA media.  When dead nematodes were place 

on C. septentrionalis colonies reared on WA, an increase in nematode colonization or 

the occurrence of directional hyphae growth was not observed. 
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FIGS 3.1-4. 3.1,3. Nematodes immobilized within droplets exuded from secretory cells 

(bar = 100 µm). 3.2. Secretory cell produced on aerial mycelia of C. septentrionalis  

(bar = 10 µm). 3.4. Hyphal growth enveloping dead nematode (bar = 100 µm). 
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MEDIA STUDY    

 The residuals obtained from the media study were not normally distributed and 

attempts to transform the data were unsuccessful.  The Kruskal-Wallis H-Test, a non-

parametric method, was therefore selected to compare the treatments (Table 3.2).  The 

data were ranked accordingly prior to the test.   

The results of the Kruskal-Wallis H-Test rejected the null hypothesis that the 

probability distributions of the number of secretory cells are the same for all media 

treatments (Table 3.1).    

Table 3.1. Kruskal-Wallis H-test results for the effect of medium on secretory cell 
 production. 
 

 Media 
Chi-Square 79.785 
df 13 
Asymp. Sig. .000 

 

To determine which media were significantly different than one another, Mann-

Whitney U Tests were performed for every combination of media pairs.  The groups of 

media which were not significantly different were placed into 3 subsets for comparison 

(Table 3.2).  The nine media concentrations which produced zero secretory cells were 

grouped together.  All concentrations of CSA media resulted in appressed growth with 

sparse aerial mycelium.  The production of secretory cells was not observed in isolate 

DAOM XXXXXX when grown on CSA, WA, or 0% MEA media.  The second group 

consisted of four growth media which produced a moderate number of secretory cells 

within the aerial mycelia.  The greatest production of secretory cells was observed in 2% 

MEA, which was significantly different than all other media concentrations.   
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Table 3.2. Media subgroups categorized via Mann-Whitney U tests. 
 

Media 
Subset (mean # cells / mm2) 

1 2 3 
0% MEA (yeast) 0.0   
CSA 0.0   
CSA 0 g NaNO3 0.0   
CSA 0 g sucrose 0.0   
CSA 0 g sucrose 0 g NaNO3 0.0   
CSA 0.5 g NaNO3 0.0   
CSA 0.5 g sucrose 0.0   
CSA 1.5 g sucrose 0.5 g NaNO3 0.0   
WA 0.0   
2% MEA (no yeast)  113.5  
1% MEA  140.0  
1.5% MEA  146.3  
0.5% MEA  170.3  
2% MEA   235.3 

 

DISCUSSION 

 The presence of nematode-immobilizing secretory cells in C. septentrionalis 

offers the first example of such a structure in a non-agaricoid fungus.  The cells present 

in C. septentrionalis are produced on relatively tall, branching support stalks when 

grown on MEA, compared to similar but shorter and non-branched structures produced 

by Pleurotus spp., Conocybe lactea, and Panaeolina foenisecii.  The occurrence of 

secretory cells at various densities within the fungal colony may offer several 

advantages over the production and excretion of extracellular toxins.  Producing small 

quantities of concentrated toxins may be less metabolically costly than the continuous 

production of larger quantities of excreted toxins.  The storage and production of toxins 
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might also be more suitable if restricted within a structure such as a secretory cell 

droplet, especially if the toxin is potentially detrimental to the fungus itself (Truong et 

al. 2007; Kwok et al. 1992).  

 The precise mechanism which causes the immobilization and subsequent death 

of the nematodes is currently unknown.  The viscosity of the liquid droplet appears to 

play a role in restricting the movement of nematodes; however nematodes which were 

removed from the droplets and placed on blank WA plates seldom recovered.  

Investigating the chemical composition of the droplets and conducting bioassays on 

several species of free-living nematodes should be the next step in the attempt to 

elucidate the immobilization effect of the secretory cells. 

 Immobilized nematodes degraded at inconsistent rates.  This was suspected to be 

a result of inoculation experiments being conducted on a nutrient rich medium, which 

may negate the requirement to consume exogenous nutrient sources by the fungus.  

Truong et al. (2007) observed the consumption of immobilized nematodes by Pleurotus 

cystidiosus O.K. Mill. when the colony was nutritionally starved on WA.  However, 

when raised on a nutrient rich medium (PDA), the authors noted that the nematodes 

were immobilized but not penetrated by hyphae despite the induction of toxocysts on the 

media.  These observations may support the concept that the role of immobilizing 

structures is not limited to nutrient acquisition but also protection against mycophagous 

nematodes and other microfauna.  However, the present author found that when dead 

nematodes were placed on C. septentrionalis colonies which were nutritionally starved 

on WA, no increase in nematode colonization or degradation was observed.  Although it 
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is tempting to therefore describe the function of the secretory cells as purely defensive, it 

is possible that other nematode or invertebrate species may be readily consumed.  

 Okada et al. (2005) found that Pleurotus ostreatus (Jacq. Ex Fr.) Kummer, a 

recognized nematophagous fungus, was a viable food source for six Filenchus species.  

Nematodes are one of the most diverse groups of organisms on our planet.  It is not 

surprising that results from investigations utilizing specific nematode model organisms 

may not be applicable to all nematode species.  The relatively tall stalks and varying rate 

of nematode immobilization and decomposition suggest other invertebrate groups may 

be targeted by the secretory cells of C. septentrionalis. 

 The results presented in this chapter offer a stimulus for continued surveying of 

fungi and examining their interactions with their co-inhabiting fauna.  Future 

experiments should include screening various invertebrate species with C. 

septentrionalis cultures, such as mites, Collembola, and other organisms which may 

share the same habitat.  Fungi that produce similar structures in culture should be 

examined to determine if they have similar functions.  
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APPENDIX I  

LIST OF FUNGI USED IN NEMATODE PAIRINGS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



89 
 

 
Species Culture 

1 Agaricus bitorquis 
2 Agrocybe dura 198 
3 Alpova mollis 416 
4 Amanita muscaria var. alba 500 
5 Amanita muscaria var. formosa 224 
6 Amanita pantherina 228 
7 Armillaria ostoyae 254 
8 Asterophora lycoperdoides 
9 Auriscalpium vulgare 307 
10 Baeospora myosura 080 
11 Baeospora sp. 
12 Bisporella citrina 239 
13 Bjerkandera adusta 297 
14 Boletus edulis 415 
15 Bovista sp. 426 
16 Calvatia utriformis 448 
17 Chalciporous piperatus 456 
18 Chlorociboria aeruginascens 141 
19 Clavariadelphus ligula 203 
20 Climacodon septentrionalis 
21 Climacodon septentrionalis 086 
22 Coprinus ephemerus 422 
23 Coprinus heptemerus 488 
24 Coprinus stercoreus 141 
25 Crinipellis stipitaria 203 
26 Crucibulum laeve 419 
27 Entoloma abortivum 
28 Entoloma sp. 89 
29 Flammulina rossica 441 
30 Flammulina velutipes 123 
31 Fomes fomentarius 312 
32 Fomitopsis pinicola 230 
33 Fomitopsis roseum 403 
34 Galerina autumnalis 078 
35 Ganoderma applanatum 
36 Grifola frondosa 197 
37 Gyromitra gigas 489 
38 Hebeloma crustuliniforme 079 
39 Hebeloma mesophaeum 397 
40 Hericium coralloides 
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Species Culture 

41 Heterobasidion annosum 
42 Inonotus tomentosus 
43 Laccaria bicolor 227 
44 Lactarius deliciosus 
45 Laetiporus sulphureus 189 
46 Lentinellus montanus 430 
47 Lepista nuda 420 
48 Leucoagaricus naucina 
49 Lycoperdon pyriforme 292 
50 Lyophyllum decastes 
51 Morchella elata 
52 Mutinus caninus 207 
53 Panus serotinus 512 
54 Paxillus involutus 231 
55 Peniophora rufa 232 
56 Phaeolepiota aurea 589 
57 Phaeolus schweinitzii 222 
58 Phellinus tremulae 427 
59 Pholiota aurivella 294 
60 Piptoporus betulinus 90 
61 Plicaturopsis crispa 292 
62 Polyporus varius 
63 Psilocybe sp. 1 
64 Psilocybe inquilina 223 
65 Psilocybe sp. 2 224 
66 Rhizopogon ellenae 413 
67 Rhizopogon rubescens 297 
68 Sphaerobolus iowensis 415 
69 Sphaerobolus stellatus 123 
70 Sphaerobolus stellatus 237 
71 Suillus granulatus 206 
72 Suillus umbonatus 192 
73 Trametes suaveolens 095 
74 Tricholoma vaccinum 423 
75 Tuber sp.  308 
76 Urnula craterium 199 
77 Xeromphalina campanela 210 
78 Xylaria polymorpha 417 

 


