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Abstract

In the past few years, researchers have shown great interest in quadrotor air-
craft as a platform for UAV research due to simplicity of construction as well
as maintenance, ability to hover in small indoor locations or hazardous envi-
ronments, vertical take-off and landing capability, etc. Attitude stabilization
of a quadrotor requires accurate information about current orientation of the
vehicle. With the emergence of Micro-Electro-Mechanical System (MEMS)
sensors, a relatively cost-effective way for attitude estimation consists of us-
ing gyroscope, accelerometer and magnetometer devices strapped down on
vehicle’s center of mass. A number of previous works deal with fusing angular
velocity with measurements of accelerometer and magnetometer to construct
an estimation of aircraft orientation.
Through this thesis, a brief survey of attitude representation formulations
for a rigid body is presented followed by a dynamical model of quadrotor
aircraft. Since the uncertainties involved with sensor measurements could
affect the attitude estimation, sensor calibration methods are discussed and
implemented to improve the accuracy of the measurements. Also, implemen-
tation of two attitude estimation algorithms is discussed. The first algorithm
uses raw vector measurements to construct an estimation of aircraft attitude
using the unit-quaternion formulation while the second approach introduces
a more practical observer by using filtered vector measurements. A number
of experimental results are presented to illustrate the performance of each
estimator in real time.
A practical experimental setup is designed and implemented on a model size
quadrotor frame, featuring an inertial measurement unit (gyroscopes, 3-axis
accelerometer, 3-axis magnetometer), DC motor drivers, the required power
and safety plants and a microcontroller.
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CHAPTER1
Introduction

During the last years, the interest in unmanned aerial vehicles (UAVs) has
increased tremendously among the researchers. Primarily, these type of vehi-
cles have been the subject of interest for various field of applications including
military and rescue operations, surveillance, inspection, aerial remote map-
ping, etc.
Several configurations have been investigated and developed to achieve au-
tonomous flight. The rotary wing aircraft (helicopter) is a popular structure
accommodated in this category, considering its maneuverability and the ca-
pability to land / take off vertically. Quadrotor aircraft is one of the successful
helicopter design configurations which has mentionable advantageous factors
in comparison with the conventional helicopters. Among the expedient char-
acteristics of a quadrotor aircraft are the simplicity of design and control,
due to using the fixed-pitch rotors as well as the elimination of tail rotor.
With the arrival of MEMS technology and consequently, the availability of
miniature sized inertial sensors, the past decade has witnessed a rising inter-
est in quadrotor UAV platforms among the academic research teams. From
a theoretical perspective, many authors have investigated control strategies
to maintain a stable hovering condition for UAVs. However, in practice,
the uncertainties and faults involved with sensor measurements as well as
the highly unstable nature of flying objects make the attitude stabilization
of the aerial robots a major challenge. From the control engineering point
of view, this factors make the attitude control of rigid bodies an extremely
interesting concept.

1



CHAPTER 1. INTRODUCTION 2

1.0.1 Brief Quadrotor History

Generally, two main generations could be defined in quadrotor design his-
tory. The earlier generation were developed seeking the capability of carry-
ing passengers and usage in military missions. While the latest quadrotor
design generation took off with the emergence of low cost and light weight
MEMS sensors making it possible to build model sized aircraft capable of
autonomous flight. In the past decade the quadrotors have been used mainly
as a popular test bed to design an unmanned aerial vehicle. Small size, agile
maneuverability, low cost, simple maintenance and the capability of flight in-
door as well as outdoor environments are some advantageous characteristics,
leading to a significant growth of academic research interest in quadrotor
platforms as potential unmanned aerial vehicles.
The history of quadrotor design dates back more than a century. In sum-
mer of 1907, only four years after the Wright brothers recorded the first
controllable flight by an airplane, Louis and Jacques Breguet in association
with Professor Charles Richet built a quadrotor named Gyroplane [23]. This
model was an X-shaped steel construction. At the end of each arm, a four
blade rotor was mounted. One pair of diagonally opposed rotors rotated in a
clockwise direction while the other pair rotated counter-clockwise. All rotors
were driven by a 40/45 h.p Antoinette piston-engine mounted in the rectan-
gular central chassis which was considered to protect pilot and engine. Pilot
M.Volumard was chosen for flight tests in which the vehicle took off with suc-
cess and could hover in low altitudes. Even tough Breguet-Richet quadrotor
aircraft can not take the credit for the first free flight (during experiments,
each rotor was kept in a steady condition with assistance of a man.), but
it was the first quadrotor aircraft with the experiment of a vertical take off
with the help of a pilot (see more details in [23]).
The first distance flight by a quadrotor was recorded on April 14, 1924 in
France for Etiene Oemichen’s second helicopter [27]. This quadrotor was
built in 1920, an X-shaped frame with one large propeller at the end of each
arm. Five small horizontal propellers were added to achieve lateral stabil-
ity as well as one mounted at the nose for steering and another couple of
propellers for forward motion. All propellers were driven by a single 120hp
Le Rhone rotary engine. This quadrotor showed a considerable degree of
stability and controllability, considering the limited facilities available at the
time. However, Oemichen was dissatisfied with the limited altitude the air-
craft could reach during several experiments, resulting in the abandon of the
multi rotor schemes to concentrate on single rotor layouts.
In almost the same period of time, in 1922 US army financed the experiments
of Dr.George De Bothezat to build a four rotor aircraft powered by one main
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engine [9]. The frame was X-shaped with arms slightly inclined inward. Even
though the aircraft was relatively heavy weighted, it could record stable flight
of 90 seconds (see references [23] and [4] for more details). Due to high cost
and relatively insufficient performance, the US army gradually lost interest
in the project, causing the experiments to stop from further possible achieve-
ments.
The ten years following World War II witnessed the start and stop of a large
number of companies attempting to manufacture and sell a variety of heli-
copter configurations. Converawings company in Amityville, New York was
the company that sponsored D.H. Kaplan’s quadrotor project [17]. This
model had an H-shaped configuration, four rotors were mounted at the very
end of arms. The system was designed such that almost all movements could
be achieved using four rotors. For instance, increasing the pitch of two rotors
on one side while decreasing those of the two rotors on the other side would
lead to roll movement. For moving right or left, the four rotors would be
inclined slightly inward from the vertical position. Also, to generate the yaw
motion about the vertical axis of the aircraft, the thrust generated by the
rotors could be changed leading to the desired movement. This quadrotor
was flown successfully on Long Island in 1956 by its designer and test pilot,
D.H.Kaplan. Due to lack of orders for commercial or military versions how-
ever, the project was terminated later.
As mentioned earlier, the recent advent of light weight miniature electron-
ics has spurred the interest in building small sized quadrotors as unmanned
aircraft. The first modern quadrotor was built by Area Fifty One in 1996,
later improved to manufacture the commercial radio controlled aerial robot
called Draganflyer R⃝ by the well-known Canadian company, RCToys (refer to
[15] and also rctoys website at [1]). Since then, a large number of groups and
individuals have worked on the development of the quadrotor aerial robot. In
fact, the low maintenance requirement and the symmetrical mechanical con-
figuration of the quadrotor makes it a wise choice as a test bed to validate
different new flight control and stabilization algorithms developed by aca-
demic research teams. For instance, in 2001, a very small scaled quadrotor
aerial robot was initially developed in the Mesicopter project [2] sponsored
by Stanford University, investigating the challenging control and manufac-
ture of this aircraft. A vision based control algorithm was used through this
particular project leading to successful hovering. Another successor in the
modern generation of quadrotor aerial robots was developed through STAR-
MAC project [3] widely known for aggressive maneuverability and successful
multi agent flights.
For nearly a decade now, the unmanned aerial vehicles have been subject of
research in Automatic Control lab, at Lakehead University (see for instance
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[26] and [35]). Through this thesis the challenging concept of design and im-
plementation of a quadrotor aerial robot is investigated, seeking the required
attitude stabilization for a hovering flight.

1.1 Problem Statement

Developing an autonomous quadrotor aerial robot could be divided in two
main tasks; attitude estimation and attitude stabilization. Through the fol-
lowing sections, a brief description concerning each of these problems is given.

1.1.1 Attitude Estimation

Determination of the orientation of a rigid body relative to an inertial frame
of reference is a fundamental problem in a number of engineering disciplines,
including aerial or under water robotics, aeronautics and space engineering.
This problem has been studied extensively over the past years. Different
types of formulations can be used to represent the orientation of an object.
Euler angles, Rodriguez parametrization, rotation matrix and quaternion
formulation are among the common attitude representation methods. There
are a considerable number of publications available, discussing the orienta-
tion formulations, advantages and drawbacks of each of these methods [32],
[38], [39].
The prenominal requirement to achieve attitude balance is an accurate esti-
mation of the vehicle orientation. Theoretically, the kinematics of motion,
suggest that the attitude of a rigid body can be calculated while its ex-
act angular velocity is known. However, in practice the gyro sensors used
for angular velocity measurements are not flawless. In long term missions
specifically, gyros drift and uncertainties over time cause errors to accumu-
late, making the integration of kinematic equations an impractical way to
estimate the attitude. This fact reveals the challenging side of attitude esti-
mation problem.
A common approach to obtain a relatively accurate attitude estimation is
using inertial sensors; accelerometers and magnetometers in addition to gy-
roscopes. Fusion of inertial measurements to develop attitude observers has
been the subject of many valuable discussions in literature [19], [41], [12].
In practice, the measurements provided by low cost inertial sensors are con-
taminated with noise, biases and misalignments. The compensation for mea-
surement uncertainties and cancelation of noise as far as possible, are yet the
other important tasks to deal with through the attitude estimation process.
Considering the effect of noise on accelerometer and magnetometer in high
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frequencies, an appropriate solution to cancel out the noise is the well-known
low pass filtering method. However, the limitation in bandwidth decrease
must be taken into account, since there is a compromise between measure-
ment bandwidth and sensor response time.
Through this project, the problems involved with the attitude estimation are
addressed.

1.1.2 Attitude Stabilization

As far as the orientation information of the aircraft is provided accurately, a
feedback control scheme can be developed to regulate the airframe attitude
into a stable hovering condition. In literature, a number of authors have
presented control algorithms to solve the attitude stabilization problem, as-
suming a precise estimation of the aircraft attitude is available as well as
bias-free rate gyro measurement. In majority of these publications, a type
of PD controller is presented using the orientation and angular velocity as
proportional and derivative feedback [40], [36], [42].
Attitude stabilization problem can be also investigated considering the bi-
ased angular velocity measurements. While the attitude of the rigid body is
assumed to be known, a variety of bias observers are presented (for instance
in [24]). The literature, has taken even a further step ahead, suggesting the
development of attitude control designs in the absence of angular velocity
measurements. Reference [41] represents one of these type of controllers.
In this project, using the rate gyro measurements in addition to the atti-
tude information obtained through the appropriate estimation algorithms,
the stabilization of a quadrotor aerial robot is investigated in details.

1.2 Overview

This thesis begins with a description of the most common attitude represen-
tations used in literature. The characteristics of each formulation method
is discussed briefly while the advantages and drawbacks are reviewed. The
relation between these formulations is also given. Chapter three starts with
a brief study of aerodynamics and goes further to give a summarized anal-
ysis of aerodynamic elements in a hovering flight. Through this chapter
two well known aerodynamic analyses are presented. This document con-
tinues in Chapter four which overviews the basic information involved with
a quadrotor aircraft. This chapter begins with a description of the quadro-
tor aerial robot structure and different possible flight regimes followed by a
dynamic modeling of the aircraft as a vital task for attitude control. The
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attitude estimation algorithms used through this project, are presented in
chapter five. Two different estimation algorithms [41] are discussed while
the stability proof is presented for each of them. This chapter continues
with the calibration methods used in this project for the required sensors.
Chapter six contains the attitude stabilization strategy selected through this
project. A PD control approach is presented accompanied by the stabiliza-
tion proof. The system is simulated in chapter seven. While the discussed
controller is applied, the simulation results are presented, showing the satis-
factory performance of stabilization algorithm. Chapter eight describes the
experimental setup which has been used in this project to implement the
control algorithms. The performance of attitude observers are validated us-
ing the real-time data. Finally, in chapter nine provides some possible future
works followed by a concluding discussion.



CHAPTER2
Attitude Representation

The simulation and description of motion are important issues in many mod-
ern technologies including aircraft and spacecraft technology. In a more gen-
eral point of view, for all rigid bodies there is a need to describe both position
and orientation in either an inertial coordinate system or a frame fixed to
the body of moving object.
There are considerable varieties of textbooks and papers dealing with differ-
ent representations of attitude specially in robotics fields. ( See for instance,
[39] ). Also, [32] is one of many sources in literature dealing with attitude
representation and dynamics of aircraft exclusively. Reference [38] is an ex-
ample of a comprehensive paper written on attitude representations.
There are several existing methods to represent the orientation of a rigid body
and relating non-inertial coordinates to inertial ones. Each of these known
methods has a number of advantages and disadvantages, making them useful
depending on the application they are used for.
In the following sections, xI , yI , zI are considered as orthogonal unit vectors
describing the inertial coordinate system. This inertial frame is fixed to the
Earth. On the other hand, xB, yB, zB are orthogonal unit vectors forming
the body-fixed frame. This frame is rigidly attached to the center of mass
of the rigid body. The orientation of the rigid body describes how these two
frames are located with respect to each other.

7
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2.1 Euler Angles Formulation

The orientation of the non-inertial frame relative to the inertial frame can be
described in terms of three consecutive rotations about the body-fixed unit
axes xB, yB, zB through three Euler angles. Depending on the sequence of
rotations about three axes, 12 independent ways are possible to define a set of
Euler angles. Starting from the inertial frame, three rotations are performed
about one of three body-fixed axes, arriving to the final frame. None of two
consecutive rotations should be about the same axis.
When the first and the last of three rotations are about the same axis while
the second rotation is about a different one, the set of Euler angles is called
a Symmetric Set. There are six symmetric sets of Euler angles :

θx → θy → θx, θx → θz → θx, θy → θx → θy

θy → θz → θy, θz → θx → θz, θz → θy → θz

Here, θ is considered to show an Euler angle. The index denotes the axis
around which the rotation has occurred. For instance, θx → θy → θx ex-
presses the sequence of Euler angles as the first and last rotations are about
xB and the second rotation is about yB.
The remaining Euler angles sets are named Asymmetric Sets;

θx → θy → θz, θz → θy → θx, θy → θx → θz

θz → θx → θy, θx → θz → θy, θy → θz → θx

Each of these 12 sets can be used for attitude representation. For example
θz → θx → θz is regularly used in literature for orbital mechanics and the
quantum theory of angular motion. Figure (2.1) shows the sequence of this
symmetric Euler angles set.
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(a) First rotation (b) Second rotation (c) Last rotation

Figure 2.1: z-x-z convention of Euler angles.

Aerodynamic textbooks and aeronautics community, commonly use θz →
θy → θx convention of Euler angles for attitude representation. These three
angles usually written as ψ, θ and ϕ are often called roll (or bank) angle,
pitch (or elevation) angle and yaw (or heading) angle of an aircraft, re-
spectively. Figure (2.2) shows the sequence of this particular Euler angle
set.

(a) First rotation (b) Second rotation (c) Last rotation

Figure 2.2: z-y-x convention of Euler angles.

As it is well illustrated in figure (2.2), starting from inertial frame, body
fixed coordinate system is rotated by an angle ϕ about the z axis. Next, the
revolved reference frame is rotated about the new y axis by an angle θ. In
the last rotation, the revolved reference frame is rotated about the new x
axis by an angle of ψ arriving to the final body-fixed frame of reference.
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2.2 Rotation Matrix

Imagine a rigid body in space with a frame attached to its center of mass.
Finding the relation between such coordinate system and the inertial frame
leads to the orientation representation of the moving object. A rotation
matrix, also referred to as direction cosine matrix (DCM), is a common
method to describe the transformation from one frame to another.

Figure 2.3: Two Frames of Reference.

When RI
B is considered as the rotation transforming the inertial frame to

body-fixed frame, this transformation can be described as⎡
⎣xB

yB
zB

⎤
⎦ = RI

B

⎡
⎣xI

yI
zI

⎤
⎦ (2.1)

Therefore,

RI
B =

⎡
⎣xI · xB yI · xB zI · xB

xI · yB yI · yB zI · yB
xI · zB yI · zB zI · zB

⎤
⎦ (2.2)

Similarly, it is possible to transform the body fixed frame coordinates to
inertial frame ; ⎡

⎣xI

yI
zI

⎤
⎦ = RB

I

⎡
⎣xB

yB
zB

⎤
⎦ (2.3)
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which yields to

RB
I =

xB · xI yB · xI zB · xI
xB · yI yB · yI zB · yI
xB · zI yB · zI zB · zI

 (2.4)

Obviously RB
I is the inverse of transformation matrix RI

B. Adding this to
the fact that

xB · xI = xI · xB,
yB · yI = yI · yB,
zB · zI = zI · zB.

one can conclude

RB
I = (RI

B)
−1 = (RI

B)
T . (2.5)

2.2.1 Rotation About An Axis

Imagine a rigid body starting from the inertial frame and performing a ro-
tation by an angle θ about yB axis. Note that, during this rotation yB axis
doesn’t move and all three coordinate axes remain orthogonal to one another
while their magnitude is unity.

yB · yI = 1,

||xB|| = ||yB|| = ||zB|| = ||xI || = ||yI || = ||zI || = 1.

Also,
yB · xI = 0,

yB · zI = 0,

xB · yI = 0,

zB · yI = 0.

Taking the above expressions into account, the rotation matrix is constructed
as

R =

xB · xI 0 zB · xI
0 1 0

xB · zI 0 zB · zI

 =

 cos θ 0 cos(π
2
+ θ)

0 1 0
cos(π

2
− θ) 0 cos θ


Therefore, the rotation matrix resultant from a rotation about y axis by an
angle θ is given by

Ry,θ =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 (2.6)
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Similarly, Rx,ψ is described as the matrix indicating a rotation by an angle
ψ about x axis while Rz,ϕ represents a rotation about z axis by an angle ϕ.
Such transformation matrices are given as

Rx,ψ =

⎡
⎣1 0 0
0 cosψ sinψ
0 − sinψ cosψ

⎤
⎦ (2.7)

Rz,ϕ =

⎡
⎣ cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1

⎤
⎦ (2.8)

Generally, when we have the rotationmatrixR relating two coordinate frames
to each other, any given vector �u defined with respect to one frame can be
expressed with respect to the coordinate axes of the other frame,

�uB = RI
B�uI (2.9)

2.2.2 Composition Of Rotations

Imagine R1 as the matrix transforming frame A to frame B. As it is shown
in figure (2.4), let R2 denote the transformation from frame A to frame B.

Figure 2.4: Composition of rotations

As discussed earlier, with a glance at equation (2.1), for transformation from
frame B to frame C we can write⎡

⎣xB

yB
zB

⎤
⎦ = R1

⎡
⎣xA

yA
zA

⎤
⎦ (2.10)
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In a similar way, we can define the transformation from frame B to frame C
as

xCyC
zC

 = R2

xByB
zB

 (2.11)

In the above equation, if we replace frame B by the description given by
equation (2.10), frame C can be related to frame A asxCyC

zC

 = R2R1

xAyA
zA

 (2.12)

In other words, if we call R as the direct rotation matrix transforming frame
A to frame C, such a rotation can be expressed as

R = R2R1 (2.13)

Note that the sequence of rotation matrices being multiplied by each other
is the reverse order of the sequence of transformations happening.

2.2.3 Relationship Between Rotation Matrix and Eu-
ler Angles

The rotation matrix can be formed using any Euler angles set. Recalling
θz → θy → θx as the common set used in aircraft dynamics, consider a vector
u⃗ with components uxI , uyI , uzI in inertial frame. As it was explained in
section 2.1, three rotations occur in sequence, arriving to the current body-
fixed frame. Therefore, the rotation matrix for such transformation is given
by

R = R(x,ψ)R(y,θ)R(z,φ) (2.14)

If we call uxB , uyB , uzB the components of an arbitrary vector u⃗ in the body-
fixed coordinate system, using equations (2.6), (2.7) and (2.8) one can writeuxBuyB
uzB

 =

1 0 0
0 cosψ sinψ
0 − sinψ cosψ

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 cosφ sinφ 0
− sinφ cosφ 0

0 0 1

uxIuyI
uzI


(2.15)
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Considering c and s as the abbreviated forms for the functions cos and sin
respectively, we can wrap equation (2.15) asuxBuyB

uzB

 =

 cθcφ cθsφ −sθ
sψsθcφ − cψsφ sψsθcφ + cψcφ sψcθ
cψsθcφ + sψsφ cψsθsφ − sψcφ cψcθ

uxIuyI
uzI

 (2.16)

It is clear that for transforming the body-fixed frame B to the inertial frame,
one could use RT , recalling the fact expressed by equation (2.5).
When the rotation matrix is known, by a simple comparison of equation (2.9)
and equation (2.16), one can calculate the corresponding z → y → x Euler
angles set.
Consider a given rotation matrix

R =

R11 R12 R13

R21 R22 R23

R31 R32 R33


Comparing with the corresponding matrix in equation (2.16), we can write

ψ = tan−1(R23

R33
) : θ ̸= ±π

2

θ = sin−1(−R13)
φ = tan−1(R12

R11
) : θ ̸= ±π

2

(2.17)

When pitch angle is ±π
2
, a singularity occurs during calculation of Euler

angles. This phenomenon is commonly referred to as gimbal lock problem.
One might use another method for attitude representation to avoid these
types of singularities.

2.3 Euler Axis Formulation

The orientation of the body-fixed frame with respect to the inertial frame
can be represented in terms of a rotation by an angle Θ about a special axis
E called Euler axis.
This representation gives four components to describe the orientation, three
of which are three components of the vector E called Ex, Ey, Ez respectively
and the fourth component is the rotation angle Θ. The vector describing
Euler axis E is an arbitrary vector in magnitude. The most usual solution
that comes to mind to remove this arbitrary characteristic is normalization
of Euler axis vector,

E2
x + E2

y + E2
z ≡ 1. (2.18)
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While vector E remains invariant through the rotation, it has the same ori-
entation in both inertial and body-fixed frames, i.e.,ExBEyB

EzB

 =

ExIEyI
EzI

 (2.19)

Refereing to the early works done by Euler, a formula is derived for attitude
representation (see for instance [1],[2]) called Euler Formula. Given the com-
ponents of an arbitrary vector u in the inertial coordinate system, u can be
expressed in body-fixed frame asuxBuyB

uzB

 =

 Exx + cosΘ Exy + Ez sinΘ Exz − Ey sinΘ
Exy − Ez sinΘ Eyy + cosΘ Eyz + Ex sinΘ
Exz + Ey sinΘ Eyz − Ex sinΘ Ezz + cosΘ

uxIuyI
uzI

 (2.20)

where Eij = EiEj(1− cosΘ) and i, j ∈ {x, y, z}.

2.4 Quaternion Formulation

Quaternion formulation is yet another attitude representation method. Even
though the detailed theory of a noncommutative algebraic system known as
quaternion was first developed in nineteenth century by the famous math-
ematician Sir William Hamilton, it is clear that he didn’t develop quater-
nion algebra merely to describe orientation of rigid bodies. Euler-Rodrigues
symmetric parameters are a special subset of quaternions used to describe
rotational transformations. In the following sections, first of all a brief sur-
vey is given on quaternion definition and relations. More information on the
theory could be found in [18] and [16]. Once the preliminary descriptions on
quaternion algebraic relations are discussed, the Euler-Rodrigues formulation
of rigid body orientation is reviewed .

2.4.1 Quaternion Algebra

Let

Q = q0 + iq1 + jq2 + kq3 (2.21)

denote the quaternion expression when q0, q1, q2 and q3 are called constituents
of quaternion Q. Quaternion constituents can take any real quantity while i,
j and k are three imaginary quantities with no linear relation to each other.
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Let P = p0 + ip1 + jp2 + kp3 represent another quaternion. Two quaternions
P and Q are said to be equal only if four constituents of them are equal. i.e.,

Q = P ⇐⇒


q0 = p0,

q1 = p1,

q2 = p2,

q3 = p3.

(2.22)

Quaternion Addition and Substraction

Addition and substraction of two quaternions are defined simply, by

Q± P = q0 ± p0 + i(q1 ± p1) + j(q2 ± p2) + k(q3 ± p3) (2.23)

In other words, the sum or substraction of two quaternions is equal to the
sum or substraction of constituents of those quaternions.

Quaternion Multiplication

Multiplication of two quaternion sets can be defined by considering the prod-
uct as

QP = (q0 + iq1 + jq2 + kq3)(p0 + ip1 + jp2 + kp3)

= q0p0 + i(q0p1 + p0q1) + j(q0p2 + p0q2) + k(q0p3 + p0q3)

+ i2q1p1 + j2q2p2 + k2q3p3 + ijq1p2 + jiq2p1

+ ikq1p3 + kiq3p1 + jkq2p3 + kjq3p2

(2.24)

Since the product of two quaternion sets is defined to be of quaternion nature,
nine expressions are adopted to cancel out the last nine terms in equation
(2.24) ;

i2 = j2 = k2 = −1,

ij = k, jk = i, ki = j,

ji = −k, kj = −i, ik = −j.
Taking above expressions into account, let q denote the imaginary con-
stituents of Q as a vector while q0 is the scalar part. If we use the same
notation to describe a quaternion generally, the multiplication of two quater-
nion can be shown as

Q ∗ P =

(
q0
q

)
∗
(
p0
p

)
=

(
q0p0 − qTp

q0p+ p0q + q × p

)
(2.25)
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Quaternion multiplication possesses two critical characteristics which are
common in regular multiplication; Distributivity and associativity in quater-
nion multiplication are those properties that make quaternion system calcu-
lations relatively similar to those of ordinary algebra.
When we say quaternion multiplication is distributive, it means

P ∗ (Q+K) = P ∗Q+ P ∗K (2.26)

Where P , Q and K denote three quaternions. Also, when calling quater-
nion multiplication associative it means one can associate quaternions among
themselves in any matter, as far as it doesn’t change their order.

P ∗ (Q ∗K) = (P ∗Q) ∗K = P ∗Q ∗K (2.27)

Despite similar characteristics in quaternion multiplication and ordinary al-
gebraic multiplication, there is an extremely important difference between
properties of these two multiplications. Quaternion multiplication is not
commutative,

P ∗Q ̸= Q ∗ P. (2.28)

Quaternion Inverse

The conjugate of a quaternion is defined as

Q∗ =

(
q0
−q

)
(2.29)

while the norm of a quaternion is given by

||Q|| = q20 + qT q (2.30)

Using the latest two equations, the inverse of a quaternion is considered to
be of quaternion nature. As it has been mentioned in [38], the inverse of a
quaternion can be obtained from the following equation

Q−1 =
Q∗

||Q||2
=

1

||Q||2

(
q0
−q

)
(2.31)

Note that when a quaternion is multiplied by its inverse, the result is always
an identity quaternion, QI .

Q ∗Q−1 = QI =

(
1
0

)
(2.32)
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2.4.2 Euler-Rodrigues Quaternion Formulation

A simple change of variables can relate Euler axis formulation to another
representation in quaternion form, known as Euler-Rodrigues formulation.
Four components of Euler axis representation help to define four constituents
of corresponding quaternion as

QI
B =


q0
q1
q2
q3

 =


cos(Θ

2
)

Ex sin(
Θ
2
)

Ey sin(
Θ
2
)

Ez sin(
Θ
2
)

 (2.33)

It can be easily noted that

q20 + q21 + q22 + q23 = cos2(
Θ

2
) + (E2

x + E2
y + E2

z ) sin
2(
Θ

2
)

Using the fact that Euler axis vector E is supposed to be unity, we can write

||Q||2 = q20 + q21 + q22 + q23 = 1. (2.34)

Note that, using Euler-Rodrigues formula, it can be easily proved that negat-
ing quaternion doesn’t change the orientation,

−Q =

(
−q0
−q

)
=


− cos(Θ

2
)

−Ex sin(Θ2 )
−Ey sin(Θ2 )
−Ez sin(Θ2 )

 =


cos( (Θ+2π)

2
)

Ex sin(
(Θ+2π)

2
)

Ey sin(
(Θ+2π)

2
)

Ez sin(
(Θ+2π)

2
)

 (2.35)

2.4.3 Relation Between Quaternion and Euler Angles

As it was mentioned earlier, even though it is easy to visualize Euler angles,
there are some singularities involved with Euler angles formulation when it
comes to attitude representation of a rigid body. Using quaternion repre-
sentation to describe the attitude has the advantage of singularity-free rep-
resentation in comparison with Euler angles method. In order to visualize
the results given by quaternion representation, It’s possible to relate the
quaternion to Euler angles. We can obtain such a relation by combining
Euler-Rodrigues formula with equations (2.16) and (2.20). Therefore,q20 + q21 − q22 − q23 2(q1q2 + q3q0) 2(q1q3 − q2q0)

2(q1q2 − q3q0) q20 − q21 + q22 − q23 2(q2q3 + q1q0)
2(q1q3 + q2q0) 2(q2q3 + q1q0) q20 − q21 − q22 + q23

 =

 cθcφ cθsφ −sθ
sψsθcφ − cψsφ sψsθcφ + cψcφ sψcθ
cψsθcφ + sψsφ cψsθsφ − sψcφ cψcθ

 (2.36)
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If we go on the same process as in section 2.2.3 to define three Euler angles,
one obtains, 

ψ = tan−1( 2(q0q1+q2q3)

q20−q21−q22+q23
) : −π ≤ ψ ≤ π

θ = sin−1(2(q0q2 − q1q3)) : −π
2
< θ < π

2

φ = tan−1( 2(q0q3+q1q2)

q20+q
2
1−q22+q23

) : −π ≤ φ ≤ π

(2.37)

According to [32], the quaternion representation of attitude can be obtained
when the Euler angles are given. Equation (2.36) provides nine separate
scalar equations. Simplifying these equations and recalling half angle iden-
tities lead to finding the relation between quaternion components and Euler
angles. Such a relation is described as

q0
q1
q2
q3

 = ±


cψ

2
c θ

2
cφ

2
+ sψ

2
s θ

2
sφ

2

sψ
2
c θ

2
cφ

2
− cψ

2
s θ

2
sφ

2

cψ
2
s θ

2
cφ

2
+ sψ

2
c θ

2
sφ

2

cψ
2
c θ

2
sφ

2
− sψ

2
s θ

2
cφ

2

 (2.38)

Note that there is a sign ambiguity in the above equation when it is used
to extract quaternion components. Both these solutions are valid. Since in
(2.35), it was proved that Q ∼ −Q.
In other words, any orientation of one coordinate system relative to another
can be described in terms of two different right-hand rotations. For instance,
a right-hand rotation about x axis by 60 degrees is equivalent to a right-hand
rotation of 300 degrees about −x axis.

2.4.4 Relation Between Quaternion and Rotation Ma-
trix

Using the equation (2.34) along with equations (2.20) and (2.33), any given
arbitrary vector defined in the inertial frame can be expressed in the body-
fixed coordinates byuxBuyB

uzB

 =

q20 + q21 − q22 − q23 2(q1q2 + q3q0) 2(q1q3 − q2q0)
2(q1q2 − q3q0) q20 − q21 + q22 − q23 2(q2q3 + q1q0)
2(q1q3 + q2q0) 2(q2q3 − q1q0) q20 − q21 − q22 + q23

uxIuyI
uzI


(2.39)



CHAPTER 2. ATTITUDE REPRESENTATION 20

Comparing equation (2.39) with equation (2.9), we can derive the relation
between quaternion and corresponding rotation matrix as

R(q) =

q20 + q21 − q22 − q23 2(q1q2 + q3q0) 2(q1q3 − q2q0)
2(q1q2 − q3q0) q20 − q21 + q22 − q23 2(q2q3 + q1q0)
2(q1q3 + q2q0) 2(q2q3 − q1q0) q20 − q21 − q22 + q23

 (2.40)

Note that, the R(Q) can also be rewritten via the formula known as Rodriguez
formula,

R(Q) = (q20 + qT q)I3 + qqT − 2q0S(q) (2.41)

where S(q) is the asymmetric matrix associated with the vector q and is
given by

S(q) =

 0 −q3 q2
q3 0 −q1
−q2 q1 0

 .
On the other hand, the quaternion can be extracted from direction cosine
matrix as well. If we replace the left-side term of equation (2.39) by the
right-side term of equation (2.9), we can writeR11 R12 R13

R21 R22 R23

R31 R32 R33

 =

q20 + q21 − q22 − q23 2(q1q2 + q3q0) 2(q1q3 − q2q0)
2(q1q2 − q3q0) q20 − q21 + q22 − q23 2(q2q3 + q1q0)
2(q1q3 + q2q0) 2(q2q3 − q1q0) q20 − q21 − q22 + q23


(2.42)

Taking equation (2.34) into account, combination of diagonal components of
two matrices in equation (2.42) provides three separate equations,

R11 = 1− 2(q22 + q23)
R22 = 1− 2(q21 + q23)
R22 = 1− 2(q21 + q22)

(2.43)

Using above equation leads to a four by four system of equations that relates
the squares of the quaternion components to diagonal components of rotation
matrix, 

q20
q21
q22
q23

 =
1

4


1 +R11 +R22 +R33

1 +R11 −R22 −R33

1−R11 +R22 −R33

1−R11 −R22 +R33

 (2.44)



CHAPTER 2. ATTITUDE REPRESENTATION 21

Also, comparing non-diagonal components of two matrices in equation (2.42)
provides another set of equations given by

q0q1
q0q2
q0q3
q1q2
q1q3
q2q3

 =
1

4


R23 −R32

R31 −R13

R12 −R21

R12 +R21

R31 +R13

R23 +R32

 (2.45)

Using equation (2.44) along with equation (2.45), quaternion components
can be calculated by the following formula as long as q0 ̸= 0.

q0 =± 1

2
(1 +R11 +R22 +R33)

1
2

q =
1

4q0

R23 −R32

R31 −R13

R12 −R21

 (2.46)

Two solutions expressed in this equation represent the same orientation re-
garding the fact proved in (2.35).



CHAPTER3
Aerodynamic Study

Several excellent textbooks and academic papers have been published dis-
cussing the aerodynamics of helicopters, including [4], [22], [23] and [11]
which the majority of this chapter is based on. In addition, there are some
reviews such as [30] and [29] that use the same basic facts to cover more
specific details about quadrotor aerodynamics. There are two theories com-
monly used to support the helicopter flight analysis: the momentum theory
and the blade element theory. Both theories analyze the behavior of rotating
propellers in the air and provide useful information and relations involved
with important quantities like thrust and drag. These theories are discussed
briefly in the following sections.

3.1 Momentum Theory Analysis

This theory was originally developed by Rankine in 1865 to analyze the
behavior of marine propellers, but later on it was extended to spacecraft
applications. Essentially, the momentum theory deals with the exchange of
momentum between the rotating blades and the column of air which is being
accelerated through the rotor. The motor power generates a torque applied
to the rotor shaft, producing a thrust force.
The details of flow environment characteristics are not considered in mo-
mentum theory. When the fluid (air flow in this case) passes through the
rotating propellers, it accelerates smoothly resulting in increase of the fluid
velocity. Assuming airflow in the boundaries around the rotor to be one di-
mensional (only in vertical direction) and quasi-steady, a physical picture of
hovering rotor can be drawn. Having this model in mind, the momentum
theory discusses application of three basic conservation laws (conservation of
mass, momentum, and energy) to the rotor and airflow.

As it is shown in the airflow model in figure (3.1), the airflow out of
the rotor wake boundaries is considered to be relatively at rest. Plane P0

22
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Figure 3.1: The Flow Model in Momentum Theory Analysis.

represents the far up boundary of rotor wake, while the plane P∞ shows the
far down boundary. The plane just below the rotor blades disc is named P2.
Recalling the fact that for the mass of air fluid entering the streamtube we
have

m = J ρ

where m, J and ρ denote mass, volume and density of the fluid respectively.
Also, for the momentum of the fluid we have

n = mV ,
where n and V represent the momentum and local velocity of the fluid re-
spectively.
Let S be the surface of the rotor wake. Considering the conservation laws of
fluid mechanics, the mass flow into the rotor wake (volume) should be equal
to the mass flow out of it. The conservation of fluid mass can be written as�

S

ρ�V .d�S = 0, (3.1)

where d�S denotes the normal area vector. The above equation illustrates the
integration over the closed domain of imaginary streamtube. Similarly, the
conservation of fluid momentum can be described as

�F =
�
S

Pd�S +
�
S

(ρ�V .d�S)�V . (3.2)
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where P represents the net pressure on the fluid. As it is clearly shown in
equation (3.2), the momentum of a fluid system is a vector involving both
direction and magnitude. It is the sum of momenta of individual particles.
Assuming that the flow is unconstrained, one can conclude that P = 0. The
force calculated in vector equation (3.2), is the reaction force corresponding
to the thrust applied to the air column by the rotor. Taking Newton’s third
law into account, this force should be equal to the thrust but with an opposite
direction. As a final step, momentum theory considers the conservation of
energy in the flow stating that the work done by rotor on the flow is translated
to the kinetic energy in the fluid. Conservation of energy in fluid is written
as

w =
{
S

1

2
(ρV⃗ .dS⃗)|V⃗|2. (3.3)

3.1.1 Hovering Rotor Analysis

One of the most important flight regimes expected from a helicopter and
more specifically a quadrotor, is the hovering condition. Hover is the unique
flight condition in which the rotor doesn’t have forward or vertical speed.
As it was mentioned earlier, the preliminary assumptions consider the flow
to be quasi-steady within the boundaries of the rotor wake. This means in
time scale, the changes in boundary conditions are so slow that any inertia
effects can be neglected, thus the flow velocity is time dependant. The mass
flow rate is constant in the boundaries of rotor wake. Using equation (3.1),
we can write

ṁ =
x
P∞

ρV⃗ .dS⃗ =
x
P2

ρV⃗ .dS⃗ (3.4)

As mentioned before, the flow velocity is time dependant, therefore the above
equation can be solved as

ρAP∞Vinf = ρAP2Vi (3.5)

where AP∞ and AP2 represent the area of rotor far wake and rotor disc re-
spectively. Also, Vi and Vinf are considered as the induced velocities in rotor
disc and rotor far wake respectively.
In the other hand, equation (3.2) can be rewritten as

F⃗ = T =
x
P∞

ρ(V⃗ .dS⃗)V⃗ −
x
P0

ρ(V⃗ .dS⃗)V⃗ (3.6)
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Considering V0 = 0 in hovering condition, the thrust can be expressed using
the above equation

T = ṁVinf . (3.7)

Recalling equation (3.3), the work done on the flow by the rotor can be
described by

w = wP∞ − wP0 =
x
P∞

1

2
ρ(V⃗ .dS⃗)V⃗2 −

x
P0

1

2
ρ(V⃗ .dS⃗)V⃗2 (3.8)

Also, the work done by the rotor can be calculated when the thrust and
velocity of rotor disc are known

w = TVi (3.9)

Note that by considering that in hovering condition V0 = 0, combination of
equations (3.8) and (3.9) results in finding an expression for thrust in terms
of rotor disc characteristics and the induced velocity in its plane. Such an
expression is given by

T = 2ρAV2
i (3.10)

where A is representing the rotor disc surface. This equation can be rear-
ranged to find the required induced velocity when the desired thrust is given

Vi =

√
T

2ρA
(3.11)

Therefore, the required power for the desired given thrust in hovering condi-
tion can be calculated as

P = TVi =
T

3
2

√
2ρA

(3.12)

Since the angular velocity of rotor can be measured in applications, finding
a relationship between angular velocity and induced velocity can help for
further modelings. Such a relation is made possible with introducing Induced
Inflow Ratio, λ.

Vi = λωr (3.13)

where ω represents the angular velocity of the rotor while r represents the
radius of the rotor blade disc. A simple substitution of equation (3.13) in
equation (3.10) confirms that the thrust in hovering condition is related to
the squared angular velocity of the rotor, proportionally.

T = 2ρAλ2r2ω2 (3.14)
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3.1.2 Axial Movement (Climb and Descend) analysis

Considering the flow model shown in figure (3.1), the momentum theory can
be used to analyze the axial flight regimes as well. In climbing regime, the
rotor is ascending with a non-zero velocity Vc. Therefore, the up far wake
velocity is V0 = Vc. similarly the velocity in blade plane and plane in the far
down wake of rotor are given as

V2 = Vi + Vc

V∞ = Vc + Vinf
Considering the above expressions in combination with mass conservation
described in equation (3.1), we can write

ṁ = ρA∞(Vc + Vinf ) = ρA(Vc + Vi) (3.15)

Similarly, momentum conservation expressed in equation (3.2) leads to

T = ṁ(Vc + Vinf )− ṁVc = ṁVinf (3.16)

If we rewrite energy conservation in equation (3.3) for climbing conditions,
we have

w = T (V0 + Vi) =
1

2
ṁV2

∞ − 1

2
ṁV2

0 =
1

2
ṁVinf (2Vc + Vinf ) (3.17)

Combination of last two equations followed by a simple division by the term
2ρA results in

T

2ρA
= (Vc + Vi)Vi (3.18)

If we compare the above equation with the induced velocity expression in
hovering flight shown in equation (3.11), a relation could be found between
the induced velocities in hovering and climbing regimes. Such relation is
described as

Vi
Vh

= −(
Vc
2Vh

) +

√
(
Vc
2Vh

)2 + 1 (3.19)

Considering Vc to be negative, the same approach is used to analyze the de-
scending flight leading to a relation between the induced velocities in hovering
and descending conditions which is expressed as

Vi
Vh

= −(
Vc
2Vh

)−
√
(
Vc
2Vh

)2 − 1 (3.20)
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An important issue to point out is that in practice, when the rotor starts
to descend two flow directions are possible. This violates the preliminary
assumption for the flow model drawn in figure (3.1), stating that the flow
is one-dimensional. In such a condition, it’s not possible to define the rotor
wake boundaries, therefore, this analysis is not valid in the region. However
by assuming |Vc| > 2Vh equation (3.20) can be used.
It must be noted that this analysis is based on ideal conditions and assump-
tions, in practice, friction and viscous losses could not be neglected. The
boundaries and inflow conditions are not accurately specified in momentum
theory analysis, in the other hand the effects of rotor blades pitch and angle
of attack are not studied in this analysis. This is exactly where the rotor
blade theory is used to address the role of propellers in aerodynamic analy-
sis.
Although the momentum theory has been often used to model the thrust in
quadrotor system (for instance in [16]), but a more accurate study on the
role of rotor blades and their shape in aerodynamic forces could result in a
better design of propellers and better overall performance. Such a review for
quadrotor models has been considered for instance in [29] using rotor blade
theory.

3.2 Rotor Blade Element Theory Analysis

The blade element theory was first introduced by Drwiecki and later on, it was
extended by several other researchers. In this theory the propeller is consid-
ered as a propulsion machine which consists of aerodynamically independent
narrow elements. Each element can be analyzed as a two dimensional airfoil
producing aerodynamic forces. Integration of these sectional forces could re-
sult in rotor performance analysis.

Figure 3.2: The Blade Model for Rotor Blade Element Theory.

As it is clear in the above figure, y represents the distance of each element
from the rotation center. When the propeller moves, it is subject to several
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components of fluid velocity. One of these components is the axial velocity
Vc due to vertical movement of the system. The velocity due to rotation
of blade ωr and induced velocity Vi are the other two components, which
are the result of rotation of propeller and disturbance of fluid by propeller
respectively. Note that blade element speed due to rotation, varies over the
blade span, because the distance traveled by each blade element depends on
its distance from rotation center. For instance, the blade speed near the rotor
shaft is smaller that the speed at the tip of the blade.

Figure 3.3: Aerodynamic of Blade Element.
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Figure 3.4: Induced Airflow Around the Blade.

As it is shown in figure (3.3), the chord c is defined as the length of
the blade from leading edge to trailing edge. The angle of attack α is an
aerodynamic angle which is illustrated as the angle between the blade element
chord and the resultant velocity seen by the airfoil. Another angle shown in
figure (3.3) is the pitch angle of the blade θ, which is rather a mechanical
angle and is defined as the angle between the chord and the plane of rotation
(system airframe). The total air velocity seen by the blade uTotal has two
components u1 and u2. A simple geometric calculation confirms

uTotal =
√

u2
1 + u2

2,

φ = tan−1 u2

u1

,

and
α = θ − φ.

Figure 3.5: Aerodynamic Forces Applied to Blade Element.
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The airflow applies lift L and dragD forces to the blade element which are
perpendicular and parallel to the resultant velocity respectively. Therefore,
one can write

L =
1

2
ρu2T ccl (3.21)

D =
1

2
ρu2T ccd (3.22)

where cl and cd are functions of the angle of attack, θ.
As it is clearly shown in figure (3.5), Fx and Fz represent the total aerody-
namic force components parallel to and perpendicular to the rotor blade disc
respectively. These components are easily calculated as

Fx = L cosϕ−D sinϕ (3.23)

Fz = L sinϕ+D cosϕ (3.24)

Ideally, the vertical component Fz should be equal to the thrust. Thus,

dT = NFzdy (3.25)

dQ = NFxydy (3.26)

where N is the number of blades. Using equation (3.26), we can write the
following equation for the sectional power

dP = ωdQ = NFωydy (3.27)

Having the thrust, torque and power for each blade element, integration of
this quantities over the blade span leads to finding the total thrust, torque
and power for the rotor blades.
In hovering and vertical flight, the vertical component of the velocity seen
by the blade element is u2 = Vc + Vi. In the other hand, u1 = ωy due to
rotational velocity of the blade element. Therefore, the Inflow Ratio can be
defined as

λ =
Vc + Vi
ωr

(3.28)

Recalling that tan−1 ϕ = u2
u1
, one can write

tan−1 u2
u1

= tan−1 Vc + Vi
ωy

= λ(
y

r
) (3.29)

In practice, the inflow ratio has been proved to be very small when the loading
is small. The assumption of λ being small makes it possible to write

ϕ ≃ tanϕ ≃ sinϕ
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cosϕ ≃ 1

which leads to

uTotal ≃ u1. (3.30)

If we assume that the lift coefficient cl is linearly relative to the attack angle,
i.e., cl = aα, Then equations (3.21), (3.25) and (3.26) can be rewritten as

L =
1

2
ρu21ca(θ −

u2
u1

) (3.31)

dT = NLdy (3.32)

dQ = NL(ϕ+D)rdr (3.33)

Normalization of sectional thrust (shown in equation (3.32)) with respect to
air density, rotational velocity and blade radius helps to find a dimensionless
thrust coefficient for each blade element. Such a coefficient is given by

dCT =
σa

2
(θu21 − u1u2)dy =

σa

2
(θy2 − λy)dy (3.34)

where σ is the Solidity Ratio defined as σ = Nc
πr
. Similarly, to find a dimen-

sionless torque or power coefficient for blade elements, equations (3.33) and
(3.27) can be normalized with respect to air density, rotational velocity and
blade radius. The equation defining the torque or power coefficient is given
by

dCP = dCQ = (
σa

2
(θyλ− λ2) +

σcd
2
y2)ydy (3.35)

As mentioned earlier, integration of thrust coefficients of blade elements re-
sults in finding the coefficients of total thrust.

CT =

∫ 1

0

σa

2
(θy2 − λy)dy (3.36)

Assuming that the chord is constant and the twist is ideally linear while
considering uniform inflow, equation (3.36) can be simplified as

CT =
σa

2
(
θ.75
3

− λ

2
). (3.37)
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With similar assumptions (considering the constant chord and uniform in-
duced velocity along the span), the power coefficient for each blade element
can be rewritten as

dCP = λdCT +
σcd
2
y3dy (3.38)

Therefore, the power coefficient for the blade can be calculated by integration

CP =

∫
λdCT +

∫ 1

0

σcd
2
y3dy (3.39)

The first term in above equation shows the induced power loss, recalling that
dPi = (Vc+Vi)dT . The induced power loss varies with changes in the induced
angle of attach ϕ. As it’s assumed that the induced velocity is uniform over
the span, one can conclude

CPi = λCT . (3.40)

The second term in equation (3.40) represents the profile power loss as a
result of drag forces on the blade. If we assume that the the drag coefficient
cd is constant, the integral equation can be solved leading to

CPo =
σcd
8

(3.41)

where CPo represents the profile power loss. Hence, the ideal total power
coefficient of the rotor is given by

CP = CPi + CPo = λCT +
σcd
8
. (3.42)

Note that this is the ideal case analysis. In practice, the induced power
loss is greater than what is calculated in ideal case. The induced power loss
can be calculated more accurately considering the actual induced velocity
distribution along the blade span. Also, a more accurate profile power loss
calculation is possible, if we consider the drag coefficient to be a function of
the angle of attack and march number.
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Quadrotor Concept

The quadrotor aerial robot under consideration, is an aircraft with four lift
generating propellers rigidly mounted at equal distances from each other in
a cross configuration. Each propeller is connected to a motor through a
reduction gear.

Figure 4.1: A quadrotor structure.

As it is shown in figure (4.1), the pair of rotors on one axis rotate clock-
wise, while the other pair on the perpendicular axis spin counter clockwise.
This special configuration reduces the complexity of mechanical analysis and
eliminates the need for a tail rotor as in a conventional helicopter.

33



CHAPTER 4. QUADROTOR CONCEPT 34

In a four-rotor aerial robot, different flight regimes are achieved by chang-
ing the rotors thrusts. As fixed-pitch rotor blades are used in the quadrotor
aircraft, the motion of the aircraft can be controlled by changing the angular
velocity of the rotors. Some important possible movements are listed and
discussed briefly in this section.

(a) Roll Motion (b) Pitch Motion (c) Yaw Motion

Figure 4.2: Quadrotor Motion.

• Hovering is achieved when the four rotors rotate with the same an-
gular velocity ω generating the total force to counterbalance the force
due to the gravitational acceleration.

• Roll motion is achieved by increasing (decreasing) angular speed of the
right rotor and decreasing (increasing) that of the left rotor. In such
condition, if the total thrust is managed to remain unchanged (as it
is shown in figure (4.2-a)), the quadrotor aircraft moves to the right
(left).

• Pitch motion is achieved by increasing (decreasing) the front rotor
speed and decreasing (increasing) that of the rear rotor. If the total
thrust is managed to remain unchanged (as it is shown in figure (4.2-
b)), the aircraft moves forward (backward).

• Yaw motion is achieved by increasing (decreasing) the angular velocity
of front-rear rotors speeds and decreasing (or increasing) that of right-
left rotors. The aircraft starts to spin around it’s z axis clockwise
(counter clockwise), if the total thrust is kept unchanged (as it is shown
in figure (4.2-c)).
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• Vertical Flight is achieved by increasing (decreasing) the angular ve-
locity of each rotor by the same proportion. In a consequence, the total
thrust is increased (decreased) leading the aircraft to ascend (descend).

4.1 Modeling a Quadrotor Aircraft

The preliminary step in design of any model-based control system is consid-
ered to be the development of a mathematical model of the system based on
known physical principles. In better words, the model of a system uncovers
the philosophy behind the behavior of the system as well as the requirements
to control it in desired way.
In recent years, the miniature size quadrotor aircraft has been widely used by
academic research teams as a test-bed to evaluate the new control schemes.
Modeling the aircraft is the crucial requirement to design the appropriate
controllers. Such a model has been investigated in details and published for
instance in [40], [36], [31] and [16]. Mostly, for developing a mathematical
model of a quadrotor aircraft, the kinematics of motion are studied along
with the Newton-Euler formulations to describe the dynamic relations in the
system. The following section proceeds by a brief study of kinematics of
aircraft motion followed by the dynamic model of the quadrotor aircraft.

4.1.1 Modeling the Kinematics of an aircraft

Through the kinematic analysis of the quadrotor aircraft, the motion of a
rigid body is described in terms of vectors in three dimensional space, without
detailed analysis of the mechanisms which cause the motion. As it was
mentioned in earlier chapters, to describe the motion of a rigid body in
space, two frames of reference need to be defined.

• Inertial frame {I} is defined as the right-hand fixed coordinate sys-
tem. While the origin of the inertial frame is fixed at the home location
on the Earth, xI , yI and zI are unit vectors pointing to north, east and
downward directions. These three unit vectors form the Earth iner-
tial frame together. The linear and angular position of the aircraft are
usually expressed with respect to this frame.

• Body-fixed frame {B} is attached to the quadrotor airframe while its
origin is located at the center of mass of the aircraft. Since the center
of mass of the quadrotor usually coincides with the center of its cross
configuration, the unit vectors xB, yB and zB point toward front-side,
right-side and downward the airframe respectively.
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Essentially, two kinds of motions can be described: translational motion
and rotational motion. Considering the displacement of the center of mass
of the aircraft with respect to the inertial frame, it is possible to explore
translational kinematic equation.
Let p denote the vector describing the displacement of the center of mass of
the aircraft in the inertial frame.

p =

pxpy
pz

 .
If we assume the aircraft to move with the linear velocity υ, recalling the
basic definition of velocity we can write

ṗ = υ (4.1)

The above equation is called translational kinematic equation and can be
used to calculate the change in the aircraft position when the velocity of the
aircraft is measured by a GPS device for instance. It is clear that displace-
ment and velocity are expressed with respect to the inertial frame here.

Direction Cosine Formulation

When an aircraft is undergoing a rotation, its orientation varies with the time.
Therefore, the elements of the rotation matrix representing the attitude are
functions of time, making it possible to write nine differential equations from
the rotation matrix elements. The resultant nine differential equations known
as Poisson’s kinematic equations are given by [32]

Ṙ11 Ṙ12 Ṙ13

Ṙ21 Ṙ22 Ṙ23

Ṙ31 Ṙ32 Ṙ33

 =

 0 Ωz −Ωy

−Ωz 0 Ωx

Ωy −Ωx 0

R11 R12 R13

R21 R22 R23

R31 R32 R33

 (4.2)

which can be summarized as

Ṙ = RS(Ω) (4.3)

where Ω = [Ωx,Ωy,Ωz]
T is the angular velocity and S(Ω) denotes the skew

symmetric matrix associated to Ω such that for any vector u ∈ R3, one can
write S(Ω)u = Ω× u.
Using the kinematic equation in terms of rotation matrix avoids any singu-
larity. However, as a compromise, it is time consuming since nine equations
must be integrated to update the orientation with the time.
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Quaternion Formulation

Recalling the quaternion formulation of orientation described in chapter 2,
we have

q̇0
q̇1
q̇2
q̇3

 =


d
dt
(cos Θ

2
)

d
dt
(Ex sin

Θ
2
)

d
dt
(Ey sin

Θ
2
)

d
dt
(Ez sin

Θ
2
)

 =


− sin Θ

2

Ex cos
Θ
2

Ey cos
Θ
2

Ez cos
Θ
2

 Θ̇

2
+


0

Ėx sin
Θ
2

Ėy sin
Θ
2

Ėz sin
Θ
2

 . (4.4)

According to [32], the derivative of Euler axis formulation is given by
Θ̇

Ėx
Ėy
Ėz

 =
1

2

 2Ex 2Ey 2Ez
Èxx +

cϵ
sϵ

Èxy − Ez Èxz + Ey
Èxz − Ey Èyz + Ex Èzz +

cϵ
sϵ


where cϵ and sϵ are abreviated forms of the functions cos Θ

2
and sin Θ

2
respec-

tively. Also, Èij = −EiEj cϵsϵ .
Substitution of the derivative of the Euler’s axis formula in equation (4.4)
results in 

q̇0
q̇1
q̇2
q̇3

 =
1

2


−Ex sin Θ

2
−Ey sin Θ

2
−Ez sin Θ

2

cos Θ
2

−Ez sin Θ
2

Ey sin
Θ
2

Ez sin
Θ
2

cos Θ
2

−Ex sin Θ
2

−Ey sin Θ
2

Ex sin
Θ
2

cos Θ
2


Ωx

Ωy

Ωz

 . (4.5)

This equation can be easily simplified as
q̇0
q̇1
q̇2
q̇3

 =
1

2


−q1 −q2 −q3
q0 −q3 q2
q3 q0 −q1
−q2 q1 q0


Ωx

Ωy

Ωz

 . (4.6)

A glance at the above equation confirms that, the quaternion form of the
rotational kinematic equation is singularity-free. Also, as it has been pre-
sented in [40], [25], the quaternion representation of kinematic equation can
be rewritten as

Q̇ =
1

2
Q ∗ Ω̄ (4.7)

where Ω̄ =

(
0
Ω

)
and “∗” denote the quaternion multiplication operation.

The above form of kinematic equation has been used through this project for
modeling the quadrotor rotational kinematics.
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4.1.2 Dynamical Model

Through the analysis of quadrotor aircraft dynamics, the forces and torques
which cause the motion are studied. The Newton laws are the most impor-
tant part of classical mechanics which can be applied to the system making
it possible to derive the dynamic equations of a quadrotor aircraft.
Let F represent the total force affecting the aircraft in inertial frame. Clas-
sical Newton’s law can be written as

F =M
dυ

dt
(4.8)

where M and υ denote the total mass and linear velocity of the aircraft
respectively. Also, d

dt
represents the time derivative in the inertial frame.

On the other hand, Euler’s axiom of the Newton’s second law indicates

τ = If
dΩI

dt
(4.9)

where τ denotes the total torque acting on the aircraft and If represents the
body inertia matrix. Note that, Newton’s law holds for inertial frame. How-
ever, in some cases it is more convenient to write the relations and equations
in the non-inertial frame. In quadrotor case specifically, using the body-fixed
notations, one can take the advantage of quadrotor symmetrical design con-
figuration to simplify the equations involved with the forces. In addition, the
sensors are strapped on the assumed center of mass of the quadrotor which
means the measurements are taken in body frame as well. Hence, it is use-
ful to express equation (4.8) and (4.9) in the body-fixed frame. Taking the
coriolis effect into account, we can write Newton’s law regarding non-inertial
frame,

Mυ̇B =MΩ× υ + F (4.10)

where F and υB represent the total force applied to the aircraft and linear
velocity in body-fixed frame respectively. The corresponding Euler axiom
reveals

If Ω̇ = −Ω× IfΩ + τB. (4.11)

where τB is the total torque acting on the vehicle expressed in the body
frame. Since the structure is symmetrical with respect to the center of mass,
one can conclude that If is a diagonal inertia matrix.
Combination of the last two equations leads to deriving the dynamic equa-
tions of a quadrotor aircraft, as far as an accurate knowledge of forces and
torques acting on the aircraft is provided.
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Forces

The forces acting on the quadrotor airframe can be divided in three cat-
egories: aerodynamic drag forces, the force due to Earth gravity (weight
force) and the thrust. As discussed in the previous chapter, the thrust com-
ponent is perpendicular to the blade path (hence, it is perpendicular to the
blade plane) while the drag force is opposite the direction of blade linear ve-
locity (thus, it is parallel to the blade plane). On the other hand, the weight
force always points to the Earth while it has a constant value Mg, where g
indicates the gravitational acceleration.
If we assume the drag forces acting on the blades to be negligible, as it was

Figure 4.3: Forces Acting on a Quadrotor.

discussed in the previous chapter, for the thrust generated by each rotor we
have

Ti = bω2
i , i ∈ {1, 2, 3, 4} (4.12)

where ωi denotes the angular velocity of each rotor and b = 2ρAλ2r2. Note
that, b is defined as a coefficient dependant on the physical characteristics of
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the blades (including shape, pitch angle, etc.) as well as the airflow density
around the blades. Here, the rotor blades and airflow are assumed to have
the same characteristics, since identical devices have been used. Also, it
is necessary to remind that fixed-pitch blades are used in quadrotor robot
structure, thus, the generated thrust by each rotor changes with variation
of the squared angular velocity proportionally. Drawing free body diagram
for the system, one could easily conclude that the total thrust applied to the
airframe by the rotors is given by

T =
4∑
i=1

Ti = b

4∑
i=1

ω2
i . i ∈ {1, 2, 3, 4} (4.13)

A glance at the equation (4.13) confirms that the thrust can be controlled
by changing the angular velocity of the rotors in a quadrotor aerial robot.
Recalling Newton’s second law for inertial frame expressed in equation (4.8),
one can write

F =MaI =MgzI − TRzI (4.14)

where aI denotes the acceleration of the object expressed in inertial frame.
From the above equation, it can be easily concluded that

aI = υ̇ = gzI −
1

M
TRzI (4.15)

where zI =

0
0
1

 and zB are the unit vectors of inertial frame and body-fixed

frame respectively.

Torques

The main torques acting on a quadrotor airframe can be categorized as

• The torque applied by the rotors about the axes of the airframe, τa.
Recalling the relation between the force and the corresponding torque,
one can write

τ 1a = d(T4 − T3) = db(ω2
4 − ω2

3)

τ 2a = d(T1 − T2) = db(ω2
1 − ω2

2)

τ 3a = k(T1 + T2 − T3 − T4) = k(ω2
1 + ω2

2 − ω2
3 − ω2

4)

(4.16)
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where d represents the distance between the center of mass of the air-

frame and the rotor center. τa =

τ 1aτ 2a
τ 3a

 denotes the torque applied

by the rotors about the origin of the body frame. Also, k denotes the
proportionality constant dependant on the physical characteristics of
the blades and airflow.

• The Gyroscopic torques applied to the airframe, Ga. Note that, the
rotors are rigidly mounted on the body frame (which can rotate freely),
while each rotor is spinning itself. This makes the rotors to act similar
to a gyroscope in creating the torque given by [40]

Ga = Ir(Ω× zI)(ω1 + ω2 − ω3 − ω4) (4.17)

where Ir denotes the constant momentum inertia of the rotor.

Hence, Newton’s law of motion expressed in equation (4.11) can be rewritten
for the quadrotor aircraft as

If Ω̇ = −Ω× IfΩ−Ga + τa. (4.18)

Dynamic Model of Rotors

The dynamic equation of each rotor can be expressed as [40]

Irω̇i = τi −Qi, ωi ∈ {1, 2, 3, 4} (4.19)

where Ir denotes the moment of inertia of each rotor. ωi, τi and Qi represent
the angular velocity, rotor torque and reactive torque generated by each rotor
respectively. As discussed earlier, the reactive torque applied by the rotor
on the airflow due to the aerodynamic drag, depends mainly on the blade
physical factors and is related to the squared angular velocity of the rotor
proportionally. Such relation is given by

Qi = kω2
i . (4.20)

where k is the proportionality constant.

4.1.3 Quadrotor Model

A mathematical model of the quadrotor aircraft can be developed by a com-
prehensive study on the kinematics and dynamics of the system. The resul-
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tant model is presented by [40]
ṗ = υ
υ̇ = gzI − 1

M
TRzI

Ṙ = RS(Ω)

If Ω̇ = −Ω× IfΩ−Ga + τa
Irω̇i = τi −Qi, i ∈ {1, 2, 3, 4}

(4.21)



CHAPTER5
Attitude Estimation

The fundamental challenge to achieve autonomous stable flight for any un-
manned aerial vehicle, is the accurate attitude estimation. In theory, ori-
entation estimation of a rigid body can be provided by the integration of
well-known kinematic model of the moving object as far as the angular ve-
locity is measured precisely. There are a number of publications in literature
that investigate the design of attitude stabilization schemes for UAVs, assum-
ing that the angular velocity of the aircraft is measured accurately. However,
in practice, the gyro sensors used for the measurement of angular velocity,
are not flawless. There are biases and misalignments involved with gyro mea-
surements. Thus, the attitude estimation is not practically reliable when the
dynamic model of the system is used only along with gyro measurements.
Over the past few years, attitude estimation of rigid bodies has received
excessive attention in the academic control and navigation community. A
common approach used for attitude estimation, is fusing at least two non-
collinear inertial measurements taken on body frame of the the object along
with the angular velocity. Accelerometers and magnetometers are the sensor
units widely used to serve this purpose.
A typical challenge in most of control engineering applications involving sig-
nals and measurements is filtering the noise out of the signals. More specif-
ically for the attitude estimation problem, different nonlinear filtering tech-
niques have been used by researchers (see reference [12]). The Extended
Kalman Filtering (EKF) is one of the oldest methods in this case proved to
be practical. However, the complex mathematics which is the back bone of
EKF attitude estimation methods highlights the demand for an easier and
more understandable practical approach to the problem. The complementary
filtering algorithm presented in [33] leads to a more simple and yet practi-
cal attitude observer. In this method, the gyroscope bias is considered to
be constant while the gyro measurements are affected by the noise in low
frequencies. When the acceleration of the vehicle is negligible, an estima-
tion algorithm is introduced by fusing measurements of gyros with those of

43
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accelerometers and magnetometers which are more reliable in low frequen-
cies. At high frequencies, the observer reading mainly relies on the angular
velocity while on the other hand, it mostly relies on the accelerometer and
magnetometer measurements at low frequencies.
Through this project, two estimation algorithms have been implemented
based on the observers presented in [41]. In the following sections, these algo-
rithms are discussed briefly followed by the required measurement description
and calibration discussion presented in the final section of this chapter.

5.1 Estimation Algorithms

Due to certain advantages of quaternion attitude representation over the
other common formulations, this type of notation is used in [41] to derive
the estimation algorithms. Consider the well-known rotational kinematics of
the rigid body {

Q̇ = 1
2
Q ∗ Ω̄,

If Ω̇ = −Ω× IfΩ + τ
(5.1)

where Ω̄ =

(
0
Ω

)
. As it was discussed in Chapter 2, any vector in inertial

frame uI , can be expressed in body frame by

uB = Q−1 ∗ uI ∗Q (5.2)

Consider 3-axis accelerometer and magnetometer strapped down on the body
of the aircraft. While the acceleration of the aircraft is assumed to be negli-
gible, the accelerometer measures merely the projection of the gravitational
acceleration in the body-fixed frame. In better words,

b1 = Re1 = Q−1 ∗ ē1 ∗Q

where b1 denotes the vector measurement obtained form the accelerometer.
Also, e1 represents the value of gravitational acceleration in the inertial frame.
Since such value is known in any location on the Earth, we can easily conclude
that

e1 = ag

where ag represents the gravitational acceleration vector in the inertial frame.
Similarly, when no external magnetic field is present in the surrounding envi-
ronment of a the body frame, the magnetometer measures only the projection
of the Earth magnetic field in body-frame. Therefore,

b2 = Re2 = Q−1 ∗ ē1 ∗Q
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where b2 denotes the vector measurement obtained from the magnetometer.
Also, e2 represents the Earth magnetic field in the inertial frame which its
value is available and known for any location in the inertial frame,

e2 = HI

where HI represents the Earth magnetic field. Having these facts in mind,
one can easily conclude that

b̄i = Q−1 ∗ ēi ∗Q (5.3)

where bi denotes the measured vectors in body-fixed frame and ei represents
the known inertial vectors. Note that, any vector u ∈ R3, can be expressed
in quaternion format given by

ū =

(
0
u

)

5.1.1 Algorithm 1: Attitude Estimation Using Raw
Vector Measurements

In [41], a unit-quaternion based attitude observer is introduced by

˙̂
Q =

1

2
Q̂ ∗ β̄ (5.4)

where

β = Ω−
i=n∑
i=1

γiS(b̂i)bi. n = 2 (5.5)

with Q̂ representing the estimated attitude. Also, in the above equation, γi

is a constant gain and β̄ =

(
0
β

)
denotes the quaternion formulation of vector

β. Note that,
¯̂
bi = Q̂−1 ∗ ēi ∗ Q̂.

where b̂i denotes the estimated non-colinear vectors(in this case, acceleration
and magnetic field) in body-fixed frame. The actual values for these vectors
bi, can be obtained from the accelerometer and magnetometer directly.
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Proof

Let R̃ = RTR denote the orientation error. The corresponding quaternion
error Q̃, is given by

Q̃ = Q ∗ Q̂−1.

Consider the Lyapunov function candidate as [41]

E =
1

2

n∑
i=1

γib̃
T
i b̃i (5.6)

where b̃i = b̂i − bi. Recalling the fact that for any vector u, it is possible to
write RS(u) = −S(Ru)R. Therefore, we have

d

dt
b̄i =

d

dt

(
0
bi

)
=

(
0

Ṙei

)
=

(
0

−S(Ω)Rei

)
=

(
0

S(bi)Ω

)
. (5.7)

Similarly,

d

dt
¯̂
bi =

d

dt

(
0

b̂i

)
=

(
0
˙̂
Rei

)
=

(
0

S(b̂i)β

)
. (5.8)

Using the last two equations, the derivative of the proposed lyapunov function
can be written as

Ė =
n∑
i=1

γib̃
T
i S(b̂i)(β − Ω) (5.9)

If we replace the term (β−Ω) by its equivalent term extracted from equation
(5.5), we can rewrite the above equation as

Ė =
( n∑
i=1

γib̃
T
i S(b̂i)

)(
−

n∑
i=1

γiS(b̂i)bi

)
(5.10)

Since it can be easily proved that S(b̂i)bi = −S(b̂i)b̃i, the above equation can
be simplified as

Ė = −
( n∑
i=1

γiS(b̂i)bi

)T( n∑
i=1

γiS(b̂i)bi

)
(5.11)

The above equation confirms that E is non-increasing and bounded. Since Ë
is also bounded, we can write

lim
t→∞

n∑
i=1

(
γiS(b̂i)bi

)
= lim

t→∞

n∑
i=1

(
γiR̂S(ei) R̂

TR︸︷︷︸
R̃

ei

)
= lim

t→∞

n∑
i=1

(
γiR̂(ei × R̃ei)

)
= 0

(5.12)
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It is clear from the above equation that R̃ = I3 (corresponding to quaternion
Q̃ = (±1, 0)), is one of the equilibrium points. This is the desired equilibrium
point, however, there are other possible solutions for the equation named as
undesired equilibria in [41]. To find these undesired solutions, substitution
of R̃ in the above equation with its corresponding representation expressed
in equation (2.41), yields to

−q̃0q̃TW q̃ = 0 (5.13)

while

W = −
n∑
i=1

γiS(ei)
2.

As it can be concluded easily, q0 = 0 is the solution to equation (5.13).
Therefore, the undesired equilibria is given by Q = (0, q̃), with q being an
eigenvector of W .
It has been proved in [41] that the undesired equilibria are unstable. meaning
that q̃0(t) will never cross zero, as long as q̃0 ̸= 0. (see reference [41] for more
details).

5.1.2 Algorithm 2: Attitude Estimation Using Filtered
Vector Measurements

In practice, measurements are often subject to noise. In most of engineering
applications, filtering methods are applied to eliminate the noise contaminat-
ing the measurements. A simple and yet practical filter often used in control
algorithms is low-pass filter. In the second attitude observer presented in
[41], the law-pass filtered measurements are used to estimate the orientation
of a rigid body.
Recalling that in frequency domain, the law-pass filter transfer function is
given by

H(s) =
α

α+ s
(5.14)

In the above equation α = 1
2πfc

> 0 where fc represents the cut-off frequency

of the filter. In [41], an attitude observer is presented by

˙̂
Q =

1

2
Q̂ ∗ β̄ (5.15)

where

β = Ω− αµ (5.16)
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and µ is given by

µ̇ = −αµ+ α
n∑
i=1

γiS(b̂i)bi (5.17)

where α > 0 and γi > 0.

Proof

Consider the Lyapunov function candidate given by

E =
1

2

n∑
i=1

γib̃
T
i b̃i +

1

2
µTµ (5.18)

Using equations (5.15), the time derivative of the above equation can be
calculated as

Ė =
n∑
i=1

γib̃
T
i S(b̂i)(β − Ω) + µT µ̇ (5.19)

Replacing equations (5.16) and (5.17) in the above equation leads to

Ė = −αµTµ = −α||µ||2 (5.20)

Recalling the fact that measurements are bounded, the above equation con-
firms that E is non-increasing and converges to a constant value when t goes
to infinity. Since it can be proved that Ë is also bounded, we have

lim
t→∞

µ(t) = 0. (5.21)

Consequently, we have

lim
t→∞

( n∑
i=1

γiS(b̂i)bi

)
= 0.

Using similar argument as those used in the proof of algorithm 1, we can
show that the desired equilibria are (q̃0 = ±1, q̃ = 0, µ = 0) and also the
undesired equilibria are given as

(q0 = 0, q̃, µ = 0)

with q̃ being an eigenvector of W . It can be shown that the undesired
equilibria are unstable.
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5.2 Measurements and Calibrations

As mentioned in earlier sections, three types of sensors are commonly used
for the aircraft attitude estimation: gyroscopes, accelerometers and magne-
tometers. The local magnetic filed observation from the body frame and
the acceleration of the airframe are measured by 3-axis magnetometer and
3-axis accelerometer respectively. In light of advantageous factors includ-
ing low-cost, light weight, small size and low power consumption, the Micro
Electro Mechanical Systems (MEMS) inertial sensors have been used on-
board the quadrotor under consideration. As a compromise to numerous
advantages, there are some uncertainties involved with MEMS sensors mea-
surements specially when it comes to navigation applications in which very
accurate measurements are required.
There are a number of valuable publications including [28] which discuss
the structure and characteristics of MEMS inertial sensors, giving a general
knowledge of possible sources of biases and uncertainties in measurements of
these type of sensors. A brief description of each sensor is presented through
this chapter followed by a calibration method.

5.2.1 Gyroscopes

The performance of MEMS gyroscope is based on the coriolis effect. A pair
of masses oscillate constantly with equal magnitude in opposite directions.
In consequence, when the sensor is rotated, the coriolis phenomena affects
the masses in opposite directions, leading to an orthogonal vibration that
can be sensed by a variety of mechanisms (see [13] for more details).
Generally, the uncertainties involved with gyro measurements can be divided
into the following categories

• Constant bias or device offset is usually specified by the manufac-
turer. However, the offset value may vary slightly in a range. There-
fore, for the applications with high precision required like the attitude
estimation case, the sensor must be calibrated.

• Bias drift or flicker noise, effects the electronic components of gyro
sensors at low frequencies.

• Temperature effect is generated over a long-term run due to self
heating of the device.

• White noise contaminates the gyro output in high frequencies.
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Generally, the gyros measurements can be modeled as

Ωmeasured = Ω+ Bg + ξg (5.22)

where Bg and ξg represent the constant bias and noise affecting gyro mea-
surements respectively. The gyroscope device used on board of the quadrotor
under consideration is an ADXRS300EB, with analog voltage output propor-
tional to the angular rate about the axis normal to the top surface of the
sensor.

Gyro Calibration

While the gyro sensor is still and stationary, the actual angular velocity is
zero. Hence, the average of sensor readout is considered as the constant bias.
The gyro measurements can be calibrated using this bias. It is clear that the
calibrated value would be used in estimation algorithms, such that

Ω = Ωmeasured −Bg (5.23)

To determine the constant biases, while the gyroscopes are left still and
stationary, their output data is collected. Figures (5.1), (5.2), and (5.3) show
the data collected from the gyroscopes which have been rigidly attached to
the body frame to measure the angular velocity in xB, yB and zB directions
respectively.

Ω

Figure 5.1: Collected Data From Biased X-Gyro
.
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Ω

Figure 5.2: Collected Data From Biased Y-Gyro.

Ω

Figure 5.3: Collected Data From Biased Z-Gyro.

As it was mentioned earlier, the average readings obtained from the gy-
roscopes are considered as the constant biases. Such values have been calcu-
lated as ⎧⎪⎨

⎪⎩
Bgx = 7.27 Deg/s

Bgy = −5.64 Deg/s

Bgz = −14.322 Deg/s

Using the bias values, equation (5.23) is used to provide more accurate an-
gular rate readings.
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To verify the effectiveness of the calibration process, while the gyroscopes
are left in stationary condition, the output data is collected. Such data is
calibrated using equation (5.23) and the bias values which were calculated
through the previous experiment. The results are plotted and shown in fig-
ures (5.4), (5.5) and (5.6). A simple comparison between the gyro readings
in the last two experiments confirms that the accuracy of angular rate mea-
surements have been improved in terms of constant bias elimination.
Note that when the sensor is powered in a long interval of time, the bias
changes slightly due to temperature variations.

Ω

Figure 5.4: Collected Data From the Calibrated X-Gyro
.
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Ω

Figure 5.5: Collected Data From the Calibrated Y-Gyro.

Ω

Figure 5.6: Collected Data From the Calibrated Z-Gyro.

5.2.2 3-axis Accelerometer

The performance of the most successful type of MEMS accelerometers, is
based on capacitive transduction. Among several attractive features fulfilled
by this type of accelerometers, the low power consumption and good stabil-
ity with respect to the temperature variation can be mentioned. ADXL330
is a three axis capacitive accelerometer used in our application. Typically,
a MEMS accelerometer consists of a movable proof mass attached to a ref-
erence frame through a mechanical suspension system. The acceleration is
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given by measuring the displacement of proof mass caused by the capacitance
difference (see [34],[7] and [6] for more details).
If we assume the misalignments in measurements to be negligible, the ac-
celerometer output can be modeled as

Ameasured = A+Ba + ξa (5.24)

where Ba and ξa represent the constant bias and noise affecting accelermeter
measurements respectively.
In quadrotor attitude estimation case, the accelerometer must be placed as
close as possible to the center of gravity of the aircraft to provide more
accurate acceleration readout. As mentioned by manufacturer, the output
of the ADXL330 has a typical bandwidth greater than 500 Hz. A common
practical approach to eliminate the high frequency noise is law-pass filtering
the output signal of the sensor. To fulfill this purpose, in this project, a
hardware law pass filter was implemented on the output circuitry of Eval-
ADXL330 with a cut-off frequency of 50Hz.

Accelerometer Calibration

Due to limitations in test instruments and setup configuration, a very accu-
rate accelerometer calibration for vibration and sensitivity issues is not con-
sidered in this project. However, a simple possible bias calibration method is
provided by collecting the accelerometer data while it is placed in known ori-
entations. Ideally, Considering the sensor to be stationary, the acceleration
sensed by the sensor is the gravitational acceleration. Therefore, equation
(5.24) can be rewritten as

Ameasured = −gRzI +Ba (5.25)

where g denotes the gravitational acceleration. Thus, collecting the ac-
celerometer measurements in known orientations yields to finding the con-
stant bias. It is clear that, the calibrated measurements are used in attitude
estimation algorithms.

5.2.3 Magnetometer

The 3-axis magnetometer used through this project is HMC2003, a magneto
resistive sensor. A typical magneto resistive chip is composed of permalloy
strips. The electrical resistance of the permalloy thin films changes with local
magnetic field variation leading to measurement of magnetic field strength
and direction [37]. In practice, there are some limitations in using this type
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of sensors in a wide temperature range due to the effect of heat on the
resistance of the strips. In addition to white noise and temperature effects,
the magnetometer output is mainly effected by the magnetic distortions based
on ferromagnetic materials in the environment. Magnetic distortions can be
divided into two categories,

• Soft iron distortions arise from the soft ferromagnetic materials in
surrounding environment. This type of magnetic distortions are de-
pendent upon the orientation of the material relative to the sensor and
magnetic field. Since compensation for soft iron disturbances requires
complex calculations and specific instruments, the best approach is to
evacuate the surrounding environment from the soft iron materials.

• Hard iron distortions are originated from permanent magnets or mag-
netized materials on the magnetometer platform. In better words, since
these materials are fixed-located relative to the sensor, hard iron effects
cause a constant bias in sensor readings. There are a number of valuable
publications in literature including [10] and [21] discussing a calibration
method to eliminate the hard iron effects. The compensation method
for hard iron biases presented in the coming section is inspired by [14].

Magnetometer Calibration

Considering the hard iron biases, the magnetometer output can be modeled
as

m′ = m+Bm + ξm (5.26)

where m′ and m denote the measured and actual magnetic field respectively.

Also, Bm =

Bmx

Bmy

Bmz

 and ξm represent constant biases and noise respectively.

In theory, when the surrounding environment is not disturbed by any exter-
nal field, the magnetometer measures the Earth magnetic field which has a
constant distinguished value in every location on the Earth. Generally, the
Earth magnetic field points down toward the geographic north pole in north-
ern hemisphere. Taking the longitude and latitude of a geographical location
into the account, the Earth magnetic field vector can be decomposed in two
components: horizontal and vertical. As on the Earth level the horizontal
component always directs toward the geographical north, this fact has been
used for decades to determine the heading in aircraft and navigation.
Let H⃗ denote the Earth magnetic field with a known local magnitude H.
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Therefore,

H2 = H2
x +H2

y +H2
z (5.27)

where Hx, Hy and Hz represent the projection of the Earth magnetic field on
the axes of the inertial frame. In practice, while no external field is present
about the magnetometer, each component of the magnetometer output mea-
sures the projection of Earth magnetic field on the corresponding axis. using
equations (5.26) and (5.27) one can write

H2 = (m′ −Bm)
2 = (m′

x −Bmx)
2 + (m′

y −Bmy)
2 + (m′

z −Bmz)
2 (5.28)

It is clear that equation (5.28) is the parametric equation of a sphere centered
at Bm. A possible compensation method for constant bias is collecting mag-
netometer data in any possible orientation in three dimensional space and
apply some specific numerical calculations to fit the data in a sphere located
at body-frame origin by estimating the bias (see for instance [14] and [21]).
However, the required process can be decreased to minimum by considering
the problem in two dimensions. Therefore, an appropriate calibration proce-
dure is to locate the sensor such that its z axis is normal to the Earth level
and collect data while the sensor is undergoing a rotation by 360 degrees
about its z axis. Thus, the sensor output model can be rewritten as

(Hh)
2 = (m′

x −Bmx)
2 + (m′

y −Bmy)
2 (5.29)

where Hh denotes the horizontal component of Earth magnetic field. Equa-

tion (5.29) is the parametric equation of a circle centered at

(
Bmx

Bmy

)
. Fitting

the collected data in this equation leads to finding Bmx and Bmy . Similarly,
if we repeat the experiment for at least one of the other normal axes x and
y, the third component of hard iron bias, Bmz can be determined.

Verification of Hard Iron Calibration

Figures (5.7) and (5.8) show the collected data from the magnetometer under
consideration, during the calibration process described earlier.

While the upper and lower extreme values of each axis measurement is
provided, a simple way to calculate the biases is given by

Bx =
1
2
(mxmax +mxmin)

By =
1
2
(mymax +mymin)

Bz =
1
2
(mzmax +mzmin)

(5.30)

Figures (5.9) and (5.10) show the collected data during the same process
from the calibrated sensor. Comparison of raw and calibrated measurements
confirms that accuracy has been improved through the sensor calibration.
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Figure 5.7: Collected Data From Biased Magnetometer (through 360◦ rota-
tion about z axis)
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Figure 5.8: Collected Data From Biased Magnetometer (through 360◦ rota-
tion about x axis).
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Figure 5.9: Collected Data From the Calibrated Magnetometer (through 360◦

rotation about z axis).
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Figure 5.10: Collected Data From the Calibrated Magnetometer (through
360◦ rotation about x axis).



CHAPTER6
Attitude Control

Attitude stabilization of an aircraft is the crucial requirement for autonomous
navigation. For a small scale quadrotor robot, the combination of the aircraft
model and estimated orientation provided through fusion of sensor informa-
tion, makes it possible to design a feedback controller for this platform.
PID control is a simple and practical method proved to be reliable in atti-
tude stabilization case. A large group of attitude controllers discussed in the
literature consist of a PD controller plus a compensation term. For instance,
the gyroscopic effect due to nonlinear coupling of rotational motion of the
rotors and the airframe can be compensated for, through the control law. In
general, the proportional gain is provided in terms of the vector part of the
quaternion error while the derivative feedback is introduced in terms of the
angular velocity. The stability analysis of such control approaches has been
discussed for instance in [42]. The main goal in attitude stabilization prob-
lem is to drive the rigid body to a desired stable target orientation. Once
the control law is designed assuring the attitude stabilization, some steps
are taken to develop the required motor velocities corresponding to such a
control input.
In addition to the PD approach, a few other control strategies have been
implemented and proved to be practical in different research projects. For
instance a PD2 attitude controller is introduced and implemented success-
fully in [40]. Also, a backstepping control technique is provided in [8] and
[20], which has been used to achieve hovering flight for a model quadrotor
aircraft successfully. There are also a number of projects including [5], which
use visual sensors and communication capabilities to control the orientation
of a miniature quadrotor aircraft.
Through this project the classical PD controller is discussed and imple-
mented to stabilize the orientation of the quadrotor aerial robot under con-
sideration.
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6.1 PD Control

Consider quadrotor kinematic model expressed in (4.21), under the following
control law

τa = −ΛΩ− λq (6.1)

where λ is a positive scalar gain and Λ represents a 3 × 3 positive definite
matrix gain. It has been proved in [40], that equilibrium point (q0 = ±1, q =
0,Ω = 0) is globally asymptotically stable. The proof is reviewed in the
following section.
Since the control law expressed in (6.1), contains no terms related to inertia
matrix of the body frame, it is robust with respect to uncertainties of the
system parameters.

6.1.1 Stability Proof

Consider the following Lyapunov function candidate motivated by the total
energy of the the rigid body,

E =
1

2
ΩT IfΩ + λqT q + λ(q0 − 1)2 (6.2)

Recalling the definition of unit quaternion norm, the above equation can be
simplified as

E =
1

2
ΩT IfΩ + 2λ(1− q0). (6.3)

Taking derivative of such Lyapunov candidate function with respect to the
time, results in

Ė =
1

2

(
Ω̇T IfΩ + ΩT If Ω̇

)
− 2λq̇0 (6.4)

which can be simplified as

Ė = ΩT If Ω̇− 2λq̇0 (6.5)

On the other hand, substitution of q̇0 in the above equation by the definition
given in equation (4.6), leads to

Ė = ΩT If Ω̇− 2λ
(
−1

2
qTΩ

)
. (6.6)
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Recalling the dynamic model of the rigid body expressed in equation (4.21),
we have

Ω̇ = I−1
f

(
(−Ω× IfΩ)−Ga + τa

)
(6.7)

Considering equation (6.7), we can rewrite equation (6.6) as

Ė = ΩT
(
(−Ω× IfΩ)−Ga + τa

)
+ λqTΩ. (6.8)

The first term in the right side of the previous equation can be rewritten,
recalling the fact that

ΩT (−Ω× IfΩ) = 0

and also

−ΩTGa = −IrΩT
(
(Ω× zI)(ω1 + ω2 − ω3 − ω4)

)
= 0

Therefore, equation (6.8) can be simplified as

Ė = ΩT τa + λqTΩ (6.9)

On the other hand, replacing the control law modified by equation (6.1) in
the previous equation, one can simply conclude

Ė = −ΩTΛΩ. (6.10)

Since Λ was defined earlier as a positive definite matrix, it is clear that the
above equation is negative semi-definite. This can be used to conclude that
q0, Ω and consequently Ω̇ are bounded. Hence,

lim
t→∞

Ω̇(t) = lim
t→∞

Ω(t) = 0 (6.11)

Combination of the above expression and the dynamic model of the aircraft
proves that

lim
t→∞

τa(t) = lim
t→∞

(
−ΛΩ− λq

)
= 0. (6.12)

Using equation (6.12) and the fact that the quaternion norm is unit, it is
clear that {

limt→∞ q(t) = 0,
limt→∞ q0(t) = ±1.

(6.13)

The above equation indicates that the equilibrium point
(
q0 = ±1, q = 0,Ω =

0
)
, is asymptotically stable.
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6.2 Rotors Speed Controller

The quadrotor aerial robot is capable of attaining hovering flight, once the
speed of the rotors are driven to the desired speed corresponding to designed
attitude control law. To control the speed of the rotors, a high gain feedback
control strategy is used through this project. Such approach is based on
using a feedback proportional to the rotor speed error which is defined as

ω̃i = ωi − ωd , i ∈ {1, 2, 3, 4} (6.14)

where ωd denotes the desired speed of the rotors. To obtain the desired speed
corresponding to the control law given in (6.1), consider equations (4.13) and
(4.16). Therefore, one can write

τ 1a

τ 2a

τ 3a

T

 =


0 0 −db db

db −db 0 0

k k −k −k
b b b b



ω2
d1

ω2
d2

ω2
d3

ω2
d4

 . (6.15)

Using the above equation, the desired speed of rotors can be derived as

ω̄d = F−1χ (6.16)

where ω̄d =


ω2
d1

ω2
d2

ω2
d3

ω2
d4

 and χ =


τ 1a

τ 2a

τ 3a

T

. Also F denotes the 4 × 4 matrix in

equation (6.15).
When the desired speed of rotors are known, considering the rotor dynamic
model expressed in equation (4.19), a control law can be developed as

τi = Qi + Irω̇d,i − κiω̃i, i ∈ {1, 2, 3, 4} (6.17)

where κi represents four positive design parameters.
As mentioned in earlier chapters, four permanent magnet brushed DC motors
are used in the quadrotor platform under the consideration. These motors are
the actuators at the heart of control system. Since DC motors are voltage
controlled via PWM signals, it is necessary to define a relation between
designed rotor torques τi and corresponding motor voltage Vi.
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Figure 6.1: Electro-mechanical model of a DC motor.

As it is shown in figure (6.1), applying voltage Vi to the poles of a DC
motor causes the current Ia to flow, making the armature accelerate. Assum-
ing an ideal motor with no friction in bearings and no electrical loss, while
the armature inductance is negligible, one can write

Vi = RaIa + vie.m.f (6.18)

where vie.m.f denotes the back e.m.f and can be expressed in terms of motor
torque as

vie.m.f = Kmω
i
m (6.19)

whereKm and ωi
m represent themotor constant andmotor speed respectively.

On the other hand, generated torque by each motor τm, due to flow of current
Ia can be written as [26]

τm = KmIa. (6.20)

Let Kg denote the gear ratio, the motor torque τ im and motor speed ωi
m are

related to the rotor torque τi and speed ωi, respectively. Such relation is
expressed as {

τ im = τi
Kg

ωi
m = Kgωi.

(6.21)

Substitution of the above expressions as well as equations (6.19) and (6.20)
in equation (6.18) leads to finding a relation between motor voltage and rotor
torque, given as

Vi =
Ra

KmKg

τi +KmKgωi. (6.22)

This voltage can be converted to appropriate PWM signal to derive the
motors.
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6.3 Control Design Summary

Figure (6.2) shows the flowchart of control design for a quadrotor aerial robot.

Figure 6.2: Control Strategy Diagram.

6.4 Attitude Tracking Problem

In fact, the quadrotor system under the control law presented in equation
(6.1), can be managed to achieve the capability of attitude tracking. The de-
sired orientation of the aircraft is (ψd, θd, ϕd) is provided by the pilot through
a joystick or software interface. The orientation error is defined as⎛

⎜⎜⎝
ψ̃

θ̃

ϕ̃

⎞
⎟⎟⎠ =

⎛
⎜⎝
ψ − ψd

θ − θd

ϕ− ϕd

⎞
⎟⎠ . (6.23)

Let Q̄ denote the quaternion formulation of the above error expression.
Hence, if we apply q̄ to the control law in equation (6.1) as the quaternion
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part, one can conclude {
limt→∞ q̄(t) = 0,
limt→∞ q̄0(t) = ±1.

(6.24)

which means

lim
t→∞

ψθ
φ

 =

ψdθd
φd

 . (6.25)

This ensures that the attitude of the quadrotor aerial robot can be regulated
to any desired orientation.



CHAPTER7
Simulations

Through this chapter, the performance of the attitude controller is testi-
fied and analyzed via a number of simulations. The dynamical model of a
quadrotor aircraft has been coded in Matlab Simulink environment, while
the required model parameters were chosen as shown in table (7.2). These
parameters are mostly related to the physical characteristics of the hardware.
The information presented in table (7.2) have been investigated using a series
of experiments mainly inspired by the methods discussed in [26] and have
been documented in appendix 1. While the PD controller described in the
previous chapter was applied, the controller gains were tuned through trial
and error to provide a satisfactory system performance. For each simula-
tion presented in the following sections, the initial conditions are considered
equivalent to those given in table (7.1). Also the desired thrust is defined as
T = 12N .

Parameter Value

Initial Condition Ω = 0

Q (0) =
(
0.94,−0.17, 0.31,−0.04

)Tψ(0)θ(0)
φ(0)

 =

−12.5◦

34.3◦

−24.4◦


Controller Gains λ = 0.8

ki = 0.0012
Λ = diag(0.1, 0.1, 0.08)

Table 7.1: Simulation Parameters
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It must be mentioned that, there are practical limitations involved with
the motors in terms of angular speed and input voltage. The maximum
angular velocity and input voltage of the motors in physical setup under
consideration are 300 rad/s and 12V respectively. Hence, the controller
gains have been tuned such that the angular speed and the input voltage of
each motor would not exceed the limitations.

Model Parameter Description Value Units

d Distance 0.225 m
g Gravity 9.81 m/s2

M Mass 0.50071 kg
Ra Motor Resistance 1.1 Ω
Km Motor Constant 4.137× 10−3 Nm/A
Kg Gear Ratio 5.6
K Proportionality Constant 1.120× 10−6

b Proportionality Constant 2.923× 10−5

Ir Rotor Inertia 4.43× 10−5 kg.m2

Ifψ Roll Inertia 3.735× 10−3 kg.m2

Ifθ Pitch Inertia 3.735× 10−3 kg.m2

Ifφ Yaw Inertia 1.33× 10−2 kg.m2

Table 7.2: Quadrotor Aircraft Model Parameters.

7.1 Simulation 1

Given the initial conditions, the objective of simulation 1 is to explore the
performance of the controller in stabilizing the quadrotor in hovering condi-
tion, Q = (1, 0, 0, 0). Performing this simulation, the angular velocity of the
aircraft Ω and the control effort τi of each motor were plotted. The results
are presented in figures (7.3) and (7.5)-(7.8) respectively. Also to provide
a better attitude visualization, a plot is given n figure (7.2) for the aircraft
angles. The required input voltage for motors is monitored as well and the
results are given in a plot via figure (7.4).
Simulation results clearly confirm the convergence of the aircraft attitude to
the equilibrium point (hovering condition), as it was expected.
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7.2 Simulation 2

While disturbance is introduced in the attitude of the aircraft model, the task
of simulation 2 is to test the performance of the closed loop system in the
presence of disturbance. Starting from the initial conditions given in table
(7.2), a disturbance is considered to affect roll, pitch and yaw angle of the
aircraft separately at a specified time. Table (7.3) shows the specifications
of the disturbances considered in this simulation.

Effected Angle Disturbance Duration (sec) Time (sec)

Roll, ψ −20◦ 0.05 6.5
Pitch, θ 15◦ 0.05 4.5
Yaw, φ 10◦ 0.05 2.5

Table 7.3: Disturbance Specification in Simulation 2.

The plots are given for the angular velocity and the orientation of the aircraft
Q as shown in figures (7.11) and (7.9). Also, the control effort τi and the
input voltage of the motors are depicted in figures (7.13)-(7.16) and (7.12).
From the simulation results, it can be seen that the system is capable of re-
jecting external disturbances, once the balance is disturbed. Monitoring the
simulation results for the control effort shows a sharp rise and fall, shortly
after the disturbance is introduced in the system. The simulation results for
the control effort reflect the quick reaction of the control system to compen-
sate for the disturbance effects.

7.3 Simulation 3

While a desired attitude is introduced, the objective of simulation 3 is to
investigate the performance of the system in tracking the desired orientation.
Performing this simulation, it has been considered that the pilot demands to
stabilize the aircraft in hovering condition, then introduces a desired attitude
as ψdθd

φd

 =

25◦

10◦

30◦


at the specified time t = 3sec.
Similar to the other simulations presented in this chapter, the plots are given
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for the angular velocity and the orientation of the aircraft as shown in figures
(7.17) and (7.19). Also, the control effort and the required input voltage for
motors are presented in figures (7.21)-(7.24) and (7.20). The results clearly
insure that, once introduced by the pilot, the desired attitude can be reached
with a satisfactory settling time.
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Figure 7.1: Aircraft Orientation, Simulation 1. Figure 7.2: Aircraft Angles, Simulation 1.

Ω

Ω

Ω

Figure 7.3: Angular Velocity, Simulation 1. Figure 7.4: Input Voltage, Simulation 1.
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Figure 7.5: Control Effort 1, Simulation 1.

τ

Figure 7.6: Control Effort 2, Simulation 1.

τ

Figure 7.7: Control Effort 3, Simulation 1.

τ

Figure 7.8: Control Effort 4, Simulation 1.
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Figure 7.9: Aircraft Orientation, Simulation 2. Figure 7.10: Aircraft Angles, Simulation 2.

Ω

Ω

Ω

Figure 7.11: Angular Velocity, Simulation 2. Figure 7.12: Input Voltage, Simulation 2.
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τ

Figure 7.13: Control Effort 1, Simulation 2.

τ

Figure 7.14: Control Effort 2, Simulation 2.

τ

Figure 7.15: Control Effort 3, Simulation 2.

τ

Figure 7.16: Control Effort 4, Simulation 2.
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Figure 7.17: Aircraft Orientation, Simulation 3. Figure 7.18: Aircraft Angles, Simulation 3.

Ω

Ω

Figure 7.19: Angular Velocity, Simulation 3. Figure 7.20: Input Voltage, Simulation 3.
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Figure 7.21: Control Effort 1, Simulation 3.

τ

Figure 7.22: Control Effort 2, Simulation 3.

τ

Figure 7.23: Control Effort 3, Simulation 3.

τ

Figure 7.24: Control Effort 4, Simulation 3.



CHAPTER8
Experimental Results

This chapter concerns the real-time implementation of the attitude estima-
tion and stabilization algorithms discussed throughout this document. The
physical setup as well as the individual hardware parts are described. Sev-
eral experiments are performed, while the results are presented in the final
section of this chapter.

Figure 8.1: The Quadrotor Aerial Robot in Automatic Control Lab.

8.1 Test-bed Platform

To implement the discussed algorithms through this project, a commercial
mini-scale quadrotor aerial robot called DraganFlyer R⃝ - III was used. While
the airframe, motors and propeller sets were kept, the original control unit
PCB was discarded and replaced by a customized PCB board equipped with
the inertial sensors for attitude estimation purpose as well as motors driver
circuitries. In addition, the necessary power safety and distribution plants
were designed and implemented on the same PCB. To complete the control
set-up, a microprocessor was added to the electronic design.
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Figure 8.2: Hardware Communication Diagram.

Figure (8.2) depicts the hardware communication of the customized con-
trol unit designed for the aerial vehicle under consideration.

8.1.1 Actuators

In the quadrotor platform under study, the four motors mounted on the air-
frame are permanentmagnet brushed DCmotorsmanufactured bymabuchi R©.
These motors take a maximum voltage of 12V and offer the speed of approx-
imately 9000rpm under no-load conditions in maximum efficiency. Since the
rotation of each rotor is unidirectional (i.e., for each motor the direction of
rotation is not expected to vary during the flight), a possible scheme is us-
ing MOSFET based circuits to drive the motors by pulse width modulation
(PWM) signals.
In the driver circuitries designed for this project, LZ44Z power MOSFETs
are used, dimensioned for the 490 Hz switching frequency.

8.1.2 Processor and Software

Prior to the selection of a microcontroller, the technical features offered by
a mentionable number of microcontroller chips were investigated in terms of
the required criteria such as light weight, relatively large number of available
analog input pins, number of available pins capable of providing PWM sig-
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nals and available memory. ArduinoMega R⃝ 2560 is the electronic prototype
board with an AVRR⃝ chip, Atmege 2560 as the core processor, chosen to be
used in this project. The microcontroller operates at 20MHz and must be
programmed in C. In addition to monitoring the sensors, the chip provides
the required control signals to the four motors of the quadrotor while pro-
cessing the estimation and control algorithms.

The ArduinoMega R⃝ prototype board handles up to 12V input power and
has the capability of providing two different output voltages, 3.3V and 5V .
This factor has been used in the control platform design to power the inertial
sensors.

8.1.3 Sensors

• Inertial sensors: three gyroscopes as well as a 3-axis accellerometer
and 3-axis magnetometer are used. The detailed specifications of these
type of sensors have been discussed in earlier chapters. All inertial de-
vices used in physical setup are analog sensors. In the control board
design, wired transformation of analog signals have been avoided to de-
crease the risk of noise. Additionally, to eliminate the noise generated
in presence of motor vibrations, the collected data from the inertial
sensors were low pass filtered in software, with a cut-off frequency of
10Hz.
The analog signals are converted to 10 bit digital data by the internal
A/D in the microcontroller. While this fact doesn’t have a consider-
able impact on the accuracy of gyros and accellerometer readings in the
problem under consideration, the conditions are relatively more chal-
lenging for magnetometer measurements. As the geographical location
in which the tests are performed is relatively close to the North, the
horizontal component of the Earth magnetic field has a small value.
When the customized IMU is pitched, the magnetic field sensed in the
horizontal surface of the magnetometer decreases to a very small value.
Under such conditions, since the magnetometer has a limited sensi-
tivity, the accuracy of measurements decreases when the pitch angle
increases. The restricted accuracy in A/D intensifies this problem.

• Hall-effect sensors : in addition to the inertial sensors used for at-
titude estimation, Hall-effect rotary sensors are used in the hardware
platform to determine the angular velocity of the motors. The sensors
under consideration, are light weight three-terminal voltage-output de-
vices working based on Hall effect. There are two small magnetic sticks
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originally mounted on the rotors, 180◦ apart from each other. The Hall-
effect rotary sensors are placed in a fixed position under the main rotor
gear. While the normal output of the sensor is 5V , sensing the magnet
stick in close distance causes the device to output 0V . Consequently,
the angular speed of the rotors can be calculated by measuring the time
interval ton in which the output signal stays high. It has been shown
by experiments [26] that for any given frequency,

2 ton = 0.8737 trev

where trev denotes the time for one rotor revolution expressed in sec-
onds. Therefore, the angular velocity of each rotor can be calculated
as

ωi =
2π

trev
=

0.8737π

ton
(rad/s)

8.1.4 Discussion

Through this project, the microcontroller was managed to update the
rotors speed readings every 0.02 sec. To avoid the halt in calculations
due to low speed of the rotors, a minimum angular velocity and a maxi-
mum waiting time have been considered in the program. If no low pulse
was detected during the specified waiting time, the measured angular
velocity would be considered zero. However, the reading process for
the Hall-effect sensors causes a time delay in the whole program. This
problem prevented the control system to react within the appropriate
time and any further attempts for stabilizing the customized quadrotor
platform were turned unsuccessful.
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8.2 Experimental Data

To explore the real-time performance of attitude estimation algorithms, sev-
eral experiments were performed. A number of these experiments are de-
scribed in the following sections, while the results are presented and dis-
cussed. Two different estimation algorithms were coded into the microcon-
troller and the data containing the estimated orientation were collected using
Eltima R⃝ serial data logger software. The sampling time is about 0.03 sec
while the orientation of the aircraft and the estimation algorithms gains are
given in table (8.1).

Parameter Value

Observer 1, Gains γ1 = 35
γ2 = 4

Observer 2, Gains α = 5
γ1 = 35
γ2 = 4

Table 8.1: Experiment 1 Parameters

While the customized control unit has been strapped down rigidly on a
commercial IMU, the physical setup was moved in a series of rotations. The
objective of this experiment is to compare the estimated orientation provided
by the attitude observers with the precise orientation given by the commercial
IMU. The IMU device used during this experiment is 3DM-GX1 R⃝ manufac-
tured by Microstrain. While the sampling times of the industrial and the
customized IMUs were synchronized, the estimated orientation data were
collected. The plots are given for the estimated orientations, making a com-
parison possible. As mentioned earlier, this experiment has been repeated for
several rotational motions. These movements are described in the following.

• Experiment 1-1: the estimation algorithm 1 was coded in the micro-
controller and the setup was forced through a random roll movement.
While the setup was undergoing such motion, the estimated orientation
provided by both commercial and customized IMUs were collected and
the corresponding components were plotted in the same figure to make
a simple comparison possible. The results for the estimated quaternion
components are presented in figures (8-3)-(8-6).

• Experiment 1-2: the estimation algorithm 1 was coded in the micro-
controller and the setup was forced through a random pitch movement.
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To verify the real-time performance of the customized IMU and check
whether it is capable of a relatively accurate attitude estimation, the
output data was collected from both commercial and customized IMUs.
Corresponding quaternion components have been plotted in the same
figure to make a simple comparison possible. The results are depicted
in figures (8.7)-(8.10).

• Experiment 1-3: the estimation algorithm 1 was coded in the micro-
controller and the setup was forced through a random yaw movement.
While the setup was undergoing such motion, the estimated orientation
provided by both commercial and customized IMUs were collected and
the corresponding components were plotted in the same figure to make
a simple comparison possible. The results for the estimated quaternion
components are presented in figures (8-7)-(8-10).

• Experiment 2-1: the estimation algorithm 2 was coded in the micro-
controller and the setup was forced through a random roll movement.
To verify the real-time performance of the customized IMU and check
whether it is capable of a relatively accurate attitude estimation, the
output data was collected from both commercial and customized IMUs.
Corresponding quaternion components have been plotted in the same
figure to make a simple comparison possible. The results are depicted
in figures (8.11)-(8.14).

• Experiment 2-2: the estimation algorithm 2 was coded in the micro-
controller and the setup was forced through a random pitch movement.
While the setup was undergoing such motion, the estimated orientation
provided by both commercial and customized IMUs were collected and
the corresponding components were plotted in the same figure to make
a simple comparison possible. The results for the estimated quaternion
components are presented in figures (8-5)-(8-18).

• Experiment 2-3: the estimation algorithm 2 was coded in the micro-
controller and the setup was forced through a random yaw movement.
To verify the real-time performance of the customized IMU and check
whether it is capable of a relatively accurate attitude estimation, the
output data was collected from both commercial and customized IMUs.
Corresponding quaternion components have been plotted in the same
figure to make a simple comparison possible. The results are depicted
in figures (8.19)-(8.22).

• Experiment 3-1: the estimation algorithm 1 was coded in the micro-
controller and the setup was forced through a random 3 dimensional
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movement. While the setup was undergoing such motion, the estimated
orientation provided by both commercial and customized IMUs were
collected and the corresponding components were plotted in the same
figure to make a simple comparison possible. The results for the esti-
mated quaternion components are presented in figures (8-23)-(8-26).

• Experiment 3-2: the estimation algorithm 2 was coded in the mi-
crocontroller and the setup was forced through a random 3 dimen-
sional movement. Similar to the previous experiments, the estimated
orientation provided by both commercial and customized IMUs were
collected and the corresponding components were plotted in the same
figure to make a simple comparison possible. The results for the esti-
mated quaternion components are presented in figures (8-27)-(8-30).

As it is clearly confirmed by the experimental results for several random
movements that, the estimated orientation given by both algorithms are rel-
atively accurate in terms of estimating the first three components of the
quaternion. A slight difference can be seen between the estimated q3 and its
real value provided by 3DM-GX1. It can be deduced from the experimen-
tal data that, q3 component is effectively involved with the yaw motion of
the aircraft and consequently it is strongly dependant on the magnetome-
ter readings. Since the experiments have been performed in an environment
surrounded by electrical equipments and power cables, a possible reason for
this misalignment can be the lack of an appropriate soft-iron calibration for
the magnetometer under consideration.
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Figure 8.3: The Estimated q0, Experiment 1-1.
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Figure 8.4: The Estimated q1, Experiment 1-1.
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Figure 8.5: The Estimated q2, Experiment 1-1.
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Figure 8.6: The Estimated q3, Experiment 1-1.
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Figure 8.7: The Estimated q0, Experiment 1-2.
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Figure 8.8: The Estimated q1, Experiment 1-2.
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Figure 8.9: The Estimated q2, Experiment 1-2.
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Figure 8.10: The Estimated q3, Experiment 1-2.
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Figure 8.11: The Estimated q0, Experiment 1-3.
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Figure 8.12: The Estimated q1, Experiment 1-3.
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Figure 8.13: The Estimated q2, Experiment 1-3.
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Figure 8.14: The Estimated q3, Experiment 1-3.
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Figure 8.15: The Estimated q0, Experiment 2-1. Figure 8.16: The Estimated q1, Experiment 2-1.

Figure 8.17: The Estimated q2, Experiment 2-1. Figure 8.18: The Estimated q3, Experiment 2-1.
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Figure 8.19: The Estimated q0, Experiment 2-2.
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Figure 8.20: The Estimated q1, Experiment 2-2.
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Figure 8.21: The Estimated q2, Experiment 2-2.
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Figure 8.22: The Estimated q3, Experiment 2-2.
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Figure 8.23: The Estimated q0, Experiment 2-3.
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Figure 8.24: The Estimated q1, Experiment 2-3.
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Figure 8.25: The Estimated q2, Experiment 2-3.
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Figure 8.26: The Estimated q3, Experiment 2-3.
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Figure 8.27: The Estimated q0, Experiment 3-1.
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Figure 8.28: The Estimated q1, Experiment 3-1.
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Figure 8.29: The Estimated q2, Experiment 3-1.
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Figure 8.30: The Estimated q3, Experiment 3-1.
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Figure 8.31: The Estimated q0, Experiment 3-2.
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Figure 8.32: The Estimated q1, Experiment 3-2.
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Figure 8.33: The Estimated q2, Experiment 3-2.
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Figure 8.34: The Estimated q3, Experiment 3-2.



CHAPTER9
Conclusion

The development of unmanned aerial vehicles has been the subject of exten-
sive research over the past decade. These type of vehicles are considered as
a promising design to serve in many civil and military applications includ-
ing surveillance, intervention in hostile environments, remote monitoring,
and area mapping. The recent revolutionary advances in measurement tech-
niques, computing power and wireless communication have made it possible
to deploy an inexpensive UAV system to operate autonomously.
Quadrotor aerial robot is a prevalent test-bed for autonomous flight exper-
iments due to the numerous advantages in terms of simplicity and intu-
itive motion control. This configuration is a highly nonlinear, multi-variable,
strongly coupled and under-actuated system. To control six degrees of free-
dom, only four control inputs are used in such system. The development of a
mini scale quadrotor aerial robot capable of autonomous hovering flight has
been the main objective in this thesis.
Accurate attitude estimation is the prerequisite cornerstone to control the ori-
entation and balance a rigid body in three-dimensional space. Despite being
recommended by theory, the integration of aircraft kinematics is not a prac-
tically reliable approach for attitude determination, due to the time-varying
additive biases involved with the angular rate measurements. To obtain a
more accurate estimation of the attitude, in addition to three orthogonal an-
gular rate sensors, a 3-axis accelerometer and 3-axis magnetometer have been
used to provide the body-fixed vector measurements from the Earth gravity
acceleration and magnetic field. Two different attitude observers were dis-
cussed in this thesis [41]. These algorithms have been implemented for the
first time through this project and several real-time experiments have been
performed. The first algorithm is based on the use of raw vector measure-
ments, while the second observer uses filtered vector measurements.
The accuracy of vector measurements has a crucial role in both estimation
algorithms. Since the accelerometer and magnetometer measurements are
contaminated with biases, appropriate calibration methods have been dis-
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cussed to reduce the effect of sensor biases. Both attitude observers presented
in this thesis are capable of tracking a broad range of dynamical movements
and are not dependant on any external signal sources such as GPS or optical
trackers.
A model size quadrotor aerial robot has been developed using a pre-owned
commercially available airframe. A whole new electronic platform has been
designed and mounted. The physical setup has been used to demonstrate the
real-time performance of the algorithms discussed throughout this thesis.
There are a number of open issues and future works that could be done to
improve the attitude control system. These issues are addressed in order of
priority in the following section.

9.1 Perspectives

• To the knowledge of the author, the main complications experienced
in this research have been related to the sensor inadequacies. The per-
formance of the system is directly related to the accuracy, delay and
update rate of the attitude estimation. Using higher sampling rates,
more accurate ADC (12 or 16-bit) would improve the accuracy of the es-
timated attitude. Also, more precise measurements are possible either
by using digital sensors or external 16-bit ADC devices implemented
close to the analog sensors.

• The accuracy of the magnetic field measurement was proved to be vital
in precise yaw estimation. Performing further flight experiments in
outdoor environment would enhance the estimation results, due to the
absence of possible magnetic disturbances.

• Substitution of brushed DC motors in the current setup, with brushless
counter-parts improves the reliability of the system in the sense of high
thrust to weight ratio and decreases the noise and vibration generated
by motors.



APPENDIXA
Identification of Model Parameters

To implement the controller algorithm, a number of parameters related to
the hardware components need to be determined. Through this project,
assuming four motors are the same, model parameters were identified for
one motor. The parameters determination methods are inspired by the early
works done on this platform in 2003, [26].
While the armature resistance, Ra was measured simply by a multimeter, the
gear ratio, Kg was determined by counting the number of teeth on gears. The
remaining parameters are measured through more sophisticated methods as
explained in the following sections.

Motor Constant, Km

As mentioned earlier, assuming the electrical loss and friction to be negligible,
the torque generated by a simple DC motor depends on the current flowing
through the motor circuit. Such relation can be written as

τm = KmIa (A.1)

On the other hand, the preliminary assumption of no energy loss indicates
that the electrical power injected to a DC motor system equals the outgoing
mechanical power. This can be written as

VaIa = τmωm (A.2)

where Va and Ia represent the armature voltage and current respectively.
Combination of equations (A.1) and (A.2) leads to finding a formulation for
motor constant Km, given as

Km =
Va
ωm

=
τm
Ia

(A.3)

Considering the above expression, while the motor is under no-load condi-
tions (the propeller is removed), the back emf voltage and corresponding
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Input Voltage Ia (A) Va (V ) ωm (rad/s) Km (N.m/A)

3.58 0.09 3.481 812 0.004286
5.6 0.15 5.435 1288 0.004219
6.8 0.20 6.28 1590.4 0.00395
7.8 0.23 7.547 1859.2 0.00406
8.9 0.24 8.636 2071 0.00417
9.5 0.26 9.214 2223.2 0.00414

Table A.1: Collected Data for Motor Constant Identification.

angular velocity data were measured. For each set of data, a Km value can
be calculated. Table (A.1) shows the results of such experiment.
Through this project, the average of Km values presented in the above table
is used as the motor constant.

Moment of Inertia

A relatively simple way to determine the body moment of inertia, is the
experiment-based method called compound pendulum [26]. In this experi-
ment, suspending the aircraft while only the very end of one axis is fixed to
a surface, the mass is twisted. Acting like a pendulum, a torque is applied
to the mass, tending to rotate it back to its original position. This makes
the mass to oscillate back and forth, creating a harmonic motion. Once the
resonance frequency of this oscillation is known, the moment of inertia can
be determined as

I =
mgl

ω2
n

−ml2 (A.4)

where ωn and m represent the natural frequency and the mass respectively.
Also l and g denotes the distance between the fixed point of oscillation and
the center of gravity (in this case, the center of mass of the aircraft) and
gravity acceleration respectively.
To calculate the body inertia, the parameters m and l were simply measured
and determined to be 500.71g and 23.2cm respectively.
To ensure the reliability of the compound pendulum experiment, it was re-
peated seven times. The time interval of four complete cycles, t4cyc was
recorded for each trial. To determine the natural frequency of oscillation
ωn,φ about yaw axis, the results of trial sessions are presented in table (A.2).
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Trial t4cyc (sec)

1 4.088
2 4.527
3 4.795
4 5.251
5 5.374
6 4.775
7 4.906

Table A.2: Collected Data for Determination of Body Inertia Component
Ifφ .

While the average time is given as

tave,φ = 4.816 sec,

the natural frequency of the oscillations is calculated as,

ωn,φ = 5.21 rad/s

Substitution of these parameters in equation (A.4), yields to finding the mass
moment of inertia given by

Ifφ =
(0.50071)(9.81)(0.232)

(5.21)2
− (0.50071)(0.232)2 = 1.33× 10−2

Since the quadrotor configuration is symmetrical the moment of inertia around
roll and pitch axes are the same. To determine these parameters, the exper-
iments were performed similar to those for the identification of Ifφ . Table
(A.3) shows the collected data in terms of t4cyc in several trials.
Using the information in table (A.3), we can calculate

tave = 4.122 sec

also
ωn,θ = 6.094 rad/s

Replacing these values in equation (A.4) results in

Ifθ =
(0.50071)(9.81)(0.232)

(6.094)2
− (0.50071)(0.232)2 = 3.735× 10−3
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Trial t4cyc (sec)

1 4.405
2 4.014
3 4.134
4 3.698
5 4.432
6 3.728
7 4.445

Table A.3: Collected Data for Determination of Body Inertia Component
Ifθ .

Therefore, the mass moment of inertia is identified as

If = diag(Ifψ , Ifθ , Ifφ) = diag(3.735, 3.735, 13.3)× 10−3

Also, a similar approach was used to determine the rotor inertia. Consid-
ering l = 15 cm and m = 6.71 g, table (A.4) shows the data collected via
experiments.

Trial t4cyc (sec)

1 3.42
2 3.623
3 3.260
4 3.612
5 3.76
6 3.517
7 3.548

Table A.4: Collected Data for Determination of Rotor Inertia Ir.

While tave is calculated as 3.53 sec, the natural frequency is given by

ωn,r = 7.11 rad/s

Hence, the rotor moment of inertia is obtained as

Ir =
(0.00671)(9.81)(0.15)

(7.11)2
− (0.00671)(0.15)2 = 4.43× 10−5.



APPENDIXB
Mathematical Notation and Identities

In this section, a brief overview is given for a number of important mathe-
matical notations used through this thesis.
Rotation matrix :A rotation R maps an orthonormal basis to another
orthonormal coordinate. This orthonormality condition can be expressed as

RTR = I (B.1)

where I is the identity matrix

I =

1 0 0
0 1 0
0 0 1

 (B.2)

Rotation matrices preserve the length of vectors undergoing the rotation.
Every rotation can be represented uniquely by an orthogonal matrix with
unit determinant. i.e.,

det(R) = 1 (B.3)

Skew-symmetric matrix: Let u and υ denote two arbitrary vectors, u,
υ ∈ R3. The following identities can be described.

S(u) =

 0 −u3 u2
u3 0 −u1
−u2 u1 0

 (B.4)

For any two skew-symmetric matrices, commutation is defined as[
S(u), S(υ)

]
= S(u)S(υ)− S(υ)S(u) (B.5)

Cross Product:

u× υ = S(u)υ =

u2υ3 − u3υ2
u3υ1 − u1υ3
u1υ2 − u2υ1

 (B.6)
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Dot Product

u.υ = uTυ = u1υ1 + u2υ2 + u3υ3 (B.7)

Norm

• Vector norm

||u|| =
√
uTu =

√
u21 + u22 + u23 (B.8)

• Matrix norm

||A|| =
( m∑
i=1

n∑
j=1

Aij

) 1
2

(B.9)

Quaternion Form:

ῡ =

(
0
υ

)
(B.10)

Other important Notations

S(Rυ) = RS(υ)RT (B.11)

||υ||2 = 1

2
||S(υ)||2 (B.12)
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