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Abstract 

    High-throughput gene expression datasets (including RNA-seq and microarray datasets) can 

quantify the expression level of tens of thousands of genes in an organism, which allows for the 

identification of putative functions for previously unstudied genes involved in treatment/condition 

responses.  

  For static (single timepoint) high-throughput gene expression experiments, the most common 

first analysis step to discover novel genes is to filter out genes based on their degree of differential 

expression and the amount of inter-replicate noise. However, this filtering step may remove genes with 

very high baseline expression levels, and genes with important functional annotations in the experiment 

being studied. Chapter 2 presents a novel knowledge-based clustering approach for novel gene 

discovery, in which known functionally important genes as well as genes with very high expression levels 

(which would typically be removed by a strict fold change filter) are saved prior to filtering.  

  In stress-related experiments on plants (including Arabidopsis), novel gene discovery is 

complicated by stress-induced disruption of circadian rhythm pathways, leading to differential 

expression of many genes which are not involved in adaptive stress responses. Chapter 3 presents the 

PRIISM (Pattern Recomposition for the Isolation of Independent Signals in Microarray data) algorithm, 

which is a frequency-based method which is able to differentiate and isolate circadian-disruption 

signals, improving novel gene discovery in time-series stress-response datasets.  

  Another major factor limiting the effectiveness of novel gene discovery in time-series datasets is 

the experimenter’s choice of timepoints to sample; The identification of important novel treatment-

response genes is strongly dependent on sampling the timepoints at which the most target response 

genes are the most significantly differentially expressed. Although there may be several other time-

series datasets with similar treatments available, there is currently no approach in the literature for 

using the information in these datasets to guide timepoint selection in a new experiment. Chapter 4 
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presents a new machine-learning model called Optimal Timepoint Selection (OTS) to automatically 

design optimized sampling rates for microarray and RNA-seq experiments based on the expression data 

of known treatment-response genes in existing datasets. 
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Chapter 1: Introduction 1 

1.1 High-throughput gene expression measurement 2 

  Understanding the transcriptome (the complete quantification of transcripts in a biological 3 

sample) is essential for determining the functions of genes, inferring molecular pathways and ultimately 4 

for understanding development, maintenance and adaptive responses in an organism (Thilmony et al., 5 

2006; Wang et al., 2009a). Quantitative real-time PCR (qPCR or RT-PCR) is the most accurate and widely 6 

used technology for measuring changes in the transcript levels of single genes over time or across 7 

different conditions or strains of an organism (Bustin et al., 2005). However, low-throughput 8 

technologies are not useful for discovering unstudied genes which are involved in a given pathway or 9 

adaptive response, because the target genes must be identified before sampling (Bustin et al., 2005). 10 

High-throughput gene expression technologies can quantify the expression level of the many thousands 11 

of genes in an organism (for eukaryotes, ranging from ~6,000 genes in yeast, up to ~50,000 genes in rice 12 

(Kurata et al., 2002)). This allows for the measurement and subsequent identification of previously 13 

unstudied genes which have large transcriptional changes in response to a given treatment or condition. 14 

The two most prevalent technologies for deducing and quantifying the transcriptome are hybridization-15 

based microarray technology and sequence-based RNA-Seq technology (Allison et al., 2006; Wang et al., 16 

2009a).         17 

  Microarrays are currently the predominant method for high-throughput gene expression 18 

measurement (Mueckstein et al., 2010). Microarray chips contain massive ordered arrays of unique PCR-19 

amplified cDNA sequences (up to 390,000 in some experiments (Mueckstein et al., 2010)), comprising 20 

some or all of the known gene sequences in an organism (Schena et al., 1995). RNA samples are 21 

extracted, converted to cDNA using nucleotides tagged with a fluorescent dye (usually Cy3 or Cy5), and 22 

then are mixed with a hybridization buffer and hybridized to their complementary cDNA sequences on 23 
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the array (Schulze and Downward, 2001). High-resolution confocal fluorescence scanners then read the 1 

fluorescence in each position of the array, which quantifies the amount of bound cDNA to each 2 

sequence. A relative measure for gene expression for each cDNA on the chip can be derived and 3 

matched to each gene (Schulze and Downward, 2001). Although microarrays are a relatively inexpensive 4 

way to measure global gene expression patterns, they have relatively high levels of noise (from both 5 

biological and technical sources (Tu et al., 2002)) and rely on existing knowledge to build the chips, 6 

which may be flawed or limited, particularly for poorly studied organisms (Okoniewski and Miller, 2006; 7 

Wang et al., 2009a).  8 

RNA-sequencing (RNA-seq) technology is a recently developed revolutionary tool for 9 

transcriptomics which directly determines the cDNA sequences contained in a biological sample. For this 10 

technology, total RNA is converted to cDNA, broken into fragments with adapters added to one or both 11 

ends, and all of the fragments are sequenced using the adapters as a guide. The fragment length 12 

depends on the technology used, but typically varies from 30 to 400 base pairs (Okoniewski and Miller, 13 

2006; Wang et al., 2009a).  Once all of the RNA fragments are sequenced, they are either matched back 14 

up to a reference genome (if one is available), or are used for de novo assembly of a new genome (Wang 15 

et al., 2009a). The dynamic range of expression levels measured by RNA-seq is much larger than 16 

microarrays (greater than 9000-fold range in yeast (Nagalakshmi et al., 2008)). A correlation study 17 

showed that the two methods agree fairly well for genes with medium levels of expression, but the 18 

accuracy of RNA-seq is much higher at very low and high expression levels (Wang et al., 2009b).  In 19 

addition, unlike microarrays, RNA-seq can provide information about alternative splicing of genes, and 20 

can measure the expression of genes which have not been previously identified as having open reading 21 

frames (Wang et al., 2009a). For these reasons, as the cost of sequencing continues to fall, RNA-seq is 22 

expected to replace microarrays for high-throughput gene expression measurement (Wang et al., 23 

2009b).  24 
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  High-throughput gene expression measurement is a rapidly growing field in biology, and new 1 

techniques are under development, which have the potential to significantly increase the accuracy of 2 

expression measurement while reducing costs. These new approaches (which are still at a proof-of-3 

concept stage) will reduce noise by replacing fluorescence measurements with other signals to read 4 

bases, including using conductivity measurements as each base is added (Treffer and Deckert, 2010), 5 

tethering DNA to magnetic beads during hybridization in order to measure the pulling forces induced by 6 

the hybridization of each base (Ding et al., 2012), and utilizing a nanomechanical approach, where the 7 

stiffness of the hybridized strand is measured as each base is added (Husale et al., 2009). The high-8 

throughput gene expression analysis methods outlined in this thesis are applicable to any of the 9 

platforms outlined here, and could also be applied to analyze high-throughput protein quantification 10 

datasets, which are expected to become increasingly available over the next few years (Stoevesandt et 11 

al., 2009).  12 

1.2 Experimental design for high-throughput gene expression experiments 13 

  There are many ways to design a microarray or RNA-seq experiment, which should be carefully 14 

considered based on the experimental goals and the resources available to the researcher. For this 15 

thesis, the focus will be on novel gene discovery. Here, the definition of “novel gene discovery” is the 16 

identification of genes involved in a given treatment/condition response which have not been previously 17 

characterized as being involved in that response. Note that this definition does not imply that the gene 18 

has not been annotated with different functions separate from the given treatment/condition.  19 

  One can analyze global genetic responses at one timepoint to a given treatment (including 20 

abiotic treatments such as cold (Bieniawska et al., 2008) and biotic treatments such as bacterial 21 

infection (Tang et al., 2005)), or the genetic differences between different strains of the same organism 22 

(including analyzing the downstream effects of genetic knockout (Narusaka et al., 2003) or 23 

overexpression mutants (Osakabe et al., 2002)). In these “static” experiments, a snapshot of the 24 
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expression levels of genes is measured, while in time-series experiments, a temporal process is 1 

examined (Bar-Joseph, 2004). These time-series experiments can include analyzing cell division cycles 2 

(Spellman et al., 1998), circadian rhythm patterns (Mockler et al., 2007), developmental processes 3 

(Arbeitman et al., 2002), or analyzing temporal treatment or mutation responses (e.g. analyzing genetic 4 

responses to cold treatment over time (Espinoza et al., 2010)). Approximately 30% of all existing high-5 

throughput gene expression datasets are designed with a time series (Singh et al., 2005). For many 6 

experimental goals, time-series high-throughput gene expression data is more useful than static data 7 

because it can be used to infer signalling pathways and identify potential transcription factors, by 8 

analyzing the coexpression of genes over time (Filkov et al., 2002). However, while these experiments 9 

provide considerably more information, they are more costly due to the extra samples required at many 10 

timepoints, and so are typically ran with fewer replicates than static experiments, which limits the 11 

statistical approaches available for analyzing them.  12 

1.3 Gene filtering using statistical measures 13 

 Both microarray and RNA-seq experiments provide gene expression measurements for tens of 14 

thousands of genes at a time. For high-throughput gene expression studies, a point-wise fold change 15 

measure is typically calculated (Allison et al., 2006), in which the expression level of a gene under a 16 

given treatment or condition is divided by the expression level of that same gene at the same time in the 17 

control sample. A two-fold difference (either upregulated or downregulated) is typically considered a 18 

worthwhile cut-off, and is a very common way of filtering out genes which have not been differentially 19 

expressed (Cui and Churchill, 2003). There are several drawbacks to reducing the dataset size simply by 20 

setting differential expression cut-offs. First, inter-replicate noise should be considered in order to filter 21 

out genes with strong fold changes that may simply appear to be differentially expressed due to noise 22 

(Verducci et al., 2006). Secondly, with a high fold change threshold, genes with relatively small but 23 
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reproducible fold changes may be filtered out, which is a problem of particular importance for genes 1 

with high constitutive expression levels (Verducci et al., 2006).  2 

With or without filtering, genes can be ranked by their fold change values, to determine which 3 

genes are the most strongly differentially expressed (relative to the control samples). However, high 4 

differential regulation values alone are not sufficient for a robust analysis, because there may be a great 5 

deal of inter-replicate variability (noise) for a given gene. Thus, if several replicates are available, 6 

statistical cut-offs based on the variability of the gene expression are typically applied (Cui and Churchill, 7 

2003; McCarthy and Smyth, 2009). One of the simplest statistical measures for high-throughput gene 8 

expression experiments is the t test, which utilizes the degree of differential regulation and the inter-9 

replicate variance to calculate a significance value for one gene, representing the probability that a gene 10 

is truly differentially regulated (Callow et al., 2000; Cui and Churchill, 2003). However, this approach may 11 

have low power because high-throughput gene expression experiments tend to have a low number of 12 

replicates due to the cost of running the experiments (Cui and Churchill, 2003). Because of the low 13 

number of replicates and the very high number of genes, several other statistical approaches are 14 

commonly applied to static high-throughput gene expression datasets, including:  15 

(1) Significance Analysis of Microarrays (SAM, or S-test), which is a modified t-test approach that 16 

adds a constant value to each gene’s variance to correct for false significances resulting from 17 

very small values (Tusher et al., 2001); 18 

 (2) False-discovery rate (FDR) tests, which use the proportion of truly differential regulated 19 

genes, the distribution of the true differences, the variability between replicates and the sample 20 

size to compute the expected number of false positive genes in a list (i.e., the number of genes 21 

in a list identified as differentially expressed which are not truly differentially expressed) 22 

(Pawitan et al., 2005; Yang and Yang, 2006). False discovery rate (FDR) filtering is often preferred 23 
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to p-value filtering, because it allows the user to define the accepted proportion of false 1 

positives in the dataset (Pawitan et al., 2005; Yang and Yang, 2006); 2 

(3) Analysis of Variance (ANOVA) tests, which are applied when analyzing the results from 3 

multiple conditions/treatments, and use the average expression of a gene across all 4 

conditions/treatments as an additional input (Ayroles and Gibson, 2006; Kerr et al., 2000). Of 5 

the many types of ANOVA analyses applied to multiple microarray datasets reviewed by Cui and 6 

Churchill (2003), the mixed-model approach which treats the condition and biological replication 7 

as random effects has shown the strongest performance.  8 

 All of these statistical approaches ultimately produce a significance value in addition to the fold 9 

change value for each gene; In many experiments, both a fold change cut-off (typically arbitrarily set at 10 

two-fold) and a significance cut-off based on variability in the data (typically set at 0.05 after population 11 

correction, for any of tests listed above) are used to determine which genes are significantly 12 

differentially regulated (Cui and Churchill, 2003). Often, this filtering is displayed using a “volcano plot”, 13 

which shows the Log2 transformed fold change values plotted against the Log10 P values for each gene 14 

(Fig. 1.1) (Cui and Churchill, 2003). In simple novel gene discovery approaches, the genes closest to the 15 

top-left and top-right of the volcano plot (which have the largest differential expression with the lowest 16 

noise) can be considered for further study (Cui and Churchill, 2003).  17 

1.4 Clustering and gene networks for novel gene discovery 18 

After performing filtering, a commonly used approach for discovering novel genes in high-19 

throughput datasets is to cluster the genes (based on one of many possible mathematical models), and 20 

analyze clusters containing known genes and novel genes, based on the assumption that genes with 21 

similar expression patterns across many timepoints or conditions are likely functionally similar in some 22 

way (Bar-Joseph et al., 2003a; Chiappetta et al., 2004; Dejean et al., 2007; Dembélé and Kastner, 2003; 23 
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Eisen et al., 1998; Ernst and Bar-Joseph, 2006; Ernst et al., 2005; Hand and Heard, 2005; Hestilow and 1 

Huang, 2009; Ji et al., 2006; Jiang et al., 2004; Koenig and Youn, 2011; Peddada et al., 2003; Syeda-2 

Mahmood, 2003; Verducci et al., 2006; Wu, 2008). Similarly, gene coexpression networks (which link 3 

groups of genes in complex interaction networks rather than simply creating large clusters of related 4 

genes) can be used to identify putative functions of novel genes (Aoki et al., 2007; Hu et al., 2005; Mao 5 

et al., 2009; Stuart et al., 2003). Typically, detailed functional and structural annotations from the Gene 6 

Ontology project databases are used to determine clusters or portions of the networks which are 7 

interesting for further analysis (http://www.geneontology.org/).  8 

One major drawback of all of the existing clustering and networking approaches is that genes 9 

which are already known to be involved in a specific treatment or condition being studied may be 10 

filtered prior to the analysis, due to low fold change values (sometimes resulting from high baseline 11 

expression levels) or high rates of noise. However, the filtering step is critical for reducing noise and for 12 

reducing the dataset size so that the results can be visualized and analyzed. Chapter 2 presents a novel 13 

knowledge-based clustering approach for novel gene discovery, in which known functionally important 14 

genes as well as genes with very high expression levels are saved prior to filtering.  15 

1.5 Time-series dataset analyses 16 

Time-series high-throughput gene expression datasets are more useful than static datasets for 17 

determining signalling pathways, identifying transcription factors, and discovering novel genes involved 18 

in specific pathways (Filkov et al., 2002), and are becoming increasingly available as the price of running 19 

microarrays continue to fall and online databases continue to collect them (Craigon et al., 2004; Hubble 20 

et al., 2009; Parkinson et al., 2009). Time-series datasets which analyze a condition or mutation in 21 

addition to a wild-type analysis are particularly useful for identifying novel genes involved in a biological 22 

process (Jiang et al., 2004). Current approaches for novel gene discovery in high-resolution time-series 23 

gene expression datasets include a statistic to measure whether each gene is significantly differentially 24 

http://www.geneontology.org/
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expressed across the entire time series (Bar-Joseph et al., 2003b), transcription factor-target 1 

identification through time-shifting algorithms (Yu et al., 2003), principal and independent component 2 

analysis methods (Frigyesi et al., 2006; Kong et al., 2008; Raychaudhuri et al., 2000), and can also include 3 

the clustering and networking approaches outlined in the previous subsection. 4 

1.6 Circadian clock disruption 5 

  Arabidopsis, like all other plants, relies on a molecular circadian clock which is used to influence 6 

gene expression to modify physiology and metabolism in preparation for predictable changes in light 7 

and temperature conditions in the environment (Adams and Carre, 2011). Plants with circadian clocks 8 

that are properly synchronized to their environments have been found to fix more carbon, grow larger 9 

and survive better than plants with clocks that are out of phase with their environments (Dodd et al., 10 

2005). Several studies have shown that between 6% and 31% of the Arabidopsis genome is influenced 11 

by circadian clock genetic components (Edwards et al., 2006; Harmer et al., 2000; Michael et al., 2008), 12 

while another study suggests that there are significant baseline circadian oscillations for 100% of the 13 

genome (Ptitsyn, 2008). A number of approaches have been developed for analyzing circadian rhythms 14 

in time-series gene expression datasets (Lu et al., 2006; Michael et al., 2008; Mockler et al., 2007; Price 15 

et al., 2008; Wichert et al., 2004). However, recently, biotic and abiotic stress treatments have been 16 

shown to disrupt rhythmic clock patterns through amplitude changes or phase shifts (Bieniawska et al., 17 

2008; Bilgin et al., 2010; Chaves et al., 2009; Espinoza et al., 2010; Michael et al., 2008; Nakamichi et al., 18 

2009), resulting in significant fold changes for genes which are clock-influenced but are not involved in 19 

direct stress response. The use of constant light to avoid some of the gene expression changes caused 20 

by disruption of the clock is not feasible because clock genes continue to cycle even under constant 21 

light, and the unnatural conditions reduce the applicability of the results in such a study (Espinoza et al., 22 

2010; Salome et al., 2008). Likewise, the use of genetic knockouts of clock components can reduce 23 

disruptions due to circadian input, but since many stress-response genes are regulated by clock 24 
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components, the results of such a study are difficult to interpret (Dong et al., 2011; Espinoza et al., 1 

2010). 2 

  All of the current high-throughput time-series gene expression models are unable to 3 

differentiate between gene expression patterns that are the result of disruption of circadian clock input 4 

and gene expression patterns from direct regulation as an adaptive response to treatment (which are 5 

much more interesting for novel gene discovery purposes). Chapter 3 presents the PRIISM (Pattern 6 

Recomposition for the Isolation of Independent Signals in Microarray data) algorithm, a frequency-based 7 

method capable of differentiating these signals and improving novel gene discovery in time-series 8 

stress-response datasets.  9 

1.7 Sampling rates in time-series high-throughput gene expression datasets  10 

  Most time-series high-throughput gene expression datasets contain very few timepoints, 11 

primarily due to cost considerations; More than 75% of the time-series datasets in the Gene Expression 12 

Omnibus (GEO) database contain 5 or fewer timepoints (Edgar et al., 2002). The usefulness of these 13 

datasets in performing novel gene discovery is strongly dependent on sampling timepoints at which 14 

there are significant changes in important gene expression levels, but determining the best sampling 15 

timepoints for time-series gene expression experiments is a challenging optimization problem that is 16 

frequently discussed in the biological literature (Androulakis et al., 2007; Bar-Joseph, 2004; Luo et al., 17 

2011; Peddada et al., 2003; Singh et al., 2005; Wang et al., 2008). Although the knowledge in existing 18 

relevant gene expression experiments has the potential to be extremely valuable in guiding timepoint 19 

selection in a new experiment, fully utilizing the power of the existing data is a difficult problem. To 20 

tackle the problem of learning the expression patterns in existing datasets, Chapter 4 presents a new 21 

machine-learning model called Optimal Timepoint Selection (OTS) to automatically design optimized 22 

sampling rates for microarray and RNA-seq experiments. 23 
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1.8 Summary 1 

  High-throughput gene expression datasets (including RNA-seq and microarray datasets) can 2 

quantify the expression level of tens of thousands of genes in an organism, which allows for the 3 

identification of putative functions for previously unstudied genes involved in treatment/condition 4 

responses. The studies presented in this thesis provide solutions to several limitations to the existing 5 

approaches for identifying these novel genes.  6 

First, an approach for single-timepoint analyses is presented, in which important functional 7 

genes are retained through the typical filtering process, allowing researchers to integrate previous 8 

knowledge of gene functions into a cluster-based novel gene discovery approach (Rosa et al., 2010). 9 

Second, for time-series experiments performed on plants, a method is presented for isolating 10 

differential regulation patterns resulting from stress-induced disruption of circadian clock pathways 11 

from differential regulations patterns resulting from treatment-response pathways (Rosa et al., 2012a). 12 

Finally, an approach is presented for automatically identifying optimal timepoints for capturing the 13 

differential expression patterns of large groups of target genes in new high-throughput gene expression 14 

experiments, based on existing datasets (Rosa et al., 2012b). This method will help to generate datasets 15 

which are better able to identify novel target-responsive genes by ensuring that the timepoints with the 16 

strongest genetic response to a treatment are captured in new datasets.   17 
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1.9 Chapter 1 Figures 1 

 2 

Figure 1.1: A volcano plot, used to filter non-significant genes (grey dots) from significantly differentially 3 

regulated genes (black dots) in a microarray experiment. Significantly upregulated and downregulated 4 

genes must be greater than a p-value cut-off (dashed black line) and either greater than or less than a 5 

fold change cut-off (vertical black lines). Typical cut-off values (2 fold up- or downregulation and p≤0.05) 6 

are shown. Data presented is from the “Whole plant” sample from the study in Chapter 2. 7 

 8 

  9 
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Chapter 2: Computing gene expression data with a knowledge-based gene clustering approach 1 

This chapter has been published: 2 

Rosa, B.A., Oh, S., Montgomery, B.L., Chen, J., Qin, W. (2010) Computing gene expression data with a 3 

knowledge-based gene clustering approach. International Journal of Biochemistry and Molecular 4 

Biology, 1(1), 51-68. 5 

2.1 Abstract 6 

Computational analysis methods for gene expression data gathered in microarray experiments can be 7 

used to identify the functions of previously unstudied genes. While obtaining the expression data is not 8 

a difficult task, interpreting and extracting the information from the datasets is challenging. In this study, 9 

a knowledge-based approach which identifies and saves important functional genes before filtering 10 

based on variability and fold change differences was utilized to study light-related gene regulation. Two 11 

clustering methods were used to cluster the filtered datasets, and clusters containing a key light 12 

regulatory gene were located. The common genes to both of these clusters were identified, and the 13 

genes in the common cluster were ranked based on their coexpression to the key gene. This process was 14 

repeated for 11 key genes in 3 treatment combinations. The initial filtering method reduced the dataset 15 

size from 22,814 probes to an average of 1134 genes, and the resulting common cluster lists contained 16 

an average of only 14 genes. These common cluster lists scored higher gene enrichment scores than two 17 

individual clustering methods. In addition, the filtering method increased the proportion of light 18 

responsive genes in the dataset from 1.8% to 15.2%, and the cluster lists increased this proportion to 19 

18.4%. The relatively short length of these common cluster lists compared to gene groups generated 20 

through typical clustering methods or coexpression networks narrows the search for novel functional 21 

genes while increasing the likelihood that they are biologically relevant.  22 

 23 
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2.2 Introduction 1 

  There are a wide variety of approaches for data mining microarray datasets (including clustering 2 

and statistical coexpression networking), but knowledge-based approaches which integrate known gene 3 

information from various databases with statistical analysis methods are becoming increasingly common 4 

in the field of bioinformatics (Bellazzi and Zupan, 2007). For example, microarray gene expression data 5 

can be combined with genome sequence data to detect genetic regulatory elements controlling 6 

transcription (Mao et al., 2005), or it can be combined with known transcription factors and their targets 7 

to identify genetic regulation patterns useful for identifying novel transcription pathways (Yu et al., 8 

2003). Another approach is to reduce the gene set to include only genes with known functions, and 9 

analyze their coexpression to find novel gene relationships in the dataset (Ma et al., 2007).  More often, 10 

a variety of clustering methods are applied to gene coexpression data, and the common functions of 11 

genes within clusters are identified in order to attempt to discover the functions of other unstudied 12 

genes in the clusters (Hand and Heard, 2005; Hu et al., 2005; Stuart et al., 2003; Verducci et al., 2006). 13 

Almost all of these functional approaches utilize the Gene Ontology project databases, which 14 

characterize the functions of genes based on several categorizations (http://www.geneontology.org/). 15 

The analysis of microarray datasets is complicated by the presence of biological noise (resulting 16 

from real changes in expression levels between different conditions and cell types) and experimental 17 

noise (resulting from differences in sample preparation, hybridization of cDNA to the probes, and 18 

reading of the wells on the gene chip) (Tu et al., 2002). Both of these sources of noise can limit the 19 

biological relevance of the results of microarray data mining (Tu et al., 2002).  20 

One method employed for reducing noise in gene coexpression networks is to remove genes 21 

with a high-degree of inter-replicate variability. Typically, false discovery rate (FDR) filtering is used to 22 

remove highly variable genes, because it allows the user to define an acceptable proportion of false 23 

positives in the dataset (Pawitan et al., 2005; Yang and Yang, 2006). The calculation of FDR incorporates 24 
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the proportion and distribution of truly differentially expressed genes, measurement variability and 1 

sample size, and thus is very useful to measuring variability in microarrays (Pawitan et al., 2005). FDR 2 

filtering is typically used to identify and remove highly variable genes before applying fold change 3 

filtering, but may be exclusively used when pooling together many datasets of various treatments, in 4 

which case the fold change statistic cannot be calculated (Ma et al., 2007).  5 

  Another method for reducing noise in gene coexpression networks is to remove genes exhibiting 6 

low fold changes between treatments. There is no generally accepted method for setting a threshold for 7 

this cut-off. Different approaches are to only keep genes exhibiting two-fold changes, to apply a t-8 

statistic cut-off to keep only genes with significant changes, or to filter out genes which have fold 9 

changes below 30%, which is an estimate for the minimum biologically relevant change (Cui and 10 

Churchill, 2003; Filkov et al., 2002). There are several drawbacks to reducing the dataset size simply by 11 

setting differential expression cut-offs. First, inter-replicate noise should be considered in order to filter 12 

out genes with strong fold changes that may simply appear to be differentially expressed due to noise 13 

(Verducci et al., 2006). Secondly, with a high fold change threshold, genes with relatively small but 14 

reproducible fold changes may be filtered out, which is a problem of particular importance for genes 15 

with high constitutive expression levels (Verducci et al., 2006).  16 

 A common strategy for data mining microarray data using a knowledge-based clustering 17 

approach is to normalize the data, reduce the noise in the dataset by filtering out genes with a high 18 

degree of variability and low fold changes, cluster the genes, and then annotate the genes to analyze the 19 

biological functions of the clusters (Hu et al., 2005; Stuart et al., 2003; Verducci et al., 2006). This 20 

knowledge-based approach is capable of identifying upregulated clusters of functionally related genes 21 

(Mao et al., 2009), but when studying specific pathways, functionally important genes may be removed 22 

from the dataset by the filtering process.  23 

  The approach outlined in this paper overcomes this problem by annotating the probes first, 24 
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saving genes important to the pathway being studied. After this step, genes with very high expression 1 

levels were also saved before filtering out highly variable genes and genes with low fold differences (Fig. 2 

2.1). After filtering, all of the genes in the dataset were clustered using two different clustering 3 

approaches (K-means and Markov Clustering Algorithm [MCL]). K-means clustering was selected due to 4 

its common use in high-throughput gene expression clustering (Dembélé and Kastner, 2003; Hestilow 5 

and Huang, 2009; Macintyre, 2010; Schliep et al., 2004; Wu, 2008), and MCL clustering was chosen  6 

because it is an advanced clustering method which uses a “random walk” algorithm which is dissimmilar 7 

to the K-means algorithm, which makes it useful for cross-comparison (Dongen, 2008).  At this point in 8 

the analysis, a novel key gene approach is used to group and compare clusters. Key genes of interest to 9 

the study were located in both the K-means and MCL clusters, and the common genes to both of these 10 

clusters were identified and ranked based on their Pearson correlations to the key gene.  11 

 Microarray expression datasets from three different strains of Arabidopsis thaliana plants were 12 

used for this experiment: A wild-type plant (“WT” treatment), one in which phytochromes have been 13 

inactivated in the leaf (“Leaf” treatment) and one in which phytochromes have been inactivated in the 14 

whole-plant (“Whole” treatment) (Warnasooriya and Montgomery, 2009). Phytochromes are proteins 15 

which are activated directly by light, then travel into the nucleus where they activate transcription 16 

factors in order to regulate light pathways (Montgomery, 2008). By degrading phytochromes, there will 17 

be a strong downregulation of light-regulated genes in the “Leaf” and “Whole” plants mutant 18 

phenotypes, so they will be used for studying light signalling pathways (Montgomery, 2008).  All three 19 

potential combinations of treatments were compared in this study: WT-Leaf, WT-Whole and Leaf-20 

Whole. The Leaf-Whole dataset was expected to have lower fold changes and more noise than either of 21 

the other dataset combinations because phytochromes have been inactivated in both treatments.  22 

  The analysis methods outlined in this paper creates small, ranked gene clusters developed for 23 

target light-regulation genes. These common clusters have a degree of coexpression in the common 24 
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cluster lists, and many biologically relevant gene relationships, as well as many novel ones, were 1 

observed in the data. 2 

 3 

2.3 Methods 4 

2.3.1 Materials for microarray sample preparation 5 

RNA was extracted and measured from seven-day old whole-Arabidopsis seedlings using 6 

standard methods for Affymetrix gene chips (The Arabidopsis ATH1 Genome Array; Affymetrix, Santa 7 

Clara, CA). The RNA extraction and microarray analysis was performed in triplicate for each plant using a 8 

procedure described by the manufacturer (Affymetrix).    9 

2.3.2 Normalize the dataset using RMA normalization 10 

  First, RMA normalization was applied to the raw signal data, as this normalization method has 11 

been found to significantly reduce background noise, while still maintaining fold changes between up- 12 

and down-regulated genes (Bolstad et al., 2003; Irizarry et al., 2003). The “affylmGUI” package available 13 

as part of the Bioconductor software package for R was used to perform the normalization (Smyth, 14 

2004). 15 

2.3.3 Annotate the dataset using current gene descriptions 16 

  Annotation and gene ontology data was retrieved from The Arabidopsis Information Resource 17 

(TAIR) database (Genome release version 8, available for download from 18 

ftp://ftp.arabidopsis.org/home/tair/Genes/TAIR8_genome_release/). TAIR is the largest collective 19 

database for Arabidopsis gene data, and consists of genes identified by a combination of manual and 20 

computational methods (Swarbreck et al., 2008). At this stage in the analysis, Affymetrix probes not 21 

matching any genes were removed from the dataset, and two or more probes that matched the same 22 

gene (due to probes hybridizing with different sequences on the same gene) were combined by 23 

averaging the values (183 probes total). 24 
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2.3.4 Identify and save important key genes involved in the target process 1 

a) In this step, genes with important functions were identified, both by identifying specific genes 2 

involved in the target pathway and by searching all of the genes in the dataset for important functions 3 

by identifying “keywords” in both their “gene model description” (provided by TAIR) and their gene 4 

ontology functions. Because the gene model description contains a lot of detailed information about the 5 

gene function (including relationships to other genes and upstream and downstream effects on many 6 

pathways), far more functionally important genes are saved from filtering using this method than by 7 

relying on gene ontology alone.  8 

  Keywords must be chosen based on the goals of the research study, so the choice of relevant 9 

keywords requires some manual input by the researchers. Choosing broader keywords will save more 10 

genes based on function.  After identifying the gene descriptions containing relevant keywords, the 11 

number of genes can be analyzed, and keywords can be added or removed to adjust the number of 12 

genes saved based on keywords. 13 

b) At this point, there are still several probes in the dataset which have multiple genes (homologs) 14 

annotated to them. Sometimes, this occurs because there are several names assigned to the same gene 15 

in the literature, but often the sequences for several genes will be similar enough that they both bind to 16 

the same probe. There is no standard method for dealing with this problem. For this analysis, we have 17 

separated these genes into three categories: 18 

i) Probes with multiple genes that contained one of the keywords were saved from further filtering, to 19 

be included in the final network. 20 

ii) A “broad” keyword search using broader biological keywords which match many genes (e.g. 21 

“transcription”) was applied on the probes with multiple genes. These probes were put through the rest 22 

of the filtering analysis (Fig. 2.1, steps 4 through 6). 23 
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iii) Probes with multiple genes that contained neither a keyword nor a “broad” keyword were discarded 1 

from the dataset. 2 

2.3.5 Save genes with high expression levels 3 

  At this point in the analysis, filtering is performed based on signals, so the three treatment 4 

combinations had different sets of results. The high expression level cut-off step is applied because 5 

genes with high expression levels may have relatively low but consistent fold changes, which would 6 

otherwise be removed by fold change filtering. The frequency distribution of the expression levels for all 7 

of the genes in a microarray experiment is expected to fit a normal distribution for microarrays with 8 

sufficient background noise reduction (Konishi, 2004). Genes with a fold change higher than two 9 

standard deviations above the mean were saved from further filtering. This cut-off value was chosen 10 

because it is a parametric measure, and given a normal curve, this will result in only approximately 2.2% 11 

of the total dataset being saved due to high expression levels. 12 

2.3.6 Remove highly variable genes using FDR  13 

  The “significance analysis of microarray” (SAM) excel plugin software package was used to 14 

calculate local and global FDR values for each of the datasets (Tusher et al., 2001). The first FDR value 15 

below 5% was used, to achieve datasets with a false discovery rate of less than 5%. This threshold cut-16 

off of 5% or less is the most commonly used FDR cut-off for microarray datasets (Pawitan et al., 2005; 17 

Yang and Yang, 2006). 18 

2.3.7 Remove genes with low fold changes 19 

  Genes with expression levels above two standard deviations above the mean and below two 20 

standard deviations below the mean were saved in the dataset, and the rest were discarded from the 21 

dataset. Similarly to the expression level filtering in step 4, this parametric cut-off was chosen because 22 

the fold difference distribution follows a normal distribution. Using two standard deviations above and 23 



30 
 

below the mean as a cut-off results in approximately 4.4% of the remaining genes being saved in the 1 

dataset.  2 

2.3.8 Calculate the Pearson correlation between each gene pair remaining in the dataset 3 

  Coexpression measurements for each gene pair are typically measured by calculating the 4 

Pearson correlation value between the gene signal intensity patterns (Mao et al., 2009; Stuart et al., 5 

2003; Verducci et al., 2006). In this study, Pearson correlations were calculated for each gene pair using 6 

the normalized expression levels corresponding to each analysis (e.g., the three replicates for WT and 7 

the three replicates for Leaf were compared for each gene pair in the WT-Leaf analysis, resulting in 6 8 

expression values being used to calculate the Pearson correlation values for each gene). The absolute 9 

values of the Pearson correlations were used throughout the rest of the analysis. 10 

2.3.9 Rank the genes according to their Pearson correlation 11 

  The Pearson correlation values were converted to ranks, so that the most closely related genes 12 

to a target gene had the lowest rank values. Table 2.1 demonstrates this conversion, with the Pearson 13 

values in the left hand table, and the rank values in the right hand table. The ranks are calculated 14 

vertically, and do not apply horizontally across the table. 15 

2.3.10 Apply K-means Clustering and MCL (Markov Clustering Algorithm) to the dataset 16 

  K-means clustering (the most popular clustering method for microarray analysis) clusters groups 17 

of related genes by defining cluster centers in the dataset and then arranging the genes such that their 18 

coexpression will be closest to the most correlated center (Wu, 2008). Another clustering method which 19 

is becoming popular for use in microarray analysis is the MCL clustering, which analyzes various random 20 

paths through the connections in a dataset, removes edges connecting clusters, and identifies related 21 

clusters with high precision (Mao et al., 2009; Pu et al., 2007; Van Dogen, 2000). In this study, both 22 

clustering methods were used to cluster genes based on the absolute Pearson correlation values. For K-23 

means clustering, each of the datasets was split into 25 clusters. The R command “kmeans” was used to 24 
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calculate these clusters. MCL clustering was performed using the freely available Linux package provided 1 

by the algorithm’s author (Van Dogen, 2000). The default inflation value was used, and the pre-inflation 2 

value was changed to adjust the number of clusters produced. The target number of 25 clusters resulted 3 

in one cluster being very large (usually 90% of the dataset), so this cluster was then split again into 25 4 

clusters until each cluster contained less than 200 genes. This was done because the authors of this 5 

paper decided that clusters of greater than 200 genes were too large to be useful for novel gene 6 

identification. 7 

 For both the K-means and MCL clustering techniques, the number of clusters and the size of 8 

each cluster can be adjusted by the user (by either directly entering number for K-means clustering and 9 

by adjusting the pre-inflation parameters for MCL clustering). For this study, the approximately 1,000 10 

genes in each dataset were separated into 25 clusters, resulting in clusters with an average of 11 

approximately 40 genes each. GSEA analysis showed that clusters smaller than these have significantly 12 

lower enrichment scores for both the MCL and K-means clustering methods. 13 

2.3.11 Identify clusters containing key genes and rank clustered genes to key genes. 14 

  11 Key genes which are important for phytochrome-mediated light signalling were identified. 15 

For each of the 11 key genes in each treatment combination, four lists were generated: The ranked list 16 

of every gene in the dataset, the genes sharing the same K-means cluster, the genes sharing the same 17 

MCL cluster, and the common genes to both the K-means and the MCL clusters. All of the clusters have 18 

the gene ranks applied to them, so that the key gene is on the top of the list and the next most closely 19 

related gene is next.  20 

2.3.12 GSEA and AmiGO analyses 21 

 Gene Set Enrichment Analysis (GSEA) is a useful algorithm and software suite that determines 22 

the degree to which a group of genes are significantly related by calculating an enrichment score for the 23 

gene group based on common biological functions, chromosomal locations, or regulatory patterns 24 
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(Subramanian et al., 2005). GSEA was employed to analyze each gene cluster derived for each of the 11 1 

key genes (Subramanian et al., 2007).  2 

  AmiGO is a gene ontology analysis tool which can determine the percentage of genes in each 3 

gene group represented by several important light-related ontology categories  4 

(http://amigo.geneontology.org/cgi-bin/amigo/slimmer) (Carbon et al., 2009). 5 

  Currently, a fair amount of manual intervention is necessary to develop the cluster lists, as there 6 

is no program available to carry the dataset through each of the steps. When software packages were 7 

used for certain steps, they were indicated in the methods. Otherwise, the data manipulation was 8 

performed using Microsoft Excel 2007. The filtering steps have been standardized wherever possible, 9 

but the choice of keywords by the user will determine the amount of data that will be saved due to gene 10 

function.  11 

 12 

2.4 Results 13 

2.4.1 RMA normalization 14 

  The Affylmgui software was used to RMA normalize signal data for 22,810 probes (Fig. 2.1). 15 

2.4.2 Gene annotation 16 

  Figure 2.1 indicates the number of genes removed from the dataset due to a lack of annotation 17 

in the TAIR database or due to probe duplication.  18 

2.4.3 Identify and save important key genes involved in the target process (light regulation) 19 

  For this analysis, 11 key genes involved in phytochrome-mediated light signalling and 60 genes 20 

known to be related to them were saved. In addition, the keywords “Phytochrome, PhyA, PhyB, PhyC, 21 

PhyD, PhyE, CAB (Chlorophyll A/B-binding), chromophore, photomorphogenesis” were used to identify 22 

other genes involved in light response. The “broad keywords” used to identify probes with multiple 23 

genes which were to be saved were “Photo, light, chloroplast, transcription, kinase and auxin”. 24 
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2.4.4 Saving genes with high expression levels 1 

  The highest average intensity between two treatments was used to represent each gene for this 2 

step in the analysis. Figure 2.2 shows the distribution of the normalized gene intensities in the dataset. 3 

Despite a dip in the shape of the curve (at a signal intensity of approximately 5.5), the data fit a normal 4 

distribution with an R2 of at least 0.88 for all three datasets (Table 2.2). 5 

2.4.5 FDR filtering 6 

  The analyses containing the “Whole” dataset had less genes remaining after FDR filtering (834 7 

and 825 compared to 5950 for the WT-Leaf dataset) (Table 2.3).  8 

  FDR values were calculated for the genes saved due to keyword and high expression level 9 

filtering. We found that, on average, 62% of important functional genes and 57% of genes with high 10 

intensity levels would have been removed due to FDR filtering, had they not been saved in the previous 11 

steps. The proportion of genes that would have been removed was much lower for the WT-Leaf dataset 12 

(33%) than for the WT-Whole (70%) and Leaf-Whole (72%) datasets. 13 

2.4.6 Fold difference filtering 14 

  Figure 2.3 shows the distribution of all the genes in each of the three treatment combinations. 15 

Note that there are far less genes included in the WT-Leaf and Leaf-Whole datasets due to FDR filtering. 16 

The fit for these datasets to a normal distribution is lower (0.667 and 0.684) than for the WT-Leaf 17 

dataset (0.805) (Table 2.4). 18 

2.4.7 Calculating Pearson correlations for each gene pair 19 

  The number of genes remaining in each dataset after FDR and fold difference filtering is 20 

summarized in Table 2.5. The frequency distribution of the absolute Pearson correlations can be seen in 21 

Figure 2.4, and the frequency distribution of the connectivity of the genes in the dataset is shown in 22 

Figure 2.5. This figure shows the number of significant correlations (>0.95) that each gene has in each 23 

dataset.  24 
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2.4.8 Gene ranking 1 

  The gene lists were ranked based on their correlation to each of the target genes, and these 2 

ranks were later used to order the genes in each cluster. 3 

2.4.9 Clustering  4 

  MCL and K-means clustering was applied to the datasets for each of the three treatment 5 

combinations. The MCL and K-means clusters containing each of the 11 key genes were identified. A list 6 

of the genes common to both of these clusters was developed (See Tables 2.7 and 2.8 for an example of 7 

one of these lists). On average, 39% of the genes in the K-means and MCL clusters were found in both of 8 

the clusters. Table 2.5 shows the average number of genes in each gene cluster, as well as the average 9 

percentage of genes in each cluster that were included due to various steps in the filtering process. 10 

2.4.10 GSEA and AmiGO analyses 11 

  Table 2.5 shows the average enrichment scores for each of the 11 key gene clusters based on 12 

GSEA analysis. Table 2.6 shows the results from a gene ontology analysis. Gene groups composed of 5 or 13 

fewer genes were not included in this analysis, as they tended to strongly bias the results, and the key 14 

genes used to identify the important clusters were removed from the analysis in order to avoid the bias 15 

that they introduce. 16 

 17 

2.5 Discussion 18 

  The microarray analysis method outlined here combines the advantages of several microarray 19 

analysis techniques. It results in the development of short lists of genes most closely related to target 20 

genes by filtering out genes with high variability and low fold changes without removing functionally 21 

important genes, and then relies on two separate clustering methods to find genes closely co-expressed 22 

to light signalling genes. The use of two clustering methods which employ different algorithms narrows 23 

down a shorter list of important genes. 24 



35 
 

  The removal of probes matching no genes, probes matching duplicate genes, and most of the 1 

probes matching multiple genes in steps 2 and 3 in the procedure reduces noise in the final clusters by 2 

removing 1,527 probes (~7% of the total dataset) with no meaningful gene matches before any steps of 3 

the filtering process (Fig. 2.1). This is one of the advantages of performing probe annotation before 4 

filtering the dataset. 5 

  The keyword search system outlined in the methods identified 383 genes potentially involved in 6 

phytochrome signalling and photomorphogenesis, which were the targets of this particular experiment. 7 

A search in the AmiGO gene ontology database using similar search terms (GO:0010017 “phytochrome 8 

signalling pathway” and GO:009640 “photomorphogenesis”) identifies only 106 functionally important 9 

genes, indicating that the keyword search method outlined here identifies more than three times as 10 

many potential functionally important genes. The advantage of this method comes from searching the 11 

long TAIR gene descriptions, which often include putative functions as well as far up-stream or down-12 

stream relationships between gene products. This keyword system also allows researchers to identify 13 

functionally important genes based on both specific as well as broad functions, and can be used to 14 

search for confirmed and putative relationships to other genes, which is not included in most ontology 15 

programs (Carbon et al., 2009; Wu et al., 2005).  16 

  By saving genes with high expression levels, genes with relatively small but consistent fold 17 

changes remained in the dataset. Also, by using the higher average intensity value between the 18 

treatments, we ensure that active photosynthesis genes (which are expected to be highly expressed in 19 

the WT condition in which light pathways are not disrupted) are kept in the dataset [22]. The close fits to 20 

a normal curve for these datasets (Table 2.2) justify the use of parametric cut-offs for filtering the 21 

dataset. The genes saved at this step in the analysis accounted for approximately half of the genes in the 22 

dataset.  23 

  As a result of FDR filtering, considerably more genes were removed from the datasets containing 24 
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the “Whole” treatment. FDR values are affected by the amount of variability between replicates of 1 

genes, so this result indicates that there was a greater amount of inter-replicate variability in the 2 

“Whole” dataset (Table 2.3). This trend of significantly lower FDR values in the WT-Leaf dataset was also 3 

seen for the genes saved due to function or high intensity.  4 

  The number of genes filtered out of the datasets due to their fold change values varied 5 

considerably, primarily because of the much larger number of genes that were removed from FDR 6 

filtering in the WT-Whole and Leaf-Whole datasets (Table 2.4). The frequency distribution of the fold 7 

changes for all genes in the datasets is expected to fit a normal distribution (Konishi, 2004). The larger 8 

WT-Leaf dataset showed a strong fit to a normal distribution, justifying a parametric filtering cut-off for 9 

this step.  10 

  There was a much smaller proportion of genes with a low variability and high fold change for the 11 

Leaf-Whole dataset (4.8%) than for the WT-Leaf and WT-Whole datasets (18.6% and 11.8%), which was 12 

expected because the phenotype of these treatments was similar (phytochromes were deactivated in 13 

both, though in distinct tissues). Important genes and genes matching keywords accounted for an 14 

average of 6.4% and 28% of the genes in the datasets, respectively. In all of the datasets, genes saved 15 

because of high intensity values accounted for more than half of the genes in the dataset.  16 

  The frequency distribution of the absolute Pearson correlations (Fig. 2.4) shows that most of the 17 

gene correlations for the WT-Whole and WT-Leaf datasets were close to 1, indicating that the genes 18 

remaining in the dataset tend to be co-expressed with each other. The distribution for the Leaf-Whole 19 

dataset is much flatter, indicating that less of the genes were strongly co-expressed between these 20 

treatments. Figure 2.5, which shows the connectivity of the network, indicates that most genes in each 21 

dataset have relatively few strong correlations to other genes, and a few “hub” genes in each dataset 22 

have a lot of strong connections to other genes. This approximate power-law distribution is expected for 23 

all scale-free networks, including microarray datasets (Zhang and Horvath, 2005).  24 



37 
 

  Table 2.5 shows the average proportion of each category of genes in the 11 key-gene clusters. 1 

There was a higher proportion of genes from the “Important Gene” and “Keyword” categories in each of 2 

the clusters than in the full filtered list, indicating that the genes identified in these categories were 3 

more closely co-expressed with the 11 key genes used to develop the cluster lists. The proportion of 4 

genes saved due to high intensity levels remained almost the same, while the proportion decreased 5 

considerably for genes saved due to low variability and high fold changes, indicating that less of these 6 

genes were involved in light regulation for this dataset. Table 2.5 also shows the GSEA enrichment 7 

scores for each of the cluster types. The “common” clusters (the common genes between the K-means 8 

and MCL analyses) had better average enrichment scores than the MCL clusters for all treatments, and 9 

better enrichment scores than the K-means clusters for two out of three of the treatments, indicating 10 

the presence of more closely co-expressed gene pairs in these clusters.  11 

  The gene ontology results indicate that the filtering process used in this study (prior to 12 

clustering) increases the proportion of known light-responsive genes in the dataset from 1.84% of all 13 

genes to 15.16% of all genes in the filtered lists and 18.43% in the common clusters (Table 2.6). Genes in 14 

the “photomorphogenesis” gene ontology category were expected to be strongly affected by the 15 

removal of phytochrome activity, and it was found that this term was enriched from 0.23% of all genes 16 

to 4.52% of all genes in the filtered list and 6.14% of genes in the clustered lists. Due to the keyword 17 

gene targeting process, it was expected that the proportion of functional genes would be increased 18 

considerably in the filtered lists, but the increase in the proportion of functional genes in the clusters 19 

indicates that the clustering steps are effectively identifying genes in target pathways. The GSEA and the 20 

GO results indicate that the common clusters better represent co-expressed light-related genes in the 21 

dataset than either of the clustering methods alone. The smaller size of these clusters also narrows 22 

down potential targets for further study, without reducing the importance of the gene relationships. 23 

 Table 2.7 shows one of the common cluster lists generated by the gene analysis methods 24 
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outlined in this paper. The “Reason to Keep” column in this table shows the stage in the filtering system 1 

at which each gene was saved from filtering. Some of the genes (including ATGRP8, a known circadian-2 

regulated gene) would have been removed by FDR filtering, but remained in the list because they were 3 

saved due to a high signal intensity (Carpenter et al., 1994). 4 

  Several genes known to be related to SPA1 (AT2G46340, a repressor of PHYA activity) appear in 5 

the list in Table 2.7 (including two transducin genes as well as several uncharacterized genes that may 6 

be potential targets for further study). There are also genes encoding several WD-40 repeat family 7 

proteins (AT3G49660, AT4G18900, and AT4G18905) which are related to SPA1 (Hoecker et al., 1999). 8 

Also in the list is SHB1 (SHORT HYPOCOTYL UNDER BLUE1; AT4G25350) whose product can impact plant 9 

growth under blue, red and far-red light (Kang and Ni, 2006). To our knowledge, no previously published 10 

reports have made a connection between SPA1 and SHB1, though both can presumably impact light 11 

signalling under far-red light. Notably also in this group is CAM7, a gene encoding a transcriptional 12 

regulator previously shown to interact with the promoter of light-induced genes and that impacts 13 

photomorphogenesis (Kushwaha et al., 2008). This gene has been previously associated with HY5, but 14 

not SPA1 (Kushwaha et al., 2008). Also included is a gene encoding a circadian-regulated glycine rich 15 

protein (ATGRP8; AT4G39260), whose expression was  previously shown to be impacted by far-red light 16 

(Zeidler et al., 2004) and another glycine rich protein (AT4G29020), which is likely a homolog of ATGRP5, 17 

involved in cellular elongation (Mangeon et al., 2010). 18 

  Table 2.8 shows the common cluster list for HY5, which is a positive regulatory factor that 19 

promotes photomorphogenesis. In this HY5 common list is a gene encoding a largely uncharacterized 20 

protein SHW1, (SHORT HYPOCOTYL IN WHITE; AT1G69935) which serves as a negative regulator of 21 

photomorphogenesis (Bhatia et al., 2008). Also in this list is PORB (AT4G27440), whose product is known 22 

to be required for the light-dependent accumulation of chlorophyll (Armstrong et al., 1995).  23 

2.6 Conclusion  24 
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By saving genes with important keywords and performing the clustering with unstudied genes, we can 1 

see new relationships between key genes that may otherwise be missed. Also, the possibility of new 2 

biological insight is represented by the identification of genes encoding proteins of unknown function 3 

(e.g., AT2G25510 and AT1G56660).  4 

The relatively short length of these lists (on average, 14 genes) makes them an ideal tool for 5 

researchers to narrow down potential genes for further study, compared to the large, interconnected 6 

networks typically generated by gene coexpression networks. In addition, the ranking system 7 

incorporated into lists gives them direction, and displays which genes in the common clusters had the 8 

highest correlation to the target gene. 9 

  The methods described here are the result of an attempt to combine knowledge-based and pure 10 

mathematical microarray analyses. Had a purely mathematical method been employed, an average of 11 

61% of the important functional genes identified by the keyword analysis would have been removed 12 

from the dataset due to high FDR values. With a purely knowledge-based approach, unstudied genes 13 

with unknown functions would have been removed from the dataset, but instead are included due to 14 

the high intensity and FDR steps of this analysis. This study attempts to find a reasonable compromise 15 

between keeping important functional genes and removing highly variable genes, and the parameters 16 

used to filter the dataset at each step have been standardized as much as possible. 17 

   These cluster lists are a valuable tool for identifying novel gene targets, because they allow 18 

researchers to cluster key genes to important functional genes as well as to unstudied genes. By 19 

combining the K-means and MCL clusters, the size of the gene list is reduced by 60% (narrowing the 20 

search for novel genes), the gene enrichment scores are increased, and functionally important gene 21 

ontology categories are enriched, indicating a greater degree of coexpression in the common cluster 22 

lists. 23 

  24 

25 
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2.7 Chapter 2 Tables  1 

Table 2.1: The conversion of Pearson correlation values to ranks. 2 

Absolute Pearson Correlations Gene Ranks 

  
Gene 

A 
Gene 

B 
Gene 

C 
Gene 

D   
Gene 

A 
Gene 

B 
Gene 

C 
Gene 

D 

Gene A 1 0.2 0.5 0.9 Gene A 1 4 3 2 

Gene B 0.2 1 0.3 0.6 Gene B 4 1 4 4 

Gene C 0.5 0.3 1 0.8 Gene C 3 3 1 3 

Gene D 0.9 0.6 0.8 1 Gene D 2 2 2 1 
 3 

Table 2.2: Parameters used for saving genes based on high expression levels. 4 

Dataset 
Cut-off (Signal 

Intensity) 
Fit to Normal Curve # Genes Saved 

# Genes 
Remaining 

WT - Leaf 11.24 0.880 712 20188 

WT - Whole 11.33 0.886 573 20327 

Leaf - Whole 11.35 0.880 541 20359 
 5 

Table 2.3: Parameters used for filtering out highly variable genes in the datasets. 6 

Dataset Delta 
FDR after 
filtering 

# Genes Removed # Genes Remaining 

WT - Leaf 1.05 4.70% 14238 5950 

WT - Whole 1.29 4.39% 19493 834 

Leaf - Whole 1.28 4.21% 19534 825 

 7 

Table 2.4: Parameters used for filtering out genes with low fold changes in each of the datasets. 8 

 Cut-off Between    

Dataset (Low) (High) 
Fit to Normal 
Distribution 

# Genes 
Removed 

# Genes 
Remaining 

WT - Leaf 0.7019 1.316 0.805 5699 251  

WT - Whole 0.759 1.342 0.667 704  130  

Leaf - Whole 0.838 1.404 0.684 778  47 
  9 
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Table 2.5: Descriptions of gene groups used, including the total number of genes, the percentage of 1 

genes in each group representing the different filtering steps, and the enrichment scores calculated by 2 

GSEA.  3 

   
Reason for Keeping Gene in List                    

(Average Percentage of Genes in Group)  

Treat-
ment 

Cluster Type 
Average 
Number 
of Genes 

Import-
ant Gene 

Key-
word 

Intens-
ity 

Low 
Variability/ 
High Fold 
Change 

Average 
GSEA 

Enrichment 
Score 

WT-Leaf 

Entire Filtered List 1346 5.3% 23.2% 52.9% 18.6%  

Ranked Lists  
(Top 100) 

100 7.4% 24.5% 54.2% 13.9% 0.445 

K-Means 40.5 11.0% 28.7% 52.3% 8.0% 0.343 

MCL 25.3 8.3% 27.9% 54.9% 8.9% 0.310 

Common 9.5 13.5% 25.9% 52.7% 8.0% 0.335 

WT-
Whole 

Entire Filtered List 1086 6.5% 28.8% 52.9% 11.8%  

Ranked Lists 
(Top 100) 

100 7.3% 28.6% 59.3% 4.9% 0.275 

K-Means 45.8 7.3% 30.8% 59.7% 2.2% 0.313 

MCL 34 7.8% 32.6% 56.7% 10.1% 0.344 

Common 16.3 6.1% 35.0% 54.5% 4.4% 0.428 

Leaf-
Whole 

Entire Filtered List 971 7.3% 32.1% 55.7% 4.8%  

Ranked Lists 
(Top 100) 

100 9.0% 35.8% 54.5% 0.7% 0.255 

K-Means 33.6 9.9% 36.0% 54.1% 0.0% 0.321 

MCL 37.3 11.8% 32.3% 55.8% 0.0% 0.252 

Common 16.1 10.3% 33.7% 56.0% 0.0% 0.338 

Average 
of All 
Treat-
ments 

Entire Filtered List 1134.3 6.4% 28.0% 53.8% 11.8%  

Ranked Lists 
(Top 100) 

100 7.9% 29.6% 56.0% 6.5% 0.325 

K-Means 40.0 9.4% 31.8% 55.4% 3.4% 0.326 

MCL 32.2 9.3% 30.9% 55.8% 6.3% 0.302 

Common 14.0 10.0% 31.5% 54.4% 4.1% 0.367 

 4 
5 
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Table 2.6: Gene Ontology results for all gene groups.  1 

  Percentage of Genes in Dataset with known GO functions 

Treatm
ent 

Cluster Type 

Respons
e to 
light 

stimulus 

Respons
e to red 

or far 
red light 

Photo 
morpho
genesis 

Red or far 
red light 
signaling 
pathway 

Response 
to blue 

light 

Response 
to light 

intensity 

WT-
Leaf 

Full List 11.60% 7.52% 3.58% 1.93% 1.86% 1.79% 

Ranked Lists        
(Top 100) 

13.02% 8.60% 4.00% 2.04% 1.85% 1.33% 

K-Means  19.12% 15.00% 6.46% 4.85% 3.13% 2.07% 

MCL 15.58% 11.53% 5.70% 2.73% 2.81% 1.60% 

Common 18.72% 12.24% 7.36% 2.27% 2.48% 3.91% 

WT-
Whole 

Full List 13.53% 9.11% 4.42% 2.39% 2.21% 2.03% 

Ranked Lists            
(Top 100) 

13.98% 9.05% 3.67% 2.13% 2.98% 2.34% 

K-Means  15.99% 11.78% 4.82% 2.21% 3.97% 1.92% 

MCL 12.85% 10.02% 3.94% 2.62% 2.87% 2.23% 

Common 21.40% 18.03% 6.53% 7.22% 6.30% 2.37% 

Leaf-
Whole 

Full List 13.43% 10.96% 5.01% 3.60% 1.79% 1.13% 

Ranked Lists               
(Top 100) 

20.37% 12.96% 5.56% 4.63% 0.93% 0.93% 

K-Means  12.38% 10.04% 4.59% 3.46% 1.79% 1.13% 

MCL  14.68% 12.07% 6.33% 4.33% 2.07% 1.29% 

Common 13.29% 10.88% 6.08% 4.25% 1.58% 1.78% 

Aver-
age of 

All 
Treat-
ments 

Full List 15.16% 9.86% 4.52% 2.98% 1.67% 1.58% 

Ranked Lists                     
(Top 100) 

13.13% 9.23% 4.09% 2.54% 2.21% 1.60% 

K-Means  16.59% 12.95% 5.87% 3.80% 3.05% 1.76% 

MCL 13.91% 10.81% 5.24% 3.20% 2.42% 1.87% 

Common 18.43% 13.38% 6.14% 4.16% 3.48% 2.62% 

All Arabidopsis Genes 1.84% 0.65% 0.23% 0.16% 0.19% 0.32% 

 2 
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Table 2.7: A fully annotated gene list, showing the genes most closely related to the light regulated gene 1 

SPA1, based on both MCL and K-means clustering.  2 

SPA1 K means and MCL Common List - WT-Leaf 

10 genes 

Gene 
Rank 

Impor
-tant 

Genes 
Annotation Gene Description 

Gene 
Identifier 

Keywords 
Reason 
to Keep 

Fold 
Change 

1 SPA1 
SPA1 

(SUPPRESSOR 
OF PHYA-105 1) 

Encodes a member of the SPA 
(suppressor of phyA-105) 

protein family (SPA1-SPA4). 
SPA1 is a PHYA signaling 
intermediate, putative 

regulator of PHYA signaling 
pathway. Light responsive 

repressor of 
photomorphogenesis...  

AT2G463
40 

SPA1 (Gene 
Group), 
PhyA, 

Photomorp
hogenesis, 

Photo, 
Light, 
Kinase 

Import-
ant Gene 

0.96 

3  
glycine-rich 

protein 

glycine-rich protein; 
FUNCTIONS IN: 

molecular_function unknown; 
INVOLVED IN: 

biological_process unknown… 

AT4G290
20 

 Intensity 1.71 

5  

CAM7 
(CALMODULIN 
7); calcium ion 

binding 

EF hand domain protein 
encodes a calmodulin. Can 
functionally complement a 

yeast CaM mutant. 

AT3G438
10 

Photomorp
hogenesis, 

Photo 
Keyword 1.18 

10 
Trans
ducin 

transducin 
family protein / 
WD-40 repeat 
family protein 

transducin family protein / 
WD-40 repeat family protein; 

FUNCTIONS IN: nucleotide 
binding; INVOLVED IN: G-
protein coupled receptor 

protein signaling pathway… 

AT3G496
60 

SPA1 (Gene 
Group), 

Chloroplast 

Import-
ant Gene 

1.16 

13  

ATOZI1 
(ARABIDOPSIS 

THALIANA 
OZONE-

INDUCED 
PROTEIN 1) 

Putative pathogenesis-related 
protein whose transcript level 

is induced in response to 
ozone and pathogenic 
Pseudomonas strains. 

AT4G008
60 

 Intensity 1.14 

14  

EXGT-A1 
(ENDOXYLOGLU

CAN 
TRANSFERASE) 

endoxyloglucan transferase 
(EXGT-A1) gene 

AT2G068
50 

Light, 
Chloroplast

, Auxin 
Intensity 0.95 

21  

ATGRP8/GR-
RBP8 (COLD, 
CIRCADIAN 

RHYTHM, AND 

Encodes a glycine-rich protein 
with RNA binding domain at 

the N-terminus. Protein is 
structurally similar to proteins 

AT4G392
60 

Chloroplast Intensity 1.51 
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RNA BINDING 1, 
GLYCINE-RICH 

PROTEIN 8) 

induced by stress in other 
plants. Gene expression is 
induced by cold. Transcript 

undergoes circadian 
oscillations that are depressed 

by overexpression of 
AtGRP7... 

23  

ATARF/ATARF1/
ATARFA1A 

(ADP-
RIBOSYLATION 

FACTOR 1) 

Gene encoding ADP-
ribosylation factor and similar 

to other ARFs and ARF-like 
proteins.  A member of ARF 
GTPase family. Arabidopsis 
has 21 known members… 

AT1G234
90 

 Intensity 1.05 

42 

SPA-
Like & 
Trans
ducin 

AT4G18900 and 
AT4G18905; 
transducin 

family proteins / 
WD-40 repeat 
family proteins 

AT4G18900: transducin family 
protein / WD-40 repeat family 

protein; FUNCTIONS IN: 
nucleotide binding; INVOLVED 

IN: biological_process 
unknown… 

AT4G189
00;AT4G

18905 

SPA1 (Gene 
Group),  

Import-
ant Gene 

0.76 

117   
SHB1 (SHORT 
HYPOCOTYL 

UNDER BLUE1) 

SHB1 encodes a nuclear and 
cytosolic protein that has 

motifs homologous with SYG1 
protein family members… 

AT4G253
50 

Phytochro
me, Light 

Keyword 1.53 

  1 
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Table 2.8: A fully annotated gene list, showing the genes most closely related to the light regulated gene 1 

HY5, based on both MCL and K-means clustering.  2 

HY5 K means and MCL Common List - WT-Leaf 

17 genes 

Gene 
Rank 

Impor
-tant 

Genes 
Annotation Gene Description 

Gene 
Ident-
ifier 

Key-
words 

Reason 
to 

Keep 

Fold 
Change 

1 HY5 
HY5 (ELONGATED 

HYPOCOTYL 5); 
DNA binding / TF 

Basic leucine zipper (bZIP) 
transcription factor. Nuclear 
localization. Mutant studies 

showed that the gene product is 
involved in the positive regulation 
of the PHYA-mediated inhibition of 

hypocotyl elongation… 

AT5G
11260 

HY5 
(Gene 

Group), 
PhyA, 

Photomo
rphogen-

esis, 
Photo, … 

Import-
ant 

Gene 
2.616 

3  
60S ribosomal 

protein L30 
(RPL30B) 

60S ribosomal protein L30 
(RPL30B); FUNCTIONS IN: structural 

constituent of ribosome… 

AT1G
77940 

 
Intens-

ity 
0.602 

4  
PROPEP4 (Elicitor 

peptide 4 
precursor) 

Elicitor peptide 4 precursor 
(PROPEP4); FUNCTIONS IN: 

molecular_function unknown… 

AT5G
09980 

 

Low 
varia-
bility, 
high 
fold 

change 

4.25 

5  
LP1 (nonspecific 

lipid transfer 
protein 1) 

Non-specific lipid transfer protein. 
Binds calmodulin in a Ca2+-

independent manner. Localized to 
the cell wall… 

AT2G
38540 

 
Intens-

ity 
0.484 

13  

29 kDa 
ribonucleoprotein, 

chloroplast, 
putative 

Encodes a chloroplast RNA binding 
protein.  A substrate of the type III 

effector HopU1 (mono-ADP-
ribosyltransferase). Protein is 

tyrosine-phosphorylated… 

AT2G
37220 

Chloro-
plast 

Intens-
ity 

0.562 

15  
MT1C 

(metallothionein 
1C) 

One of the five metallothioneins 
genes identified in Arabidopsis. 
MTs are cysteine-rich proteins 

required for heavy metal tolerance. 

AT1G
07610 

 
Intens-

ity 
1.446 

32  
60S ribosomal 

protein L15 
(RPL15B) 

60S ribosomal protein L15 
(RPL15B); FUNCTIONS IN: structural 
constituent of ribosome; INVOLVED 

IN: translation; LOCATED IN: 
cytosolic large ribosomal subunit, 
ribosome, nucleolus, membrane… 

AT4G
17390 

 
Intens-

ity 
0.594 

46  60S ribosomal 60S ribosomal protein L18A AT2G  Intens- 0.589 
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protein L18A 
(RPL18aB) 

(RPL18aB); FUNCTIONS IN: 
structural constituent of ribosome 

biogenesis… 

34480 ity 

50  

OST1/P44/SNRK2-
6/SRK2E (OPEN 

STOMATA 1, SNF1-
RELATED PROTEIN 

KINASE 2.6) 

Encodes calcium-independent ABA-
activated protein kinase, a member 

of SNF1-related protein kinases 
(SnRK2) whose activity is activated 

by ionic (salt) and non-ionic 
(mannitol) osmotic stress… 

AT4G
33950 

Light, 
Signalling
, Kinase 

Key-
word 

2.424 

52  
ATRPL23A 

(RIBOSOMAL 
PROTEIN L23A) 

Encodes a 60S ribosomal protein 
L23aA (AtrpL23aA). Paralog of 

RLPL23aB. 

AT2G
39460 

Light 
Intens-

ity 
0.527 

96  

similar to unknown 
protein 

(TAIR:AT4G33780.1
) 

Encodes a nuclear localized serine-
arginine-aspartate-rich protein that 

acts as a negative regulator of 
photomorphogenesis. 

AT1G
69935 

Photo-
morpho-
genesis, 
Photo 

Key-
word 

0.818 

153  unknown protein 

unknown protein; FUNCTIONS IN: 
molecular_function unknown; 

INVOLVED IN: biological_process 
unknown… 

AT2G
25510 

 

Low 
varia-
bility, 
high 
fold 

change 

0.194 

165  
terpene 

synthase/cyclase 
family protein 

terpene synthase/cyclase family 
protein; FUNCTIONS IN: lyase 

activity, magnesium ion binding; 
INVOLVED IN: metabolic process; 

LOCATED IN: chloroplast; 
EXPRESSED IN: flower, root;  

AT5G
48110 

Chloro-
plast 

Low 
varia-
bility, 
high 
fold 

change 

4.824 

181  unknown protein 

unknown protein; FUNCTIONS IN: 
molecular_function unknown; 

INVOLVED IN: biological_process 
unknown… 

AT1G
56660 

 

Low 
varia-
bility, 
high 
fold 

change 

5.998 

197  

CWLP (CELL WALL-
PLASMA 

MEMBRANE 
LINKER PROTEIN) 

cell wall-plasma membrane linker 
protein homolog (CWLP) 

AT3G
22120 

 
Intens-

ity 
0.314 

253  

PORB (PROTO- 
CHLOROPHYLLIDE 
OXIDOREDUCTASE 

B) 

light-dependent 
NADPH:protochlorophyllide 

oxidoreductase B 

AT4G
27440 

Chloro-
phyll, 
Light, 

Chloro-
plast 

Key-
word 

0.46 

360   
60S ribosomal 
protein L4/L1 

(RPL4D) 

60S ribosomal protein L4/L1 
(RPL4D); FUNCTIONS IN: structural 
constituent of ribosome; INVOLVED 

IN: translation 

AT5G
02870 

Chloro-
plast 

Intens-
ity 

0.628 
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2.8 Chapter 2 Figures 1 

 2 
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Figure 2.1: A flowchart describing the network filtering procedure used. “AT numbers” are gene 1 

identifiers provided by TAIR. Grey rectangles (numbered) represent major steps in the analysis, and 2 

correspond to the steps in section 2.3. Black rectangles represent groups of probes or genes which were 3 

removed from the dataset. White rectangles represent groups of genes or probes which are retained in 4 

the dataset, but are subject to subsequent filtering steps. Dotted rectangles represent groups of genes 5 

which are retained in the final dataset and are not subject to further filtering.  6 
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 1 

Figure 2.2: The frequency distribution of probe intensities for the three datasets. Black diamonds and 2 

the black line represent genes from the WT-Leaf dataset, grey circles and the grey line represent genes 3 

from the WT-Whole dataset, and stars and the dashed line represent genes from the Leaf-Whole 4 

dataset. 5 
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 1 

Figure 2.3: The frequency distribution of fold differences for the three datasets. Black diamonds and the 2 

black line represent genes from the WT-Leaf dataset, grey circles and the grey line represent genes from 3 

the WT-Whole dataset, and stars and the dashed line represent genes from the Leaf-Whole dataset. 4 
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 1 

Figure 2.4: The frequency distribution of Pearson correlations between each gene pair in each dataset. 2 

Black diamonds and the black line represent genes from the WT-Leaf dataset, grey circles and the grey 3 

line represent genes from the WT-Whole dataset, and stars and the dashed line represent genes from 4 
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the Leaf-Whole dataset. 1 

 2 

Figure 2.5: The frequency distribution of gene connectivity in each of the three datasets. Black diamonds 3 

and the black line represent genes from the WT-Leaf dataset, grey circles and the grey line represent 4 

genes from the WT-Whole dataset, and stars and the dashed line represent genes from the Leaf-Whole 5 

dataset.  6 
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Chapter 3: Frequency-based time-series gene expression recomposition using PRIISM 1 

This chapter has been accepted for publication pending minor revisions, but has not yet been assigned 2 

an issue or page number: 3 

Rosa, B.A., Jiao, Y., Oh, S., Montgomery, B.L., Qin, W., Chen, J. (2012a) Frequency-Based Time-Series 4 

Gene Expression Recomposition using PRIISM. BMC Systems Biology, In Press. 5 

3.1 Abstract  6 

  Circadian rhythm pathways influence the expression patterns of as much as 31% of the 7 

Arabidopsis genome through complicated interaction pathways, and have been found to be significantly 8 

disrupted by biotic and abiotic stress treatments, complicating treatment-response gene discovery 9 

methods due to clock pattern mismatches in the fold change statistic. The PRIISM (Pattern 10 

Recomposition for the Isolation of Independent Signals in Microarray data) algorithm outlined in this 11 

paper is designed to separate pattern changes induced by different forces, including treatment-response 12 

pathways and circadian clock rhythm disruptions. 13 

  Using the Fourier transform, high-resolution time-series microarray data is projected to the 14 

frequency domain. By identifying the clock frequency range from the core circadian clock genes, we 15 

separate the frequency spectrum to different sections containing treatment-frequency (representing 16 

up- or down-regulation by an adaptive treatment response), clock-frequency (representing the circadian 17 

clock-disruption response) and noise-frequency components. Then, we project the components’ spectra 18 

back to the expression domain to reconstruct isolated, independent gene expression patterns 19 

representing the effects of the different influences.  20 

  By applying PRIISM on a high-resolution time-series Arabidopsis microarray dataset under a cold 21 

treatment, we systematically evaluated our method using maximum fold change and principal 22 

component analyses. The results of this study showed that the ranked treatment-frequency fold change 23 
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results produce fewer false positives than the original methodology, and the 26-hour timepoint in our 1 

dataset was the best statistic for distinguishing the most known cold-response genes. In addition, six 2 

novel cold-response genes were discovered. PRIISM also provides gene expression data which 3 

represents only circadian clock influences, and may be useful for circadian clock analysis studies.  4 

  PRIISM is a novel approach for overcoming the problem of circadian disruptions from stress 5 

treatments on plants. PRIISM can be integrated with any existing analysis approach on gene expression 6 

data to separate circadian-influenced changes in gene expression, and it can be extended to apply to 7 

any organism with regular oscillations in gene expression patterns across a large portion of the genome.  8 

 9 

3.2 Introduction 10 

  Differential gene expression studies typically use the fold change statistic (the ratio of mRNA 11 

quantities between two samples) as input, and have been used to discover genes involved in adaptive 12 

stress responses which have not been previously characterized (i.e., “novel genes”) (Cui and Churchill, 13 

2003). Specifically, to correct for changes in gene expression induced by non-treatment related 14 

influences, fold-change values for time-series data are usually calculated using treatment and control 15 

data at every timepoint (Cui and Churchill, 2003). One of the major factors causing gene oscillations 16 

under control conditions are molecular circadian clock pathways, which influence physiology and 17 

metabolism in preparation for predictable changes in light and temperature (Adams and Carre, 2011). 18 

However, a wide range of biotic and abiotic stress treatments have been shown to disrupt rhythmic 19 

clock patterns through amplitude changes or phase shifts (Bieniawska et al., 2008; Bilgin et al., 2010; 20 

Chaves et al., 2009; Espinoza et al., 2010; Michael et al., 2008; Nakamichi et al., 2009), resulting in 21 

significant fold changes for genes which are clock-influenced but are not involved in direct stress 22 

response. Figure 3.1 demonstrates that genes can be differentially regulated due to direct stress 23 
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responses (I), indirectly differentially regulated through disruption of clock pathways induced by the 1 

stress (II) or a combination of both (III). Additional complications in regulation patterns arise from the 2 

complexity of transcription factor pathways, in which targets may be regulated by clock components 3 

directly or through interactions with their transcription factors (Fig. 3.1). For this reason, novel 4 

treatment-response gene discovery methods are complicated by the disruption of synchronization of 5 

the circadian rhythm pathways, but this complexity is not reflected in existing methods including fold 6 

change studies, clustering analysis approaches, and more complex time-serial-based algorithms (Adams 7 

and Carre, 2011; Bieniawska et al., 2008; Chiappetta et al., 2004; Cui and Churchill, 2003; Dejean et al., 8 

2007; Ernst et al., 2005; Espinoza et al., 2008; Hestilow and Huang, 2009; Koenig and Youn, 2011; 9 

Michael et al., 2008; Schliep et al., 2004; Syeda-Mahmood, 2003; Verducci et al., 2006). 10 

  Biological approaches such as the use of constant light and clock component genetic knockout 11 

mutants are applied in order to attempt to remove the influences of the circadian clock on target gene 12 

expression. However, constant light is an unnatural condition which reduces the applicability of the 13 

results, because natural biotic and abiotic genetic stress-response patterns depend on the time-of-day 14 

(the point in the light/dark cycle) at which the treatment is applied (Bieniawska et al., 2008; Morker and 15 

Roberts, 2011; Salome et al., 2008). Likewise, the use of genetic knockout mutants of circadian clock 16 

genes can reduce disruptions due to circadian input, but since stress response genes may be regulated 17 

by clock components, the results of such a study are also difficult to interpret (Dong et al., 2011; 18 

Espinoza et al., 2010; Morker and Roberts, 2011).  19 

  Most existing computational approaches for studying differential gene expression in microarray 20 

datasets involve clustering algorithms designed to group genes with similar expression profiles, with the 21 

goal of identifying potential annotations for unknown genes (Chiappetta et al., 2004; Dejean et al., 2007; 22 

Ernst et al., 2005; Hestilow and Huang, 2009; Koenig and Youn, 2011; Schliep et al., 2004; Syeda-23 

Mahmood, 2003; Verducci et al., 2006). However, the gene distance measures used by all of these 24 
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clustering methods are unable to distinguish adaptive-response gene expression patterns from circadian 1 

clock disruption gene expression patterns, and so may cluster genes with similar clock influences but 2 

very different treatment-response influences. Bar-Joseph et al’s (2003) continuous representation 3 

model for finding differentially expressed genes in time series microarray datasets (which has been used 4 

to find more cell-cycle response genes in yeast than conventional clustering methods) is also unable to 5 

filter clock influences from treatment response influences on gene expression patterns (Bar-Joseph et 6 

al., 2003b).  7 

  Several studies have shown that between 6% and 31% of the Arabidopsis genome is influenced 8 

by circadian clock genetic components (Edwards et al., 2006; Harmer et al., 2000; Michael et al., 2008), 9 

while another study suggests that there are significant baseline circadian oscillations for 100% of the 10 

genome (Ptitsyn, 2008). A number of approaches have been developed for analyzing the circadian 11 

rhythms of genes in time-series datasets (Lu et al., 2006; Michael et al., 2008; Mockler et al., 2007; Price 12 

et al., 2008; Wichert et al., 2004). Fourier analysis (which can be used to identify dominant frequencies 13 

in time-series data) has been applied to successfully identify periodic genes by treating time-series 14 

microarray datasets as time-domain signals (Bozdech et al., 2003; Rustici et al., 2004; Spellman et al., 15 

1998; Whitfield et al., 2002; Wichert et al., 2004). However, these Fourier analysis methods have not 16 

been widely used in differential gene expression study methods, because 1) in existing Fourier analysis 17 

applications (Bozdech et al., 2003; Rustici et al., 2004; Spellman et al., 1998; Whitfield et al., 2002; 18 

Wichert et al., 2004), a fixed frequency range was used as a priori knowledge to discover genes with 19 

similar oscillations, but novel genes may have totally different frequency patterns under different 20 

treatment conditions and; 2) to accurately capture oscillating rhythms, high resolution time course gene 21 

expression data is essential according to Nyquist sampling theorem (Marks II, 1991; Price et al., 2008), 22 

but such data have not been available until recently.  23 
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  As the price of running microarrays and RNA-seq chips continues to fall, high-resolution time-1 

series gene expression datasets that contain enough information to identify and characterize circadian-2 

frequency rhythms for every gene are becoming available (Craigon et al., 2004; Hubble et al., 2009; 3 

Parkinson et al., 2009). Recently, Espinoza et al (2010) produced one such microarray dataset, which 4 

measured 16 timepoints covering a 58-hour time period with a cold treatment in Arabidopsis (Espinoza 5 

et al., 2010). Cold-stress genetic responses in Arabidopsis are particularly well-characterized, and have 6 

been shown to significantly dampen and phase-shift the oscillations of the core clock genes CCA1 and 7 

LHY, which have regulatory influences over some cold-responsive transcription factors, including CBF1, 8 

CBF2 and CBF3 (Dong et al., 2011). Disruption of other major clock components due to cold treatment 9 

has also been reported, including constant overexpression of CAB2 and CCR2, and constant 10 

underexpression of CAT3 (Bieniawska et al., 2008; Espinoza et al., 2008). For these reasons, this is an 11 

ideal dataset to test whether the PRIISM algorithm is able to separate the strong circadian-clock 12 

influences on cold-response genes from treatment-response influences. 13 

  In this chapter, we present the PRIISM (Pattern Recomposition for the Isolation of Independent 14 

Signals in Microarray data) algorithm to perform novel stress-response gene discovery analyses which 15 

correct for differential gene expression patterns induced by the circadian clock. We observe that 16 

although core circadian clock gene patterns undergo significant changes in phase and amplitude as a 17 

result of stress, they maintain oscillating frequencies which remain similar to each other, and still remain 18 

close to the circadian pattern of one cycle per day (Bieniawska et al., 2008). We also observe that stress 19 

results in significantly increased average expression levels for stress-response genes (Bieniawska et al., 20 

2008), which are reflected in the low-frequency signals (where one oscillation cycle occurs over the 21 

course of several days) for these genes. We assume that although circadian clock influences and 22 

adaptive stress-response influences can interact with each other (Fig. 3.1), they still cycle at very 23 

different rates from each other (and therefore maintain separate dominant frequency ranges) under 24 
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stress conditions. Based on these observations, we have developed PRIISM to project gene expression 1 

data to the frequency domain using the Fourier Transform, isolate independent signals, and then project 2 

them back to the expression domain to reconstruct independent gene expression patterns representing 3 

the effects of different genetic influences. PRIISM is capable of separating one gene expression pattern 4 

into three distinct gene expression patterns: (1) The treatment-frequency gene expression pattern, 5 

which has much of the complicating circadian influences removed, and consequently can be used to 6 

more accurately identify differentially regulated genes which are involved in direct treatment response, 7 

(2) the clock-frequency gene expression pattern, representing rhythmic patterns with a period of 8 

approximately one cycle per day, and (3) the noise-frequency gene expression pattern (Fig. 3.2). By 9 

applying PRIISM on a cold-treatment dataset, we demonstrate that it can identify known treatment-10 

response genes with a much lower false-positive rate than the existing methods, and can also identify 11 

important regulatory timepoints which are not obvious in the unprocessed data. In addition to 12 

improving performance when conducting novel treatment-response gene discovery, PRIISM also 13 

provides gene expression data which represent only circadian clock influences, and may be useful for 14 

circadian clock analysis studies.  15 

 16 

3.3 Methods 17 

  A wide range of biotic and abiotic stress treatments have been shown to significantly disrupt the 18 

cyclic patterns of core circadian clock genes and their downstream target genes (Bieniawska et al., 2008; 19 

Bilgin et al., 2010; Chaves et al., 2009; Espinoza et al., 2010; Michael et al., 2008; Nakamichi et al., 2009). 20 

When a stress treatment is constantly applied, adaptive stress-response genes are expected to be 21 

differentially regulated, while influences from the circadian clock will cause oscillations in target gene 22 

expression patterns. In PRIISM, by projecting the gene expression data to the frequency domain using 23 
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the Fourier transform (Oran Brigham, 1988), the resulting amplitude spectra peak at different 1 

frequencies, caused by these different influences. The Fourier transform is a mainstream signal 2 

processing technique that simplifies periodogram analysis by identifying the dominant frequencies in 3 

the amplitude spectrum. By distinguishing the clock frequency range from the core circadian clock genes 4 

in the frequency domain, we can separate the spectrum to different sections containing treatment-5 

induced, clock-induced and noise-induced influences. Then, we project the amplitude spectra back to 6 

the expression domain to reconstruct isolated, independent gene expression patterns representing the 7 

effects of different frequency components. This method can be applied to any dataset which has 8 

sufficiently high resolution and length to measure frequencies of at least one cycle per day, and which 9 

uses a treatment that is applied at a frequency significantly different than the clock frequency.  10 

  PRIISM has four steps (Fig. 3.3). In the first step, gene expression data are pre-processed to fit 11 

the requirements of the Fourier transform (even timepoint spacing and zero average value (Oran 12 

Brigham, 1988)), after which the Fourier transform is performed to produce an amplitude spectrum for 13 

every gene (Fig. 3.3A & 3.3B). In the second step, a clock vector that defines the frequency range and 14 

the amplitudes of the core circadian clock genes is identified based on the spectra of core circadian clock 15 

genes (Fig. 3.3C; Section 3.3.2). In the third step, the clock vector is used to decompose every gene’s 16 

spectrum into three components (treatment, clock and noise; Fig. 3.3D). In the final step, the inverse 17 

Fourier transform is applied to project each spectrum component back to the expression domain, 18 

resulting in three independent expression patterns (Fig. 3.3E & Fig. 3.3F). 19 

3.3.1 Pre-processing and Fourier analysis 20 

  Time series gene expression data are often unevenly sampled, and the disruption of clock 21 

patterns caused by the treatment varies over time. To be able to apply the Fourier transform (which 22 

requires steady and evenly sampled input), pre-processing is required. First, the whole time course is 23 

divided into overlapped frames. The size of these frames can be changed depending on the experiment; 24 
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If they are too long, then it may be difficult to capture changes over time, and if they are too short, then 1 

it is more difficult to capture the treatment-frequency patterns (particularly for low-resolution data). For 2 

this experiment, the first time frame is 26 hours long due to the two-hour light period at the start of the 3 

time period, and all the other time frames are 24 hours long, starting and ending at each light/dark 4 

transition (Fig. 3.4A). Second, within each time frame, the gene expression data is interpolated in order 5 

to make the time points evenly sampled, as required by the Fourier transform (Oran Brigham, 1988). 6 

After interpolation, the mean of the gene expression data for each gene is shifted to zero (refer to 7 

explanation of Equation 3.2). The Fourier transform is then applied on each overlapping time frame 8 

individually, and the final expression values for each timepoint are calculated using a weighted average 9 

for each time frame, where higher weights are used for expression values near the center of each time 10 

frame (Fig. 3.4B).  11 

  Fourier analysis is a signal processing technique (Oran Brigham, 1988) for the study of two 12 

processes: The Fourier transform (the process of decomposing a signal into a sum of components with 13 

different frequencies) and the inverse Fourier transform (the operation of reconstructing the signal from 14 

these components). Specifically, the discrete Fourier transform (DFT) and its inverse have been used to 15 

transform gene expression signals and to reconstruct the discrete signal, respectively (Tominaga, 2010). 16 

The Fourier coefficient of DFT (Gn)

 

measures the contribution of the corresponding frequency 17 

component to the original signal and is given in Eq. 3.1 (Oran Brigham, 1988): 18 

                                         (3.1) 

19 

where, g(kT) is the sampled signal of K samples with the sampling interval T; i is the imaginary unit. The 20 

frequency of the corresponding component n is denoted as fn (i.e., ), where N is the number of 21 

frequency components. The DFT maps a time course signal into the frequency domain by producing a 22 
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spectrum. An amplitude spectrum (plotted as the amplitude versus frequency) is a common frequency 1 

domain representation of the original signal. Fast Fourier transform (FFT) is an efficient algorithm to 2 

compute the DFT and its inverse (Oran Brigham, 1988). Because of its popularity, it has been built into 3 

most modern analysis tools including MATLAB and R. 4 

  The Fourier coefficient of the zero-frequency component (G0), derived from Eq. 3.1 where fn=0, 5 

is shown in Eq. 3.2 as given in (Oran Brigham, 1988): 6 

                                          (3.2) 

7 

  Note that there is a dominant peak at zero frequency in the spectrum of the expression value, 8 

which may bias the identification of the true dominant peak to frequency zero. To avoid such bias, we 9 

shift the mean of the time course gene expression values for each gene to zero (and consequently G0=0), 10 

leading to the removal of the peak at zero frequency. For example, the mean expression value for the 11 

gene shown in Figure 3.3A is reduced from 10.6 to 0, and will be added back proportionally to the 12 

reconstructed gene expression values during the inverse Fourier transform methods. 13 

3.3.2 Identification of the circadian clock frequency range 14 

  The Arabidopsis circadian clock is composed of multiple feedback loops. Three genes, Circadian 15 

Clock Associated 1 (CCA1), Late Elongated Hypocotyl (LHY) and Timing of CAB Expression 1 (TOC1) 16 

compose the first and most important feedback loop controlling the circadian clock, while Pseudo 17 

Response Regulators 7  and 9 (PRR7 and PRR9) form a secondary feedback loop with CCA1 and LHY, and 18 

a third feedback loop involving TOC1 is regulated by unknown components (Harmer, 2009; Nakamichi, 19 

2011).  It has been found that through these feedback loops, eight core circadian rhythm genes (CCA1, 20 

LHY, PRR7, PRR9, ELF4, GI, LUX and TOC1) and their downstream gene targets regulate a wide range of 21 

downstream pathways, including germination, leaf development, organelle morphology, 22 
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photosynthesis, and cell wall development (Adams and Carre, 2011; Li et al., 1994; Lu and Tobin, 2011; 1 

Mas, 2008; Salome et al., 2008; Thines and Harmon, 2011). 2 

  The Fourier transform is performed on these eight core circadian genes (Fig. 3Ci). The frequency 3 

components with relative amplitudes greater than 0.7 (corresponding to half of the maximum value in 4 

the spectra) are chosen as dominant frequencies (Sinclair and Dunton, 2007). We define the union of 5 

these eight sets of dominant frequencies as Circadian Clock Frequency Range (CCFR), noted as [fc_min, 6 

fc_max], where fc_min is the lowest frequency, and fc_max is the highest frequency (Fig. 3Ci). Note that in this 7 

example, the dominant clock frequency is significantly lower than one cycle per day, due to the stress-8 

induced disruption of clock patterns. The weight of each frequency component in the CCFR is derived as:  9 

                            (3.3) 

10 

where |Gmn| is the magnitude of the Fourier coefficient of the nth frequency component for the mth core 11 

circadian gene, is the set of the summed 12 

power of eight core clock genes present at each frequency component within the Circadian Clock 13 

Frequency Range (CCFR), and wn is the weight for the frequency component at frequency fn. The vector 14 

{wc_min, wc_min+1,…, wc_max} defines the gain-frequency response of a tapering bandpass filter within the 15 

CCFR.  16 

3.3.3 Signal decomposition and recomposition 17 

  We apply Fourier analysis on each gene, producing the relative amplitude spectrum from which 18 

we identify three distinct sections defined according to the CCFR: Treatment-frequency, clock-frequency 19 

and noise-frequency components (Fig. 3.3Di). For the treatment-frequency decomposition, given a 20 

relatively narrow frequency band, we used a low pass filter with a steep cut-off frequency to gain the 21 
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optimal balance between removing ringing artifact and approximating desired frequency response 1 

(Chatterjee et al., 2009).  Fourier coefficients of the clock components of each gene are modulated by 2 

the weight of the corresponding frequency components, as given by Eq. 3.4: 3 

                 (3.4)   4 

  The tapering filtering results in clock-frequency expression patterns that are noise-reduced and 5 

contain less artifacts caused by a discontinuity in the filter function.  The reconstructed high frequency 6 

expression pattern is considered to be noise, and it is not studied in this paper. Therefore, we simply 7 

applied an ideal high pass filter. The Fourier coefficients of the treatment-frequency components and 8 

the noise-frequency components are not modulated. The reweighted spectra used for the signal 9 

reconstruction of the three frequency components sections are shown in Figure 3.3Dii. 10 

  The inverse discrete Fourier transform (IDFT) is calculated according to Eq. 3.5 (Oran Brigham, 11 

1988): 12 

                                   (3.5) 

13 

  The inverse Fourier transform is performed on the full spectrum, including the filtered spectra 14 

for each gene. Similar to using the clock vector as a tapering band-pass filter to remove noise, we added 15 

a course graining process to make sure there is no overlapping between any of the two frequency 16 

bands, which may increase the robustness of component selection. The mean of the original gene 17 

expression values (which was removed in the pre-processing step), is added back proportionally to each 18 

gene expression curve based on the amplitude distribution of each component in the spectra before 19 

shifting the mean (Fig. 3.3F), according to Eq. 3.6: 20 



64 
 

                                                  (3.6)

 1 

where g’L(kT) is the treatment expression level at timepoint kT for a given gene, gL(kT) is result of inverse 2 

discrete Fourier transform (Eq. 3.5) on treatment frequency at timepoint kT, and GL is the Fourier 3 

coefficient of treatment frequency component in frequency range [0,fc_min-1]. Similarly, we compute  the 4 

clock expression level g’C(kT) and noise expression level g’N(kT). 5 

  Note that because the entire warm and cold gene expression datasets are mean-shifted based 6 

on their relative amplitudes in each component, the reconstructed time-zero fold change values may 7 

not necessarily be equal to zero (Fig. 3.2B). 8 

 9 

3.4 Results / Discussion 10 

  This study analyzes an Arabidopsis Affymetrix ATH1 microarray dataset (containing 22,810 11 

probes) generated by Espinoza et al. (2010), which consists of 16 timepoints collected over the course of 12 

58 hours in both warm (20°C) and cold (4°C) conditions under a 16-hour light / 8-hour dark cycle starting 13 

at ZT14 (14 hours after dawn) (Espinoza et al., 2010). This dataset was chosen for the analysis because it 14 

has separate control and treatment arrays, it has sufficiently high resolution (sampled at 2 hours and 15 

every 4 hours after that), and cold is a well-studied treatment in Arabidopsis (Bieniawska et al., 2008; 16 

Dong et al., 2011; Espinoza et al., 2008; Espinoza et al., 2010; Fowler et al., 2005; Lee et al., 2005).  17 

  Gene expression data was RMA normalized using the “affylmgui” program available as part of 18 

the Bioconductor software package and annotated using annotation data available from TAIR (version 19 

10, available ftp://ftp.arabidopsis.org/Genes/TAIR10_genome_release/). The gene expression data were 20 

interpolated to every 2 hours using B-spline regression, and were segmented into four overlapping gene 21 
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expression time frames (from both the warm and cold treatments), which were combined using a 1 

weighted average (Fig. 3.4) (Bar-Joseph et al., 2003c; Smith and Craven, 2008). PRIISM was applied on 2 

this “original” dataset, resulting in three independent and isolated gene expression datasets (treatment-3 

frequency, clock-frequency and noise-frequency). 4 

3.4.1 Treatment-response gene discovery  5 

  In order to show the advantage of PRIISM, we compared the treatment-frequency dataset to 6 

the original dataset in terms of their ability to identify known cold-response genes using maximum fold 7 

changes and principal component analysis. Fold change values were calculated by subtracting the logged 8 

gene expression value in the warm from the logged gene expression value in the cold at every 9 

timepoint. Lists of Arabidopsis genes upregulated by cold treatment when grown on agar plates or 10 

grown in soil were collected from a previous study by Vogel et al (Vogel et al., 2005). The 302 cold-11 

upregulated genes found in the intersection of these lists were used to define the set of “cold standard” 12 

(COS) upregulated genes. Receiver-Operator-Characteristic (ROC) curves (which have been shown to be 13 

an effective method for evaluating gene expression data (Parodi et al., 2003)) were generated for these 14 

COS-upregulated genes (Vogel et al., 2005) by distinguishing each ranked gene as either a true positive 15 

or a false positive (Fig. 3.5). A larger area under an ROC curve indicates that more COS-upregulated 16 

genes are identified. The line at which the number of true positives is equal to the number of false 17 

positives is indicated in Figure 3.5, and only the data above this line are considered biologically relevant. 18 

By ranking genes by their maximum fold change values in the treatment-frequency dataset, 52.6% 19 

(159/302) of known COS upregulated genes can be identified, compared to only 21.2% (64/302) in the 20 

original dataset (Table 3.1) (Vogel et al., 2005). This difference may be explained by the disruptions 21 

contributed by the clock-frequency influences and the noise-frequency influences, which are present in 22 

the original dataset. This shows that more COS-upregulated genes can be identified by ranking by the 23 

maximum fold change in the treatment-frequency dataset compared to the original dataset. 24 
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  Principal component analysis (PCA) is a linear component composition method that has been 1 

applied to summarize different gene expression influences under different conditions, and consequently 2 

has been used for differential gene expression studies in microarray datasets (Raychaudhuri et al., 3 

2000). PCA was performed on the original dataset (Fig. 3.6A), and the Euclidean distance from the 4 

bottom-left of the PCA plot of the first and second component was used to rank the genes, because the 5 

cold genes were biased towards lower values in these components (Fig. 3.6) allowing for the 6 

construction of an ROC curve based on this data (Fig. 3.5). These data show that only 13.9% (42/302) of 7 

the cold upregulated genes can be identified in the original PCA plot. The first PCA components of the 8 

treatment-frequency data and the clock-frequency data were also plotted (Fig. 3.6B) and ranking based 9 

on Euclidean distance from the bottom-right was able to identify 46.0% (139/302) of the COS-10 

upregulated genes.  11 

  These results showed that, in both maximum fold change and PCA analyses, the ranked 12 

treatment-frequency fold change results produce fewer false positives than the original methodology by 13 

distinguishing more COS-upregulated genes (Table 3.1). 14 

3.4.2 The identification of important gene regulation timepoints using PRIISM 15 

  In the previous section, it was shown that gene discovery in the treatment-frequency data 16 

produced by PRIISM constantly outperforms the same analyses on the original data. Although these 17 

approaches are useful for poorly studied treatment responses, a knowledge-based approach may be 18 

used to identify more treatment-response genes with a lower false positive rate. 19 

  Cold treatments have been shown to induce the expression of the transcription factors C-20 

repeat/DRE Binding Factor genes CBF1, CBF2 and CBF3 (Gilmour et al., 1998), which are induced in 21 

parallel with the cold transcription factors RAV1  and ZAT12 (Fowler et al., 2005). Some of the important 22 

targets of CBF transcription factors include Cold-Responsive (COR) genes COR15A, COR15B, COR47, and 23 

COR78 (Dong et al., 2011; Fowler and Thomashow, 2002; Fowler et al., 2005; Maruyama et al., 2004). All 24 
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of the cold transcription factors and targets included in these lists have also been shown to be gated by 1 

the circadian clock, making them ideal for evaluating PRIISM’s ability to remove clock-frequency 2 

influences (Bieniawska et al., 2008; Dong et al., 2011; Harmer et al., 2000). 3 

  In the treatment-frequency data, a peak in the fold change patterns can be observed in the well-4 

studied cold response transcription factors and cold regulated (COR) response genes at the start of the 5 

first night (at approximately 26 hours) (Fig. 3.7C, 3.7D). The peaks of the transcription factors can be 6 

seen to occur before the peaks of their target genes, as is expected for a TF-target relationship. By 7 

contrast, these peaks are not apparent in the original fold change data (Fig. 3.7A, 3.7B). For this reason, 8 

an ROC curve was computed using the fold change value at 26 hours in the treatment-frequency fold 9 

change data (Fig. 3.5, Table 3.1). Table 3.1 shows that 194/302 (64.2%) of the true-positive COS-10 

upregulated genes can be identified with a 50% false positive rate in the treatment-frequency 26-hour 11 

fold change data, compared to only 64 for the maximum fold change in original data and  42 for the PCA 12 

plot of the original data .  13 

  This data shows that the fold change value at 26 hours in the treatment-frequency data is the 14 

best predictor of whether a gene is involved in adaptive cold response. The top 25 ranked genes based 15 

on fold changes at 26 hours in the treatment-frequency dataset are shown in Table 3.2. Included in this 16 

table is the “Cold Upregulation Category” for each gene, which indicates whether a gene was 17 

upregulated in the cold when plants were grown in soil (“Soil”), on agar plates (“Plate”), on both growth 18 

mediums (“COS”), or on neither (“N/A”) in Vogel et al’s study (Vogel et al., 2005). In this table, 22/25 of 19 

the genes belonged to the COS group, two belonged to the “Plate” group, and one belonged to the 20 

“Soil” group, suggesting that the PRIISM method has successfully identified known cold-regulation genes 21 

(Vogel et al., 2005). As a comparison, Table 3.3 shows the top 25 ranked genes based on fold changes at 22 

26 hours in the original data. Here, only 18/25 of the genes belongs to the COS group, two belonged to 23 

the “Plate” group, one belonged to the “soil” group, and four were in neither of the two groups. Also, 24 
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the core clock genes CCA1 and LHY are ranked 4th and 11th (respectively) in this table, showing that clock 1 

influences are strongly influencing the ranking in the original data. 2 

  Table 3.4 shows the top 25 ranked genes which were not part of the COS-upregulated gene list 3 

in Vogel et al (2005) (Vogel et al., 2005). 10/25 of the genes in this list belonged to the “Soil” group, 9 4 

belonged to the “Plate” group, and 6 were novel genes not identified in Vogel et al’s study (Vogel et al., 5 

2005). All of the novel genes (and all but one of the 25 genes in this list) have been previously identified 6 

as being involved in cold response in other studies, suggesting that PRIISM has identified a list of very 7 

important cold-response genes (See “Comments” column in Table 3.3).  8 

  The results of a case study on ATGolS3 (AT1G09350), the gene with the largest fold change in 9 

the treatment-frequency data at 26 hours are shown in Figure 3.8. The logged original gene expression 10 

curve under warm conditions has a minimum expression level of approximately 6, which is reflected by a 11 

flat treatment-frequency expression curve with a nearly constant value of 6 (Fig. 3.8A). The rhythmic 12 

pattern of the original data in warm conditions is captured in the clock-frequency gene expression curve, 13 

and the sharp peaks and sudden changes in slope are captured in the noise-frequency curve (Fig. 3.8A). 14 

The original gene expression data under cold conditions peaks quite strongly during the first night but 15 

retains some cyclical expression. The PRIISM-processed gene expression data shows that the treatment-16 

frequency gene expression is constantly higher in the cold, with a peak at 26 hours, while the clock-17 

frequency gene expression data is only marginally increased, but is increased more in the first day than 18 

in the second day (Fig. 3.8B and 3.8C). The fold change graph shown in Figure 3.8C indicates that most of 19 

the increase in gene expression is due to treatment-frequency influences for this gene, but the clock-20 

frequency influences upregulate the gene more strongly early in the cold treatment. The noise-21 

frequency fold change pattern matches many of the sharp peaks and valleys in the original fold change 22 

pattern, suggesting that much of the noise has indeed been removed (Fig. 3.8C).  23 

  To test the statistical significance of PRIISM’s ability to discover treatment-response genes, P-24 
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values were calculated using a Z-test for both the maximum fold change from the original dataset and 1 

the fold change values at 26 hours in the treatment-frequency dataset. Figure 3.9 shows the number of 2 

genes that were found to be significant (P value<=0.05) in these tests, and how many belonged to the 3 

COS-upregulated gene list from Vogel et al (Vogel et al., 2005). Out of the 161 genes significant in the 4 

treatment-frequency data at 26 hours, 98 of them (60.9%) were COS upregulated genes, compared to 5 

154 out of 379 (39.3%) for the original dataset. 6 

3.4.3 Clock-frequency data analysis 7 

  The clock vectors calculated by Equation 3.3 under both warm and cold conditions for each of 8 

the time frames are shown in Figure 3.10. The difference between the length and the shape of the warm 9 

and cold vectors indicates the circadian rhythm disruption caused by the cold stress. Figure 3.10A shows 10 

drastically different frequency profiles for the warm and cold conditions, caused by an abrupt phase 11 

shift in the expression data. The clock genes continue to have disrupted frequencies in the second time 12 

frame (Fig 3.10B), but appear to return to normal oscillating frequencies, possibly with different phases, 13 

in time frames 3 and 4 (Fig. 3.10C, 3.10D).  14 

  To study whether the clock-frequency data produced by PRIISM successfully isolated cyclic clock 15 

influences from treatment-response influences, the clock-frequency gene expression patterns of eight 16 

well-studied cold response genes were matched with standard clock patterns according to the pattern-17 

matching algorithm HAYSTACK (Mockler et al., 2007). This algorithm (the key component of The Diurnal 18 

Project) utilizes a model-based pattern matching algorithm to calculate the phase and cyclic pattern 19 

type for each gene in a dataset, and also calculates the correlation of each gene to the closest model, 20 

which can be used as an indication of how strong the clock influence is on the gene (Mockler et al., 21 

2007). HAYSTACK provides T-test P-values indicating the probability that an input pattern matches a 22 

gene expression model, and provides several types of cyclic clock pattern models to use for comparison 23 

(Mockler et al., 2007).  This analysis included the COR genes which have been shown to be under 24 
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circadian clock control under warm conditions, but gated by cold transcription factors (including the CBF 1 

genes) under cold conditions (Dong et al., 2011). The results in Table 3.4 indicate that the P values for 2 

the clock-frequency gene expression data from PRIISM are substantially lower than the original data 3 

(under both warm and cold conditions), often by several orders of magnitude, demonstrating 4 

enrichment of clock-frequency gene expression in this data. This more cyclical data may be better for 5 

determining period, phase and amplitude characteristics and changes, leading to more informative 6 

circadian clock studies (Yang and Su, 2010). 7 

  Note that the lowest frequency band of the CCFR is simply discarded in PRIISM. In future work, it 8 

will be interesting to further test whether feeding it into the treatment-frequency component will 9 

construct more precise results. 10 

3.5 Conclusion 11 

  Circadian rhythm pathways influence the expression patterns of as much as 31% of the 12 

Arabidopsis genome through complicated interaction pathways, and have been found to be significantly 13 

disrupted by biotic and abiotic stress treatments, complicating treatment-response gene discovery 14 

methods due to clock pattern mismatches in the fold change statistic. The PRIISM algorithm outlined in 15 

this paper is designed to separate pattern changes induced by different forces, including treatment 16 

pathways and circadian clock rhythm disruptions. By applying PRIISM on a cold-response dataset, we 17 

systematically evaluated our method using maximum fold change and PCA analyses. The results of this 18 

study showed that the ranked treatment-frequency fold change results produce fewer false positives 19 

than the original methodology, and the 26 hour timepoint in the PRIISM produced dataset was the best 20 

statistic for distinguishing the most known cold-response genes. In addition, PRIISM also provides gene 21 

expression data which represents only circadian clock influences, and may be useful for circadian clock 22 

analysis studies. In fact, any existing analysis approach on gene expression data can utilize PRIISM to 23 

separate circadian-influenced changes in gene expression. In conclusion, PRIISM is a novel approach for 24 
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overcoming the problem of circadian disruptions from stress treatments on plants. PRIISM can be 1 

integrated with any existing analysis approach on gene expression data to separate circadian-influenced 2 

changes in gene expression, and it can be extended to apply to any organism with regular oscillations in 3 

gene expression patterns across a large portion of the genome.  In future work, when higher resolution 4 

datasets become available, we will apply the discrete wavelet transforms (DWT) in order to further 5 

enhance the ability of PRIISM to distinguish circadian clock disruption influences from treatment-6 

response pathway influences. 7 

8 
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3.6 Chapter 3 Tables 1 

Table 3.1: Summary of ROC analysis for genes upregulated by cold treatment 2 

Statistic 
Original Data Treatment-Frequency Data 

Maximum 
Fold Change 

PCA 
Distance 

Maximum 
Fold Change 

PCA 
Distance 

Fold Change 
at 26 Hours 

Recall when true positives = false 
positives 

21.2% 13.9% 52.6% 46.0% 64.2% 

Number of true positives identified 
when true positives = false positives 

(Out of 302 true positives) 
64 42 159 139 194 

3 
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Table 3.2: Genes ranked based on their treatment-frequency fold change values at 26 hours. 1 

*”Cold Upregulation Category” indicates whether a gene was upregulated in the cold when plants were 2 

grown in soil (“Soil”), on agar plates (“Plate”), on both growth mediums (“COS”), or on neither (“N/A”) in 3 

Vogel et al’s study (Vogel et al., 2005). 4 

Rank Annotation 

P-Value 
(Treatment-

Frequency Fold 
Change, 26 

Hours) 

Cold Upregula-
tion Category* 
(Vogel et al., 

2005) 

1 
AT1G09350: Arabidopsis Thaliana Galactinol Synthase 3 

(AtGolS3) 
3.97E-31 COS 

2 AT4G14690: Early Light-Inducible Protein 2 (ELIP2) 3.18E-28 COS 

3 AT4G12470: Azelaic Acid Induced 1 (AZI1) 1.23E-25 COS 

4 AT3G50970: Low Temperature-Induced 30 (LTI30) 3.62E-22 COS 

5 AT1G16850: Unknown protein 7.38E-22 COS 

6 AT3G22840: Early Light-Inducible Protein 1 (ELIP1) 8.66E-21 COS 

7 AT1G51090: Heavy-metal-associated domain-containing  1.41E-16 COS 

8 
AT3G55580: Regulator of chromosome condensation (RCC1) 

family protein 
3.62E-16 COS 

9 AT5G25110: CIPK25 (CBL-Interacting Protein Kinase 25)  1.13E-13 COS 

10 AT5G52310: COR78 (Cold Regulated 78) 3.25E-13 COS 

11 
AT1G02820: late embryogenesis abundant 3 family protein / 

LEA3 family protein 
3.29E-13 Soil 

12 AT4G30830: similar to unknown protein (AT2G24140.1) 5.57E-13 COS 

13 AT2G23910: Cinnamoyl-CoA reductase-related 9.97E-13 Plate 

14 
AT1G48100: Glycoside hydrolase family 28 protein / 

polygalacturonase (pectinase) family protein 
1.93E-12 COS 

15 AT5G17030: UDP-Glucosyl Transferase 78D3 (UGT78D3) 3.07E-12 COS 

16 AT4G33070: Pyruvate decarboxylase, putative 3.43E-12 COS 

17 
AT3G17130: Invertase/pectin methylesterase inhibitor family 

protein 
4.21E-11 COS 

18 AT1G11210: Similar to unknown protein  (TAIR:AT1G11220.1) 1.06E-10 COS 

19 
AT1G62570: Flavin-monooxygenase Glucosinolates-Oxygenase 

4 (FMO GS-OX4) 
3.24E-10 COS 

20 
AT2G16890: UDP-glucoronosyl/UDP-glucosyl transferase 

family protein 
5.52E-10 COS 

21 
AT4G25480: Dehydration response element B1A (DREB1A); C-

Repeat Binding Factor  3 (CBF3) 
6.1E-10 COS 

22 AT1G20440: Cold-Regulated 47 (COR47); (RD17) 1.08E-09 COS 

23 
AT1G61800: Glucose-6-Phosphate/Phosphate Translocator 2 

(GPT2) 
1.37E-09 Plate 

24 AT4G17550: Transporter-related 1.52E-09 COS 

25 AT1G62710: Beta Vacuolar Processing Enzyme (BETA-VPE) 5.78E-09 COS 

5 
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Table 3.3: Genes ranked based on their original fold change values at 26 hours. 1 

*”Cold Upregulation Category” indicates whether a gene was upregulated in the cold when plants were 2 

grown in soil (“Soil”), on agar plates (“Plate”), on both growth mediums (“COS”), or on neither (“N/A”) in 3 

Vogel et al’s study (Vogel et al., 2005). 4 

Rank Annotation 

P-Value 
(Treatment-

Frequency Fold 
Change, 26 

Hours) 

Cold Upregula-
tion Category* 
(Vogel et al., 

2005) 

1 
AT1G09350: Arabidopsis thaliana Galactinol Synthase 3 

(AtGolS3) 
1.31E-28 COS 

2 AT4G14690: Early Light-Inducible Protein 2 (ELIP2) 9.41E-26 COS 

3 AT3G22840: Early Light-Inducible Protein 1 (ELIP1) 7.48E-21 COS 

4 AT2G46830: Circadian clock associated 1 (CCA1) 1.95E-18 COS 

5 
AT1G02820: late embryogenesis abundant 3 family protein / 

LEA3 family protein 
1.53E-17 Soil 

6 
AT2G16890: UDP-glucoronosyl/UDP-glucosyl transferase 

family protein 
8.19E-16 COS 

7 
AT4G12470: protease inhibitor/seed storage/lipid transfer 

protein (LTP) family protein 
7.52E-16 COS 

8 AT4G33070: pyruvate decarboxylase, putative 3.80E-15 COS 

9 AT3G51240: Flavanone 3-hydroxylase (F3H) 4.99E-15 Plate 

10 AT1G10370: Glutathione S-transferase 30 (GST30) 2.57E-12 Plate 

11 AT1G01060: Late elongated hypocotyl (LHY) 2.60E-12 N/A 

12 AT1G32900: starch synthase, putative 4.74E-12 N/A 

13 
AT1G62570: flavin-monooxygenase glucosinolate s-oxygenase 

4 (FMO GS-OX4) 
8.51E-12 COS 

14 AT1G48100: glycoside hydrolase family 28 protein 3.01E-11 COS 

15 AT5G62210: embryo-specific protein-related 6.17E-11 COS 

16 
AT2G16890: UDP-glucoronosyl/UDP-glucosyl transferase 

family protein 
8.69E-11 COS 

17 AT4G30830: Unknown Protein 1.31E-10 COS 

18 AT5G06980: Unknown Protein 1.33E-10 COS 

19 AT5G25110: CBL-interacting protein kinase 25 (CIPK25) 1.61E-10 COS 

20 AT1G07180: Alternative NAD(P)H Dehydrogenase 1 (ATNDI1) 2.00E-10 N/A 

21 AT3G50970: Low Temperature-Induced 30 (LTI30) 6.33E-10 COS 

22 AT1G73480: hydrolase, alpha/beta fold family protein 1.17E-09 COS 

23 
AT3G55580: regulator of chromosome condensation (RCC1) 

family protein 
2.45E-09 COS 

24 ATCG00270: PSII D2 protein 2.39E-09 N/A 

25 
AT1G51090: heavy-metal-associated domain-containing 

protein 
3.71E-09 COS 

 5 
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Table 3.4: The top 25 ranked non-COS genes based on treatment-frequency fold change values at 26 1 

hours.  2 

Rank Annotation Comments 

P Value 
(Treatment-
Frequency 

Fold Change, 
26 Hours) 

Cold 
Upregul-

ation 
Category* 
(Vogel et 
al., 2005) 

11 

AT1G02820: Late embryogenesis 
abundant 3 family protein / LEA3 

family protein 

LEA family proteins are associated with 
dehydration stress (and therefore cold) and 
general environmental stress in plants, and 
desiccation tolerance in other organisms 
including bacteria (Hundertmark and Hincha, 
2008). Cold response genes COR15A, COR15B 
and COR47 are classified as LEA genes. 
Although not to the same degree as the COR 
genes, expression of this gene was 
upregulated by cold according to quantitative 
RT-PCR  (Hundertmark and Hincha, 2008) 

3.29E-13 Soil 

13 
AT2G23910: Cinnamoyl-CoA 

reductase-related 

Implicated in the biosynthesis of 
phenylpropanoids (Boerjan et al., 2003; 
Lacombe et al., 1997), which contribute to 
many different plant responses to biotic and 
abiotic stress/challenge (Solecka, 1997) 

9.97E-13 Plate 

23 
AT1G61800: GPT2 (Glucose-6-

Phosphate Translocator 2) 

A gpt2 mutant shows an impairment in 
photosynthetic acclimation in response to 
shifts to high irradiance light, which can be 
exacerbated under cold conditions 
(Athanasiou et al., 2010) 

1.37E-09 Plate 

29 
AT5G06760: Late embryogenesis 
abundant group 1 (LEA group 1) 

domain-containing protein 

Similar to other LEA above (AT1G02820), 
expression of this gene is upregulated by cold 
according to quantitative RT-PCR 
(Hundertmark and Hincha, 2008) 

1.86E-08 Soil 

37 
AT3G51240: F3H; TT6 (Flavanone 3-
Hydroxylase; Transparent Testa 6) 

Implicated in freezing stress response (Hannah 
et al., 2006) 

7.07E-08 Plate 

50 
AT1G60190: Armadillo/beta-catenin 

repeat family / U-box domain-
containing  

 1.92E-06 Soil 

53 

AT5G24120: SIGE/SIG5 (RNA 
polymerase sigma subunit E); DNA 

binding / DNA-directed RNA 
polymerase/ sigma/ transcription 

factor 

Regulated in blue light by cryptochromes and 
involved in light-dependent regulation of the 
photosynthetic apparatus (Onda et al., 2008). 
In a separate study shown to be essential for 
Arabidopsis (Yao et al., 2003) 

3.24E-06 Soil 

55 
AT1G10370: ATGSTU17/ERD9/ (Early-

Responsive to Dehydration 9) 
Dehydration responsive (Swarbreck et al., 
2008) 

4.43E-06 Plate 
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57 
AT1G32900: Starch synthase, 

putative 

Identified in a study on light/cold interactions 
(Soitamo et al., 2008).  Upregulated by cold 
generally, but upregulated more under 
cold/light conditions than cold/dark 

6.47E-06 Novel 

60 
AT4G33905: Peroxisomal membrane 

protein 22 kDa, putative 
Upregulated by stress, including cold 
treatment (Ma and Bohnert, 2007) 

7.71E-06 Novel 

61 
AT1G01520: Myb family transcription 

factor 

Upregulated in mutant that has improved 
freezing tolerance (i.e. esk1 mutant) (Xin et al., 
2007) 

1.63E-05 Novel 

63 AT5G57760: Unknown   1.95E-05 Plate 

70 AT5G14760: AO (L-aspartate oxidase) 
Involved in the synthesis of NAD (Katoh et al., 
2006), which is phosphorylated by cold in 
other plants (Ruiz et al., 2002)  

4.96E-05 Novel 

71 AT1G10585: Transcription factor 
Upregulated under conditions associated with 
oxidative stress/high light (Vanderauwera et 
al., 2005) 

5.66E-05 Soil 

72 AT5G07010: Sulfotransferase family  Jasmonate responsive (Swarbreck et al., 2008) 5.95E-05 Soil 

75 
AT2G22590: Glycosyltransferase 

family protein 

In the same gene family as UGT91A1, (a target 
of a TF that regulates flavonol synthesis), and 
is thus proposed to impact flavonol 
biosynthesis, which is a product associated 
with cold response (Korn et al., 2008; Stracke 
et al., 2007) 

6.55E-05 Plate 

76 
AT3G17609: HYH (HY5-Homolog); 
DNA binding / transcription factor 

Involved in phyB signaling (Jonassen et al., 
2008); Required for low temperature-induced 
anthocyanin accumulation (Zhang et al., 2011) 

6.78E-05 Novel 

81 
AT1G17170: ATGSTU24 (Arabidopsis 
thaliana Glutathione S-Transferase 

(TAU) 24) 

Member of the Glutathione S-transferase 
family (involved in flavonoid synthesis and 
general abiotic stress response) (Sappl et al., 
2004) 

0.000123 Soil 

82 
AT5G07990: TT7 (Transparent Testa 

7); flavonoid 3'-monooxygenase 

Flavonoid biosynthesis protein, which is a 
product associated with cold response (Korn 
et al., 2008; Swarbreck et al., 2008) 

0.000125 Plate 

83 
AT3G55940: Phosphoinositide-

specific phospholipase C, putative 

Phospholipase C genes, to which this is 
related, have been associated with responses 
to stress in Arabidopsis (Lin et al., 2004) 

0.000142 Plate 

84 

AT3G21560: UGT84A2; UDP-
glycosyltransferase/ sinapate 1-

glucosyltransferase 

Upregulated by cold via the phospholipase D-
dependent phosphatidic acid production 
(Vergnolle et al., 2005) 

0.000145 Plate 

85 
AT5G49480: ATCP1 (CA2+-Binding 

Protein 1) 

A “cold regulated signaling gene” that is 
altered in an ice1 mutant background (ICE1 is 
a cold/freezing related TF) (Lee et al., 2005).  
Regulation altered under drought conditions 
(Huang et al., 2008). Also (like UGT84A2, 
above) upregulated by cold via phospholipase 
D-dependent phosphatidic acid production 

0.000168 Soil 
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(Vergnolle et al., 2005) 

86 AT5G44110: POP1 

Shown to be upregulated by cold in 
supplemental table of (Kreps et al., 2002). 
Response to Red and Far-Red light via phyA 
(Tepperman et al., 2006). Also a target of HY5 
(Lee et al., 2007) , which is a transcription 
factor in light signaling/responsiveness, but 
also shown to be important for cold 
dependent anthocyanin accumulation 
together with HYH (above) (Zhang et al., 2011) 

0.00017 Soil 

87 
AT5G36910: THI2.2 (Thionin 2.2); 

toxin receptor binding 

Downregulated under high temperature stress 
(Larkindale and Vierling, 2008), associated 
with jasmonic acid/salicylic acid signalling (Li 
et al., 2004) and target of FAR1 and FHY3, 
which function in phyA signaling (Hudson et 
al., 2003) 

0.000174 Novel 

88 

AT2G31380: STH1 (salt tolerance 
homologue); transcription factor/ 
zinc ion binding, also previously 

denoted ZF3 

Like POP1 above, shown to be upregulated by 
cold in supplemental table of (Kreps et al., 
2002). Circadian-controlled zinc finger gene 
with role in light signaling (Kumagai et al., 
2008). Additional evidence for role in light 
signaling and regulation by phytochrome 
(Khanna et al., 2006; Tepperman et al., 2004), 
and like THI2 (above), target of FAR1 and 
FHY3, which function in phyA signaling 
(Hudson et al., 2003) 

0.000176 
Soil 

 

*”Cold Upregulation Category” indicates whether a gene was upregulated in the cold when plants were 1 

grown in soil (“Soil”), on agar plates (“Plate”), on both growth mediums (“COS”), or on neither (“Novel”) 2 

in Vogel et al’s study (Vogel et al., 2005).  3 
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Table 3.5: A comparison of the clock patterns between PRIISM-processed and original gene expression 1 

data. P-values (calculated using the T-test HAYSTACK function) indicate the correlation of the gene 2 

expression patterns of well-studied cold-responsive genes to pre-defined cyclic clock patterns.  3 

Gene 
Name 

AGI 
Number 

P-values for Warm Gene 
Expression Data 

P-values for Cold Gene 
Expression Data 

Original 
Clock-Frequency 

(PRIISM) 
Original 

Clock-Frequency 
(PRIISM) 

COR15A AT2G42540 5.6E-17 0 0.125 0.039 

COR15B AT2G42530 0 0 0.038 4.3E-03 

COR47 AT1G20440 4.7E-09 1.8E-13 0.012 3.8E-03 

COR78 AT5G52310 0 0 0.013 2.3E-03 

CBF1 AT4G25490 5.0E-07 7.2E-08 4.5E-04 3.8E-05 

CBF2 AT4G25470 3.9E-06 1.6E-13 3.2E-08 2.2E-09 

CBF3 AT4G25480 5.5E-14 5.6E-17 2.6E-07 5.0E-10 

RAV1 AT1G13260 1.8E-06 3.0E-10 7.4E-05 2.8E-04 

ZAT12 AT5G59820 3.4E-03 4.9E-05 1.4E-04 1.9E-05 

  4 
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3.7 Chapter 3 Figures 1 

 2 

Figure 3.1: Biotic and abiotic stresses both directly and indirectly influence target gene expression 3 

patterns. Genes found to be differentially expressed may be influenced by (I) only direct treatment 4 

influences, (II) only indirect circadian-clock disruption influences, or (III) both direct treatment response 5 

and indirect clock influences.  6 
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 1 

Figure 3.2: PRIISM separates gene expression data into three independent gene expression datasets. 2 

PRIISM separates (A) the original gene expression patterns under control and treatment conditions 3 

(used to calculate the fold change pattern) into (B) treatment-frequency, clock-frequency and noise-4 

frequency gene expression patterns. The cold-induced gene COR15A (AT2G42540) is shown as an 5 

example.   6 
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 1 

Figure 3.3: Workflow of the PRIISM algorithm. The 0 to 26 hour time-frame in the cold for AtgolS3 2 

(AT1G09350) is used as an example.  3 
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 1 

Figure 3.4: Time frames used to generate FFT results. Frame sizes and positions are shown in (A) and the 2 

contribution of each frame to the weighted average at each timepoint is shown in (B). 3 
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 1 

Figure 3.5: ROC curves for COS-upregulated genes. ROC Curves for the 26-hour treatment-frequency 2 

fold change (dashed black line), the treatment-frequency maximum fold change (solid black line), the 3 

original maximum fold change (solid grey line), and original PCA plot distance data (dashed grey line) are 4 

shown. The point at which the number of false positives is equal to the number of true positives (dotted 5 

grey line) and random gene selection (dotted black line) are also shown.   6 
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 1 

Figure 3.6: Principal Component Analysis (PCA) Plots. Principal component analysis (PCA) plots for the 2 

original data (A) and the first components of the clock-frequency and treatment-frequency data (B) are 3 

shown. COS-upregulated genes are shown in black circles, COS-downregulated genes (which are not 4 

analyzed in detail here) are shown in white diamonds and all other genes are shown as grey dots. 5 
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 1 

Figure 3.7: Fold change patterns of cold transcription factors and target genes before and after PRIISM 2 

processing. The original fold change patterns for important cold transcription factors (A) and some of 3 

their important target (COR) genes (B) are shown, along with their the treatment-frequency fold change 4 

patterns for the same genes (C & D).  5 
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 1 

Figure 3.8: A case study examining PRIISM output gene expression and fold change data. The fold 2 

change patterns (A), warm gene expression patterns (B) and cold gene expression patterns (C) for the 3 

original and PRIISM-processed data for AtgolS3 (AT1G09350), the most highly upregulated gene in 4 

response to cold at 26 hours in the  treatment-frequency data. 5 
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 1 

Figure 3.9: Venn diagram showing COS-upregulated genes in original and PRIISM-processed significant 2 

gene lists. The number of genes in the overlaps between COS-upregulated genes (A) and the significant 3 

genes (P value ≤ 0.05) in both the maximum fold change in the original dataset (B) and the fold change 4 

at 26 hours in the treatment-frequency dataset (C) are shown. 5 
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 1 

Figure 3.10: Clock vectors under warm and cold conditions   2 
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Chapter 4: Knowledge-based optimal timepoint sampling in high-throughput temporal experiments 1 

This chapter has very recently been submitted for publication review:  2 

Rosa, B.A., Zhang, J., Major, I.T., Qin, W., Chen, J. (2012b) Knowledge-based optimal timepoint sampling 3 

in high-throughput temporal experiments. Manuscript Submitted for Publication to Bioinformatics. 4 

 5 

4.1 Abstract 6 

  Determining the best sampling rates (which maximize information yield and minimize cost) for 7 

time-series high-throughput gene expression experiments is a challenging optimization problem. 8 

Existing approaches infer timepoints using low-throughput technology or the uncertainty in the 9 

sparsely-sampled expression curves. The knowledge in existing relevant gene expression experiments is 10 

extremely valuable, but it is a difficult problem to utilize it for timepoint selection. Here, we present a 11 

new data-integrative model, Optimal Timepoint Selection (OTS), to address the sampling rate problem 12 

by integrating existing datasets with a novel optimization approach, and identifying the maximal 13 

disagreement between the current dataset (to which timepoints will be added) and the integrated 14 

dataset. Two experimental settings were used to test the performance of OTS. In “iterative-online” 15 

sampling, timepoints were added iteratively, starting from the first and the last timepoints. OTS selected 16 

early timepoints containing the strongest upregulation peaks of the target genes, reducing the 17 

interpolation error rate by 50% (or 72%) after adding one (or seven) suggested timepoint(s) to an 18 

Arabidopsis coronatine-response dataset, compared with 32% when adding one uniformly-distributed 19 

timepoint (or 69% for seven timepoints with “active learning”, the most recent approach). In a similarly 20 

designed experiment studying yeast cell-cycle genes, OTS reduced the error rate by 35% (or 56%) after 21 

adding one (or seven) timepoints, compared with uniform distribution (5%) and active learning (51%). In 22 

the “top-up” sampling test, several timepoints were added at once to a uniformly-sampled time series. 23 
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OTS reduced the error rate by 26% (14% in active learning) in the same yeast dataset by capturing early 1 

(G1 phase) timepoints with strong differential regulation events. In conclusion, OTS performed 2 

consistently better across these experiments, showing that by integrating existing datasets, it can 3 

optimize the distribution of a limited number of timepoints, leading to better biological insights about 4 

the regulation patterns of treatment/condition-response genes. 5 

 6 

4.2 Introduction 7 

  High-throughput gene expression experiments are capable of measuring the expression levels of 8 

tens of thousands of genes in a biological sample. Time-series high-throughput gene expression datasets 9 

in particular can provide dynamic information about gene regulation patterns, and can be used to 10 

construct regulatory networks and infer regulatory relationships among genes (Wang et al., 2008).  As of 11 

February 2012, there are 644 time-series datasets (representing approximately 23% of the total 12 

datasets) on the Gene Expression Omnibus (GEO) online database (Edgar et al., 2002).   We build our 13 

approach based on three observations: 1) Gene expression experiments can be sampled in an online 14 

fashion, as outlined in Singh et al (Singh et al., 2005); i.e., biological samples can be treated and 15 

collected at a very high rate and then stored at a relatively low cost, and researchers can measure gene 16 

expression in particular samples at a later time after deciding which timepoint will be optimal (Singh et 17 

al., 2005). 2) A researcher is usually interested in capturing the expression patterns of a subset of genes 18 

(which may be grouped into several clusters with similar expression patterns) associated with a given 19 

treatment/condition; and 3) Treatment-response gene expression patterns from different experiments 20 

performed under similar treatments/conditions can provide differential regulation information that 21 

could be valuable for defining an optimal timepoint for sampling, even if the sampling rates are different 22 

from the new experiment.  23 
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  Based on these observations, a straightforward approach to choosing the best timepoint to add 1 

to a sparsely sampled (current) dataset is to learn information from other existing (training) datasets, 2 

and then find unsampled timepoints at which there are significant upregulation or downregulation 3 

events for the genes of interest in the training datasets. This approach is based on the assumption that 4 

the differential expression patterns for the genes of interest in the training data are similar to each 5 

other and are similar to the dataset to which a timepoint will be added. However, in practice, this 6 

assumption may be violated in most of cases due to 1) large differences in the dynamic ranges between 7 

platforms (e.g., RNA-seq technology has a dynamic range several orders of magnitude higher than 8 

microarray technology (Marioni et al., 2008)), 2) inconsistency among different datasets, either due to 9 

slightly different growing conditions, different treatments, or “lab signatures”, which result in 10 

differences in gene expression patterns among different labs even after attempts to reproduce 11 

conditions exactly (Massonnet et al., 2010), 3) high noise rates in expression values (particularly for 12 

microarray datasets (Marioni et al., 2008)), and 4) sparse sampling rates in existing data. 13 

  To tackle the data-integration challenges mentioned above, we have developed OTS to address 14 

the sampling-rate problem by utilizing a novel method of combining differential gene expression data 15 

from training datasets based on their similarity to the experiment to which timepoints will be added (the 16 

“current” experiment). OTS then identifies the timepoints with the maximal difference between the 17 

current and the integrated training data, leading to the identification of the timepoint(s) that may result 18 

in the most significant information gain in the current dataset. Comparing to the existing algorithms, 19 

OTS is novel in the following ways:  20 

 Gene expression values are projected to threshold space. In contrast to existing gene expression 21 

prediction algorithms (Chikina et al., 2009; Gustafsson and Hornquist, 2010; Ruan, 2010), the 22 

goal of our method is to predict the best timepoints to add to a high-throughput experiment. 23 

Therefore, rather than focusing on specific expression patterns, we are instead interested in 24 
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how many genes are significantly differentially expressed at each timepoint, and how significant 1 

the overall expression values are (in a categorized fashion). Consequently, we project the gene 2 

expression values to threshold space to better capture important regulatory timepoints 3 

(explained in section 4.3.5).  4 

 A novel integrative measure is utilized for timepoint selection. After projecting gene expression 5 

data to threshold space, we look for the optimal timepoint by developing a novel integrative 6 

measure. Instead of averaging or pooling all of the training data together, we first weight each 7 

training data’s contribution to the overall result based on their similarity to the current dataset. 8 

Then, we adjust the weighted-average values with a shifting function for local fitting (explained 9 

in section 4.3.6).  10 

 Optimal timepoints are selected using multi-objective optimization. By clustering all of the genes 11 

based on their expression patterns, we are able to select the best timepoint for each cluster of 12 

target genes by using the integrative measure. Then, we adopt a multi-objective optimization 13 

(MOO) model to select the overall optimal timepoint for all of the clusters (Coello, 1999). MOO 14 

is superior to the sampling voting method used in (Singh et al., 2005) because timepoints chosen 15 

by MOO benefit all (or the majority) of clusters, while the sampling voting method may be 16 

biased to one or a few clusters (explained in section 4.3.7).  17 

  The overall experimental approach of the sampling rate design with OTS is shown in Figure 4.2. 18 

First, a biological experiment is performed, and samples are preserved (typically by freezing) at dense 19 

timepoints. A subset of timepoints (including at least the last timepoint in the range of interest and one 20 

other timepoint) is sampled in order to input an initial dataset into OTS. Then, time-series training 21 

datasets are collected. Note that it is not necessary for the training datasets to be collected using the 22 

same technology (i.e., PCR, microarray or RNA-seq experiments), but they should use treatments or 23 

conditions that are expected to affect target treatment-response genes in the same way as in the 24 
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current dataset. The timepoints in these training datasets can suggest differential expression patterns at 1 

the unsampled timepoints in the current dataset. Finally, OTS produces a ranked list of the optimal 2 

timepoints to be selected next. The optimal timepoint(s) can then be sampled and added to the current 3 

dataset for the identification of the next optimal timepoint. This process can be continued iteratively 4 

until the maximum number of samples is reached i.e., all of the samples or all of the resources available 5 

for sampling are used up.   6 

  We have applied OTS to select timepoints in high-throughput time-series experiments for two 7 

different organisms (yeast and Arabidopsis) using different platforms (microarray and RNA-seq), and 8 

used noisy as well as sparse and poorly-matching training data to suggest the optimal timepoints. In 9 

both datasets, our method clearly outperforms active learning (Singh et al., 2005).  10 

 11 

4.3 Methods 12 

  The goal of this paper is to develop a computational algorithm to design the sampling rate of 13 

time series gene expression experiments such that the real gene expression patterns for genes of 14 

interest are captured as accurately as possible. Specifically, our approach is to generate an estimate 15 

dataset by integrating training data, and to identify the timepoint at which the estimate dataset is the 16 

most different from the current dataset, which may result in the identification of the most significant 17 

differential regulation events in the current dataset (see Figure 4.2 for the overall experimental design 18 

of OTS). Mathematically, given training datasets R1, R2, …, Rm, a current dataset U (with gene expression 19 

values available at timepoint set TS and unmeasured biological samples available at timepoint set TA), 20 

identify the optimal timepoint tO which minimizes the difference between the interpolated and real gene 21 

expression curves for all genes of interest G.  22 

  The Methods section is organized as follows: we will review the existing approaches for 23 
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determining optimal sampling rates in section 4.3.1, introduce a case study for the better understanding 1 

of OTS in section 4.2.2, and discuss the individual steps in OTS in sections 4.3.3 to 4.3.7 (as outlined in 2 

Algorithm 4.1). 3 

4.3.1 Existing approaches 4 

  Before introducing OTS, we will review the existing approaches for determining optimal 5 

sampling rates. One common approach involves observing the expression patterns of a small number of 6 

genes of interest in a separate experiment, sampled using a different platform. For example, real-time 7 

PCR experiments can produce high-resolution time-series gene expression data, and bioluminescent and 8 

fluorescent tags can be added to the genetic sequence of a gene so that protein levels can be measured 9 

over time (Kalir et al., 2001; Vance et al., 2002; Yuan et al., 2006). If there is a time range in which strong 10 

differential expression occurs in a preselected small set of genes, then this may suggest timepoints that 11 

should be sampled in the high-throughput experiment. However, these approaches are very costly and 12 

time consuming, and there is no approach to determine which timepoints to select if the target genes 13 

being studied have very different expression patterns from each other. Also, this approach can only use 14 

a very small number of genes relative to the number of genes typically affected by a given treatment or 15 

condition.  16 

  In the field of signal processing, determining effective sampling rates is a well-studied problem 17 

(Orfanidis, 1995). However, most approaches for determining a sampling rate can only be applied to 18 

high-resolution signals (according to the Nyquist sampling theorem (Marks II, 1991)), while in the case of 19 

high-throughput gene expression datasets, the temporal resolution is usually much lower than the 20 

traditional signals (Edgar et al., 2002). Also, because many genes may be regulated by common 21 

transcription factors or are localized in the same biological pathway, gene expression patterns of 22 

biologically related genes are correlated and dependent on each other, which further complicates 23 
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traditional signal processing methods (Singh et al., 2005).  1 

  An active learning algorithm was recently developed for iteratively choosing timepoints to 2 

sample, using the uncertainty in the interpolation of the currently estimated time-dependent curve as 3 

the objective function (Singh et al., 2005). This algorithm used local cross-validation to enable effective 4 

sampling from non-uniform locations along a time-series, and suggests the optimal timepoint to add 5 

based on the existing gene expression patterns in one dataset (Singh et al., 2005). The performance 6 

evaluation in this study (on a yeast dataset) showed that this algorithm can find optimal timepoints such 7 

that majority cycling yeast genes in the dataset can be identified using just 18 out of 24 of the 8 

timepoints in the original dataset (Singh et al., 2005). However, to precisely capture the gene expression 9 

patterns, the interpolation step in this algorithm requires a minimum of five timepoints to start 10 

(according to the source code available from http://theory.csail.mit.edu/tsample), so it would not have 11 

been applicable for 75% of the existing datasets in GEO, and would have only been able to predict very 12 

few timepoints in almost all of the existing datasets (Edgar et al., 2002; Singh et al., 2005). Furthermore, 13 

the timepoint selection is based only on the gene expression in the dataset to which a new timepoint 14 

will be added, and existing time-series gene expression datasets using similar treatments (which may be 15 

high-resolution and contain useful gene expression information) cannot be applied in the algorithm. 16 

4.3.2 Case study 17 

  For demonstration purposes, we used a novel Arabidopsis coronatine-treatment dataset as a 18 

case study (Fig. 4.3A). This dataset was produced in a separate study to determine the effect of the 19 

phytotoxin coronatine (a molecular mimic of the plant hormone jasmonate) on global gene expression 20 

in Arabidopsis (manuscript in preparation). In our current study, we used this densely-sampled (21 21 

timepoint) RNA-seq dataset as a mock “current” biological experiment (Step 2 in Figure 4.2), and a 22 

number of existing microarray datasets involving coronatine/jasmonate treatment as training data (Step 23 

4 in Figure 4.2) (Chung et al., 2008; Wierstra and Kloppstech, 2000). A total of 195 genes of interest were 24 
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selected based on gene ontology categories related to these biological treatments (see section 4.4.1 for 1 

details). In order to best illustrate the OTS algorithm, this case study starts with six timepoints, at 0.25 2 

hours (the first), 24 hours (the last), and 1, 2, 3 and 5 hours (selected iteratively by the first four rounds 3 

of OTS selection; Figure 4.2), and the fifth round of timepoint selection will be outlined in detail here.  4 

  We define the “current mock” (first row in Figure 4.3A) as the current dataset (U) and the rest of 5 

the rows as training datasets (R). Note that the “current mock” in Figure 4.3A shows all of the possible 6 

timepoints for sampling, but only a small subset of the timepoints will be selected to simulate the online 7 

design fashion.  8 

4.3.3 Gene expression clustering 9 

  We observe that a researcher is usually interested in capturing the differential expression 10 

patterns of a subset of genes associated with a given treatment/condition, rather than the whole 11 

genome. This observation prompted us to focus on capturing the expression patterns of a subset of the 12 

entire gene set, and since many of these gene expression patterns are correlated, they can be separated 13 

into clusters (C). A few genes of interest with unique differential expression patterns will be classified in 14 

their own cluster, and because each cluster contributes equally to the results regardless of how many 15 

genes are in it, this allows unique genes to exert a stronger influence over the results compared to if 16 

they were pooled equally with the rest of the genes of interest.   17 

  As the first step of OTS (line 1 in Algorithm 4.1), all of the genes of interest (G) are clustered 18 

based on their differential expression values in the training datasets R. In this step, we applied K-means 19 

clustering (Dembélé and Kastner, 2003) (implemented in Cluster 3.0 (Eisen et al., 1998), available for 20 

download from rana.lbl.gov/EisenSoftware.htm), a common method for clustering genes based on Log2 21 

fold change values. OTS can be easily extended to use any other clustering algorithms and the Log2 fold 22 

change values can be conveniently replaced by other differential expression measurements, depending 23 
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on user’s needs. In the case study, the 195 coronatine-responsive genes were separated into ten 1 

clusters; the Log2 fold change curves for one of the clusters containing 13 genes in this dataset are 2 

shown in Figure 4.4A.  3 

4.3.4 Data interpolation 4 

  To be able to estimate the differential gene expression patterns at all timepoints, OTS linearly 5 

interpolates the differential expression measurements from the current (U) and the training (R) datasets 6 

to every available timepoint in TA (Algorithm 4.1 line 4-5) (Meijering, 2002). Linear interpolation was 7 

used in order to minimize the inference of false peaks and valleys in the expression data by directly 8 

connecting data points and not calculating expression levels above or below the two points used in the 9 

calculation (Benesty et al., 2004). Linear interpolation also avoids over-smoothing unevenly spaced 10 

timepoints, which occurs on sparsely-sampled datasets when using other common interpolation 11 

methods such as  B-spline (Meijering, 2002). Given a gene g, its estimated differential gene expression 12 

value e at time point t is: 13 

                                                                                                                (4.1)

 14 

where ei is the differential gene expression value at sampled timepoint ti (ti<t<ti+1), and ti and ti+1 are the 15 

closest sampled timepoints to t. OTS can be easily extended to use any other interpolation algorithms 16 

depending on user’s needs.  17 

4.3.5 Projection to threshold space 18 

  Rather than focusing on specific expression patterns, we capture important regulatory 19 

timepoints by measuring how many genes are significantly differentially expressed at each timepoint, 20 

and how significant the overall expression values are (in a categorized fashion). Consequently, unlike the 21 

existing approaches of sampling rate design (which focus on the inference of values of differential gene 22 
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expressions (Chikina et al., 2009; Gustafsson and Hornquist, 2010; Ruan, 2010)), we project the gene 1 

expression data of each cluster into threshold space, where the values for a given timepoint are 2 

determined based on how many genes have differential gene expression values higher (or lower) than a 3 

series of differential regulation thresholds (Fig. 4B) (Algorithm 4.1 line 6-10). This thresholding process 4 

reduces noise in the comparison among datasets by ignoring small fluctuations in differential gene 5 

expression value patterns and only considering the relative magnitude of the signals.  6 

  In order to avoid the bias introduced by setting only one significant regulation threshold value, 7 

multiple evenly-spaced positive and negative differential regulation threshold values are defined to 8 

determine the degree to which a cluster of genes is differentially regulated at a given timepoint in a 9 

given experiment, according to Equation 4.2. Basically, given a user-defined threshold number H, we 10 

divide the threshold space (three standard deviations above and below the average differential gene 11 

expression value) evenly into sections of (1/H).  For example in Figure 4.4B, an H value of 6 has been 12 

used, and the dotted lines represent the evenly spaced positive and negative thresholds.  13 

  Mathematically, for a gene g’s expression value at time i in dataset j, we compute its differential 14 

regulation count (DRC) by counting how many thresholds it is higher (or lower) than if it is up (or down) 15 

regulated. The sum of these count values for all the genes in cluster c (defined in Equation 4.2) 16 

represents the DRC for timepoint i in cluster c in dataset j. Higher DRC numbers indicate stronger 17 

differential regulation, regardless of whether the genes are upregulated or downregulated.  18 

                           (4.2) 

19 

where Dc
ij   is the differential regulation count (DRC) for timepoint i in cluster c in dataset j, H is the user-20 

defined threshold (H>0), eg
ij is the differential expression measurement for gene g (out of the set of 21 

genes Gc in cluster c), and µ and σ are the average and the standard deviation values (respectively) for 22 
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the differential gene expression values across all timepoints and all genes of interest G in all the training 1 

datasets. Operator [x] returns 1 if x is true, otherwise it returns 0. 2 

  For example, in Figure 4.4C, one gene crosses the top upregulation threshold (at 4.11), and 3 

three genes cross the next upregulation threshold (3.29). These counts are made for each regulation 4 

threshold and summed up as shown in the Figure. DRC curves for all the training and current datasets 5 

for cluster 2 in this case study are shown in Figure 4.4D. Although these DRC curves have a similar 6 

upregulation trend, they are very different from each other at a detailed level, mainly because of 7 

differential sampling rates, but also because of slightly different growing conditions, different (but 8 

relevant) treatments, “lab signatures” (Massonnet et al., 2010), and high noise rates in microarray 9 

datasets (Marioni et al., 2008). 10 

4.3.6 Curve matching 11 

  As described above, we require a timepoint selection algorithm that is capable of integrating 12 

heterogeneous training data, and that allows for efficient computation. To achieve this goal, we save the 13 

resulting DRC values in a cluster-time-experiment (CTE) table. Table 4.1 shows the layout of the CTE 14 

table, which includes DRC values (Dij) for every timepoint i (1 ≤ i ≤ n) in every training data j (1 ≤ j ≤ m) in 15 

cluster c. Additional columns are added to the CTE table for the current dataset (D ), and for the 16 

estimate dataset (  ) (explained below).  17 

  For the CTE table, our approach is to generate an estimate curve for each cluster by combining 18 

the training DRC curves, and then identifying the timepoint at which the estimate DRC curve is the most 19 

different from the current DRC curve. Adding this timepoint to the current dataset may result in the 20 

most significant information gain. However, combining the training datasets into an estimate curve is a 21 

difficult problem because the training datasets may not be similar to each other and may not be similar 22 

to the current dataset (see Figure 4.4D for an example). Although there are numerous ways to normalize 23 
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and scale the datasets (such as least-squares estimation), the challenge is that the difference between 1 

the training and current datasets will not converge to 0 even if numerous timepoints are added 2 

(because of biological differences among experimental conditions, different sampling rates and other 3 

factors that may affect the training datasets and not the current dataset), leading to biased estimations 4 

of the gene expression patterns. To tackle this problem, we utilize a novel two-step (global matching 5 

and local fitting) normalization and scaling approach for the curve-matching problem (Algorithm 4.1, line 6 

11). 7 

  In the first step (global matching), rather than pooling all of the training datasets together, we 8 

first weight each training data’s contribution to the overall result based on their similarity to the current 9 

DRC curve in each cluster using non-negative least-squares (NNLS) regression (Chen et al., 2010; Lawson 10 

and Hanson, 1995) and then save the results in the estimate dataset. Mathematically, given a n × m CTE 11 

table of DRC values derived from the training data (Dij) and an n x 1 vector of DRC values derived from 12 

the current data (D ), find a non-negative m × 1 weight vector w that minimizes the difference between 13 

weighted training and current datasets (i.e., ), where the weight vector w is then 14 

used to calculate a weighted-sum estimate DRC curve for cluster c. An example of an NNLS-regression 15 

estimate for one of the clusters in the case study is shown in Figure 4.4E.  16 

  If there is a training dataset that poorly matches the current dataset for a majority of the target 17 

genes, then the NNLS will assign low weights, resulting in that training dataset having a low contribution 18 

to the estimation. This allows OTS to be robust against poorly-matched training datasets. By forcing all 19 

of the weight values to be non-negative, it also avoids a problem introduced by standard LSE regression, 20 

wherein negative weights can “flip” the patterns, changing peaks to valleys and providing false 21 

information in the estimation.  22 
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  In the second step (local fitting), in order to correct the estimate fit, DRC values resulting from 1 

the NNLS weighted-sum are shifted for each timepoint, such that the estimate DRC values are equal to 2 

the current DRC values at every sampled timepoint (indicated by vertical dashed grey lines in Figure 3 

4.4F). The rest of the timepoints in the NNLS-weighted estimate DRC curve are shifted by an amount 4 

suggested by the sampled timepoints, and modulated by their distance from the sampled timepoints 5 

according to a sigmoid weight distributed according to Equations 4.3 and 4.4 (Chen and Mangasarian, 6 

1995; Marler et al., 2006). The estimate value at timepoint i (  i) is defined as: 7 

              (4.3) 8 

and t is defined as                            (4.4) 9 

where i is a timepoint in the interpolated current dataset (TA ∪ TS),  is the DRC value for timepoint t in 10 

the current dataset, Dij is the DRC value for timepoint i in training data j, wj is the weight assigned by 11 

NNLS for training data j, and n’ is the number of timepoint in the current dataset.  12 

  The curve difference score ( ) is the difference between the estimate and current 13 

dataset curves at timepoint i.  Figure 4.4F shows that for the cluster outlined in the case study, 12 hours 14 

is the optimal timepoint, which is in agreement with the actual DRC value at 12 hours for this cluster. 15 

Figure 4.5A shows the curve difference score table for all of the clusters in the case study experiment, in 16 

which each timepoint is associated with one curve difference score for each cluster.  17 

4.3.7 Timepoint selection with multi-objective optimization 18 
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  By clustering all the genes based on their expression patterns and comparing the estimate and 1 

current curves in each cluster, we are able to select the best timepoint for each cluster using the 2 

maximum curve difference scores. But if the best timepoint for each cluster is different, a cross-cluster 3 

ranking method is needed to calculate one timepoint for the entire dataset. Instead of applying a 4 

sampling voting method (used in (Singh et al., 2005)), OTS applies a multi-objective optimization (MOO) 5 

model to rank and select optimal timepoints for all the clusters (Algorithm 4.1, lines 13-14) (Coello, 6 

1999). MOO is better than the sampling voting method because timepoints chosen by MOO benefit all 7 

(or the majority) of clusters, while the sampling voting method may be biased towards the optimal 8 

timepoints in one or a few clusters.  9 

  Mathematically, MOO computes a λ-score for each timepoint (to indicate how optimal that 10 

timepoint is) in two steps. First, λ -dominance is determined for each timepoint pair as follows: We say 11 

timepoint t1 λ -dominates timepoint t2 (denoted as ) if Qt1 is larger than Qt2 in λ clusters (1 ≤ λ≤|C|): 12 

                             (4.5) 13 

  For example, in Figure 4.5A, all of the values in the 12-hour column are larger than all ten of the 14 

values in the 6-hour column, so the 12-hour timepoint λ-dominates the 6-hour timepoint at λ =10.  15 

Second, the λ-score of a timepoint t is defined as the number of timepoints other than t that are λ-16 

dominated by t, which is mathematically defined as: 17 

    (4.6)   18 

  For example, Figure 4.5B shows that timepoint 12 hours has a λ-score of 2 at λ =10. 19 

  Optimal timepoints are selected by the ranking generated based on λ -score values of 20 

timepoints. Initially, λ is set to |C| (the number of clusters; 10 in the case study), but if two or more 21 
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timepoints share the same λ-score (such as Timepoints 1.5, 8, 10 and 14 in the case study) then they are 1 

compared at λ =|C|-1 (where timepoint 1.5 outranks the others to get a second-place overall rank). If 2 

there remains a tie, then they are compared at λ =|C|-2, and the process is repeated until each 3 

timepoint is ranked. The λ-scores for the case study experiment, presented in Figure 4.5B, show that 12 4 

hours is the optimal timepoint for selection in the next round of sampling because it has the largest λ-5 

score value when λ =10. The researcher can then decide the number of selected timepoints to be 6 

analyzed. For example, if a microarray experiment is being conducted, then the researcher may only 7 

want to choose the top-ranked timepoint, and run two chips (with control and treatment, each in 8 

duplicate). However, the high capacity of many next generation sequencing platforms offers the 9 

possibility to multiplex several samples per run, so several highly-ranked optimal timepoints could be 10 

accommodated per sequencing run (as in the top-up sampling experimental design outlined in section 11 

4.4.2) (Islam et al., 2011). 12 

 13 

4.4 Results / Discussion  14 

  Three experiments were used to verify the performance of OTS, and the performance was 15 

compared with uniform distribution and with active learning timepoint selection (where applicable). The 16 

OTS software has been implemented with Microsoft C#, and its executable code, manual, instructions 17 

for installation, as well as the datasets used in this manuscript are available for download from 18 

http://flash.lakeheadu.ca/~wqin/OTS/index.htm 19 

4.4.1 Dataset description 20 

  We tested the performance of OTS on gene expression datasets from two different organisms. 21 

First, we selected Arabidopsis, for which certain gene functions are well studied but dense time-series 22 

gene expression datasets are difficult to find. Here, coronatine/jasmonate-associated microarray 23 
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datasets are used as training data for a RNA-seq experiment, to demonstrate the effectiveness of OTS 1 

across platforms (Fig. 4.3A). This experiment also demonstrates the effectiveness of OTS when using 2 

relatively sparsely sampled training datasets, as well as using different but related biological treatments 3 

in the training datasets. Because coronatine is a toxin produced by Pseudomonas syringae pv. tomato 4 

DC3000 (Pst. DC3000), and is a molecular mimic of the jasmonate hormone, which mediates would 5 

response in Arabidopsis (Thilmony et al., 2006), several different datasets utilizing coronatine, Pst. 6 

DC3000 and wounding treatments were used as training input into the algorithm. In addition, a pilot 7 

microarray experiment using a coronatine treatment with three timepoints is also incorporated as a 8 

training dataset. 9 

  The second organism tested was yeast, and utilized two very high resolution microarray 10 

experiments (from Pramila et al. (2006) which had 25 timepoints (every 5 minutes from 0 minutes to 11 

120 minutes), making them two of the most densely sampled time-series experiments ever conducted 12 

(Edgar et al., 2002; Parkinson et al., 2009). One of these datasets was used as the current mock dataset, 13 

and the other was used as one of four training datasets (Fig. 4.3B). In the Pramila et al and Spellman et 14 

al experiments, α-factor synchronization is used to synchronize the cell cycles of the yeast cells to the G1 15 

phase (Pramila et al., 2006; Spellman et al., 1998), while in the Cho et al experiment, temperature 16 

changes were also used to synchronize cell cycles to the G1 phase (Cho et al., 1998).  17 

4.4.2 Experiment design 18 

  Three different OTS test experiments were performed, in order to demonstrate its performance 19 

using different datasets and different sampling strategies. The first iterative-online sampling experiment 20 

uses the Arabidopsis coronatine-response datasets. Because the treatments in the current and training 21 

datasets activate jasmonate-responsive genes (Chung et al., 2008) and because jasmonate responses are 22 

linked to the circadian clock (Goodspeed et al., 2012), the GO-SLIM categories “involved in response to 23 

jasmonic acid synthesis” (GO:0009753, 139 genes) and “involved in circadian rhythm” (GO: 0007623, 76 24 
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genes) were used, for a total of 195 genes after removing duplicate genes, genes not expressed (zero 1 

counts) in the RNA-seq dataset and genes not available in the microarray platform. In this experiment, 2 

only the first and last timepoint from the current dataset were used as input, with five additional 3 

timepoints added one-at-a-time, to simulate iterative-online sampling on an initially very sparse dataset. 4 

  Another iterative-online sampling experiment was run with the yeast cell-cycle datasets. In this 5 

experiment, we have chosen all of the genes available in every training and current dataset in the GO 6 

category “mitosis” (i.e., cell division; GO:0007067, 90 genes total) (Ashburner et al., 2000) as the set of 7 

target genes. This yeast experiment demonstrates the ability of OTS to work despite a great deal of 8 

noise; cell cycle patterns are only weakly reproducible (even between replicates), α-factor 9 

synchronization and temperature treatments may elicit stress-responses in addition to cell cycle 10 

differences (Cooper and Shedden, 2003), and a very diverse set of genes with very different functions is 11 

responsible for mitosis (Cho et al., 1998), all of which add considerably to the overall noise in the 12 

experiment. 13 

  Besides the “iterative-online” sampling experiment, a different sampling strategy was also used 14 

with the same yeast cell-cycle datasets. In this experiment, we start with five evenly distributed 15 

timepoints (at 5, 30, 60, 90 and 120 minutes), and then add two more timepoints as a batch to “top-up” 16 

the timepoints sampled, simulating the situation of choosing extra timepoints after conducting a pilot 17 

sampling which is determined by researcher’s knowledge/intuition.  18 

  In the Arabidopsis experiment, very large differential gene expression values were expected for 19 

jasmonic-acid response, based on the literature (Chung et al., 2008; Wierstra and Kloppstech, 2000), and 20 

very low levels of noise are expected in the RNA-seq dataset (Marioni et al., 2008), so a threshold 21 

number (H) of 6 was selected in the OTS to preferentially capture these larger changes in expression. In 22 

contrast, for yeast experiments, a threshold number (H) of 3 was used in order to reduce the high 23 

expected noise in the datasets (Cooper and Shedden, 2003), by ignoring the small fluctuations in gene 24 
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expression measurements. Ten clusters were used in the Arabidopsis dataset, and 8 clusters were used 1 

in the yeast dataset. 2 

  As a comparison, Singh et al’s (Singh et al., 2005) active learning algorithm was also used to 3 

choose optimal timepoints, using the same number of clusters as OTS. However, the active learning 4 

algorithm requires at least five timepoints as initial input, so in the iterative-online experiments (which 5 

start with only two timepoints) the first three selected timepoints were chosen using a uniform 6 

distribution across the time series, and the last two timepoints were chosen using the active learning 7 

algorithm (Singh et al., 2005). For the iterative-online experiments, random timepoint selection was also 8 

performed, where timepoints were randomly selected within the time range of each experiment 250 9 

times (for each number of timepoints selected). 10 

4.4.3 Performance measurement 11 

  For the performance-testing experiments, given the gene expression data at a subset of all the 12 

timepoints, the differential gene expression values at every unsampled timepoint were estimated with 13 

linear interpolation (see Figure 4.4A for an example in which 6 out of 20 timepoints have been used for 14 

interpolation). By comparing the actual and the interpolated values, we are able to evaluate the 15 

performance of the timepoint selection. Figure 4.6A shows a scatterplot of the Interpolated vs. actual 16 

Log2 fold change values (for all genes at all available timepoints) in the Arabidopsis experiment at the 17 

start of the iterative-online experiment, when the interpolated dataset only uses the first (0.25 hours) 18 

and last (24 hours) timepoints. A measure of error between the interpolated and actual Log2 differential 19 

gene expression values was derived, such that larger errors result from measurements with (a) poor 20 

agreement between the actual and interpolated values and (b) large actual differential expression. For 21 

example, in Figure 4.6A, one gene at one timepoint has an actual Log2 fold change value of 8.4 and an 22 

interpolated Log2 fold change value of 3.1, giving an error area of 22.2 according to Equation 4.7. At this 23 

timepoint, this gene has a large error area (highlighted in white) because it has a poor agreement 24 
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between the actual and interpolated values (far from the diagonal line), and it has large actual 1 

differential gene expression value (far from the center point of the x axis).  2 

  These error areas are summed for all genes and timepoints to calculate the Sum Error Area (ETA) 3 

for each set of timepoints used for the interpolation, according to Equation 4.7. To measure 4 

performance, these values are presented as a percentage of the initial sum error area (the sum error 5 

area at the start of each experiment). 6 

                                    

(4.7) 

 

7 

where ETA is the Sum Error Area for interpolation based on a subset of the full dataset timepoints (TS), 8 

(or eg
i) is the actual (or interpolated) differential gene expression value for gene g in the set of genes of 9 

interest G at timepoint i (1 ≤ I ≤ |TA|),  is a small constant with the same sign as . 10 

4.4.4 Test experiment results 11 

  Figure 4.7 shows that in the iterative-online experiments, OTS consistently chooses timepoints 12 

which model the differential gene expression patterns of target genes more effectively than random 13 

selection and uniform distribution followed by the active learning algorithm. The increase in 14 

performance of OTS is particularly clear for the early timepoints selected. In the Arabidopsis experiment 15 

(Fig. 4.7A), the addition of the first OTS timepoint (at 5 hours) reduces the error in the interpolation by 16 

more than 50%, compared with uniform distribution, which had only a 32% reduction in the initial error. 17 

Random timepoint selection (for one timepoint, the average of all of the timepoints) also had a 32% 18 

reduction in the initial error. Figure 4.6B shows that a large portion of the error in the uniform 19 

distribution selection results from measurements that are predicted to be low or negative fold change 20 

values, but are actually very high (circles near the bottom right), but OTS successfully identifies most of 21 

these upregulation events. The second timepoint added by OTS (at 2 hours) further reduced the error to 22 
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35% of the initial error, compared with uniform distribution, which still has 66% of the initial error rate 1 

after the addition of two timepoints and still misses many of the very strong upregulation events (Fig. 2 

4.6C). Random timepoint selection still had 46.5% of the initial error after the addition of two 3 

timepoints, suggesting that it outperforms uniform distribution selection, but is not as optimal as OTS  4 

selection. Overall, OTS has a lower error for every number of timepoints added in this experiment, 5 

including the first two timepoints for which active learning could be applied (Fig. 4.7A).  6 

  The timepoint selection distribution for every round in the iterative-online Arabidopsis 7 

experiment is shown in Figure 4.8A, which shows an early-timepoint selection bias by OTS. Figures 4.9A 8 

and 4.9B show a case study example of the interpolated differential gene expression pattern after the 9 

addition of five OTS timepoints for a bHLH transcription factor called MYC3 (AT5G46760), which 10 

interacts with Jasmonate ZIM-domain proteins to mediate the jasmonate response (Fernández-Calvo et 11 

al., 2011; Xie et al., 1998). Unlike the interpolated differential gene expression pattern using uniform 12 

distribution followed by active learning (Fig. 4.9B), the strong upregulation peak from 2 to 5 hours is 13 

well-defined by OTS interpolation (Fig. 4.9A), with the correct peak time and strength accurately 14 

captured. The early timepoint at 0.5 hours that was suggested by active learning fails to capture this 15 

peak, as the gene expression level does not significantly increase until an hour after treatment (Fig. 16 

4.9B). By suggesting more early timepoints, OTS is able to more effectively define the early peaks of 17 

coronatine-induced genes, and after four rounds of selecting early timepoints, OTS chooses 12 hours as 18 

the fifth timepoint, leading to good overall coverage of the time range.  19 

  In the similarly designed iterative-online yeast experiment, despite large amount of noise among 20 

datasets and large differences among genes (see section 4.4.2), OTS outperformed uniformly-distributed 21 

timepoint selection (Fig. 4.7B), reducing the error by 35% after the addition of just one timepoint 22 

(compared with only 5% in uniform distribution, which selected the center timepoint at 60 minutes, and 23 

16% in random selection). The error plot in Figure 4.6E shows that the strongest upregulation and 24 
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downregulation events (close to the bottom left and bottom right of the plot) are much more accurately 1 

defined by the timepoint selection in OTS, compared with active learning. This trend continues in the 2 

plot in Figure 4.6F; after the addition of two timepoints, OTS selection reduces the initial sum error area 3 

by 47%, compared with just 14% in active learning and 24.1% in random selection (Fig. 4.7B). At the end 4 

of the experiment (five timepoints added, for a total of seven timepoints), the initial error is reduced by 5 

56.1% using OTS timepoints, compared with 51.3% using active learning timepoints and 50.3% using 6 

random selection. Like in the Arabidopsis experiment, OTS outperforms active learning at every number 7 

of timepoints tested, and in yeast there also appears to be a bias towards early timepoints (Fig. 4.8B), 8 

probably due to stronger and more co-ordinated cyclic gene responses immediately after 9 

synchronization (Cho et al., 1998; Spellman et al., 1998), and because many yeast cell cycle genes peak 10 

in late G1, the point at which the cell needs to “decide” whether to divide or to continue to grow 11 

(Rodriguez-Sanchez et al., 2011).  12 

  Figures 4.9C and 4.9D show the interpolated differential gene expression curves for OTS and 13 

uniform distribution/active learning (respectively) for Mitotic Arrest Deficient 1 (MAD1; YGL086W), 14 

which encodes a protein that is critical for regulating the transition into anaphase, by modulating the 15 

activity of the mitotic spindle (Chen et al., 1999). At the end of the iterative/online experiment, OTS-16 

timepoint selection has accurately defined the peak expression of this cell-cycle gene (occurring at 40 17 

minutes, Figure 4.9C), whereas uniform distribution/active learning-timepoint selection has missed the 18 

true peak expression of this gene, and incorrectly identified the peak time at 60 minutes (Fig. 4.9D).  19 

  In the top-up yeast experiment, OTS also outperformed uniformly-distributed timepoint 20 

selection, reducing the error by 25.9% after the addition two timepoints to the initial five timepoints, 21 

compared with 14.4% for the two active-learning timepoints. The error plot in Figure 4.6H shows that 22 

the strongest upregulation events (close to the bottom-right side of the plot) are much more accurately 23 

defined by the timepoint selection in OTS, compared with active learning. The timepoint selection 24 



110 
 

distribution in Figure 4.8C shows that active learning adds timepoints far apart at 25 and 95 minutes 1 

(very close to existing timepoints in the dataset), while OTS has an early bias (as in the iterative-online 2 

experiment), suggesting 10 and 20 minutes as the optimal timepoints.  3 

  Figures 4.9E and 4.9F show the differential gene expression interpolation results in the top-up 4 

experiment for APC/CCdh1 modulator 1 (ACM1; YPL267W), which encodes a protein that inhibits key cell 5 

cycle proteins, and is cell-cycle regulated (appearing late in G1, and disappearing in late M phase) 6 

(Martinez et al., 2006). The initial interpolation based on 5 evenly distributed timepoints (every 30 7 

minutes; grey line, Figure 4.9E) suggests that this gene has a peak Log2 fold change of 0.22, occurring at 8 

30 minutes. The 25 minute timepoint added by active learning (Fig. 4.9F) has a Log2 fold change value of 9 

0.36, but still misses the true peak of 0.69 (occurring at 20 minutes), which is captured by the OTS 10 

timepoint. Furthermore, compared with active learning, OTS generally captured the expression peaks 11 

very well for the many yeast cell cycle genes that peak in late G1. Overall, this yeast top-up study 12 

demonstrates that OTS timepoint selection has nearly twice the performance of active learning 13 

selection, by identifying strong upregulation and downregulation events which more accurately model 14 

true gene expression patterns for more cell cycle genes, providing more biologically interesting 15 

information. 16 

 17 

4.5 Conclusion 18 

  Here, we have demonstrated that OTS can out-perform existing algorithms in finding optimal 19 

timepoints for defining differential gene expression patterns for large groups of target genes, by utilizing 20 

training data as a guide. We have demonstrated that the algorithm is robust to noise and to sparsely-21 

sampled, poorly matched, and cross-platform training data. Because it relies on training data as well as 22 

the existing expression pattern in the current dataset, OTS can be applied on datasets containing as few 23 

as two timepoints and still produce strong results, in contrast to the best existing algorithm which 24 
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requires a minimum of five timepoints as input (Singh et al., 2005). Although OTS was tested here on 1 

differential gene expression values, it can potentially also be used on other types of data, including raw 2 

transcript number counts, relative protein quantities, or any other type of measurement that can be 3 

sampled in an online fashion. Overall, OTS can be used to significantly improve the results from 4 

biological experiments, by allowing researchers to optimize the distribution of timepoints when there is 5 

a limit on the number of samples that can be measured across a time-series dataset, and to our 6 

knowledge is the first to utilize existing datasets in timepoint suggestion.  7 
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4.6 Chapter 4 Tables 1 

Table 4.1: Cluster-Time-Experiment (CTE) Table storing Differential Regulation Count (DRC) values for 2 

cluster c. Each row represents a timepoint available for sampling in the current dataset (TA), each 3 

column represents a training dataset (Rj), the current dataset (U), or the estimate dataset (E) and each 4 

value in the table is a DRC value for timepoint i in training data j (Dij), current dataset ( ) or estimate 5 

dataset (  i ). 6 

Timepoint 
Training Datasets 

Current 
Dataset 

Estimate 

R1 R2 … Rm      

t1 D11 D12 … D1m    1 

t2 D21 D22 … D2m    2 
… … … Dij … … … 

tn Dn1 Dn2 … Dnm    n 

  7 
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4.7 Chapter 4 Figures 1 

 2 

Figure 4.1: Histogram of the number of timepoints in each time-series high-throughput gene expression 3 

dataset in the GEO database. 4 
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 1 

 2 

Figure 4.2: Flowchart depicting the overall experimental approach for utilizing OTS 3 
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 1 

Figure 4.3: Description of current and training datasets used for (A) the Arabidopsis testing experiments 2 

and (B) the yeast experiment. 3 
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 1 

Figure 4.4: The conversion of differential gene expression value curves in one cluster to a differential 2 

regulation count (DRC) curve. One of the clusters in the “current” dataset of the Arabidopsis experiment 3 

is shown after the addition of four OTS timepoints. (A) Differential gene expression values from the 4 

current dataset are used to interpolate differential gene expression values to every available preserved 5 
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timepoint in the biological experiment. Vertical dashed black lines indicate actual timepoints used as 1 

input and the lines of various shades of grey represent the differential gene expression curves for 2 

individual genes. (B) Upregulation and downregulation thresholds are determined according to the 3 

average and standard deviation of the uninterpolated training datasets (horizontal black dashed lines). 4 

(C) The number of genes crossing each threshold value are counted at each timepoint. Counting is 5 

shown at 3 hours, indicated with  vertical dotted black line ( = 1+3+3+5+8+9+4+3+1=37; Equation 4.2). 6 

(D) The DRC curves for one cluster in the current dataset (black line) and the four training datasets (grey 7 

lines) are shown. (E) The current DRC curve (4black line), and the estimate DRC curve suggested by NNLS 8 

regression alone (dashed line). Actual sampled timepoints are indicated with vertical dashed grey lines 9 

(F) The current DRC curve (black line), the final estimate DRC curve (shifted according to the Equation 10 

4.3; dashed line), and the actual DRC value for the optimal timepoint at 12 hours (black x mark; hidden 11 

from OTS, but shown for demonstration). Actual sampled timepoints are indicated with vertical dashed 12 

grey lines 13 

14 
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 1 

Figure 4.5: Curve difference score (Q) and λ -score tables used to determine the optimal timepoint for 2 

all the selected genes in the case study experiment. (A) Curve difference scores are calculated at every 3 

timepoint and every cluster according to Equation 4.4. The highest curves difference scores in each 4 

cluster (row) are indicated with the brightest shades, and empty columns represent timepoints already 5 

sampled (TS) (B) λ -scores are calculated to determine the optimal timepoint by comparing curve 6 

difference scores according to Equation 4.5. Brighter shading indicates higher λ-score values and lower 7 

(better) ranks. The optimal timepoint selected here is at 12 hours because it has the highest λ-score at 8 

λ=10. The second-best ranked timepoint is 1.5 hours because although its λ-score is tied with several 9 

timepoints at λ=10, it has a higher λ-score than these tied timepoints at λ=9. 10 

 11 
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 1 

Figure 4.6: The interpolated Log2 fold change values plotted against the actual Log2 fold change values 2 

for every gene at every timepoint in the dataset. Shaded grey areas indicate the error area (Equation 3 

4.7) for a given region of each plot, with darker shades indicating higher error area values. Black circles 4 

represent the values at the start of each experiment, black X marks represent values based on OTS-5 

selected timepoints, and hollow circles represent values based on uniform distribution/active-learning 6 

selected timepoints. (A) Interpolation based on the first two timepoints (0.25 hours and 24 hours) in the 7 

iterative-online Arabidopsis experiment. The highlighted triangular area indicates the the “error area” 8 

for one gene at one timepoint, where the actual value is 8.4 and the interpolated value is 3.1, giving an 9 
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error area of 22.2 according to Equation 4.7. (B) Interpolation after the addition of one OTS and one 1 

active learning timepoint in the iterative-online Arabidopsis experiment. (C) Interpolation after the 2 

addition of two OTS and two active learning timepoints in the iterative-online Arabidopsis experiment. 3 

(D) Interpolation based on the first two timepoints (5 minutes and 120 minutes) in the iterative-online 4 

Yeast experiment. (E) Interpolation after the addition of one OTS and one active learning timepoint in 5 

the iterative-online Yeast experiment. (F) Interpolation after the addition of two OTS and two active 6 

learning timepoints in the iterative-online yeast experiment. (G) Interpolation based on the first five 7 

timepoints (every 30 minutes) in the top-up yeast experiment. (H) Interpolation after the addition of 8 

two OTS and two active learning timepoints in the top-up yeast experiment. 9 

  10 
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 1 

Figure 4.7: Sum Error Area values for the Arabidopsis and yeast iterative-online experiments. The results 2 

for OTS (black line, black X marks), uniform distribution (dashed grey line, white circles) followed by 3 

active learning (solid grey line, white circles) and random selection (dotted line) are shown for (A) the 4 

iterative-online Arabidopsis experiment (195 genes) and (B) the iterative-online yeast experiment (90 5 

genes). OTS outperformed uniform distribution/active learning and random selection at every number 6 

of timepoints added.  7 

  8 
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 1 

Figure 4.8: The timepoint selection distribution for every round of timepoint addition in the iterative-2 

online Arabidopsis experiment and the top-up Yeast experiment. (A) Timepoints selected in the 3 

iterative-online Arabidopsis experiment and (B) Timepoints selected in the iterative-online Yeast 4 

experiment (C) Timepoints selected in the top-up Yeast experiment. For all experiments, grey squares 5 

represent timepoints initially inputted or or selected by OTS, black squares represent timepoints 6 

selected by uniform distribution, and black diamonds represent timepoints selected by active learning. 7 

  8 
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 1 

Figure 4.9: Case studies for one gene in each of the three timepoint selection experiments. For the 2 

iterative-online Arabidopsis experiment, the interpolated differential gene expression patterns of the 3 

jasmonate-responsive bHLH transcription factor MYC3 (AT5G46760) are shown based on (A) the 4 

addition of five OTS timepoints and (B) based on the addition of three uniformly distributed and two 5 

active learning timepoints. For the iterative-online yeast experiment, the interpolated differential gene 6 

expression patterns of Mitotic Arrest Deficient 1 (MAD1; YGL086W) are shown based on (C) the addition 7 
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of five OTS timepoints and (D) based on the addition of three uniformly distributed and two active 1 

learning timepoints. For the top-up yeast experiment, the interpolated differential gene expression 2 

patterns of APC/CCdh1 modulator 1 (ACM1; YPL267W) are shown based on (E) the addition of two OTS 3 

timepoints and (F) the addition of two active learning timepoints. 4 

 5 

  6 
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4.8 Chapter 4 Algorithms 1 

 2 

Algorithm 4.1: The pseudocode for Optimal Timepoint Selection (OTS). Refer to section 4.3.3 to 4.3.7 for 3 

the introduction of Clustering, DataInterpolation, DifferentialRegulationCount, CurveMatching and 4 

MultiObjectiveOptimization respectively.  5 
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Chapter 5: Conclusion 1 

  High-throughput gene expression datasets allow researchers to sample tens of thousands of 2 

genes at once, providing a wealth of information both about known treatment/condition-response 3 

genes, as well as previously uncharacterized genes which may be very important targets for further 4 

biological study. However, given the varying levels of annotations of the genes, the high rates of noise 5 

inherent to these systems, and the complexities of genetic responses to various treatments and 6 

conditions, performing accurate novel gene discovery (i.e. identifying previously uncharacterized genes 7 

which are actually involved in a biological response to a given treatment/condition) is a difficult 8 

challenge. In this thesis, three different approaches for improving novel gene discovery in high-9 

throughput gene expression datasets have been presented.  10 

  First, a novel knowledge-based approach which identifies and saves important functional genes 11 

before filtering based on variability and fold change differences was utilized to study light regulation. 12 

When combined with a novel clustering approach, it was shown that this experiment produced 13 

relatively short cluster lists compared to gene groups generated through typical clustering methods or 14 

coexpression networks, which narrowed the search for novel functional genes while increasing the 15 

likelihood that they are biologically relevant. This method can be applied to any single-timepoint 16 

experiment in which there is some level of background knowledge about the expected genetic response 17 

to the treatment or condition used. In the future, the knowledge-based filtering step presented here can 18 

be applied to other analysis approaches in order to prevent the removal of important, and other 19 

clustering algorithms could be combined in a similar way as in this study. In addition, the biological 20 

results from this study (which suggest that several novel genes may be involved in light regulation) could 21 

be verified by biological experiments. 22 

  Second, the PRIISM algorithm was developed in order to significantly reduce the complications 23 

of circadian clock pathway disruptions in plant novel gene discovery experiments. PRIISM was applied 24 
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on a high-resolution time-series Arabidopsis microarray dataset under a cold treatment, and the results 1 

of this study showed that the ranked treatment-frequency fold change results contain fewer false 2 

positives than the original methodology. This experiment also showed that many known target response 3 

genes had very strong differential regulation through treatment-response pathways at 26 hours, which 4 

was not obvious in the original dataset due to the noise resulting from circadian rhythm pathways, 5 

showing that in addition to novel gene discovery, this approach may be able to better characterize 6 

treatment responses for known genes. In addition, PRIISM also provides gene expression data which 7 

represents only circadian clock influences, and may be useful for circadian clock analysis studies. In this 8 

study, six strong candidates for novel cold response genes were discovered which could be verified 9 

biologically in future experiments. As higher-resolution time series gene expression datasets become 10 

available, it would be useful to modify PRIISM to support wavelet analyses, where instead of using a 11 

sliding window based on light/dark cycles, every possible sliding window of a given length would be 12 

split.  13 

 Third, a computational approach was developed to design the timepoint selection in time-series 14 

high-throughput gene expression experiments, such that the strong expression changes in known target 15 

genes are the most accurately captured, based on expression data from training datasets.  By finding the 16 

timepoints at which most of the known target genes are differentially expressed, the potential to 17 

discover other related novel treatment/condition response genes is significantly increased. OTS was 18 

tested using several sampling approaches on several datasets, and consistently outperformed other 19 

existing timepoint sampling strategies in terms of defining the true expression patterns of known target 20 

genes. In future versions, OTS may be modified to include more advanced interpolation algorithms, 21 

different clustering algorithms, and may be tested on much higher-resolution training and current 22 

datasets as they become available. 23 

   24 
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  Overall, the computational projects outlined in this thesis have contributed significantly to the 1 

field of novel gene discovery in high-throughput gene expression datasets. Methods have been 2 

developed to decrease noise (and increase the accuracy of novel gene discovery) in both static as well as 3 

time-series gene expression datasets, and an approach has been developed to design experiments such 4 

that important regulatory timepoints can be selected in new experiments, leading to more accurate 5 

treatment/condition-response novel gene discovery in the dataset produced.  6 

  7 
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