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Abstract

Parallel robots differ greatly from their serial counterparts in terms of performance

and mechanical ability. Serial robots are open chained mechanisms since each link

is connected to an adjacent one and each joint is actuated, while parallel robots

implement a closed chained structure. This type of structure consists of having

the endpoint of each kinematic chain connected to one another, hence called the

common point. There can be a multitude of kinematic chains, but each chain

utilizes only one actuator located near the base of the system to perform the desired

operation. This brings up the dilemma between parallel and serial robots. Serial

robots allow for a greater control precision and a simpler dynamic model, yet they

are generally more expensive and their load capacity is limited due to their large

mass. Parallel robots have a higher load capacity due to their smaller mass, much

faster accelerations at the end effector and boast a high mechanical stiffness to

weight ratio. Their drawbacks entail a complex dynamic model and they generally

have many singular regions that must be avoided in order to achieve stability.

There has been substantial research aimed at improving the performance of

parallel robots by implementing PID and adaptive controllers’ and so on, but due

to the variations in the dynamic models of each system, it is nearly impossible

to conclusively determine the most appropriate controller to design. Therefore,

this thesis compares the simulation and experimental results of four non-fuzzy logic

controllers, namely the non-adaptive and adaptive PD and backstepping controllers
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along with four fuzzy logic controllers, namely the fuzzy PD, indirect adaptive fuzzy,

direct adaptive fuzzy and fuzzy adaptive backstepping controllers on a planar two

degrees of freedom parallel robot in order to determine which controller would yield

the best control performance.

By comparing the simulation results for the joint angles error and the end

effector trajectory error plots for the non-fuzzy and fuzzy logic controllers, the

adaptive backstepping and the fuzzy adaptive backstepping controllers held the

potential to be the most likely candidate controllers to implement on the physical

structure of the two degrees of freedom parallel robot.

After the eight controllers elaborated in this thesis were utilized on the parallel

robot structure, the controller that outputted the most impressive experimental

results were found in the fuzzy adaptive backstepping controller. The joint angles

error and end effector trajectory deviation yielded particularly low results, but it is

the tracking performance which differentiates this controller from the rest. It has

the smoothest tracking performance when compared between the non-fuzzy and

fuzzy logic controllers discussed in this thesis without conceding a large displace-

ment error and it tracks an acutely symmetrical circle. Another significant advan-

tage of the fuzzy adaptive backstepping controller over any other control techniques

employed in this thesis is the low computation time required to generate the control

signals. This is very important since a lower computation time allows the control

performance to increase dramatically.

Therefore, the recommended control technique to be employed on the planar

two degrees of freedom parallel robot is the fuzzy adaptive backstepping controller.
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Chapter 1

Introduction

1.1 Background

There are essentially two types of robot manipulators: serial and parallel. Serial

manipulators consist of a number of links connected in series to one another to

form a kinematic chain. Each joint of the kinematic chain is usually actuated. This

type of structure is known as an open chained mechanism. Parallel manipulators,

on the other hand, consist of a number of kinematic chains connected in parallel

to one another. The kinematic chains work in unison to move a common point.

This common point usually consists of a manipulator that performs a certain task.

For the purpose of the two degrees of freedom planar parallel robot system de-

scribed in this thesis, the common point will also be referred to as the end effector.

Since the kinematic chains are eventually connected to a common point, a parallel

manipulator is considered a closed chained mechanism. The actuators in paral-

lel manipulators are usually located at the base or close to the base of the system,

which is in stark contrast to serial manipulators which have actuators at every joint.

The advantages of this type of configuration include the fact that it could achieve

a higher load capacity due to the decrease in the mass of the overall system, it can

produce high accelerations at the end effector and it has a high mechanical stiffness

to weight ratio. The disadvantages of this type of configuration include the fact

1



that the dynamic model is quite complex in nature and there are many instances

of singularities that must be mapped out and avoided in order to maintain control

of the system. Parallel robots come in a wide variety of designs and applications

ranging from the Stewart platform, which is used in aircraft motion simulators to

the Delta robot, which is used in packaging plants. This endows the fact that there

cannot be a conclusive result as to which controller best suits the functionality of

all parallel robots. Therefore, it is logical to experiment with various control tech-

niques to observe upon which controller would garner the most satisfactory results

based on a specific mechanical system.

This thesis presents the reader with the simulation and experimental results

obtained from the implementation of non-adaptive and adaptive PD and backstep-

ping controllers along with four fuzzy controllers on a planar two degrees of freedom

parallel robot. The parameters of the dynamic model of this system are derived in

detail followed by the derivation of the inverse kinematics of the mechanical model.

The non-singular region is then defined based on the results obtained in the inverse

kinematics. It is important to map out the non-singular region since it is the only

location in which the parallel robot is able to operate under stable conditions. If

the parallel robot were to enter a singular region, it would render the controller

ineffective and cause the entire system to become unstable. It is impossible to ade-

quately design any controllers for the parallel robot without a clear understanding

of the dynamic model and the inverse kinematics of the mechanical model.

The eight controllers discussed in this thesis are separated into two main cate-

gories: non-fuzzy logic controllers and fuzzy logic controllers. The major difference

between the two is the fact that the fuzzy logic controllers employ an ingenious con-

cept known as natural language. Natural language essentially describes the process

of human communication to solve a specific scenario. The various parameters in-
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volved in a scenario allow an individual to make a reasonable decision, but the

deduction methods of another person may reach a different conclusion. This type

of reasoning is not found in non-fuzzy logic controllers since the results of non-fuzzy

logic controllers are generated utilizing a crisp boundary, such as binary code. This

is known as a classical set. Fuzzy logic controllers employ the concept of fuzzy

sets, which is a set without a clearly defined crisp boundary. It can contain ele-

ments with only a partial degree of membership. An excellent resource comparing

the differences between the implementation of a non-fuzzy logic controller and a

fuzzy logic controller to establish the tip that should be given based on the service

received is given in [13].

Another concept that is deliberated in this thesis is the difference in control per-

formance between adaptive and non-adaptive controllers. Non-adaptive controllers

are generally less computationally intensive due to the fact that the system param-

eters do not change over time. In terms of the two degrees of freedom parallel robot

discussed in this thesis, this pertains to the mass of each link, the length of each

link, the moment of inertia about each link and the distance to the centre of mass

for each link. The foremost issue concerning the use of this approach is that the

moment of inertia and centre of mass of each link is not consistent throughout the

operation of the robotic structure. The adaptive method counteracts this effect by

estimating all the system parameters online. In order to impartially quantify the

results between non-adaptive and adaptive controllers, the PD and backstepping

controllers discussed in this thesis are implemented using both methods.

This thesis will provide the reader with a comprehensive comparison of the

effects that various controllers would inflict on a planar two degrees of freedom

parallel robot structure designed by the writer. The pros and cons of the simulation

and experimental results of the robotic system will also be discussed in detail.
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The overall purpose of the implementation of such a wide array of controllers is to

demonstrate the robustness that such a system could achieve and ultimately choose

a single controller that yields the most satisfactory results.

1.2 Literature Review

The word robot was first introduced to the world by the Czech playwright Karel

Capek in his 1920 play called Rossum′s Universal Robots. This play described

a group of artificially created people that were used to serve mankind, but they

eventually rebelled and exterminated the human populous. Karel initially wanted to

name these artificial people labori, but thought the name sounded silly, so he looked

to his older brother Josef for some guidance. Thus, Josef coined the word robot,

which in Czech the word robota literally means forced labourers [77]. Following

Karel Capek’s play, many science fiction writers began to conjure up dramatic

stories of the roles robots could play in the future world of mankind, whether

destructive or beneficial. Authors such as Isaac Asimov defined a moral code for

robots called the Three Laws of Robotics, while Gene Roddenberry created the

fictitious positronic based android named Data. Even though the concept of robots

is relatively modern, the actual implementation of robotic devices has been around

for many centuries.

A robot is defined as an automatically guided machine that is able to do tasks

on its own [42]. In this context, automata of the sort have been around since the

1st century with devices such as the coin operated machine and the aeolipile. The

18th and 19th centuries produced more elaborate automatons such as a mechanical

duck that would simulate the ingestion of food and toys that would serve tea, yet

it was not until the 20th century that genuine robots became more sophisticated
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and achieved practical industrial applications.

Robots can be more readily identifiable by the amount of relative agency. The

more a control system seems to have agency of its own, the more likely the machine

is to be called a robot. The most common classification of robots pertains to the

anthropomorphic behaviour of the system, most notably either mentally anthropo-

morphic or physically anthropomorphic. A mentally anthropomorphic robot would

describe a roboticized task that a human being could potentially do. A perfect

example that fits this criterion would be a device such as a self guided automobile.

The operator would input specific information such as the destination into a com-

puter and in turn, the computer would automatically control the speed, direction

and other important factors that the automobile would require to arrive at the des-

tination safely. Physically anthropomorphic robots refer to machines that simulate

human movement in some way or form. For example, an industrial robot welding

a door to an automobile essentially simulates the movement of the human arm

gracefully moving the welding rod to the desired position, while a biped robot gin-

gerly simulates the walking patterns of a human being. It is the latter of these two

anthropomorphic robots that will be discussed in the remainder of this literature

review.

The first robot ever utilized in industrial applications was Unimate, which was

designed in 1954 by George Devol. In 1961, the General Motors Corporation in-

stalled Unimate in their New Jersey assembly plant to transport die castings from

an assembly line and spot weld them onto auto bodies [36]. This task was ini-

tially performed by trained human workers, yet even the most skilled worker could

potentially seriously injure themselves due to the high dexterity involved and the

inherently dangerous nature of the job. Unimate proved that it was possible for

robots to perform certain tasks safer and more efficiently than human beings could.
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This ultimately led to a large influx of more multi-functional and flexible robotic

structures such as the Stanford Arm. Designed by Victor Scheinman in 1969, the

Stanford Arm has the privilege of being the first electrically powered, computer

controlled robotic arm. Scheinman went on to improve his design and created the

famous six degrees of freedom PUMA robot in 1978 [58]. This robot is so reliable

and robust that it is still in use in industrial applications today.

All these industrial robots discussed thus far have the same type of architecture;

that is, they are all considered serial robots. Serial robots consist of a number of

rigid bodies connected in series, each linked together by a one degree of freedom

joint that may be actuated. This type of open loop mechanical structure has been

proven to be extremely effective at manipulating objects in Cartesian space, hence

its widespread use in the assembly and manufacturing industry. However, this type

of mechanical architecture is not suitable for all tasks. One major drawback of this

configuration is the fact that the absolute accuracy and the load capacity to robot

mass ratio are relatively low. Absolute accuracy is defined as the distance between

the desired and actual position of the end effector. This value decreases significantly

as the number of degrees of freedom increases due to structural effects such as

flexural deformations, complex high velocity motions and motor backlash. The

absolute accuracy can be improved by implementing sophisticated internal sensors

and increasing the quality of the geometric realization, but it is generally accepted

that the absolute accuracy of a serial robot is poor [33]. In terms of manipulating

heavy loads, each link has to support the weight of the following segment in addition

to the load; hence the links are subject to large flexure torques. To compensate

for this effect the links must be stiffened, which in turn increases the overall mass

of the robot. This increases the cost of the robot substantially due to the higher

quality of materials required to counteract the forces acting on the links as well
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as more powerful actuators to adequately operate the apparatus. Therefore, serial

robots are unsuitable for tasks requiring the manipulation of heavy loads or good

positioning accuracy. In order to solve these issues a completely different type of

mechanical architecture was pioneered, known as parallel robots.

Parallel robots vary significantly from their serial counterparts, but their most

apparent difference arises in the layout of the mechanical structure. Parallel robots

consist of a number of kinematic chains connected in parallel to one another, which

work in concert to move the end effector to the desired position. This type of

closed chained structure was first practically postulated by Dr. Eric Gough while

working for the Dunlop Rubber Company in Birmingham, England, in 1947. A

universal machine was needed to determine the properties of tires under certain

load conditions, hence his variable length strut octahedral hexapod robot proved

to be the solution. Dr. Gough successfully built a fully functional prototype of this

multi-simulation table in 1955. The hexagonal platform end effector is manipulated

with six degrees of freedom utilizing six linear actuators connected to each point

of the hexagon. By varying the length of each actuator, the end effector could

achieve the desired effect against the tire [18]. Curiously, it is not Dr. Gough who

is epitomized as the father of modern parallel robotics; instead it is a researcher by

the name of D. Stewart.

Mr. Stewart had a dilemma concerning the suitable needs of simulating flight

conditions for pilots in training. An apparatus was needed to provide all the ranges

of motion associated with flight, yet attain a high load capacity to system mass

ratio without compromising the price point. Mr. Stewart’s solution was a six

degree of freedom parallel robot that consisted of a triangular platform end effector

in which the simulator would sit atop of. A linear actuator is connected to each

point of the triangle along with three secondary linear actuators connected to each
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of the previous three actuators. This type of setup would allow for six degrees

of freedom due to the reason that all the linear actuators utilize a two axis joint

connecting them to the foundation of the system. Although the theory itself is

sound, no one has physically built a prototype of Stewart’s proposed model. The

main reason Stewart’s name is associated with all types of parallel robots that

employ an octahedral assembly of struts is because of Gough’s fully functioning

tire testing parallel robot, which was discussed and shown in the reviewers’ remarks

section of the paper Mr. Stewart published in 1965 [53]. The first flight simulator

was actually invented by an American engineer by the name of Klaus Cappel in 1962

while working for the Franklin Institute Research Laboratories in Philadelphia. The

mechanism Mr. Cappel conjured up was exactly the same as the variable length

strut octahedral hexapod robot already being implemented by Dr. Gough even

though he had no prior knowledge that such a system existed [5]. The history of

the first parallel robots between academia and the industry can be described as

very isolated to say the least, but the contributions of all three men allowed for the

popularity and applications of parallel robots to rise substantially.

The amount of parallel robot structures that have been developed over the

past few decades is austerely mindboggling. Unlike their serial robot counterparts,

parallel robots can comprise of a very large variety of closed loop mechanisms with

each new topology affecting the overall performance of the robot. This has led to a

classification system based on the amount of degrees of freedom and by the type of

joints or actuators that parallel robots employ. The number of degrees of freedom

is determined by the amount of actuators present on the mechanical structure.

Each actuator allows the coupled kinematic chain to operate in a specific direction.

Every kinematic chain consists of at least one of the following joints or actuators:

revolute, prismatic, universal or ball-and-socket. An example of a revolute joint
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would be a shaft that permits the link to rotate along a planar surface. A prismatic

joint could represent a linear actuator that allows the link to increase or decrease in

length. A universal joint is a joint in a rigid rod that allows the rod to rotate in any

direction. It consists of a pair of hinges that are located close together and oriented

at 90 degrees from one another, connected by a cross shaft. Ball-and-socket joints

are spherical in nature and allow rotation in an infinite number of axes, albeit they

are physically limited by the design constraints of the node. The most common

mechanical structures of parallel robots consist of three or six degrees of freedom

with identical kinematic chains. This is mainly due to the fact that these types

of mechanical structures have been shown to work extremely well at manipulating

various devices located at the end effector with a high degree of repeatability.

Three degrees of freedom parallel robots have been studied quite extensively over

the years, resulting in innovations such as the Tricept robot [6] and an unnamed

prismatic-universal-universal configuration defined in [73]. The most famous of

them is the three translational degrees of freedom Delta robot. The Delta robot

was conceived by Dr. Reymond Clavel in the early 1980s [9]. There are certain

versions of the Delta robot which make use of an extra revolute degree of freedom.

A shaft is connected from the base of the parallel robot that allows the end effector

to rotate 360 degrees. The purpose of its creation was to achieve an apparatus

which could manipulate small, light objects at very high speeds. The forward

kinematics for such a robotic structure are defined in [34], while the fundamental

guidelines for the optimal design of the Delta parallel robot based on the genetic

algorithm approach are defined in [52]. Applications of the Delta robot can be

found all over the industrial sector of society ranging from the packaging industry

to the pharmaceutical industry. The same architecture has been used in more

unconventional scenarios, such as neurosurgery [10] and playing table tennis [50].
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Six degrees of freedom parallel robots are generally referred to as a hexapod

robot in reference to the Stewart platform. As previously described, this type of

mechanical structure has been used in the aerospace industry as flight simulators

and in the entertainment industry as motion simulators. The inverse and for-

ward kinematics of the Stewart platform have been studied quite extensively, yet

Mr. Gregorio proposed a method to calculate the forward kinematics of the last

remaining architecture yet to be fully understood, namely the spherical-prismatic

prismatic-spherical revolute-spherical six degrees of freedom parallel robot [11]. An-

other popular six degrees of freedom parallel robot is the Hexa. The Hexa robot is a

derivative of the Delta robot, which was designed by Dr. Pierrot in 1991 [40]. The

rationalization behind this structural design was the fact that it has been shown

that Delta parallel robots can achieve high speed and precision, yet they are limited

by their number of degrees of freedom. The Hexa parallel robot has similar dynamic

properties as its predecessor, yet it also has greater manoeuvrability. Hence, it is

more suitable for tasks such as laser cutting. The inverse kinematics and inverse

dynamics of the Hexa robot structure have been defined in [1].

This leads to the structure that will be implemented in this thesis; a two degree

of freedom parallel robot. One of the first two degrees of freedom parallel robot

apparatuses was based off the original Delta robot design. Dr. Ghorbel proposed

a methodology to derive the equations of motion of a planar version of the Delta

parallel robot [16]. He went a step further to analyze the experimental effects on

closed chained mechanisms by building the Rice planar Delta robot. Dr. Ghorbel

proved that the Rice planar Delta robot could satisfy a skew symmetry property,

which guaranteed local asymptotic stability by utilizing a proportional derivative

controller with gravity compensation [17]. In the most recent work on the Rice pla-

nar Delta robot, the control of closed kinematic chains using a singularly perturbed
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dynamic model have been described in [66]. Another two degrees of freedom par-

allel structure that has been proposed is the parallel translating robot. It utilizes

a passive mechanism which can translate freely along a circular path based on the

universal-prismatic-universal parallel manipulator in the singularity configuration.

There are two compound limbs that connect a moving platform to a fixed platform.

Each compound limb consists of an actuated linear slide and the passive mecha-

nism. The motions of the two actuated linear slides are parallel to one another in a

plane [39]. The planar two degrees of freedom parallel robot described in this thesis

is a derivative of the Rice planar Delta robot. The main focus is to compare the

differing controller results implemented on a similar mechanical structure. Before

an analysis on the various types of controllers is presented, the dynamic equations

and singular regions of any parallel robot structure must be well understood.

As Tsai noted in [60], research on parallel modelling has been more focused on

the kinematics structure than the dynamics structure. Kinematics describes the

study of the motion of objects without the consideration of the causes leading to

motion, while dynamics describes the study of the causes of motion. The inverse

kinematic equations of a parallel robot structure will yield the angles of all the

robot’s joints when given the desired position of the end effector. It could also

solve for the velocity and acceleration if the desired velocity and acceleration of the

end effector is known. Alternatively, the dynamic equations can solve for the robot’s

joint angles without any knowledge of the desired position of the end effector, but its

main purpose is to solve for the actual position, velocity and acceleration required

by each actuator wherever possible. It employs the system constraints to approxi-

mate a mathematical model for the parallel robot structure. Generally, the inverse

kinematics of a parallel robot is relatively simple to solve since the kinematic chains

rarely implement more than three links. The dynamic equations are usually quite
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complex in nature due to the constraints found in any parallel robot. Dr. Kovecses

et al. addressed the methods for dynamic modelling of constrained robotic systems

based on the differential variational principles of constrained dynamic systems [25].

A dynamics based trajectory planning technique was also well documented in [31].

Regardless of how efficient the modelling technique of a parallel robot is, all would

be for naught if the desired trajectory of the system approached or passed through

a singular point.

A singular point is a location that can achieve no solution with the given con-

straints; hence the parallel robot would become out of control. Singular points can

be located in the reachable region of the end effector of any parallel robot, which is

why it is crucial that they be mapped out and avoided. There has been substantial

research in preventing such a scenario to occur [32], yet an ingenious proposal has

been made to completely avoid the existence of singular regions. A comprehensive

and straightforward design strategy that guarantees a singularity free workspace

is presented in [71]. In this paper, Mr. Yang et al. proved that a three degree

of freedom translational universal-prismatic-universal parallel robot structure can

achieve a contiguous singularity free workspace. Mr. Kotlarski et al. also proved

that a three degree of freedom revolute-revolute-revolute parallel robot structure

can accomplish a singularity free workspace using an interval based approach [24].

An in depth analysis and history of the control techniques implemented in this

thesis will be presented in the latter portions where the specified controller is de-

rived. This literature review will focus strictly on the implementation of various

controllers on other parallel robot structures. There are vast arrays of controllers

that have been simulated and experimented on parallel robot apparatuses. The

most commonly utilized are PID related controllers [30], [70], [45]. Robust con-

trollers [12] and adaptive variants of these controllers [21] have also been studied
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quite extensively, but the most interesting type of control technique pertains to

fuzzy logic control.

Fuzzy logic controllers are exemplified by the use of linguistic variables to rep-

resent part of the range of an ordinary crisp variable. It allows for better modelling

and control of real world nonlinear systems. Dr. Zadeh invented the first fuzzy

system as a graduate student for Columbia University in the 1960s. His technique

spawned an entire collection of works based on improving his method, which can

be found in all aspects of society. A specifically noteworthy example is the subway

system in Sendai, Japan. It was the first subway structure to replace the human

operator with a fuzzy system in 1988 [23].

In terms of robotics, many fuzzy systems are employed using the Takagi-Sugeno

modelling approach. This interest relies on the fact that dynamic Takagi-Sugeno

fuzzy models are easily obtained by the linearization of the nonlinear plant around

different operating points. Once the Takagi-Sugeno models are obtained, a linear

control methodology can be used to design the desired controllers for each linear

model [55]. Dr. Tanaka proved the stability of the Takagi-Sugeno model in [56]

and Dr. Sugeno described how effective the Takagi-Sugeno model is at defining a

global functional structure for a nonlinear process [54]. However, a multitude of

papers have been written proving the stability of this model with differing Lyapunov

functions [57], [41], [69], [27]. There have also been a few researchers who have

employed the linear matrix inequality to simplify the stability analysis and control

design problems. This design methodology was exploited by Mr. Wang et al. to

successfully balance and swing up an inverted pendulum on a cart [62]. Similarly,

Mr. Khaber et al. designed a state feedback controller utilizing the linear matrix

inequality approach to simplify the Takagi-Sugeno fuzzy controller [22].

The implementation of fuzzy controllers on parallel robots has also been ex-
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plored recently; in many instances, they have been employed as a combination of

multiple control techniques. A cable driven auto levelling parallel robot was de-

signed by Mr. Yu et al. that developed a hierarchical fuzzy logic controller. The

hierarchical fuzzy controller contained two layers: the low level layer which gener-

ated two outputs for levelling adjustment and the high level layer which coordinated

the two outputs from the low level layer [72]. Mr. Zeinali et al. proposed a fuzzy

model based adaptive robust control scheme for the tracking control of a four de-

gree of freedom parallel manipulator with uncertain dynamics [75]. An interesting

controller technique pertains to the adaptation of fuzzy sliding mode control. The

sliding mode portion of the controller is based on variable structure control, but

the author proved that variable structure control is unstable for physical sampled

systems. In order to compensate for this fact, he employed a fuzzy logic controller

to stabilize the six degrees of freedom parallel robot structure [3]. Any mechanical

system is always susceptible to derivative information such as perturbations, yet

most fuzzy systems do not have the ability to apprehend this type of data. Mr.

Salgado et al. proposed a perturbed fuzzy system that is capable of modelling the

derivative information, while maintaining the inference mechanism and structure

model of a traditional fuzzy system [43].

The final segment that will conclude this literature review is the implementation

of a network controller. Network control is by far the most important type of con-

troller technique available in our globalized society. Robotic mechanisms are not

only limited to industrial manufacturing applications or the simulation of anthropo-

morphic motion; they play a substantial role in allowing accessibility to areas that

are either inaccessible or extremely hazardous. Doctors can now perform complex

surgical operations without ever physically touching the patient. A precise robotic

arm can simulate the movements of the doctors’ arm and send the feedback signals
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of these movements back to the operator through TCP/IP based Internet commu-

nication to garner the appropriate responses [47]. A local area network controlled

manipulator was proposed by Alan Mutka et al. that could inspect the welds inside

a nuclear reactor [35]. This enables an operator to perform the entire inspection

procedure remotely over a network, thus avoiding exposure to the dangerous ra-

dioactive particles which are commonly present in nuclear reactor environments.

Rovers are also very popular robots that are controlled via a network. The most

prevalent example pertains to the rovers that NASA sent to Mars, namely: So-

journer, Spirit and Opportunity. Humans, as of yet, have not set foot on Martian

soil, so these rovers are controlled over an extremely large wireless network in order

to explore the unknown. Vishwanath Chukkala et al. proposed a way to model the

radio frequency environment of Mars to ensure reliable and efficient communication

between any future rovers on Mars along with the operators here on the Earth [8].

Relating to parallel robots, Changfeng Li et al. have been experimenting with a

six degree of freedom parallel robot utilized in inertial confinement fusion. This in-

genious method employs an extremely precise micro-motion manipulator that can

operate in a very confined chamber to control the nuclear fusion reaction. Their

robotic apparatus has an inherently high autoimmunization; hence they used net-

work control to simplify the control algorithms [29]. For the record, there has not

been a successful inertial confinement fusion reaction that generates more energy

than was induced in the system to date.

The following section will discuss the thesis overview.

1.3 Thesis Overview

The purpose of this thesis is to determine the most appropriate controller to imple-

ment on a planar two degrees of freedom parallel robot apparatus. Chapter 2 will
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discuss and derive the equations for the modelling of the parallel robot using the

dynamic equations of the constrained system and the inverse kinematics of the me-

chanical structure. Chapter 3 will consist of the derivations of four non-fuzzy logic

controllers based on the system parameters. The non-fuzzy logic controllers dis-

cussed in this thesis consist of the non-adaptive and adaptive PD and backstepping

controllers. Chapter 4 will consist of the derivations of four fuzzy logic controllers.

The fuzzy logic controllers discussed in this thesis consist of a fuzzy PD controller

implementing a singleton fuzzifier, the product inference engine and a centre aver-

age defuzzifier along with an indirect adaptive fuzzy controller, a direct adaptive

fuzzy controller and a fuzzy adaptive backstepping controller. Chapter 5 will com-

pare and analyze the simulation results of each controller utilizing MATLAB. The

plots of the joint angles and end effector trajectory along with their respective

errors and torque will be compared between all the controllers and a generalized

conclusion of these simulation results will be garnered. Chapter 6 will comprise of

the electrical and mechanical specifications of the planar two degrees of freedom

parallel robot. The schematics and tables associated with the specifications for the

DSP board and the motor driver board can be found in Appendix A and Appendix

B, respectively. Chapter 7 will detail the practical experimentation results of the

parallel robot using the controllers discussed in Chapter 3 and Chapter 4. As with

the simulated system, the plots of the joint angles and end effector trajectory along

with their respective errors and PWM will be compared between all the controllers.

Chapter 8 will entail the overall recommendation of the candidate controller which

best suits the needs of the parallel robot system. A description of the improvements

or additions that can be executed in future research endeavours will be investigated

to conclude this thesis.
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Chapter 2

Modelling

This chapter will describe the methodology of determining how to calculate the

unknown constraints of the parallel robot that are needed to accurately model the

movements of the parallel robot.

 

m1, I1 

q2 

Motor 2 Motor 1 

a2 

q1 

l2 

a1 

l1 

m4, I4 

m2, I2 

m3, I3 

q4 q3 

a3 

l3 l4 

a4 

Figure 2.1: Planar Two Degrees of Freedom Parallel Robot
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2.1 Dynamic Equations

The constrained two degrees of freedom system studied in this report is shown

in Figure 2.1. It should be noted that the parameters of each individual link are

known, which include: mass (mi), distance to the centre of mass (li), moment of

inertia (Ii), the overall length of the link (ai), the force of gravity (g), which is

equal to 9.8 metres per second squared and where i represents the link number.

The differential equation described in [63] defines the dynamic model of the

reduced model constrained system as:

D′(q′)q̈′ + C ′(q′, q̇′)q̇′ + g′(q′) = u′ (2.1)

φ(q′) = 0 (2.2)

where:

the constraint φ(q′) is at least twice continuously differentiable;

q′ =
[
q1 q2 q3 q4

]T
describes the actual angles at each joint;

u′ =
[
u1 u2 0 0

]T
describes the torque applied at the actuated joints;

D′(q′) ∈ R
4 describes the inertia matrix;

C ′(q′, q̇′)q̇′ ∈ R
4 describes the centrifugal and Coriolis terms and

g′(q′) ∈ R
4 describes the gravity vector

Now that the dynamic equations for a constrained system have been defined,

the equations of motion for the parallel robot need to be solved.

The equations of motion of the constrained system expressed in terms of the

independent generalized coordinates as described in [15] are defined as:

D(q)q̈ + C(q, q̇)q̇ + g(q) = u (2.3)
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which are obtained by combining the following formulae:

D(q′)q̈ + C(q′, q̇′)q̇ + g(q′) = u (2.4)

q̇′ = ρ(q′)q̇ (2.5)

q′ = σ(q) (2.6)

where:

D(q′) = ρ(q′)TD′(q′)ρ(q′) (2.7)

C(q′, q̇′) = ρ(q′)TC ′(q′, q̇′)ρ(q′) + ρ(q′)TD′(q′)ρ̇(q′, q̇′) (2.8)

g(q′) = ρ(q′)T g′(q′) (2.9)

σ(q) =
[
q1 q2 q3 q4

]T

with q3 and q4 defined in equations (2.19) and (2.20), respectively.

The actuated joints are represented as:

q =

[
q1
q2

]
=

[
1 0 0 0
0 1 0 0

]
q′ (2.10)

q̇ =

[
q̇1
q̇2

]
=

[
1 0 0 0
0 1 0 0

]
q̇′ (2.11)

q̈ =

[
q̈1
q̈2

]
=

[
1 0 0 0
0 1 0 0

]
q̈′ (2.12)

Recall that the constraint equations must also be accounted for:

φ(q′) =
[
φ1

φ2

]
= 0 (2.13)

where:

φ1 = a1 cos q1 + a3 cos(q1 + q3)− c− a2 cos q2 − a4 cos(q2 + q4) = 0 (2.14)

φ2 = a1 sin q1 + a3 sin(q1 + q3)− a2 sin q2 − a4 sin(q2 + q4) = 0 (2.15)

19



Using the Lagrangian method, the following matrices can be derived:

D′(q′) =

⎡
⎢⎢⎣
d11 0 d13 0
0 d22 0 d24
d31 0 d33 0
0 d42 0 d44

⎤
⎥⎥⎦ (2.16)

C ′(q′, q̇′) =

⎡
⎢⎢⎣
c11 0 c13 0
0 c22 0 c24
c31 0 0 0
0 c42 0 0

⎤
⎥⎥⎦ (2.17)

g′(q′) =

⎡
⎢⎢⎣
g1
g2
g3
g4

⎤
⎥⎥⎦ (2.18)

where:

d11 = m1l
2
1 +m3(a

2
1 + l23 + 2a1l3 cos q3) + I1 + I3

d22 = m2l
2
2 +m4(a

2
2 + l24 + 2a2l4 cos q4) + I2 + I4

d13 = m3(l
2
3 + a1l3 cos q3) + I3

d24 = m4(l
2
4 + a2l4 cos q4) + I4

d31 = d13
d42 = d24
d33 = m3l

2
3 + I3

d44 = m4l
2
4 + I4

h1 = −m3a1l3 sin q3
h2 = −m4a2l4 sin q4
c11 = h1q̇3
c22 = h2q̇4
c13 = h1(q̇1 + q̇3)
c24 = h2(q̇2 + q̇4)
c31 = −h1q̇1
c42 = −h2q̇2
g1 = g((m1l1 +m3a1) cos q1 +m3l3 cos(q1 + q3))
g2 = g((m2l2 +m4a2) cos q2 +m4l4 cos(q2 + q4))
g3 = g(m3l3 cos(q1 + q3))
g4 = g(m4l4 cos(q2 + q4))

In the case of the physical structure of the parallel robot, the joint angles q1

and q2 are actuated. To improve performance, a safety net was employed while
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simulating the system which limited the range of the angles for the actuated joints

to never traverse outside the span of -30 and -150 degrees. Therefore, at any given

point in the operation of the robot, these angles are known. Although, to properly

simulate the control of this system, the joint angles q3 and q4 must be known. In

order to achieve this, it is possible to manipulate equations (2.14) and (2.15) to

obtain the following results:

q4 = − tan−1

[√
Ã2 + B̃2 − C̃2

C̃

]
+ tan−1

[
B̃

Ã

]
− q2 − π (2.19)

q3 = tan−1

[
μ̃+ a4 sin(q2 + q4)

λ̃+ a4 cos(q2 + q4)

]
− q1 (2.20)

where:

λ̃ = a2 cos q2 − a1 cos q1 + c
μ̃ = a2 sin q2 − a1 sin q1
Ã = 2a4λ̃
B̃ = 2a4μ̃
C̃ = a23 − a24 − λ̃2 − μ̃2

Now by combining equations (2.13) and (2.10) and differentiating with respect

to q′ the result would become:

ψq′(q
′) =

⎡
⎢⎢⎣
ψq′11 ψq′12 ψq′13 ψq′14
ψq′21 ψq′22 ψq′23 ψq′24
1 0 0 0
0 1 0 0

⎤
⎥⎥⎦ (2.21)

where:

ψq′11 = −a1 sin(q1)− a3 sin(q1 + q3)
ψq′12 = a2 sin(q2) + a4 sin(q2 + q4)
ψq′13 = −a3 sin(q1 + q3)
ψq′14 = a4 sin(q2 + q4)
ψq′21 = a1 cos(q1) + a3 cos(q1 + q3)
ψq′22 = −a2 cos(q2)− a4 cos(q2 + q4)
ψq′23 = a3 cos(q1 + q3)
ψq′24 = −a4 cos(q2 + q4)
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By differentiating equation (2.21) with respect to time, it is possible to achieve:

ψ̇q′(q
′, q̇′) =

⎡
⎢⎢⎣
ψ̇q′11 ψ̇q′12 ψ̇q′13 ψ̇q′14
ψ̇q′21 ψ̇q′22 ψ̇q′23 ψ̇q′24
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ (2.22)

where:

ψ̇q′11 = −a1q̇1 cos(q1)− a3(q̇1 + q̇3) cos(q1 + q3)

ψ̇q′12 = a2q̇2 cos(q2) + a4(q̇2 + q̇4) cos(q2 + q4)

ψ̇q′13 = −a3(q̇1 + q̇3) cos(q1 + q3)

ψ̇q′14 = a4(q̇2 + q̇4) cos(q2 + q4)

ψ̇q′21 = −a1q̇1 sin(q1)− a3(q̇1 + q̇3) sin(q1 + q3)

ψ̇q′22 = a2q̇2 sin(q2) + a4(q̇2 + q̇4) sin(q2 + q4)

ψ̇q′23 = −a3(q̇1 + q̇3) sin(q1 + q3)

ψ̇q′24 = a4(q̇2 + q̇4) sin(q2 + q4)

Finally, the last two expressions for the dynamic equations are defined as:

ρ(q′) = ψ−1
q′ (q

′)

⎡
⎢⎢⎣

0 0
0 0
1 0
0 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0
0 1
ρ31 ρ32
ρ41 ρ42

⎤
⎥⎥⎦ (2.23)

ρ̇(q′, q̇′) = −ψ−1
q′ (q

′)ψ̇q′(q
′, q̇′)ρ(q′) =

⎡
⎢⎢⎣

0 0
0 0
ρ̇31 ρ̇32
ρ̇41 ρ̇42

⎤
⎥⎥⎦ (2.24)

It should be noted that Ḋ(q′)− 2C(q′, q̇′) is skew symmetric [14]. It should also

be noted that the reduced model is an implicit model since the parameterization of

q′ = σ(q) is implicit and it is only valid locally due to the presence of the singularity.

The following factors are not taken into account in the modelling of the parallel

robot system: friction between joints, motor dynamics, gear train backlash, and

link elasticity.
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2.2 Inverse Kinematics

The purpose of determining the inverse kinematics of this parallel robot is to ac-

curately model the angle produced at each joint at a specific location of the end

effector. This is advantageous for two main reasons; the first being that it is rel-

atively simple to define any reasonable trajectory for the end effector to traverse

and secondly, it can track different trajectories in a non-singular region.

The constrained two degrees of freedom system shown in Figure 2.1 will also

be applicable in this section. It should be noted that the parameters of the overall

system are known, which include: the range of the desired angles for q1 and q2

respectively, the overall length of each link (a), the desired location of the end

effector in the x and y axis respectively and the horizontal distance between the

two motor shafts (c).

From Figure 2.1, the following equations can be derived:

x = a1 cos(q1) + a3 cos(q1 + q3) (2.25)

y = a1 sin(q1) + a3 sin(q1 + q3) (2.26)

x = a2 cos(q2) + a4 cos(q2 + q4) + c (2.27)

y = a2 sin(q2) + a4 sin(q2 + q4) (2.28)

By implementing the summing of squares method on equations (2.25) and (2.26),

it is possible to achieve the following result:

x2 + y2 = a21 + a23 + 2a1a3 cos(q3) (2.29)

Now it is quite simple to isolate q3 from equation (2.29) to obtain:

q3 = cos−1

[
x2 + y2 − a21 − a23

2a1a3

]
(2.30)
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Similarly, the application of the summing of squares method on equations (2.27)

and (2.28) produces:

(x− c)2 + y2 = a22 + a24 + 2a2a4 cos(q4) (2.31)

Isolating q4 from equation (2.31) allows the result to become:

q4 = − cos−1

[
(x− c)2 + y2 − a22 − a24

2a2a4

]
(2.32)

Since the range of q1 and q2 is constantly between -30 and -150 degrees, the

trigonometric identity: sin2 x+ cos2 x = 1 can be rearranged to produce:

sin(q1) = −
√
1− cos2(q1) (2.33)

sin(q2) = −
√
1− cos2(q2) (2.34)

By implementing another trigonometric identity: cos(x + y) = cosx cos y −
sin x sin y, it is possible to insert equations (2.33) and (2.34) into equations (2.25)

and (2.27) respectively to obtain:

− (A1 cos
2(q1) + B1 cos(q1) + C1) = 0 (2.35)

− (A2 cos
2(q2) + B2 cos(q2) + C2) = 0 (2.36)

where:

A1 = a21 + a23 + 2a1a3 cos(q3)
B1 = −2x(a1 + a3 cos(q3))
C1 = −a23 sin2(q3) + x2

A2 = a22 + a24 + 2a2a4 cos(q4)
B2 = −2(x− c)(a2 + a4 cos(q4))
C2 = −a24 sin2(q4) + (x− c)2
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Finally, solving equations (2.35) and (2.36) for q1 and q2 will yield:

q1 = − cos−1

⎡
⎣−B1 −

√
B

2

1 − 4A1C1

2A1

⎤
⎦ (2.37)

q2 = − cos−1

⎡
⎣−B2 +

√
B

2

2 − 4A2C2

2A2

⎤
⎦ (2.38)

Now that all the inverse kinematic equations have been derived, it is desirable

to define the non-singular region. The purpose of the non-singular region is to

determine the areas in which the parallel robot is controllable versus the singular

region which determines where the parallel robot is uncontrollable. The parameter

values used for the two degrees of freedom parallel robot discussed in this report

are stated in Table 2.1. It should be noted that the horizontal distance between

the two motor shafts (c) is 0.198 metres.

Link m (kg) a (m) l (m) I (kg�m�)

1 0.0821 0.22688 0.11344 0.00063138
2 0.0855 0.22688 0.11344 0.00061735
3 0.12555 0.22688 0.11344 0.00053855
4 0.14413 0.22688 0.11344 0.00061825

Table 2.1: Parallel Robot Parameters
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If a point satisfies the condition det [ψq′(q
′)] = sin(q1+q3−q2−q4) = 0, then the

end effector cannot be tracked, hence producing a singular point. Those trajectories

in the non-singular region that do not cross or approach the singular points can

be tracked. The solid black line shown in Figure 2.2 denotes the boundary of the

reachable region of the end effector, while the white area outside this region is

the unreachable region of the end effector. The shaded area defines a separate

non-singular region that is isolated from the white non-singular region due to the

presence of the singular points located at the base of the shaded region. It should

be noted that motor one is located at the origin of the plot.

Figure 2.2: Non-Singular Region of the End Effector
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Chapter 3

Non-Fuzzy Logic
Controller Design

This chapter will describe the derivation of the non-adaptive and adaptive PD

and backstepping controllers. A thorough mathematical analysis will be presented

concerning the generation of the controller equation and the stability of the closed

loop system will be justified. The adaptive controllers will also encompass an

estimator equation that is used to estimate the parameters of the system.

3.1 Controller Background

The goal of implementing any type of controller is to observe the output response

it would generate based on the inputted conditions. In order to achieve this, it

is necessary to solve for the control input (u) of the system, which is essentially

manipulating equation (2.4) into a suitable form. Each controller has a different

method pertaining to how this equation is obtained, but the initial steps to reach

this point are all similar.

The end effector of the two degrees of freedom parallel robot will follow a circular

based trajectory; hence for tracking control it is appropriate to set the error and

change in error as: x1 = q1d − q1, x2 = q2d − q2, x3 = q̇1d − q̇1 and x4 = q̇2d − q̇2,

where: q1d and q2d are the desired angles; q1 and q2 are the actual angles; q̇1d and
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q̇2d are the desired angular velocities; q̇1 and q̇2 are the actual angular velocities;

q̈1d and q̈2d are the desired angular accelerations. The following system is in lower

triangular form, which can be produced by differentiating x1, x2, x3 and x4.

ẋ1 = x3 (3.1)

ẋ2 = x4 (3.2)[
ẋ3
ẋ4

]
=

[
q̈1d
q̈2d

]
+D−1(q′)

(
−u+ C(q′, q̇′)

[
q̇1
q̇2

]
+ g(q′)

)
(3.3)

One aspect that constantly appears when implementing the appropriate con-

troller is the feed forward term ud. This term represents the desired control input

required in the overall system operation. In theory, the actual and desired control

input should be identical, but due to system disturbances and the force of grav-

ity, this is known not to be the case. By adding ud into the specified controller,

improved control performance can be achieved. It is defined as:

ud = D(q′d)q̈d + C(q′d, q̇d
′)q̇d + g(q′d) (3.4)

Notice that this desired control input equation is the same as the actual control

input in equation (2.4) when q, q̇ and q̈ are the same as qd, q̇d and q̈d, respectively.

It should also be noted that D(q′d), C(q
′
d, q̇d

′) and g(q′d) are the matrices calculated

using equations (2.7), (2.8) and (2.9), respectively. To calculate q̈d and q̇d, the

simplest method involves taking the first and second derivative of equations (2.25),

(2.26), (2.27) and (2.28) found in the inverse kinematics section and then isolating

them for the desired parameters. The following controllers never directly employ

equation (3.4), but there is a clear resemblance that can be seen by setting the

control and error parameters equal to zero.
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Now it is possible to apply the lower triangular system described in equations

(3.1), (3.2) and (3.3) towards the four non-fuzzy controllers utilized in this thesis,

namely the non-adaptive and adaptive backstepping and PD controllers.

3.2 Non-Adaptive Backstepping

Controller Design

Backstepping is a recursive Lyapunov based scheme proposed in 1990 by Petar

Kokotovic. This technique is described in detail in [26]. The idea of backstepping

is to design a controller recursively by considering some of the state variables as

virtual controls and designing them for intermediate control laws. Backstepping

achieves the goals of stabilization and tracking, which is crucial for the two degrees

of freedom parallel robot described in this thesis. In order to achieve the desired

results, a Lyapunov function is constructed for the entire system including the

parameter estimates. Let this function candidate be:

V1 = 0.5x21 + 0.5x22 (3.5)

Differentiate V1 to get:

V̇1 = x1x3 + x2x4 = x1(x3 − α1 + α1) + x2(x4 − α2 + α2)

= −c1x21 − c2x
2
2 + x1(x3 − α1) + x2(x4 − α2) (3.6)

with α1 = −c1x1 and α2 = −c2x2 called virtual controllers [76], where c1 and c2 are

positive constants.

Now it is prudent to implement the second Lyapunov function candidate as:

V2 = V1 + 0.5
[
(x3 − α1) (x4 − α2)

]
D(q′)

[
(x3 − α1)
(x4 − α2)

]
(3.7)
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The derivative of V2 with respect to time yields:

V̇2 = V̇1 +
[
(x3 − α1) (x4 − α2)

]
D(q′)

[
(ẋ3 − α̇1)
(ẋ4 − α̇2)

]

+0.5
[
(x3 − α1) (x4 − α2)

]
Ḋ(q′)

[
(x3 − α1)
(x4 − α2)

]
(3.8)

As previously stated, Ḋ(q′)− 2C(q′, q̇′) is skew symmetric [14]; hence:

0.5
[
(x3 − α1) (x4 − α2)

]
Ḋ(q′)

[
(x3 − α1)
(x4 − α2)

]

=
[
(x3 − α1) (x4 − α2)

]
C(q′, q̇′)

[
(x3 − α1)
(x4 − α2)

]
(3.9)

Therefore, by substituting equations (3.3), (3.6) and (3.9) into equation (3.8),

it is possible to achieve:

V̇2 = −c1x21 − c2x
2
2 +
[
(x3 − α1) (x4 − α2)

]
(
−u+

[
x1
x2

]
+D(q′)

[
(q̈1d − α̇1)
(q̈2d − α̇2)

]

+C(q′, q̇′)
[
(q̇1d − α1)
(q̇2d − α2)

]
+ g(q′)

)
(3.10)

The derivatives of the virtual controllers are defined as: α̇1 = −c1x3 and

α̇2 = −c2x4. Now, the controller can be determined. The control effort must satisfy

the condition of convergence and it must ensure that the output response is stable.

The following controller was chosen to accomplish these requirements:

u =

[
u1
u2

]
=

[
c3(x3 − α1)
c4(x4 − α2)

]
+

[
x1
x2

]

+D(q′)
[
(q̈1d − α̇1)
(q̈2d − α̇2)

]
+ C(q′, q̇′)

[
(q̇1d − α1)
(q̇2d − α2)

]
+ g(q′) (3.11)
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By substituting equation (3.11) into equation (3.10), the following result will occur:

V̇2 = −c1x21 − c2x
2
2 − c3(x3 − α1)

2 − c4(x4 − α2)
2 (3.12)

This equation states that the function of V̇2 is negative semi-definite. Therefore,

the corresponding closed loop system is stable. It should be noted that c3 and c4

represent positive constant gains.

3.3 Adaptive Backstepping Controller Design

The adaptive method concerns solving the output response of the controller using

estimated system parameters instead of constant parameters. The estimation of the

system parameters is a much more precise method than the utilization of constant

parameters mainly due to the fact that any system in motion will be subjected

to variations in the inertial and gravitational forces along with the changes in

the location of the centre of mass. These forces and the centre of mass can be

calculated initially, but over time it is increasingly more difficult to justify that these

parameters are continuously correct. These slight discrepancies could potentially

introduce a significant amount of error in the system, which could play a large role

when the precision of the end effector is of paramount importance. This technique

is described in detail in [2]. In order to determine whether adaptive controllers

produce more impressive results than their non-adaptive counterparts, a Lyapunov

function must be chosen to ensure the stability of the closed loop system. Let this

candidate function be:

V2 = V1 + 0.5
[
(x3 − α1) (x4 − α2)

]
D(q′)

[
(x3 − α1)
(x4 − α2)

]

+0.5
(
Θ− Θ̂

)T
Γ
(
Θ− Θ̂

)
(3.13)
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where:

Γ =

⎡
⎢⎢⎢⎣
γ1 0 · · · 0
0 γ2 · · · 0
...

...
. . .

...
0 0 · · · γ10

⎤
⎥⎥⎥⎦ (3.14)

Θ =
[
θ1 θ2 · · · θ10

]T
(3.15)

with:

θ1 = m1l
2
1 +m3a

2
1 + I1

θ2 = m2l
2
2 +m4a

2
2 + I2

θ3 = m3l
2
3 + I3

θ4 = m4l
2
4 + I4

θ5 = m3a1l3
θ6 = m4a2l4
θ7 = g(m1l1 +m3a1)
θ8 = g(m2l2 +m4a2)
θ9 = m3l3g
θ10 = m4l4g

It should be noted that: Γ is a positive definite matrix, Θ̂ is the estimation of

Θ which defines the constant system parameters, D(q′) is a positive definite matrix

defined in equation (2.7), V1 is a Lyapunov function candidate defined in equation

(3.5) and α1 = −c1x1 and α2 = −c2x2 are the virtual controllers with c1 and c2

being positive constants.

The time derivative of V2 becomes:

V̇2 = V̇1 +
[
(x3 − α1) (x4 − α2)

]
D(q′)

[
(ẋ3 − α̇1)
(ẋ4 − α̇2)

]

+0.5
[
(x3 − α1) (x4 − α2)

]
Ḋ(q′)

[
(x3 − α1)
(x4 − α2)

]

− ˙̂
ΘTΓ

(
Θ− Θ̂

)
(3.16)

The derivatives of the virtual controllers are defined as: α̇1 = −c1x3 and

α̇2 = −c2x4.
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By substituting equations (3.3), (3.6) and (3.9) into (3.16), it is possible to

achieve:

V̇2 = −c1x21 − c2x
2
2 +
[
(x3 − α1) (x4 − α2)

]
([

x1
x2

]
+D(q′)

[
(q̈1d − α̇1)
(q̈2d − α̇2)

]
+ C(q′, q̇′)

[
(q̇1d − α1)
(q̇2d − α2)

]

+g(q′)−
[
u1
u2

])
− ˙̂

ΘTΓ
(
Θ− Θ̂

)
(3.17)

D(q′), C(q′, q̇′) and g(q′) are comprised of many parameters that can be ex-

tracted in order to simpify the expression. Therefore, let:

Ξ = D(q′)
[
(q̈1d − α̇1)
(q̈2d − α̇2)

]
+ C(q′, q̇′)

[
(q̇1d − α1)
(q̇2d − α2)

]
+ g(q′) = ΞoΘ (3.18)

where:

Ξo =

[
Do11(q̈1d − α̇1) +Do12(q̈2d − α̇2) + Co11(q̇1d − α1) + Co12(q̇2d − α2) + go1
Do21(q̈1d − α̇1) +Do22(q̈2d − α̇2) + Co21(q̇1d − α1) + Co22(q̇2d − α2) + go2

]
(3.19)

with:

Do11 = [ 1 0 (1 + ρ31)
2 ρ241 2(1 + ρ31) cos(q3) 0 0 0 0 0 ]

Do12 = [ 0 0 ρ32(1 + ρ31) ρ41(1 + ρ42) ρ32 cos(q3) ρ41 cos(q4) 0 0 0 0 ]
Do21 = [ 0 0 ρ32(1 + ρ31) ρ41(1 + ρ42) ρ32 cos(q3) ρ41 cos(q4) 0 0 0 0 ]
Do22 = [ 0 1 ρ232 (1 + ρ42)

2 0 2(1 + ρ42) cos(q4) 0 0 0 0 ]
Co11 = [ 0 0 ρ̇31(1 + ρ31) ρ41ρ̇41 ρ̇31 cos(q3)− q̇3(1 + ρ31) sin(q3)

0 0 0 0 0 ]
Co12 = [ 0 0 ρ̇32(1 + ρ31) ρ41ρ̇42 ρ̇32 cos(q3)− (q̇1 + q̇3)ρ32 sin(q3)

q̇2ρ41 sin(q4) 0 0 0 0 ]
Co21 = [ 0 0 ρ32ρ̇31 ρ̇41(1 + ρ42) q̇1ρ32 sin(q3)

ρ̇41 cos(q4)− (q̇2 + q̇4)ρ41 sin(q4) 0 0 0 0 ]
Co22 = [ 0 0 ρ32ρ̇32 ρ̇42(1 + ρ42) 0 ρ̇42 cos(q4)− q̇4(1 + ρ42) sin(q4)

0 0 0 0 ]
go1 = [ 0 0 0 0 0 0 cos(q1) 0 (1 + ρ31) cos(q1 + q3) ρ41 cos(q2 + q4) ]
go2 = [ 0 0 0 0 0 0 0 cos(q2) ρ32 cos(q1 + q3) (1 + ρ42) cos(q2 + q4) ]

33



Replacing the parameters in equation (3.17) with the procedure detailed in

equation (3.18) yields:

V̇2 = −c1x21−c2x22+
[
(x3 − α1) (x4 − α2)

]([ x1
x2

]
+ Ξ−

[
u1
u2

])
− ˙̂
ΘTΓ

(
Θ− Θ̂

)
(3.20)

Now it is possible to determine the controller equation. Let the controller be:

[
u1
u2

]
=

[
c3(x3 − α1)
c4(x4 − α2)

]
+

[
x1
x2

]
+ ΞoΘ̂ (3.21)

In substituting the newly defined controller into equation (3.20), the resultant

will become:

V̇2 = −c1x21 − c2x
2
2 − c3(x3 − α1)

2 − c4(x4 − α2)
2

+
[
(x3 − α1) (x4 − α2)

]
Ξo

(
Θ− Θ̂

)
− ˙̂

ΘTΓ
(
Θ− Θ̂

)
(3.22)

Let the unknown parameters updating law be:

˙̂
Θ = Γ−1ΞT

o

[
(x3 − α1)
(x4 − α2)

]
(3.23)

With the substitution of equation (3.23) into equation (3.22) the final result will

yield:

V̇2 = −c1x21 − c2x
2
2 − c3(x3 − α1)

2 − c4(x4 − α2)
2 (3.24)

This equation states that the function of V̇2 is negative semi-definite. Therefore,

the corresponding closed loop system is stable. It should be noted that c3 and c4

represent positive constant gains.
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3.4 Non-Adaptive PD Controller Design

The PD controller is the short form notation of the proportional derivative con-

troller. The proportional term is utilized to compare the actual trajectory of the

end effector with the desired trajectory, which is also known as the error. The

derivative term is the attempt to see how far a process variable has been from the

desired trajectory in the past and anticipating where the trajectory will need to

be in the future, which is also known as the change in error. This technique was

first developed in 1911 by the American inventor Elmer Sperry for automatic ship

steering [38]. The control law that is now commonly associated with PD controllers

was created by Nicholas Minorsky in 1922, which ironically was also used for auto-

matic ship steering . In 1923, he successfully tested the automatic steering gear on

the American battleship USS New Mexico [4]. Mr. Minorsky’s control technique

has been so successful that it is the most widely used controller in industrial ap-

plications. The simplicity of the design, yet the robustness of the control scheme

have been the major reasons for its longevity. The non-adaptive PD controller will

be implemented similarly to the non-adaptive backstepping technique. That is, a

Lyapunov function is necessary in order to achieve the desired results. Let this

function candidate be:

V = 0.5
[
x1 x2

] [ KP1 0
0 KP2

] [
x1
x2

]

+0.5
[
x3 x4

]
D(q′)

[
x3
x4

]
(3.25)

It should be noted that KP1 and KP2 represent the proportional gains of mo-

tors one and two, respectively, while D(q′) is a positive definite matrix defined in

equation (2.7).
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The derivative of V with respect to time becomes:

V̇ =
[
x1 x2

] [ KP1 0
0 KP2

] [
x3
x4

]

+0.5
[
x3 x4

]
Ḋ(q′)

[
x3
x4

]
+
[
x3 x4

]
D(q′)

[
ẋ3
ẋ4

]
(3.26)

As previously stated, Ḋ(q′)− 2C(q′, q̇′) is skew symmetric [14]; hence:

0.5
[
x3 x4

]
Ḋ(q′)

[
x3
x4

]
=
[
x3 x4

]
C(q′, q̇′)

[
x3
x4

]
(3.27)

Therefore, by substituting equations (3.3) and (3.27) into equation (3.26), it is

possible to achieve:

V̇ =
[
x1 x2

] [ KP1 0
0 KP2

] [
x3
x4

]

+
[
x3 x4

](
D(q′)

[
q̈1d
q̈2d

]
+ C(q′, q̇′)

[
q̇1d
q̇2d

]
+ g(q′)−

[
u1
u2

])
(3.28)

With all the appropriate data defined, it is now possible to determine the equa-

tion for the controller. The control effort must satisfy the condition of convergence

and it must ensure that the output response is stable. The following controller was

chosen to accomplish these requirements:

[
u1
u2

]
=

[
KP1 0
0 KP2

] [
x1
x2

]
+

[
KD1 0
0 KD2

] [
x3
x4

]

+D(q′)
[
q̈1d
q̈2d

]
+ C(q′, q̇′)

[
q̇1d
q̇2d

]
+ g(q′) (3.29)

It should be noted that KD1 and KD2 represent the derivative gains of motors

one and two, respectively.
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By substituting equation (3.29) into equation (3.28), the following result will occur:

V̇ = −KD1x
2
3 −KD2x

2
4 (3.30)

This equation states that the function of V̇ is negative semi-definite. Therefore,

the corresponding closed loop system is stable.

3.5 Adaptive PD Controller Design

The adaptive PD controller will be implemented similarly to the adaptive back-

stepping technique. That is, a Lyapunov function is necessary in order to achieve

the desired results. Let this function candidate be:

V = 0.5
[
x1 x2

] [ KP1 0
0 KP2

] [
x1
x2

]

+0.5
[
x3 x4

]
D(q′)

[
x3
x4

]
+ 0.5

(
Θ− Θ̂

)T
Γ
(
Θ− Θ̂

)
(3.31)

It should be noted that: KP1 andKP2 represent the proportional gains of motors

one and two, respectively, Γ is a positive definite matrix defined in equation (3.14),

Θ̂ is the estimation of Θ which states the constant system parameters defined in

equation (3.15) and D(q′) is a positive definite matrix defined in equation (2.7).

The time derivative of V becomes:

V̇ =
[
x1 x2

] [ KP1 0
0 KP2

] [
x3
x4

]
+ 0.5

[
x3 x4

]
Ḋ(q′)

[
x3
x4

]

+
[
x3 x4

]
D(q′)

[
ẋ3
ẋ4

]
− ˙̂

ΘTΓ
(
Θ− Θ̂

)
(3.32)
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By substituting equations (3.3) and (3.27) into (3.32), it is possible to achieve:

V̇ =
[
x1 x2

] [ KP1 0
0 KP2

] [
x3
x4

]
− ˙̂

ΘTΓ
(
Θ− Θ̂

)

+
[
x3 x4

](
D(q′)

[
q̈1d
q̈2d

]
+ C(q′, q̇′)

[
q̇1d
q̇2d

]
+ g(q′)−

[
u1
u2

])
(3.33)

D(q′), C(q′, q̇′) and g(q′) are comprised of many parameters that can be ex-

tracted in order to simpify the expression. Therefore, let:

Ξ = D(q′)
[
q̈1d
q̈2d

]
+ C(q′, q̇′)

[
q̇1d
q̇2d

]
+ g(q′) = ΞoΘ (3.34)

where:

Ξo =

[
Do11q̈1d +Do12q̈2d + Co11q̇1d + Co12q̇2d + go1
Do21q̈1d +Do22q̈2d + Co21q̇1d + Co22q̇2d + go2

]
(3.35)

The sub-parameters of Do11, Do12, Do21, Do22, Co11, Co12, Co21, Co22, go1 and go2

are defined in equation (3.19). Replacing the parameters in equation (3.33) with

the procedure detailed in equation (3.34) yields:

V̇ =
[
x1 x2

] [ KP1 0
0 KP2

] [
x3
x4

]
+
[
x3 x4

](
Ξ−

[
u1
u2

])
− ˙̂

ΘTΓ
(
Θ− Θ̂

)
(3.36)

Now it is possible to determine the controller equation. Let the controller be:

[
u1
u2

]
=

[
KP1 0
0 KP2

] [
x1
x2

]
+

[
KD1 0
0 KD2

] [
x3
x4

]
+ ΞoΘ̂ (3.37)

It should be noted that KD1 and KD2 represent the derivative gains of motors

one and two, respectively.
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In substituting the newly defined controller into equation (3.36), the resultant

will become:

V̇ =
[
x3 x4

]
Ξo

(
Θ− Θ̂

)
− [ x3 x4

] [ KD1 0
0 KD2

] [
x3
x4

]
− ˙̂

ΘTΓ
(
Θ− Θ̂

)
(3.38)

Let the unknown parameters updating law be:

˙̂
Θ = Γ−1ΞT

o

[
x3
x4

]
(3.39)

With the substitution of equation (3.39) into equation (3.38) the final result will

yield:

V̇ = −KD1x
2
3 −KD2x

2
4 (3.40)

This equation states that the function of V̇ is negative semi-definite. Therefore,

the corresponding closed loop system is stable.

This concludes the derivation of the four non-fuzzy logic controllers. All the

aforementioned controllers have been proven to make V̇2 or V̇ negative semi-definite;

hence the closed loop systems are stable. These derivations ensure that the con-

trollers will be reproduced in simulation and experimentally. The following chapter

pertains to the derivation of the four fuzzy logic controllers.
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Chapter 4

Fuzzy Logic Controller Design

This chapter will describe the derivation of the PD, indirect adaptive and direct

adaptive fuzzy logic controllers along with a fuzzy adaptive backstepping controller.

A thorough mathematical analysis will be presented concerning the generation of

the controller equation and the stability of the closed loop system will be justified.

The adaptive controllers will encompass an estimator equation that is used to esti-

mate the parameters of the system, while specific fuzzy systems will be introduced

to solve the fuzzy logic problem.

4.1 Controller Foundation

The controller foundation will build on the knowledge previously explained in sec-

tion 3.1 by the addition of fuzzy logic. Fuzzy logic is a concept first described by

Lotfi A. Zadeh in 1965 [74]. It pertains to the implementation of human knowledge

to adequately simulate the output response of a system. The main purpose of a

fuzzy system is to map an input space to an output space. An input space is com-

monly referred to as the universe of discourse. The universe of discourse defines

all the possible input data that can be utilized in the fuzzy logic system, whether

the data is vague, imprecise or accurate. The imprecision found in the universe of
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discourse is known as the linguistic variable [51]. The output space is simply the

response generated from the fuzzy system. It is important to realize that there is

a trade-off between significance and precision when employing a fuzzy system. De-

pending on the importance of the input data being sent into a fuzzy system, it may

be more beneficial to achieve a precise result. This desired result would stipulate for

more membership functions in order to ensure the most accurate output at a cost of

a higher computational time. A system that requires a faster response time would

desire a more significant result; hence the number of membership functions would

be smaller and yield a less precise outcome. A membership function is a curve that

defines how each point in the input space is mapped to the degree of membership

between zero and one. Unlike non-fuzzy logic controllers which yield crisp results,

variables in the universe of discourse can achieve membership in a wide array of

membership functions. It depends solely on the number and range of membership

functions defined. There are five common membership function shapes namely: tri-

angular, trapezoidal, sigmoidal, Gaussian and S or Z shaped. Any combination of

the aforementioned shapes can be implemented in any order; it is strictly up to the

designer. All the fuzzy logic controllers will utilize eleven membership functions for

both the error and the change in error, that is x1, x2 and x3, x4, respectively, along

with the controller output. Nine of the membership functions will be of triangular

shape, while the remaining two will be of Z and S shape. Figure 5.1 portrays the

membership functions utilized for the error, while the same structure with different

values for the centre of each membership function are used for the remaining two.

Now that many of the terms pertaining to fuzzy logic have been depicted, the

fuzzy system will be discussed. Figure 5.2 represents the general structure of a

fuzzy system. There are four crucial components that comprise any fuzzy system:

the fuzzifier, the fuzzy rule base, the fuzzy inference engine, and the defuzzifier.
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Figure 4.1: Membership Functions for Error

The centre of each of the eleven membership functions from left to right is

defined as: [-10, -7, -4, -2, -1, 0, 1, 2, 4, 7, 10].

Input 
Data Fuzzifier 

Fuzzy 
Inference 
Engine 

Defuzzifier 
Output 
Data 

Fuzzy 
Rule 
Base 

Figure 4.2: Fuzzy System
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The fuzzifier is the first step in the fuzzy system process. Its purpose is to

convert the inputted data into a fuzzy set. There are multiple techniques that are

available to achieve this, but the one that will be discussed in this thesis is the

singleton fuzzifier. The singleton fuzzifier maps a real valued point x∗ ∈ U ⊂ R
n

into a fuzzy set A′ in U , which has a membership value of 1 at x∗ and 0 at all other

points in U . Therefore:

μA′(x) =

{
1

0

x = x∗

x �= x∗
(4.1)

The middle two blocks are the most important parts of the fuzzy system. The

first of which is known as the fuzzy rule base. Fuzzy sets and fuzzy operators are

the subjects and verbs of fuzzy logic. These if-then rule statements are used to

formulate the conditional statements that comprise fuzzy logic. The general form

for the fuzzy rule base is as follows:

Rule k : If x1 is A
k
1 and ... and xn is A

k
n, then y is B

k. (4.2)

where:

k is the kth rule in the fuzzy rule base;

Ak
i , known as the antecedent and Bk, known as the consequent, are the fuzzy sets

in Ui ⊂ R and V ⊂ R, respectively;

x = (x1, x2, ..., xn)
T ∈ U and y ∈ V are the input and output linguistic variables of

the fuzzy system, respectively.

There are two vital conditions that must be followed when defining any rule in

the fuzzy rule base. The first condition states that a set of fuzzy if-then rules is

complete if for any x ∈ U there exists at least one rule in the fuzzy rule base such

that: μAk
i
(xi) �= 0 for all i = 1, 2, ..., n. The second condition states that a set of

fuzzy if-then rules is consistent if there are no rules with the same if parts, but
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different then parts. The greater the number of rules that are defined in the fuzzy

rule base, the more precise will the result generated by the fuzzy system become.

Although, the drawbacks of defining too many rules is that the computational time

required to generate a response will also increase. The lesser the number of rules,

the less precise will the result generated by the fuzzy system become. Although, the

advantage of defining a limited number of rules is that the result will become more

significant. Therefore, the objective in designing any fuzzy system is to balance the

number of rules to achieve a result that is both significant and precise enough to

garner the desired output response. The fuzzy systems employed in this thesis all

utilize 121 distinct rules.

The other crucial component in the block diagram presented in Figure 5.2 is the

fuzzy inference engine. The fuzzy inference engine is the heart of any fuzzy system.

It is the complex calculation of an input space to an output space utilizing the

rules generated in the fuzzy rule base. There are a multitude of inference methods

describing how to solve any fuzzy system. Some of the more popular techniques

such as: Mamdani’s method, Larsen’s method, Tsukamoto’s method and Takagi,

Sugeno and Kang’s method are defined in [28]. These methods are then used to

define various fuzzy inference engines, for instance: the product inference engine,

the minimum inference engine and the Zadeh inference engine. The fuzzy inference

engine that is implemented in this thesis is the product inference engine. The

product inference engine uses the algebraic product for the t-norm operator, the

maximum for the s-norm operator, Mamdani’s product for implication and the

individual rule based inference with the union combination. Mathematically, the

product inference engine is given by:

μB′(y) = max
k

{
max
x∈U

[
μA′ (x1, . . . , xn)

n∏
i=1

μAk
i
(xi)μBk(y)

]}
(4.3)
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In this thesis, the fuzzy set A′ is a fuzzy singleton, which is shown in equation

(4.1). Therefore, the product inference engine described in equation (4.3) can be

simplifed to:

μB′(y) = max
k

{
n∏

i=1

μAk
i
(x∗i )μBk(y)

}
(4.4)

The final process of the fuzzy system is the defuzzifier. It converts the fuzzy set

B′ in V ⊂ R
n into a crisp output data point y∗ ∈ V . The defuzzifier that will be

employed in this thesis is known as the centre average defuzzifier. The formula for

the centre average defuzzifier is defined as:

y∗ =

M∑
k=1

ykwk

M∑
k=1

wk

(4.5)

where: yk is the centre and wk is the height of the kth fuzzy set; M is the number

of fuzzy sets. It should be noted that this method is restricted to symmetrical

membership functions.

Now it is possible to develop various fuzzy logic controllers based on a fuzzy

system comprised of a singleton fuzzier, the product inference engine and a centre

average defuzzifier.
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4.2 Fuzzy Logic PD Controller Design

The fuzzy logic PD controller will employ a fuzzy system with a singleton fuzzifier,

the product inference engine and a centre average defuzzifier. The formulas of this

fuzzy system are found in equations (4.1), (4.4) and (4.5), respectively.

It can be proven that: μBk′ (y) =
n∏

i=1

μAk
i
(x∗i )μBk(y) has the same centre as Bk,

which is yk. It can also be shown that the height of max
y

{
n∏

i=1

μAk
i
(x∗i )μBk(y)

}
=

n∏
i=1

μAk
i
(x∗i )μBk(yk) =

n∏
i=1

μAk
i
(x∗i ) because B

k is a normal fuzzy set and μBk(yk) = 1.

Therefore, after combining these formulas together, the final result will yield:

y∗ =

M∑
k=1

yk
(

n∏
i=1

μAk
i
(x∗i )
)

M∑
k=1

(
n∏

i=1

μAk
i
(x∗i )
) (4.6)

As shown in Figure 4.1, there are eleven membership functions that are utilized

for both the error and change in error generated by the system when solving for

equations (3.1), (3.2) and (3.3). This means that there are 121 distinct rules that

must be defined for the fuzzy system. Therefore, the centre average defuzzifier

in equation (4.6) can be rewritten to represent the planar two degrees of freedom

parallel robot as:

y∗j =

121∑
k=1

ykj

(
μAk

xj
(x∗j)μAk

xj+2
(x∗j+2)

)
121∑
k=1

(
μAk

xj
(x∗j)μAk

xj+2
(x∗j+2)

) (4.7)

It should be noted that j is either one or two, which represents the terms

attached with motor one or motor two, respectively, and yk is the control surface

defined in Table 4.1. The final procedure concerning this defuzzified variable is its

46



multiplication by the scaling factor (cout) in order for the solution to be large enough

that it can be implemented as the controller output (u). In order to tune the fuzzy

PD controller more effectively, the scaling factors (ce) and (cė) were introduced for

the error and change in error, respectively.

xj/xj+2 1 2 3 4 5 6 7 8 9 10 11
1 1 1 2 2 3 3 4 4 5 5 6
2 1 2 2 3 3 4 4 5 5 6 7
3 2 2 3 3 4 4 5 5 6 7 7
4 2 3 3 4 4 5 5 6 7 7 8
5 3 3 4 4 5 5 6 7 7 8 8
6 3 4 4 5 5 6 7 7 8 8 9
7 4 4 5 5 6 7 7 8 8 9 9
8 4 5 5 6 7 7 8 8 9 9 10
9 5 5 6 7 7 8 8 9 9 10 10
10 5 6 7 7 8 8 9 9 10 10 11
11 6 7 7 8 8 9 9 10 10 11 11

Table 4.1: Control Surface

The numbers in bold for error and change in error represent the membership

function number from left to right defined in Figure 5.1. The numbers that form

the eleven by eleven matrix represent the control surface for all 121 possible rules in

this fuzzy system. The values for these numbers are the centre of each membership

function from left to right, which is also defined in Figure 5.1.
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4.3 Indirect Adaptive Fuzzy Logic

Controller Design

Indirect adaptive fuzzy logic control is defined as a fuzzy controller that comprises of

a number of fuzzy systems that are initially constructed from the plant knowledge.

The plant is simply the system that is being studied, which in this case is the

planar two degrees of freedom parallel robot. Mr. Tong described in [59] that

an unknown nonlinear first order system can successfully become semi-globally

uniformly bounded using an indirect adaptive fuzzy logic approach. Therefore, this

section will prove that the second order nonlinear parallel robot system described

in this thesis can achieve stability based on the derivation method presented in [64].

The parallel robot model described in equations (3.1), (3.2) and (3.3) can be

written as:

ẋ1 = x3

ẋ2 = x4[
ẋ3
ẋ4

]
=

[
q̈1d
q̈2d

]
+

[
F1(X)
F2(X)

]
+

[
G11(X) G12(X)
G21(X) G22(X)

] [
u1
u2

]
(4.8)

where:

⎡
⎢⎣ F1(X)

F2(X)

⎤
⎥⎦ = D−1(q′)

⎛
⎜⎝C(q′, q̇′)

⎡
⎢⎣ q̇1

q̇2

⎤
⎥⎦+ g(q′)

⎞
⎟⎠

⎡
⎢⎣ G11(X) G12(X)

G21(X) G22(X)

⎤
⎥⎦ = −D−1(q′)

X =

[
x1 x2 x3 x4

]T
∈ R is the state vector of the system that is available for

measurement and

[
q̈1d q̈2d

]T
consists of the desired angular accelerations.
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There are interconnection terms prevailent in various robotic systems which

have been analyzed and solved [44]. For the purpose of simplifying the controller

design, the interconnection terms G12 and G21 are neglected. This results in the

following system:

ẋ1 = x3

ẋ2 = x4[
ẋ3
ẋ4

]
=

[
q̈1d
q̈2d

]
+

[
F1(X)
F2(X)

]
+

[
G11(X) 0

0 G22(X)

] [
u1
u2

]
(4.9)

To simplify the derivation, let G11(X) = G1(X) and G22(X) = G2(X). In order

for equation (4.9) to be controllable, it is required that G1(X) �= 0 and G2(X) �= 0.

As a matter of fact, the positive definiteness of the D(q′) matrix guarantees that

the two inequalities will be true: G1(X) > 0 and G2(X) > 0. The control objective

is to design a feedback controller u = u(X | Θ̂) based on fuzzy systems and an

adaptive law for adjusting the parameter vector (Θ̂), such that the actual output

follows the desired output. The fuzzy rule base that will describe the input and

output behaviour of F1(X), F2(X), G1(X) and G2(X) is defined in equation (4.2).

If the nonlinear functions F1(X), F2(X), G1(X) and G2(X) are known, it is

possible to choose (u) such that the nonlinearity will cancel out. The advantage of

this is the fact that the controller can be designed based on a linear control theory

such as pole placement. Therefore, let:

K =

⎡
⎢⎣ k11 0 k12 0

0 k21 0 k22

⎤
⎥⎦

represent all the coefficients of the stable polynomial s2 + kj2s + kj1 with k11, k12,

k21 and k22 being positive constants; j is either one or two, which represents the

terms attached with motor one and motor two, respectively.
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The control law can now be defined as:

[
u∗1
u∗2

]
=

[
1

G1(X)
0

0 1
G2(X)

]([ −F1(X)− q̈1d
−F2(X)− q̈2d

]
−KX

)
(4.10)

Substituting equation (4.10) into equation (4.9) yields a closed loop system

governed by:

ẋ1 = x3

ẋ2 = x4

ẋ3 = −k11x1 − k12x3

ẋ4 = −k21x2 − k22x4 (4.11)

Unfortunately, F1(X), F2(X), G1(X) and G2(X) are unknown, hence the ideal

controller defined in equation (4.10) cannot be implemented. However, the F1(X),

F2(X), G1(X) and G2(X) functions can be replaced by the fuzzy systems F̂1(X),

F̂2(X), Ĝ1(X) and Ĝ2(X), which are constructed based on the fuzzy rule base

defined in equation (4.2). To improve the approximation accuracy of F̂1(X), F̂2(X),

Ĝ1(X) and Ĝ2(X), it is beneficial to leave some parameters in F̂1(X), F̂2(X),

Ĝ1(X) and Ĝ2(X) free in order for them to change during the online operation

of the system. Let Θ̂F1 ∈ R
MF1 , Θ̂F2 ∈ R

MF2 , Θ̂G1 ∈ R
MG1 and Θ̂G2 ∈ R

MG2 be

the free parameters in F̂1(X), F̂2(X), Ĝ1(X) and Ĝ2(X), respectively. Now it is

possible to denote the functions as: F̂1(X) = F̂1(X | Θ̂F1), F̂2(X) = F̂2(X | Θ̂F2),

Ĝ1(X) = Ĝ1(X | Θ̂G1) and Ĝ2(X) = Ĝ2(X | Θ̂G2). Therefore, equation (4.10) can

be rewritten as the fuzzy controller:

[
u1
u2

]
=

[
u1d
u2d

]
=

[
1

Ĝ1(X|Θ̂G1
)

0

0 1

Ĝ2(X|Θ̂G2
)

]([ −F̂1(X | Θ̂F1)− q̈1d
−F̂2(X | Θ̂F2)− q̈2d

]
−KX

)
(4.12)

where u1d and u2d are the ideal controllers of u∗1 and u∗2, respectively.
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To implement the controller defined in equation (4.12), the fuzzy functions of

F̂1(X | Θ̂F1), F̂2(X | Θ̂F2), Ĝ1(X | Θ̂G1) and Ĝ2(X | Θ̂G2) must be described in

detail. By using the singleton fuzzifier, the product inference engine and the centre

average defuzzifier defined in equations (4.1), (4.4) and (4.5), respectively, it is

possible to obtain:

F̂j(X | Θ̂Fj
) =

MFj∑
k=1

ykFj

(
μAk

xj
(x∗j)μAk

xj+2
(x∗j+2)

)
MFj∑
k=1

(
μAk

xj
(x∗j)μAk

xj+2
(x∗j+2)

) (4.13)

Ĝj(X | Θ̂Gj
) =

MGj∑
k=1

ykGj

(
μEk

xj
(x∗j)μEk

xj+2
(x∗j+2)

)
MGj∑
k=1

(
μEk

xj
(x∗j)μEk

xj+2
(x∗j+2)

) (4.14)

where: MFj
orMGj

is the number of fuzzy rules, which is the product of the number

of fuzzy sets in x1 and x3 or x2 and x4, respectively; μAk
xj

and μAk
xj+2

or μEk
xj

and

μEk
xj+2

are the fuzzy sets for x1 and x3 or x2 and x4, respectively; y
k
Fj

and ykGj
define

the centre of the kth fuzzy set; k is the kth rule in the fuzzy rule base.

Let ykFj
and ykGj

be the free parameters that are collected into Θ̂Fj
∈ R

n∏

i=1
MFj

and Θ̂Gj
∈ R

n∏

i=1
MGj

, respectively, in order to rewrite equations (4.13) and (4.14) as:

F̂j(X | Θ̂Fj
) = Θ̂T

Fj
ξj(X) (4.15)

Ĝj(X | Θ̂Gj
) = Θ̂T

Gj
ηj(X) (4.16)

where:

ξj =
[
ξj1 · · · ξjMFj

]T
(4.17)

ηj =
[
ηj1 · · · ηjMGj

]T
(4.18)
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with:

ξjk(X) =
μAk

xj
(x∗j)μAk

xj+2
(x∗j+2)

MFj∑
k=1

(
μAk

xj
(x∗j)μAk

xj+2
(x∗j+2)

) (4.19)

ηjk(X) =
μEk

xj
(x∗j)μEk

xj+2
(x∗j+2)

MGj∑
k=1

(
μEk

xj
(x∗j)μEk

xj+2
(x∗j+2)

) (4.20)

The indirect adaptive fuzzy controller will utilize 121 distinct rules due to the

number of membership functions defined in Figure 5.1. Therefore, MFj
and MGj

,

which are found in equations (4.19) and (4.20), respectively, are set to 121 to reflect

the fuzzy system employed on the two degrees of freedom parallel robot.

This concludes the design portion of the fuzzy controller. The next task is to

design an adaptive law for Θ̂Fj
and Θ̂Gj

such that the tracking error of x1 and x2

is minimized.

Substituting equation (4.12) into (4.9) yields the closed loop dynamics of the

fuzzy control system as:

ẋ1 = x3

ẋ2 = x4[
ẋ3
ẋ4

]
=

[
F1(X)− F̂1(X | Θ̂F1)

F2(X)− F̂2(X | Θ̂F2)

]
+

⎡
⎣
(
G1(X)− Ĝ1(X | Θ̂G1)

)
u1d(

G2(X)− Ĝ2(X | Θ̂G2)
)
u2d

⎤
⎦−KX

(4.21)

Let: Ξ =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

−k11 0 −k12 0
0 −k21 0 −k22

⎤
⎥⎥⎦, B1 =

⎡
⎢⎢⎣

0
0
1
0

⎤
⎥⎥⎦ and B2 =

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦ with

B =
[
B1 B2

]
. Therefore, the dynamic equation (4.21) can be rewritten as:

Ẋ = ΞX + B

⎧⎨
⎩
[
F1(X)− F̂1(X | Θ̂F1)

F2(X)− F̂2(X | Θ̂F2)

]
+

⎡
⎣
(
G1(X)− Ĝ1(X | Θ̂G1)

)
u1d(

G2(X)− Ĝ2(X | Θ̂G2)
)
u2d

⎤
⎦
⎫⎬
⎭

(4.22)
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It should be noted that: Ẋ = [ ẋ1 ẋ2 ẋ3 ẋ4 ]T . Now it is appropriate to

define the optimal parameters as:

ΘFj
= arg min

Θ̂Fj
∈R

n∏

i=1
MFj

[
sup
X∈Rn

∣∣∣Fj(X)− F̂j(X | Θ̂Fj
)
∣∣∣] (4.23)

ΘGj
= arg min

Θ̂Gj
∈R

n∏

i=1
MGj

[
sup
X∈Rn

∣∣∣Gj(X)− Ĝj(X | Θ̂Gj
)
∣∣∣] (4.24)

By implementing the fuzzy systems stated in equations (4.13) and (4.14) with

approximators in equations (4.23) and (4.24), the minimum approximation error

can be defined as:

[
ω1

ω2

]
=

[
F1(X)− F̂1(X | ΘF1)

F2(X)− F̂2(X | ΘF2)

]
+

⎡
⎣
(
G1(X)− Ĝ1(X | ΘG1)

)
u1d(

G2(X)− Ĝ2(X | ΘG2)
)
u2d

⎤
⎦ (4.25)

Therefore, by substituting equations (4.15), (4.16) and (4.25) into equation

(4.22), the following closed loop dynamic equation can be realized:

Ẋ = ΞX + B

⎡
⎣
(
ΘF1 − Θ̂F1

)T
ξ1(X) +

(
ΘG1 − Θ̂G1

)T
η1(X)u1d + ω1(

ΘF2 − Θ̂F2

)T
ξ2(X) +

(
ΘG2 − Θ̂G2

)T
η2(X)u2d + ω2

⎤
⎦ (4.26)

The goal of the adaptive law is to determine an adjusting mechanism for Θ̂Fj
and

Θ̂Gj
in order for the tracking errors, x1 and x2 and the parameter errors, (ΘFj

−Θ̂Fj
)

and (ΘGj
− Θ̂Gj

) to have a diminishing effect on the overall system.
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To achieve such an outcome, consider the Lyapunov function candidate:

V = 0.5
(
ΘF1 − Θ̂F1

)T
Γ1

(
ΘF1 − Θ̂F1

)
+ 0.5

(
ΘF2 − Θ̂F2

)T
Γ1

(
ΘF2 − Θ̂F2

)
+0.5

(
ΘG1 − Θ̂G1

)T
Γ2

(
ΘG1 − Θ̂G1

)
+ 0.5

(
ΘG2 − Θ̂G2

)T
Γ2

(
ΘG2 − Θ̂G2

)
+0.5XTPX (4.27)

where:

Γ =

⎡
⎢⎢⎢⎣
γ1 0 · · · 0
0 γ2 · · · 0
...

...
. . .

...
0 0 · · · γ121

⎤
⎥⎥⎥⎦ (4.28)

Θ =
[
θ1 θ2 · · · θ121

]T
(4.29)

It should be noted that: Γ1 and Γ2 are positive definite matrices defined in

equation (4.28), Θ̂Fj
and Θ̂Gj

are the estimations of ΘFj
and ΘGj

, respectively,

which are defined in equation (4.29) and P is a positive definite matrix satisfying

the Lyapunov equation: ΞTP + PΞ = −Q, where Q is an arbitrary four by four

positive definite matrix.

The time derivative of V becomes:

V̇ = XTPẊ − Γ1
˙̂
ΘF1

(
ΘF1 − Θ̂F1

)T
− Γ1

˙̂
ΘF2

(
ΘF2 − Θ̂F2

)T
−Γ2

˙̂
ΘG1

(
ΘG1 − Θ̂G1

)T
− Γ2

˙̂
ΘG2

(
ΘG2 − Θ̂G2

)T
(4.30)

It can be shown that XTPΞX = (XTPΞX)T since the result of XTPΞX will

always yield a scalar number. Therefore, by setting up the formula as: XTPΞX =

0.5XTPΞX + 0.5(XTPΞX)T , it is possible to achieve the relationship:

XTPΞX = −0.5XTQX (4.31)
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By substituting equations (4.26) and (4.31) into equation (4.30), the time deriva-

tive of V will be revised as:

V̇ = −0.5XTQX +XTPB1ω1 +XTPB2ω2

+
(
ΘF1 − Θ̂F1

)T [
−Γ1

˙̂
ΘF1 +XTPB1ξ1(X)

]
+
(
ΘF2 − Θ̂F2

)T [
−Γ1

˙̂
ΘF2 +XTPB2ξ2(X)

]
+
(
ΘG1 − Θ̂G1

)T [
−Γ2

˙̂
ΘG1 +XTPB1η1(X)u1d

]
+
(
ΘG2 − Θ̂G2

)T [
−Γ2

˙̂
ΘG2 +XTPB2η2(X)u2d

]
(4.32)

It is highly desirable that the minimum approximation error (ωj) be very small

in order for the value to be negligible. This can be achieved by tuning the fuzzy

systems to generate such a result. The final objective concerns the determina-

tion of two adaptive laws that would essentially eliminate the remaining unstable

components of the system. Let the unknown parameters updating law be:

˙̂
ΘFj

= Γ−1
1

(
XTPBjξj(X)

)
(4.33)

˙̂
ΘGj

= Γ−1
2

(
XTPBjηj(X)ujd

)
(4.34)

With the substitution of equations (4.33) and (4.34) into equation (4.32), the

final result will yield:

V̇ = −0.5XTQX +XTPB1ω1 +XTPB2ω2 (4.35)

This equation states that the function of V̇ is negative semi-definite. Therefore,

the corresponding closed loop system is stable.
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4.4 Direct Adaptive Fuzzy Logic

Controller Design

Direct adaptive fuzzy logic control is defined as a fuzzy controller that is a single

fuzzy system comprised initially from the control knowledge. Mr. Shaocheng et

al. described in [48] that an unknown nonlinear first order system can successfully

become semi-globally uniformly bounded using a direct adaptive fuzzy logic ap-

proach. Therefore, this section will prove that the second order nonlinear parallel

robot system described in this thesis can achieve stability based on the derivation

method presented in [65].

The parallel robot model in described in equations (3.1), (3.2) and (3.3) can be

written as:

ẋ1 = x3

ẋ2 = x4[
ẋ3
ẋ4

]
=

[
q̈1d
q̈2d

]
+

[
F1(X)
F2(X)

]
+

[
b11 b12
b21 b22

] [
u1
u2

]
(4.36)

where:

⎡
⎢⎣ F1(X)

F2(X)

⎤
⎥⎦ = D−1(q′)

⎛
⎜⎝C(q′, q̇′)

⎡
⎢⎣ q̇1

q̇2

⎤
⎥⎦+ g(q′)

⎞
⎟⎠

⎡
⎢⎣ b11 b12

b21 b22

⎤
⎥⎦ is an unknown positive constant matrix;

X =

[
x1 x2 x3 x4

]T
∈ R is the state vector of the system that is available for

measurement and

[
q̈1d q̈2d

]T
consists of the desired angular accelerations.
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There are interconnection terms prevailent in various robotic systems which

have been analyzed and solved [37]. For the purpose of simplifying the controller

design, the interconnection terms b12 and b21 are neglected. This results in the

following system:

ẋ1 = x3

ẋ2 = x4[
ẋ3
ẋ4

]
=

[
q̈1d
q̈2d

]
+

[
F1(X)
F2(X)

]
+

[
b11 0
0 b22

] [
u1
u2

]
(4.37)

To simplify the derivation, let b11 = b1 and b22 = b2. The control objective is to

design a feedback controller u = u(X | Θ̂) based on fuzzy systems and an adaptive

law for adjusting the parameter vector (Θ̂), such that the actual output follows

the desired output. The fuzzy rule base that will describe the behaviour of (u) is

defined in equation (4.2).

To incorporate the fuzzy rule base, it is logical to choose a fuzzy system for each

control input. This fuzzy controller can be represented as:

uj = uDj
(X | Θ̂j) (4.38)

where: j is either one or two, which represents the terms attached with motor

one and motor two, respectively, uDj
is a fuzzy system and Θ̂ is the collection of

adjustable parameters.

By using the singleton fuzzifier, the product inference engine and the centre

average defuzzifier defined in equations (4.1), (4.4) and (4.5), respectively, it is

possible to obtain:

uDj
(X | Θ̂j) =

Muj∑
k=1

ykuj

(
μAk

xj
(x∗j)μAk

xj+2
(x∗j+2)

)
Muj∑
k=1

(
μAk

xj
(x∗j)μAk

xj+2
(x∗j+2)

) (4.39)
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where: Muj
is the number of fuzzy rules, which is the product of the number of

fuzzy sets in x1 and x3 or x2 and x4, respectively; μAk
xj

and μAk
xj+2

are the fuzzy

sets for x1 and x3 or x2 and x4, respectively; y
k
uj

is the centre of the kth fuzzy set;

k is the kth rule in the fuzzy rule base.

Let ykuj
be the free parameters that are collected into Θ̂j ∈ R

n∏

i=1
Muj

in order to

rewrite the fuzzy controller in equation (4.39) as:

uDj
(X | Θ̂j) = Θ̂T

j ξj(X) (4.40)

where:

ξj =
[
ξj1 · · · ξjMFj

]T
(4.41)

with:

ξjk(X) =
μAk

xj
(x∗j)μAk

xj+2
(x∗j+2)

Muj∑
k=1

(
μAk

xj
(x∗j)μAk

xj+2
(x∗j+2)

) (4.42)

The direct adaptive fuzzy controller will utilize 121 distinct rules due to the

number of membership functions defined in Figure 5.1. Therefore, Muj
, which is

found in equation (4.42), is set to 121 to reflect the fuzzy system employed on the

two degrees of freedom parallel robot.

This concludes the design portion of the fuzzy controller. The next task is to

design an adaptive law for Θ̂ such that the tracking error, namely x1 and x2, is

minimized.

Let the ideal controller be defined as:

[
u∗1
u∗2

]
=

[ 1
b1

0

0 1
b2

]([ −F1(X)− q̈1d
−F2(X)− q̈2d

]
−KX

)
(4.43)
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where:

K =

⎡
⎢⎣ k11 0 k12 0

0 k21 0 k22

⎤
⎥⎦

represents all the coefficients of the stable polynomial s2 + kj2s+ kj1 with k11, k12,

k21 and k22 being positive constants.

By substituting equation (4.38) into equation (4.37) and rearranging, the result

will yield:

ẋ1 = x3

ẋ2 = x4[
ẋ3
ẋ4

]
=

⎡
⎣ b1

(
u∗1 − uD1(X | Θ̂1)

)
b2

(
u∗2 − uD2(X | Θ̂2)

)
⎤
⎦−KX (4.44)

Let: Ξ =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

−k11 0 −k12 0
0 −k21 0 −k22

⎤
⎥⎥⎦, B1 =

⎡
⎢⎢⎣

0
0
b1
0

⎤
⎥⎥⎦ and B2 =

⎡
⎢⎢⎣

0
0
0
b2

⎤
⎥⎥⎦ with

B =
[
B1 B2

]
. Therefore, the closed loop dynamic equation (4.44) can be rewrit-

ten as:

Ẋ = ΞX + B

[
u∗1 − uD1(X | Θ̂1)

u∗2 − uD2(X | Θ̂2)

]
(4.45)

It should be noted that: Ẋ = [ ẋ1 ẋ2 ẋ3 ẋ4 ]T . Now it is appropriate to

define the optimal parameters as:

Θj = arg min

Θ̂j∈R
n∏

i=1
Muj

[
sup
X∈Rn

∣∣∣uDj(X | Θ̂j)− u∗j
∣∣∣] (4.46)
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By implementing the fuzzy system in equation (4.39) with the approximator

stated in equation (4.46), the minimum approximation error can be defined as:

[
ω1

ω2

]
=

[
uD1(X | Θ1)− u∗1
uD2(X | Θ2)− u∗2

]
(4.47)

Therefore, by substituting equations (4.40) and (4.47) into equation (4.45), the

following closed loop dynamic equation can be realized:

Ẋ = ΞX + B

⎡
⎣
(
Θ1 − Θ̂1

)T
ξ1(X)− ω1(

Θ2 − Θ̂2

)T
ξ2(X)− ω2

⎤
⎦ (4.48)

Similar to the indirect adaptive fuzzy controller approach, a Lyapunov function

candidate is needed to minimize the effect of the tracking errors x1 and x2 and the

parameter errors (Θj − Θ̂j). To achieve this sought result, let this candidate be:

V = 0.5XTPX + 0.5
(
Θ1 − Θ̂1

)T
Γ
(
Θ1 − Θ̂1

)
+ 0.5

(
Θ2 − Θ̂2

)T
Γ
(
Θ2 − Θ̂2

)
(4.49)

It should be noted that: Γ is a positive definite matrix defined in equation

(4.28), Θ̂j is the estimation of Θj, which is defined in equation (4.29) and P is a

positive definite matrix satisfying the Lyapunov equation: ΞTP +PΞ = −Q, where
Q is an arbitrary four by four positive definite matrix.

The time derivative of V becomes:

V̇ = XTPẊ − Γ
˙̂
Θ1

(
Θ1 − Θ̂1

)T
− Γ

˙̂
Θ2

(
Θ2 − Θ̂2

)T
(4.50)
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By substituting equations (4.31) and (4.48) into equation (4.50), the end result

will become:

V̇ = −0.5XTQX −XTPB1ω1 −XTPB2ω2

+
(
Θ1 − Θ̂1

)T [
XTPB1ξ1(X)− Γ1

˙̂
Θ1

]
+
(
Θ2 − Θ̂2

)T [
XTPB2ξ2(X)− Γ2

˙̂
Θ2

]
(4.51)

It is highly desirable that the minimum approximation error (ωj) be very small in

order for the value to be negligible. This can be achieved by tuning the fuzzy system

to generate such a result. The final objective concerns the determination of the

adaptive law that would essentially eliminate the remaining unstable components

of the system. Let the unknown parameters updating law be:

˙̂
Θj = Γ−1

[
XTPBjξj(X)

]
(4.52)

With the substitution of equation (4.52) into equation (4.51), the final result

will yield:

V̇ = −0.5XTQX −XTPB1ω1 −XTPB2ω2 (4.53)

This equation states that the function of V̇ is negative semi-definite. Therefore,

the corresponding closed loop system is stable.
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4.5 Fuzzy Logic Adaptive Backstepping

Controller Design

The controller to be examined in this section combines all the individual control

techniques implemented in the prior controllers discussed in this thesis, namely:

fuzzy control, adaptive control and backstepping control. The amalgamation of

all three into one has proven to yield very compelling results depending on how

the designer proves that a system can achieve stability. Sheng et al. discussed an

adaptive fuzzy backstepping controller for a single input, single output nonlinear

system with a strict feedback structure and proved that the closed loop system

is semi-globally stable [49]. Wei et al. achieved asymptotic stability on a servo

system that employed a similar controller to compensate the nonlinear friction that

is present in an X-Y table [67]. Another example pertains to the novel approach Hsu

et al. presented to solve the traditional problem of model reference adaptive control

for a class of single input, single output minimum phase uncertain nonlinear system.

The system was proven to converge asymptotically [20]. All the systems described

in these papers were improvements to a previously implemented controller; hence

it is prudent to determine whether a fuzzy adaptive backstepping controller would

yield better results than the previously described controllers on the two degrees of

freedom parallel robot discussed in this thesis. In order to ensure the stability of

the closed loop system, a Lyapunov function must be chosen. Let this candidate

function be:

V1 = 0.5x21 + 0.5x22 (4.54)

By using the techniques described in [76], it is possible to define the virtual

controllers as: α1 = −c1x1 and α2 = −c2x2, where c1 and c2 are positive constants.
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The derivative of V1 with respect to time then becomes:

V̇1 = −c1x21 − c2x
2
2 + x1(x3 − α1) + x2(x4 − α2) (4.55)

Now it is sensible to delineate the second Lyapunov function candidate as:

W = V1 + 0.5
[
(x3 − α1) (x4 − α2)

]
D(q′)

[
(x3 − α1)
(x4 − α2)

]
(4.56)

The time derivative of W becomes:

Ẇ = V̇1 +
[
(x3 − α1) (x4 − α2)

]
D(q′)

[
(ẋ3 − α̇1)
(ẋ4 − α̇2)

]

+0.5
[
(x3 − α1) (x4 − α2)

]
Ḋ(q′)

[
(x3 − α1)
(x4 − α2)

]
(4.57)

As previously stated, Ḋ(q′)− 2C(q′, q̇′) is skew symmetric [14]; hence:

0.5
[
(x3 − α1) (x4 − α2)

]
Ḋ(q′)

[
(x3 − α1)
(x4 − α2)

]

=
[
(x3 − α1) (x4 − α2)

]
C(q′, q̇′)

[
(x3 − α1)
(x4 − α2)

]
(4.58)

The derivatives of the virtual controllers are defined as: α̇1 = −c1x3 and

α̇2 = −c2x4. Substituting equations (3.3) and (4.58) into (4.57) yields:

Ẇ = V̇1 +
[
(x3 − α1) (x4 − α2)

](
D(q′)

[
(q̈1d − α̇1)
(q̈2d − α̇2)

]

+C(q′, q̇′)
[
(q̇1d − α1)
(q̇2d − α2)

]
+ g(q′)−

[
u1
u2

])
(4.59)
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In order to condense the following derivation, let

[
z1 z2

]
=
[
(x3 − α1) (x4 − α2)

]
(4.60)[

f1
f2

]
= D(q′)

[
(q̈1d − α̇1)
(q̈2d − α̇2)

]
+ C(q′, q̇′)

[
(q̇1d − α1)
(q̇2d − α2)

]
+ g(q′) (4.61)

Therefore, by substituting equations (4.60) and (4.61) into equation (4.59), the

result can be rewritten as:

Ẇ = V̇1 +
[
z1 z2

]([ f1
f2

]
−
[
u1
u2

])
(4.62)

The subsequent procedure consists of estimating fi with the fuzzy system ap-

proximator defined in [7]:

fi = κTi Si + δi (4.63)

where: κi are unknown parameters; Si = ξi(Xi) is the fuzzy set approximator with

Xi = [xi, xi+2]
T ; δi is the estimation error; i is the number of actuators in the

system, which is two for this parallel robot.

By substituting equation (4.63) into equation (4.62), it is possible to obtain:

Ẇ = V̇1 +
[
z1 z2

]([ κT1 S1 + δ1
κT2 S2 + δ2

]
−
[
u1
u2

])
(4.64)

The next step consists of applying Young’s inequality to aid in the development

of the controller equation. This inequality will be implemented three distinct ways

in order to show the differing controllers produced by a similar control technique.
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4.5.1 Method 1

Young’s inequality can be written as:

zi(κ
T
i Si + δi) ≤ zi(κ

T
i Si + 0.5zi) + 0.5δi (4.65)

Let the third Lyapunov function candidate be:

V2 = W + (κ1 − κ̂1)
TΓ1(κ1 − κ̂1) + (κ2 − κ̂2)

TΓ2(κ2 − κ̂2) (4.66)

where κ̂1 and κ̂2 are the estimations of κ1 and κ2, respectively and Γ1 and Γ2 are

positive definite matrices.

Differentiating V2 with respect to time produces:

V̇2 = Ẇ − (κ1 − κ̂1)
TΓ1

˙̂κ1 − (κ2 − κ̂2)
TΓ2

˙̂κ2 (4.67)

By substituting equations (4.64) and (4.65) into equation (4.67) it is possible to

achieve:

V̇2 ≤ V̇1 +
[
z1 z2

] [ κT1 S1 + 0.5z1 − u1
κT2 S2 + 0.5z2 − u2

]
− (κ1 − κ̂1)

TΓ1
˙̂κ1

−(κ2 − κ̂2)
TΓ2

˙̂κ2 + 0.5δ21 + 0.5δ22 (4.68)

To simplify the expression further, it is beneficial to add and subtract the esti-

mator κ̂i inside the zi matrix. This would yield:

V̇2 ≤ V̇1 +
[
z1 z2

] [ κ̂T1 S1 + 0.5z1 − u1
κ̂T2 S2 + 0.5z2 − u2

]
− (κ1 − κ̂1)

T (Γ1
˙̂κ1 − z1S1)

−(κ2 − κ̂2)
T (Γ2

˙̂κ2 − z2S2) + 0.5δ21 + 0.5δ22 (4.69)
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The controller can now be defined as:

[
u1
u2

]
=
[
(x3 − α1) (x4 − α2)

] [ c3 + 0.5
c4 + 0.5

]
+

[
x1 + κ̂T1 S1

x2 + κ̂T2 S2

]
(4.70)

It should be noted that c3 and c4 represent positive constant gains. By substi-

tuting equations (4.55), (4.60) and (4.70) into (4.69), it is possible to attain the

following solution:

V̇2 ≤ −c1x21 − c2x
2
2 − c3(x3 − α1)

2 − c4(x4 − α2)
2

−(κ1 − κ̂1)
T
[
Γ1

˙̂κ1 − (x3 − α1)S1

]
−(κ2 − κ̂2)

T
[
Γ2

˙̂κ2 − (x4 − α2)S2

]
+ 0.5δ21 + 0.5δ22 (4.71)

Let the unknown parameters updating law be:

[
˙̂κ1
˙̂κ2

]
=

[
Γ−1
1 (x3 − α1)S1

Γ−1
2 (x4 − α2)S2

]
(4.72)

Therefore by substituting equation (4.72) into equation (4.71), the final result

will yield:

V̇2 ≤ −c1x21 − c2x
2
2 − c3(x3 − α1)

2 − c4(x4 − α2)
2 + 0.5δ21 + 0.5δ22 (4.73)

This equation states that the function of V̇2 is negative semi-definite as long as

δ1 and δ2 are chosen to be small values. Therefore, the corresponding closed loop

system is stable.
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4.5.2 Method 2

Note that κi can be rewritten as:

κi = ‖κi‖ κi
‖κi‖ = ‖κi‖κ∗i

with κ∗i =
κi

‖κi‖ . It can be shown that κ∗Ti κ∗i = 1. Therefore, Young’s inequality can

be written as:

zi(κ
T
i Si + δi) = zi ‖κi‖κ∗Ti Si + ziδi

≤ z2i ‖κi‖2 ST
i Si

2b2i
+
b2i
2
κ∗Ti κ∗i + 0.5z2i + 0.5δ2i

≤ 1

2b2i
z2i ‖κi‖2 ST

i Si +
b2i
2
+ 0.5z2i + 0.5δ2i (4.74)

It should be noted that bi is a positive constant. Set θi = ‖κi‖2 and let the third

Lyapunov function candidate be:

V2 = W + 0.5Γ1(θ1 − θ̂1)
2 + 0.5Γ2(θ2 − θ̂2)

2 (4.75)

where θ̂1 and θ̂2 are the estimations of θ1 and θ2, respectively and Γ1 and Γ2 are

positive constants.

Differentiating V2 with respect to time produces:

V̇2 ≤ Ẇ − Γ1(θ1 − θ̂1)
˙̂
θ1 − Γ2(θ2 − θ̂2)

˙̂
θ2 (4.76)

By substituting equations (4.64) and (4.74) into equation (4.76) it is possible to

achieve:

V̇2 ≤ V̇1 +
[
z1 z2

] [ 1
2b21
z1θ1S

T
1 S1 + 0.5z1 − u1

1
2b22
z2θ2S

T
2 S2 + 0.5z2 − u2

]
− Γ1(θ1 − θ̂1)

˙̂
θ1

−Γ2(θ2 − θ̂2)
˙̂
θ2 +

b21
2
+
b22
2
+ 0.5δ21 + 0.5δ22 (4.77)
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To simplify the expression further, it is beneficial to add and subtract the esti-

mator θ̂i inside the zi matrix. This would yield:

V̇2 ≤ V̇1 +
[
z1 z2

] [ 1
2b21
z1θ̂1S

T
1 S1 + 0.5z1 − u1

1
2b22
z2θ̂2S

T
2 S2 + 0.5z2 − u2

]

−(θ1 − θ̂1)(Γ1
˙̂
θ1 − 1

2b21
z21S

T
1 S1)

−(θ2 − θ̂2)(Γ2
˙̂
θ2 − 1

2b22
z22S

T
2 S2) +

b21
2
+
b22
2
+ 0.5δ21 + 0.5δ22 (4.78)

The controller can now be defined as:

[
u1
u2

]
=
[
(x3 − α1) (x4 − α2)

] [ c3 + 0.5 + 1
2b21

(x3 − α1)θ̂1S
T
1 S1

c4 + 0.5 + 1
2b22

(x4 − α2)θ̂2S
T
2 S2

]
+

[
x1
x2

]
(4.79)

It should be noted that c3 and c4 represent positive constant gains. By substi-

tuting equations (4.55), (4.60) and (4.79) into (4.78), it is possible to attain the

following solution:

V̇2 ≤ −c1x21 − c2x
2
2 − c3(x3 − α1)

2 − c4(x4 − α2)
2

−(θ1 − θ̂1)(Γ1
˙̂
θ1 − 1

2b21
(x3 − α1)

2ST
1 S1) +

b21
2
+
b22
2

−(θ2 − θ̂2)(Γ2
˙̂
θ2 − 1

2b22
(x4 − α2)

2ST
2 S2) + 0.5δ21 + 0.5δ22 (4.80)

Let the unknown parameters updating law be:

[
˙̂
θ1
˙̂
θ2

]
=

[
Γ−1
1

1
2b21

(x3 − α1)
2ST

1 S1

Γ−1
2

1
2b22

(x4 − α2)
2ST

2 S2

]
(4.81)
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Therefore by substituting equation (4.81) into equation (4.80), the final result

will yield:

V̇2 ≤ −c1x21 − c2x
2
2 − c3(x3 − α1)

2 − c4(x4 − α2)
2 +

b21
2
+
b22
2
+ 0.5δ21 + 0.5δ22 (4.82)

This equation states that the function of V̇2 is negative semi-definite as long as

b1, b2, δ1 and δ2 are chosen to be small values. Therefore, the corresponding closed

loop system is stable.

4.5.3 Method 3

Young’s inequality can be written to achieve:

ziκ
T
i Si + ziδi ≤ 1

2b2i
z2i ‖κi‖2 + 0.5b2i ‖Si‖2 + 0.5z2i + 0.5 ‖δi‖2 (4.83)

It should be noted that bi is a positive constant. Let θi = ‖κi‖2. It can be seen

that ‖Si‖ ≤ 1 and δi is a scalar number, hence the result shown in equation (4.83)

can be rewritten as:

ziκ
T
i Si + ziδi ≤ 1

2b2i
z2i θi + 0.5b2i + 0.5z2i + 0.5δ2i (4.84)

Let the third Lyapunov function candidate be:

V2 = W + 0.5(θ1 − θ̂1)
TΓ1(θ1 − θ̂1) + 0.5(θ2 − θ̂2)

TΓ2(θ2 − θ̂2) (4.85)

where θ̂1 and θ̂2 are the estimations of θ1 and θ2, respectively and Γ1 and Γ2 are

positive constants.
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Differentiating V2 with respect to time produces:

V̇2 = Ẇ − ˙̂
θT1 Γ1(θ1 − θ̂1)− ˙̂

θT2 Γ2(θ2 − θ̂2) (4.86)

By substituting equations (4.64) and (4.84) into equation (4.86) it is possible to

achieve:

V̇2 ≤ V̇1 +
[
z1 z2

]([ 1
2b21
z1θ1 + 0.5z1

1
2b22
z2θ2 + 0.5z2

]
−
[
u1
u2

])

+
(
0.5b21 + 0.5δ21

)
+
(
0.5b22 + 0.5δ22

)
− ˙̂
θT1 Γ1

(
θ1 − θ̂1

)
− ˙̂
θT2 Γ2

(
θ2 − θ̂2

)
(4.87)

To simplify the expression further, it is beneficial to add and subtract the esti-

mator θ̂i inside the zi matrix. This would yield:

V̇2 ≤ V̇1 +
[
z1 z2

]([ 1
2b21
z1θ̂1 + 0.5z1

1
2b22
z2θ̂2 + 0.5z2

]
−
[
u1
u2

])

+
(
0.5b21 + 0.5δ21

)
+
(
0.5b22 + 0.5δ22

)
+

(
1

2b21
z21 − ˙̂

θT1 Γ1

)(
θ1 − θ̂1

)
+

(
1

2b22
z22 − ˙̂

θT2 Γ2

)(
θ2 − θ̂2

)
(4.88)

The controller can now be defined as:

[
u1
u2

]
=
[
(x3 − α1) (x4 − α2)

] ⎡⎣
(
c3 + 0.5 + 1

2b21
θ̂1

)
(
c4 + 0.5 + 1

2b22
θ̂2

)
⎤
⎦+

[
x1
x2

]
(4.89)

It should be noted that c3 and c4 represent positive constant gains. By substi-

tuting equations (4.55), (4.60) and (4.89) into (4.88), it is possible to attain the

following solution:
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V̇2 ≤ −c1x21 − c2x
2
2 − c3(x3 − α1)

2 − c4(x4 − α2)
2

+
(
0.5b21 + 0.5δ21

)
+
(
0.5b22 + 0.5δ22

)
+

(
1

2b21
(x3 − α1)

2 − ˙̂
θT1 Γ1

)(
θ1 − θ̂1

)

+

(
1

2b22
(x4 − α2)

2 − ˙̂
θT2 Γ2

)(
θ2 − θ̂2

)
(4.90)

Let the unknown parameters updating law be:

[
˙̂
θ1
˙̂
θ2

]
=

[
Γ−1
1

1
2b21

(x3 − α1)
2

Γ−1
2

1
2b22

(x4 − α2)
2

]
(4.91)

Therefore by substituting equation (4.91) into equation (4.90), the final result

will yield:

V̇2 ≤ −c1x21 − c2x
2
2 − c3(x3 − α1)

2 − c4(x4 − α2)
2 +
(
0.5b21 + 0.5δ21

)
+
(
0.5b22 + 0.5δ22

)
(4.92)

This equation states that the function of V̇2 is negative semi-definite as long as

b1, b2, δ1 and δ2 are chosen to be small values. Therefore, the corresponding closed

loop system is stable.

For the purposes of this thesis, only Method 3 will be employed for the simula-

tion and experimentation of the parallel robot system. The reasoning behind this

is the fact that the first two methods comprise of 121 fuzzy sets for each motor that

must be solved in order to determine the controller input. By eliminating the fuzzy

sets in Method 3, the computation time will be greatly reduced, while potentially

generating an equally accurate control signal.

Now that all the fuzzy logic controllers have been proven to be stable, the next

chapter will discuss the simulation results of the eight derived controllers.
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Chapter 5

Controller Simulation

Each controller discussed in this chapter will contain the simulation results for:

the error between the desired and actual actuated joint angles, the location of

the desired and actual end effector trajectory in Cartesian space along with their

respective positional output error and the overall system torque required to achieve

the actual results. A preliminary conclusion will then be drawn based on the pros

and cons of each control technique.

5.1 Trajectory Generation

The end effector of the two degrees of freedom parallel robot was simulated to follow

a circular trajectory based on the implementation of the desired controller. The

tracking speed utilized is defined by the angular velocity formula: ω = 2πf , where f

is the tracking frequency of the end effector. The location of the circular trajectory

is based on the coordinate system defined in Figure 2.2. In these simulation results,

the origin of the circle based on the Cartesian coordinate system in metres is defined

as (0.1059, -0.3769). The radius of the circular trajectory is 0.03 metres and the

frequency implemented is 0.5 Hertz. It should be noted that the trajectory defined

in this report never impedes or approaches any singular point.
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5.2 Controller Gains

The gains of each controller were obtained through trial and error, with the figures

portrayed in this thesis garnering the most desirable results. Table 5.1 will list the

gains utilized for the non-adaptive and adaptive PD and backstepping controllers,

while Table 5.2 will list the gains utilized for the fuzzy PD, indirect adaptive fuzzy,

direct adaptive fuzzy and fuzzy adaptive backstepping controllers.

Non Fuzzy Logic Controllers KP1 KP2 KD1 KD2 c1 c2 c3 c4 Γ
Non-Adaptive PD 224 274 10 10 - - - - -

Adaptive PD 224 274 10 10 - - - - 1000
Non-Adaptive Backstepping - - - - 44 54 5 5 -

Adaptive Backstepping - - - - 44 54 5 5 1000

Table 5.1: Non-Fuzzy Logic Controller Gains

Fuzzy Logic Controllers k1 k2 c1 c2 c3 c4 b1 b2 Γ
Indirect Adaptive Fuzzy 100 100 - - - - - - 0.1
Direct Adaptive Fuzzy 104 104 - - - - - - 0.01

Fuzzy Adaptive Backstepping - - 30 30 5 5 0.05 0.05 0.001

Fuzzy Logic Controllers cout1 cout2 ce1 ce2 cė1 cė2
Fuzzy PD 300 300 2 2 2.5 2.5

Table 5.2: Fuzzy Logic Controller Gains

The subsequent figures will illustrate the MATLAB simulation results generated

by all eight controllers derived in the previous two chapters. The findings will

be split up into two sections, namely: non-fuzzy logic controller simulations and

fuzzy logic controller simulations. This is done in order to achieve an impartial

conclusion between the two very different controller variants. It should be noted

that the desired angle and torque outputs for both motors are shown in Figure 5.1

and Figure 5.2, respectively. The constant variables cout1, cout2, ce1, ce2, cė1 and cė2

represent the scaling factors of motor one and motor two, respectively.
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Figure 5.1: Desired Joint Angles
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Figure 5.2: Desired Torque
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5.3 Simulations of Non-Fuzzy Logic Controllers

To achieve accurate simulation findings, the initial error was chosen to be the same

for all the non-fuzzy logic controllers. The initial error for q1 is 2 degrees, while

the initial error for q2 is 1.5 degrees. The initial error for both q̇1 and q̇2 is zero.

Both the adaptive PD and backstepping controllers require an initial value for Θ̂

as shown in Table 5.3. This value is defined using the solutions generated by the

formulas in equation (3.15). It should be noted that the value of Γ defined in Table

5.1 for the adaptive PD and backstepping controllers applies to all the parameters

of Γ defined in each respective controller.

Θ Initial Conditions

θ1 0.008150521
θ2 0.009136644
θ3 0.002154209
θ4 0.002473008
θ5 0.003231314
θ6 0.003709512
θ7 0.370800420
θ8 0.415937470
θ9 0.139717866
θ10 0.160394552

Table 5.3: Initial Conditions for the Parameters

5.3.1 Joint Angles

The following figures depict the error between the desired and actual joint angles of

q1 and q2, respectively. These are the only two angles directly controllable by the

actuators of the parallel robot. It is crucial that the difference between the desired

angles and the actual angles of q1 and q2 be as small as possible, in order for the

end effector error to be minimized.
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Figure 5.3: Joint Angles Error for Non-Adaptive PD
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Figure 5.4: Joint Angles Error for Adaptive PD
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Figure 5.5: Joint Angles Error for Non-Adaptive Backstepping
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Figure 5.6: Joint Angles Error for Adaptive Backstepping
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The purpose of the preceding joint angle error plots for q1 and q2 are to determine

which controller can converge to the desired angle the quickest. The constraint that

ensured unbiased results was the fact that the motors utilized in the physical model

of the parallel robot could output a maximum torque of 7.5 Newton metres. This

will be confirmed in the subsequent torque plots. It is clear from these figures

that the non-adaptive and adaptive backstepping controllers produced the quickest

convergence, which is approximately 0.1 seconds quicker than their non-adaptive

and adaptive PD controller counterparts.

5.3.2 End Effector Trajectory

The next set of figures portray the trajectory tracking of the end effector along with

its respective error between its desired and actual position. In order to determine

the actual location of the end effector, equations (2.19) and (2.20) were employed

to solve for q4 and q3, respectively. The forward kinematics equations were then

applied based on all the available data to definitively determine the actual location

of the end effector in Cartesian coordinates. The forward kinematics equations

utilized for the two degrees of freedom planar parallel robot are based upon the

works defined in [68] and [46]. The results from the joint angles of q1 and q2 play a

crucial role in the determination of the actual location of the end effector, since a

small angular error would not cause a large deviation when compared to the desired

trajectory. The plots of the end effector error in the x-axis and y-axis are shown in

order to easily identify the severity of the absolute accuracy.
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Figure 5.7: End Effector Trajectory for Non-Adaptive PD

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−5

0

5

10
x 10−3 End Effector Error on x−axis

D
ev

ia
tio

n 
(m

et
re

s)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−2

−1

0

1
x 10−3 End Effector Error on y−axis

Time (seconds)

D
ev

ia
tio

n 
(m

et
re

s)

Figure 5.8: End Effector Trajectory Error for Non-Adaptive PD
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Figure 5.9: End Effector Trajectory for Adaptive PD
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Figure 5.10: End Effector Trajectory Error for Adaptive PD
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Figure 5.11: End Effector Trajectory for Non-Adaptive Backstepping
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Figure 5.12: End Effector Trajectory Error for Non-Adaptive Backstepping
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Figure 5.13: End Effector Trajectory for Adaptive Backstepping
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Figure 5.14: End Effector Trajectory Error for Adaptive Backstepping
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Similar to the conclusion achieved in the joint angles portion of this section,

the non-adaptive and adaptive backstepping controllers confirmed that the actual

trajectory follows the desired trajectory approximately 0.1 seconds faster than the

non-adaptive and adaptive PD controllers. It can be seen from all the end effector

trajectory error figures that the x-axis error converges quicker than the y-axis error.

This is due to the fact that the y-axis must overcome the force of gravity, which is

more prevalent in the y-axis.

5.3.3 Controller Output - Torque

The last set of figures for this section illustrates the torque generated by the motors

which will move the links to their actual position. To calculate the controller

output required for the non-adaptive and adaptive backstepping and PD controllers,

equations (3.11), (3.21), (3.29) and (3.37) were utilized, respectively. The ordinary

differential equations for all four controllers and the unknown parameter updating

laws for the adaptive controllers were solved using the Runge-Kutta ode45 method

in MATLAB [19].
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Figure 5.15: Torque for Non-Adaptive PD
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Figure 5.16: Torque for Adaptive PD
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Figure 5.17: Torque for Non-Adaptive Backstepping
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Figure 5.18: Torque for Adaptive Backstepping
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As was initially stated in the joint angles portion of this section, the mechanical

model of the parallel robot can achieve a peak torque of 7.5 Newton metres. The

goal was to ensure that the controllers could converge to zero as quickly as possible

without violating this constraint. This is the reason for the large initial torque

found in the first few iterations of the torque plots. The subsequent torque data

falls well under the maximum continuous torque that the motor can achieve, which

is 6 Newton metres. The desired torque found in Figure 5.2 adequately portrays a

detailed representation of the actual torque realized after these first few iterations.

5.4 Simulations of Fuzzy Logic Controllers

To achieve accurate simulation findings, the initial error for q1, q2, q̇1 and q̇2 was

chosen to be zero for all the fuzzy logic controllers. It should be noted that the value

of Γ defined in Table 5.2 applies to all the parameters of Γ defined in each respective

controller. The indirect adaptive fuzzy, direct adaptive fuzzy and fuzzy adaptive

backstepping controllers require an initial value for Θ̂. This value is defined as

0.1 for all the parameters listed in the specified controllers. Based on a 90 degree

operating point, the value of b in the direct adaptive fuzzy controller is 104.4766

and 99.3706 for motors one and two, respectively.

5.4.1 Joint Angles

The following figures depict the error between the desired and actual joint angles of

q1 and q2, respectively. These are the only two angles directly controllable by the

actuators of the parallel robot. It is crucial that the difference between the desired

angles and the actual angles of q1 and q2 be as small as possible, in order for the

end effector error to be minimized.
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Figure 5.19: Joint Angles Error for Fuzzy PD
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Figure 5.20: Joint Angles Error for Fuzzy Adaptive Backstepping
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Figure 5.21: Joint Angles Error for Indirect Adaptive Fuzzy
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Figure 5.22: Joint Angles Error for Direct Adaptive Fuzzy
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It is clear from the simulation results that the fuzzy adaptive backstepping

controller achieved the most impressive results, with the indirect adaptive fuzzy

controller garnering the least. The reason behind the failure of the indirect adaptive

fuzzy controller will be examined in the controller output portion of this section.

It is quite interesting to note that even though the fuzzy adaptive backstepping

controller had the most parameters to individually tune; it accomplished the lowest

joint angles error with less than 0.008 degrees.

5.4.2 End Effector Trajectory

The next set of figures portray the trajectory tracking of the end effector along with

its respective error between its desired and actual position. In order to determine

the actual location of the end effector, equations (2.19) and (2.20) were employed

to solve for q4 and q3, respectively. The forward kinematics equations were then

applied based on all the available data to definitively determine the actual location

of the end effector in Cartesian coordinates. The forward kinematics equations

utilized for the two degrees of freedom planar parallel robot are based upon the

works defined in [68] and [46]. The results from the joint angles of q1 and q2 play

a crucial role in the determination of the actual location of the end effector, since

a small angular error would not cause a large deviation when compared to the

desired trajectory. The plots of the end effector error in the x-axis and y-axis are

also shown in order to easily identify the severity of the error.
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Figure 5.23: End Effector Trajectory for Fuzzy PD
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Figure 5.24: End Effector Trajectory Error for Fuzzy PD
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Figure 5.25: End Effector Trajectory for Indirect Adaptive Fuzzy
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Figure 5.26: End Effector Trajectory Error for Indirect Adaptive Fuzzy
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Figure 5.27: End Effector Trajectory for Direct Adaptive Fuzzy
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Figure 5.28: End Effector Trajectory Error for Direct Adaptive Fuzzy
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Figure 5.29: End Effector Trajectory for Fuzzy Adaptive Backstepping
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Figure 5.30: End Effector Trajectory Error for Fuzzy Adaptive Backstepping
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Similar to the conclusion achieved in the joint angles portion of this section, the

fuzzy adaptive backstepping controller tracked the desired end effector trajectory

more accurately than any other controller. It accomplished a maximum of a mere

2 micrometre deviation in the x-axis and a 50 micrometre deviation in the y-axis.

It can be seen from all the end effector trajectory error figures that the x-axis error

is less than the y-axis error. This is due to the fact that the y-axis must overcome

the force of gravity, which is more prevalent in the y-axis.

5.4.3 Controller Output - Torque

The last set of figures for this section illustrates the torque generated by the motors

which will move the links to their actual position. To calculate the torque required

for the fuzzy PD, indirect adaptive fuzzy, direct adaptive fuzzy and fuzzy adaptive

backstepping controllers, equations (4.7), (4.12), (4.43) and (4.89) were utilized,

respectively. The ordinary differential equations for all four controllers and the

unknown parameter updating laws for the adaptive controllers were solved using

the Runge-Kutta ode45 method in MATLAB [19].
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Figure 5.31: Torque for Fuzzy PD
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Figure 5.32: Torque for Fuzzy Adaptive Backstepping
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Figure 5.33: Torque for Indirect Adaptive Fuzzy
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Figure 5.34: Torque for Direct Adaptive Fuzzy
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The actual torque figures for most of the fuzzy logic controllers adequately

follows the desired torque. The major exception is the indirect adaptive fuzzy

controller. The mechanical model of the parallel robot can achieve a peak torque of

7.5 Newton metres and a maximum continuous torque of 6 Newton metres. Neither

of these conditions is satisfied for the indirect adaptive fuzzy controller. The most

likely reason for this failure is due to the fact that the indirect adaptive fuzzy

controller is not calculated the same way as the rest of the controllers described in

this section. The fuzzy PD, direct adaptive fuzzy and fuzzy adaptive backstepping

controllers all utilize the system equation defined in (3.3) to solve for the control

signals, while the indirect adaptive fuzzy controller estimates the system equation

and then solves for the control signals. This system estimation procedure potentially

increases the overall system error, thus translating to a much larger torque value

than can be allotted.

The fuzzy adaptive backstepping controller holds the most promise going for-

ward in determining the experimental results on the mechanical model of the planar

two degrees of freedom parallel robot. The following chapter will discuss the elec-

trical and mechanical design of the physical system.
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Chapter 6

Parallel Robot Design

This chapter will describe the electrical and mechanical design of the two degrees of

freedom planar parallel robot implemented to determine the controller performance

in the experimental operation of the system.

6.1 Electrical Design

The two degrees of freedom parallel robot described in this thesis utilized two dis-

tinct printed circuit boards (PCBs) to achieve the desired functionality. These

boards are designated: digital signal processing (DSP) and motor driver. The

pinout table, schematic diagram and PCB layout for the DSP board and the motor

driver board are found in Appendix A and Appendix B, respectively. The block

diagram concerning the communication between the two circuit boards, the ap-

propriate host computers and the motors is shown in Figure 6.1. The physical

representations of the DSP board and the motor driver board are shown in Figure

6.2 and Figure 6.3, respectively.
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Figure 6.1: Block Diagram for Electrical Design
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Figure 6.2: DSP Circuit Board Layout

Figure 6.3: Motor Driver Circuit Board Layout
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The DSP board is the most crucial component in the entire practical design

of the parallel robot. Its purpose is to send the pulse width modulation (PWM)

signals to the motor driver board and receive the potentiometer readings from the

motors in order to determine the actual location of the actuated joints at any given

time. The main chipset of the DSP board is the TMS320F2812 digital signal pro-

cessor manufactured by Texas Instruments. The TMS320F2812 was programmed

using Code Composer Studio through a joint test action group (JTAG) emula-

tor connected to the JTAG pins found on the DSP board. The programmer sent

instructions to the TMS320F2812 concerning the appropriate general purpose in-

put/output (GPIO) pins that would be used to send or receive the desired data.

These pinout relationships can be found in Table A.1 and Table A.2 in Appendix

A. Regardless of the control technique, the server computer would calculate the

desired position, velocity and acceleration of the joints in order to determine the

desired trajectory of the end effector. It would send this data along with the desig-

nated controller gains to the client computer, which in turn would send all the data

to the DSP board. If the parallel robot was implementing DSP control, the DSP

chipset would calculate the controller output based on the potentiometer readings

and send the PWM signals to the motor driver board. The DSP board would re-

ceive the potentiometer readings and send this data back to the server computer

to be analyzed. On the other hand, if the parallel robot implemented network

control, the server computer would calculate the controller output based on the

potentiometer feedback signals from the DSP. It would relay the PWM signals to

the client computer followed by the DSP board, which in turn would relay this data

to the motor driver board. The potentiometer readings generated by this procedure

would be available for analysis on the server computer. For both control techniques,

the server computer would relay the data over the network to the client computer,
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followed by the transmission of the data through the serial cable to the DSP board.

The data from the serial cable was processed by the MAXIM multichannel RS-232

driver/receiver. The server and client computer both use Visual Studio .NET 2003

to code the controller design and the serial communication protocol, respectively.

The DSP board is not directly responsible in actuating the motors of the parallel

robots. This procedure was handled by sending the specific GPIO signals to the

motor driver board.

The sole purpose of the motor driver board is to actuate the motors in order

for them to achieve their desired trajectory. The motor driver board employs the

LMD18200 H-bridge chipset - manufactured by National Semiconductor - for each

motor. Using the PWM and direction signals generated by the DSP board, the

motor driver board can appropriately drive the motors in the desired direction. For

the safety of the motors and the mechanical structure of the two degrees of freedom

parallel robot, the DSP board must trigger a one-poled relay on the motor driver

board to send the power to actuate the motors. The pinout relationship concerning

the transmission of data throughout the motor driver board can be found in Table

B.1 in Appendix B.

The links of this parallel robot are driven by two 270994 motors manufactured

by Maxon Motor. The motors have a no load speed of 8780 revolutions per minute.

The gear ratio (GR) is 246 while the efficiency is slated at 0.87 due to the motor ball

bearings and the gear trains. The back electromotive force constant (KV ) is 0.0258

volts per radian per second and the armature resistance (Ra) is rated at 2.36 ohms.

The maximum continuous torque that the motor can handle is 6 Newton metres;

hence the system is limited to this critical constraint while trying to achieve the

desired trajectory of the system. The source voltage (VS) of the system is 24 volts.
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The DSP board sends PWM signals to the motor driver board; therefore it is

important to convert the output generated by the controllers into a format that is

understandable by the DSP board. This can be done by converting output signal

into a duty ratio. Let Figure 6.4 approximate the equivalent circuit design of the

permanent magnet DC motor:

Ra 

ea m Va 

ia 

Figure 6.4: Equivalent Circuit of the Permanent Magnet DC Motor

where: Va is the armature voltage, ia is the armature current, ωm is the angular

velocity and ea is the motor voltage. The goal is to find the duty ratio (DR) which

is defined as:

DR = Va/VS (6.1)

To accomplish this, the following formula can be defined based on the electrical

design of the motor:

Va = iaRa +KV ωm (6.2)

By rearranging equation (6.2) and solving for ia, the following can be obtained:

ia =
−KV ωm + Va

Ra

(6.3)
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The angular velocity is defined as: ωm = GRq. The real torque, which is equal

to (u), is defined as: τ = GRτm, with the motor torque defined as: τm = KV ia.

Therefore, the real torque can be rewritten as:

u = GRKV ia (6.4)

By substituting equation (6.3) into equation (6.4) and isolating for Va, it is

possible to achieve:

Va =
Rau+ q(KVGR)

2

KVGR

(6.5)

All the variables are known at any given point except for the real torque (u)

which is generated differently for each controller. After substituting all the known

variables into equation (6.5) and solving for the armature voltage, it is possible to

determine the corresponding duty ratio.

6.2 Mechanical Design

The mechanical design of this planar two degrees of freedom parallel robot was

drafted utilizing Solidworks 2009. Figure 6.5 portrays this representation in detail.

The entire structure of the parallel robot is comprised of aluminium angles,

which were employed due to their robustness and lightweight attributes. The pa-

rameters of each link are found in Table 2.1. The physical representation of the

overall system are shown in Figure 6.6 and Figure 6.7.
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Figure 6.5: Solidworks Model of the Two Degrees of Freedom Parallel Robot
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Figure 6.6: Physical Structure of the Two Degrees of Freedom Parallel Robot

Figure 6.7: Close-up View of the Two Degrees of Freedom Parallel Robot
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Chapter 7

Controller Experimentation

Each controller discussed in this chapter will contain the experimentation results

for: the desired and actual actuated joint angles along with their respective error,

the location of the desired and actual end effector trajectory in Cartesian space

along with their respective positional output error, the control signal computation

time and the overall transmission time, and the PWM signals required to achieve

the actual results. A final conclusion will then be drawn based on the pros and

cons of each control technique.

7.1 Trajectory Generation

The end effector of the two degrees of freedom parallel robot was programmed

to follow a circular trajectory using the network control interface. This allowed

for the programming of the parallel robot to occur on a server computer, which

would transmit the controller output over the Lakehead University network to a

client computer that was serially connected to the DSP board of the parallel robot.

The block diagram of this process is shown in Figure 6.1. A detailed explanation

of the operation of the network control technique used on the planar two degrees

of freedom parallel robot described in this thesis can be found in [61]. The DSP
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chipset is limited in the amount of memory that it could allocate for a specified

program; hence the following figures will portray the results of the eight controllers

based on the network control technique.

The simulation of the end effector trajectory was conducted strictly by perform-

ing the circular trajectory once and gathering the desired results. This was clearly

not attainable in the experimentation of the parallel robot mechanism since the

initial position of the end effector varied at any given trial. To compensate for

the unknown initial angles of the actuators, a potentiometer was attached to each

motor shaft. The DSP board read the voltage readings from the potentiometers

in order to conclusively determine the joint angle at any given point of the trajec-

tory tracking. Another issue was the fact that the end effector had to reach the

location of the desired circular trajectory, which was on average three centimetres

higher in the y-axis than its initial position. Instead of linearly translating the

end effector to reach its initial position on the circular trajectory, it was found

that by programming the end effector to follow a progressive arc path, the amount

of oscillation present in the system operation could be reduced. The end effector

initially performed a progressive arc path until it reached the desired location to

track the circular trajectory. Then, it performed two rotations around the desired

circular trajectory and proceeded on a progressive arc path until q1 and q2 were

perpendicular to the x-axis. It should be noted that the feedback signals from

the potentiometers generated noisy results; hence a second order Butterworth filter

with a cut-off frequency of 3 Hertz was programmed to filter the noise from the

feedback signals.

The tracking speed utilized is defined by the angular velocity formula: ω =

2πf , where f is the tracking frequency of the end effector. The location of the

circular trajectory is based on the coordinate system defined in Figure 2.2. In these
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experimentation results, the origin of the circle based on the Cartesian coordinate

system in metres is defined as (0.1059, -0.3769). The radius of the circular trajectory

is 0.03 metres and the frequency implemented is 0.5 Hertz. It should be noted that

the trajectory defined in this report never impedes or approaches any singular point.

7.2 Controller Gains

The gains of each controller were determined utilizing the gains obtained in the

simulation results as a reference and then tuning them by trial and error to achieve

the figures garnering the most desirable results. Table 7.1 will list the gains utilized

for the non-adaptive and adaptive PD and backstepping controllers, while Table 7.2

will list the gains utilized for the fuzzy PD, indirect adaptive fuzzy, direct adaptive

fuzzy and fuzzy adaptive backstepping controllers.

Non Fuzzy Logic Controllers KP1 KP2 KD1 KD2 c1 c2 c3 c4 Γ eff

Non-Adaptive PD 800 850 74 75 - - - - - 0.035

Adaptive PD 800 850 74 75 - - - - 100 0.035

Non-Adaptive Backstepping - - - - 75 45 11 21 - 0.35

Adaptive Backstepping - - - - 75 45 11 21 20 0.35

Table 7.1: Non-Fuzzy Logic Controller Gains

Fuzzy Logic Controllers k1 k2 c1 c2 c3 c4 b1 b2 Γ eff

Indirect Adaptive Fuzzy 95 7 - - - - - - 10 0.35

Direct Adaptive Fuzzy 100000 5000 - - - - - - 0.01 0.175

Fuzzy Adaptive Backstepping - - 5 5 120 140 0.5 0.5 0.01 0.35

Fuzzy Logic Controllers cout1 cout2 ce1 ce2 cė1 cė2 eff

Fuzzy PD 870 970 2.5 2 2 2.5 0.35

Table 7.2: Fuzzy Logic Controller Gains

The subsequent figures that have been generated utilizing MATLAB will illus-

trate the experimental data obtained by the implementation of all eight controllers
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on the two degrees of freedom parallel robot mechanism. The findings will be split

up into two sections, namely: non-fuzzy logic controller experimentations and fuzzy

logic controller experimentations.

It should be noted that eff is the percent efficiency of the motors that can

potentially decrease the overall system error. By utilizing the duty ratio formula

defined in equation (6.1) and dividing it by the percent efficiency, it is possible

to achieve a more accurate result. The objective is to obtain a result where the

absolute error value is at its minimum. The constant variables cout1, cout2, ce1, ce2,

cė1 and cė2 represent the scaling factors of motor one and motor two, respectively.

7.3 Experimentations of Non-Fuzzy Logic Con-

trollers

The experimentation results for all the controllers discussed in this section follow

the same circular trajectory regardless of the initial position. Both the adaptive

PD and backstepping controllers require an initial value for Θ̂ as shown in Table

5.3. This value is defined using the solutions generated by the formulas in equation

(3.15). It should be noted that the value of Γ defined in Table 7.1 for the adaptive

PD and backstepping controllers applies to all the parameters of Γ defined in each

respective controller.

7.3.1 Joint Angles

The following figures depict the error between the desired and actual joint angles of

q1 and q2, respectively. These are the only two angles directly controllable by the

actuators of the parallel robot. It is crucial that the difference between the desired

angles and the actual angles of q1 and q2 be as small as possible, in order for the

end effector error to be minimized.
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Figure 7.1: Joint Angles for Non-Adaptive PD
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Figure 7.2: Joint Angles Error for Non-Adaptive PD
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Figure 7.3: Joint Angles for Adaptive PD
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Figure 7.4: Joint Angles Error for Adaptive PD
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Figure 7.5: Joint Angles for Non-Adaptive Backstepping
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Figure 7.6: Joint Angles Error for Non-Adaptive Backstepping
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Figure 7.7: Joint Angles for Adaptive Backstepping
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Figure 7.8: Joint Angles Error for Adaptive Backstepping

114



It is quite difficult to determine the most desirable controller based on the

preceding plots, but it is clear that the adaptive PD and backstepping controllers

achieved less error than their non-adaptive counterparts. Compared to the non-

adaptive controllers, it can be seen that the oscillations in the adaptive controllers

are smoother and the trajectory tracking procedure consistently terminates without

any oscillations present. The differences between the adaptive PD and backstepping

controllers appear to be very minute in this comparison. The peak, mean and RMS

joint angle errors in degrees is shown in Table 7.3.

Motor One Motor Two
Non− Fuzzy Logic Controller Peak Mean RMS Peak Mean RMS

Non-Adaptive PD 1.7776 0.5017 0.6695 1.8135 0.5136 0.6896
Adaptive PD 1.5929 0.4978 0.6623 1.9261 0.5185 0.6929

Non-Adaptive Backstepping 1.7943 0.5581 0.7138 1.9489 0.5223 0.6883
Adaptive Backstepping 1.7265 0.5462 0.7092 1.9359 0.5118 0.6783

Table 7.3: Peak, Mean and RMS Non-Fuzzy Logic Controller Joint Angle Errors

7.3.2 End Effector Trajectory

The next set of figures portray the trajectory tracking of the end effector along with

its respective error between its desired and actual position. In order to determine

the actual location of the end effector, equations (2.19) and (2.20) were employed

to solve for q4 and q3, respectively. The forward kinematics equations were applied

based on all the available data to definitively determine the actual location of the

end effector in Cartesian coordinates. The forward kinematics equations utilized for

the two degrees of freedom planar parallel robot are based upon the works defined

in [68] and [46]. The results from the joint angles of q1 and q2 play a crucial role in

the determination of the actual location of the end effector, since a small angular

error would not cause a large deviation when compared to the desired trajectory.

The plots of the end effector output along with their respective error in the x-axis

and y-axis are also shown in order to easily identify the severity of the error.
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Figure 7.9: End Effector Trajectory for Non-Adaptive PD
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Figure 7.10: End Effector Circular Trajectory for Non-Adaptive PD
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Figure 7.11: End Effector Trajectory for Adaptive PD
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Figure 7.12: End Effector Circular Trajectory for Adaptive PD
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Figure 7.13: End Effector Trajectory for Non-Adaptive Backstepping
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Figure 7.14: End Effector Circular Trajectory for Non-Adaptive Backstepping
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Figure 7.15: End Effector Trajectory for Adaptive Backstepping
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Figure 7.16: End Effector Circular Trajectory for Adaptive Backstepping
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Figure 7.17: End Effector Output for Non-Adaptive PD

2 4 6 8 10 12 14

−5

0

5

x 10−3 End Effector Error on x−axis

D
ev

ia
tio

n 
(m

et
re

s)

2 4 6 8 10 12 14
−0.01

−0.005

0

0.005

0.01
End Effector Error on y−axis

Time (seconds)

D
ev

ia
tio

n 
(m

et
re

s)

Figure 7.18: End Effector Output Error for Non-Adaptive PD
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Figure 7.19: End Effector Output for Adaptive PD
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Figure 7.20: End Effector Output Error for Adaptive PD
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Figure 7.21: End Effector Output for Non-Adaptive Backstepping
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Figure 7.22: End Effector Output Error for Non-Adaptive Backstepping
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Figure 7.23: End Effector Output for Adaptive Backstepping
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Figure 7.24: End Effector Output Error for Adaptive Backstepping
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Similar to the previous observation, the adaptive PD and backstepping con-

trollers procured the most desirable end effector tracking. On average, the end

effector output error figures for all four controllers are situated within an error

range of 0.006 metres for the x-axis and y-axis. This makes it very difficult to reach

a conclusion based on these plots alone; hence, it is much easier to notice the dif-

ferences between the circular end effector trajectory figures. The most impressive

trajectory tracking controller is the adaptive PD controller. It achieves an acutely

symmetrical circle without conceding a large displacement error. The adaptive

backstepping controller is also quite proficient due to the low displacement error,

yet the symmetry of the circle is not as desirable as the adaptive PD controller.

7.3.3 Computation and Transmission Time

The following plots portray the computation time, which is defined as the time for

the server computer to calculate the control signals. There are also figures for the

transmission time, which is defined as the time between the moment at which the

DSP board sends the feedback signals over the Lakehead University network to the

server and the moment at which the server receives this data plus the time between

the moment at which the server sends the control signals to the DSP board over

the Lakehead University network and the moment at which the DSP board receives

this data.
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Figure 7.25: Computation Time for Non-Adaptive PD
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Figure 7.26: Transmission Time for Non-Adaptive PD
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Figure 7.27: Computation Time for Adaptive PD
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Figure 7.28: Transmission Time for Adaptive PD
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Figure 7.29: Computation Time for Non-Adaptive Backstepping
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Figure 7.30: Transmission Time for Non-Adaptive Backstepping
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Figure 7.31: Computation Time for Adaptive Backstepping
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Figure 7.32: Transmission Time for Adaptive Backstepping
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The preceding figures show the transmission time based on the Lakehead Uni-

versity network. On average, the overall transmission time for each controller was

approximately 3.4 milliseconds. The main differences lay with the computation

time plots. It can be seen that there is a clear decrease in computation time during

the circular trajectory tracking procedure of the end effector. This is due to the fact

that the desired circular trajectory is calculated offline by the server computer, so

the server computer is not required to perform this operation online. The desired

trajectory tracking of the progressive arc path that occurs prior and subsequent to

this moment is calculated online, hence the larger computation time. Overall, the

adaptive backstepping controller calculated the control signals for the end effector

trajectory the quickest. The trajectory tracking of the progressive arc path needed

approximately 41 microseconds to compute each sample, while the circular trajec-

tory tracking needed approximately 35 microseconds to compute each sample. It

is also important to note that the adaptive PD and backstepping controllers pro-

cured quicker computation time results than their non-adaptive counterparts. The

reasoning behind this result relates to the multitude of mathematical operations

present in the non-adaptive controllers due to definitive calculation of the D(q′),

C(q′, q̇′) and g(q′) matrices, while the adaptive controllers estimate the value of Θ

attached to these matrices.

7.3.4 Controller Output - PWM

The subsequent set of figures will illustrate the PWM signals generated by the DSP

board to control the motors of the parallel robot system in order to achieve the

desired trajectory. To calculate the PWM signals, the control signals for the non-

adaptive and adaptive backstepping and PD controllers were calculated in equations

(3.11), (3.21), (3.29) and (3.37), respectively.
129



2 4 6 8 10 12 14
−40

−20

0

20

40
PWM Output for Motor 1

A
m

pl
itu

de
 (p

er
ce

nt
)

2 4 6 8 10 12 14
−40

−20

0

20

40
PWM Output for Motor 2

Time (seconds)

A
m

pl
itu

de
 (p

er
ce

nt
)

Figure 7.33: PWM Signal for Non-Adaptive PD
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Figure 7.34: PWM Signal for Adaptive PD
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Figure 7.35: PWM Signal for Non-Adaptive Backstepping
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Figure 7.36: PWM Signal for Adaptive Backstepping
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7.4 Experimentations of Fuzzy Logic Controllers

The experimentation results for all the controllers discussed in this section follow

the same circular trajectory regardless of the initial position. It should be noted

that the value of Γ defined in Table 7.2 applies to all the parameters of Γ defined in

each respective controller. The indirect adaptive fuzzy, direct adaptive fuzzy and

fuzzy adaptive backstepping controllers require an initial value for Θ̂. This value is

defined as 0.1 for all the parameters listed in the specified controllers. Based on a

90 degree operating point, the value of b in the direct adaptive fuzzy controller is

104.4766 and 99.3706 for motors one and two, respectively.

7.4.1 Joint Angles

The following figures depict the error between the desired and actual joint angles of

q1 and q2, respectively. These are the only two angles directly controllable by the

actuators of the parallel robot. It is crucial that the difference between the desired

angles and the actual angles of q1 and q2 be as small as possible, in order for the

end effector error to be minimized.

Motor One Motor Two
Fuzzy Logic Controller Peak Mean RMS Peak Mean RMS

Fuzzy PD 2.4519 0.7168 0.9240 2.1646 0.7268 0.8907
Indirect Adaptive Fuzzy 1.4248 0.3413 0.4635 1.5077 0.3730 0.5122
Direct Adaptive Fuzzy 1.4505 0.4513 0.6027 1.5287 0.4522 0.6211

Fuzzy Adaptive Backstepping 1.5920 0.5131 0.7013 1.5995 0.4764 0.6579

Table 7.4: Peak, Mean and RMS Fuzzy Logic Controller Joint Angle Errors
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Figure 7.37: Joint Angles for Fuzzy PD
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Figure 7.38: Joint Angles Error for Fuzzy PD
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Figure 7.39: Joint Angles for Indirect Adaptive Fuzzy
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Figure 7.40: Joint Angles Error for Indirect Adaptive Fuzzy
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Figure 7.41: Joint Angles for Direct Adaptive Fuzzy
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Figure 7.42: Joint Angles Error for Direct Adaptive Fuzzy

135



2 4 6 8 10 12 14
−140

−120

−100

−80
Joint Angle q1

A
ng

le
 (d

eg
re

es
)

 

 

actual
desired

2 4 6 8 10 12 14
−100

−90

−80

−70

−60
Joint Angle q2

Time (seconds)

A
ng

le
 (d

eg
re

es
)

 

 
actual
desired

Figure 7.43: Joint Angles for Fuzzy Adaptive Backstepping

2 4 6 8 10 12 14
−2

−1

0

1

2
Joint Angle Error of q1

A
ng

le
 (d

eg
re

es
)

2 4 6 8 10 12 14
−2

−1

0

1

2
Joint Angle Error of q2

Time (seconds)

A
ng

le
 (d

eg
re

es
)

Figure 7.44: Joint Angles for Fuzzy Adaptive Backstepping
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The fuzzy logic controller simulations predicted that the indirect fuzzy adaptive

controller would yield the least desirable results and the fuzzy adaptive backstep-

ping controller would produce the most desirable. Surprisingly, even though the

indirect fuzzy adaptive controller was the most complex controller implemented on

the parallel robot structure, it generated less error than the simpler fuzzy PD con-

troller. The reasoning behind this is evidently due to the fact that the fuzzy PD

controller could not compensate for the complexities of the parallel robot structure

without introducing serious oscillations to the trajectory tracking. The remaining

three controllers produced similar joint angles error plots with the results consis-

tently less than 1.6 degrees; hence more data is required to determine the most

satisfactory control technique. The peak, mean and RMS joint angle errors in

degrees is shown in Table 7.4.

7.4.2 End Effector Trajectory

The next set of figures portray the trajectory tracking of the end effector along with

its respective error between its desired and actual position. In order to determine

the actual location of the end effector, equations (2.19) and (2.20) were employed

to solve for q4 and q3, respectively. The forward kinematics equations were applied

based on all the available data to definitively determine the actual location of the

end effector in Cartesian coordinates. The forward kinematics equations utilized for

the two degrees of freedom planar parallel robot are based upon the works defined

in [68] and [46]. The results from the joint angles of q1 and q2 play a crucial role in

the determination of the actual location of the end effector, since a small angular

error would not cause a large deviation when compared to the desired trajectory.

The plots of the end effector output along with their respective error in the x-axis

and y-axis are also shown in order to easily identify the severity of the error.
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Figure 7.45: End Effector Trajectory for Fuzzy PD
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Figure 7.46: End Effector Circular Trajectory for Fuzzy PD
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Figure 7.47: End Effector Trajectory for Indirect Adaptive Fuzzy
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Figure 7.48: End Effector Circular Trajectory for Indirect Adaptive Fuzzy
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Figure 7.49: End Effector Trajectory for Direct Adaptive Fuzzy
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Figure 7.50: End Effector Circular Trajectory for Direct Adaptive Fuzzy
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Figure 7.51: End Effector Trajectory for Fuzzy Adaptive Backstepping
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Figure 7.52: End Effector Circular Trajectory for Fuzzy Adaptive Backstepping
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Figure 7.53: End Effector Output for Fuzzy PD
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Figure 7.54: End Effector Output Error for Fuzzy PD
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Figure 7.55: End Effector Output for Indirect Adaptive Fuzzy

2 4 6 8 10 12 14

−5

0

5

x 10−3 End Effector Error on x−axis

D
ev

ia
tio

n 
(m

et
re

s)

2 4 6 8 10 12 14
−0.01

−0.005

0

0.005

0.01
End Effector Error on y−axis

Time (seconds)

D
ev

ia
tio

n 
(m

et
re

s)

Figure 7.56: End Effector Output Error for Indirect Adaptive Fuzzy
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Figure 7.57: End Effector Output for Direct Adaptive Fuzzy
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Figure 7.58: End Effector Output Error for Direct Adaptive Fuzzy
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Figure 7.59: End Effector Output for Fuzzy Adaptive Backstepping
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Figure 7.60: End Effector Output Error for Fuzzy Adaptive Backstepping
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Similar to the previous observation, the difficulties of the fuzzy PD controller

while tracking the circular trajectory is clearly visible. The end effector error in the

x-axis deviates over 0.008 metres at certain instances, compared to the other three

controllers which rarely achieve a deviation of 0.006 metres in either axis. The

controller which achieves the least amount of end effector deviation error is the in-

direct adaptive fuzzy controller, but it is also more prone to oscillations when com-

pared to the direct adaptive fuzzy controller and the fuzzy adaptive backstepping

controller. The most compelling evidence concerning the most proficient circular

trajectory tracking can be seen with the fuzzy adaptive backstepping controller. It

has a smoother tracking performance when compared to all the other controllers

discussed in this section without conceding a large displacement error and it tracks

an acutely symmetrical circle. The direct adaptive fuzzy controller is also quite

proficient due to the low displacement error, yet the symmetry of the circle is not

as desirable as the fuzzy adaptive backstepping controller.

7.4.3 Computation and Transmission Time

The following plots portray the computation time, which is defined as the time for

the server computer to calculate the control signals. There are also figures for the

transmission time, which is defined as the time between the moment at which the

DSP board sends the feedback signals over the Lakehead University network to the

server and the moment at which the server receives this data plus the time between

the moment at which the server sends the control signals to the DSP board over

the Lakehead University network and the moment at which the DSP board receives

this data.
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Figure 7.61: Computation Time for Fuzzy PD
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Figure 7.62: Transmission Time for Fuzzy PD
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Figure 7.63: Computation Time for Indirect Adaptive Fuzzy
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Figure 7.64: Transmission Time for Indirect Adaptive Fuzzy
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Figure 7.65: Computation Time for Direct Adaptive Fuzzy
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Figure 7.66: Transmission Time for Direct Adaptive Fuzzy
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Figure 7.67: Computation Time for Fuzzy Adaptive Backstepping
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Figure 7.68: Transmission Time for Fuzzy Adaptive Backstepping
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The preceding figures show the transmission time based on the Lakehead Uni-

versity network. On average, the overall transmission time for each controller was

approximately 3.8 milliseconds, except for the indirect adaptive fuzzy controller,

which achieved a result of approximately 3.15 milliseconds. The main differences

lay with the computation time plots. It can be seen that there is a clear decrease

in computation time during the circular trajectory tracking procedure of the end

effector. This is due to the fact that the desired circular trajectory is calculated of-

fline by the server computer, so the server computer is not required to perform this

operation online. The desired trajectory tracking of the progressive arc path that

occurs prior and subsequent to this moment is calculated online, hence the larger

computation time. Overall, the fuzzy adaptive backstepping controller calculated

the control signals for the end effector trajectory the quickest. The trajectory track-

ing of the progressive arc path needed approximately 17 microseconds to compute

each sample, while the circular trajectory tracking needed approximately 5 mi-

croseconds to compute each sample. It is also important to note that the indirect

adaptive fuzzy controller took the longest to calculate the control signals, which

makes sense since it is the most computationally intensive control technique. The

direct adaptive fuzzy controller attained respectable results; needing approximately

25 microseconds to compute each sample the trajectory tracking of the progressive

arc path and approximately 18 microseconds for the circular trajectory tracking.

7.4.4 Controller Output - PWM

The subsequent set of figures will illustrate the PWM signals generated by the DSP

board to control the motors of the parallel robot system in order to achieve the

desired trajectory. To calculate the PWM signals, the control signals for the fuzzy

PD, indirect adaptive fuzzy, direct adaptive fuzzy and fuzzy adaptive backstepping

controllers were calculated in equations (4.7), (4.12), (4.43) and (4.89), respectively.
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Figure 7.69: PWM Signal for Fuzzy PD
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Figure 7.70: PWM Signal for Fuzzy Adaptive Backstepping
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Figure 7.71: PWM Signal for Indirect Adaptive Fuzzy
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Figure 7.72: PWM Signal for Direct Adaptive Fuzzy
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7.5 Controller Recommendation

Eight controllers have been simulated on MATLAB and experimented on the planar

two degrees of freedom parallel robot structure. The joint angles, trajectory track-

ing and controller output figures were presented and analyzed between one another

for both the simulation and experimental results; hence by using all the available

data, a final conclusion will affirm the most appropriate controller to implement on

the parallel robot structure.

The simulation results of the non-fuzzy controllers portrayed the non-adaptive

and adaptive backstepping controllers as the most likely candidate controllers to

achieve the most adequate tracking performance due to their quick convergence.

The simulation results of the fuzzy controllers portrayed the fuzzy adaptive back-

stepping controller as the most proficient control technique due to the minimal

circular trajectory errors, while the indirect adaptive fuzzy controller portrayed

the most undesirable controller results due to the system estimation error preva-

lent in its controller output plot. Therefore, the next logical step consisted of the

implementation of all the simulated controllers on the experimental apparatus to

examine whether the results would concur with one another.

The experimentation results of the non-fuzzy controllers yielded certain dis-

similar outcomes when compared to their simulation results. The adaptive PD

and backstepping controllers had less profound oscillations while performing the

trajectory tracking and the computation time was significantly less than their non-

adaptive counterparts. Yet, it was the adaptive PD controller that held a slight edge

against the adaptive backstepping controller due to the repeatability of tracking an

acutely symmetrical circle while performing the circular end effector trajectory.

The most exciting results lay in the experimentation of the fuzzy logic controllers.

Contrary to the simulation results, the indirect adaptive fuzzy controller performed
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much better in terms of the PWM signal generated for the motors, while the fuzzy

PD controller yielded slightly worse trajectory tracking plots. It is more than likely

that the reason the indirect adaptive fuzzy controller achieved better findings dur-

ing the experimental trials than its simulation results is due to the multitude of

calculations involved while approximating the unknown parameters in MATLAB.

The ordinary differential equation solver is accredited with significantly increasing

the overall simulation time due the computation time required to estimate the large

number of unknown parameters that must be solved in this control technique. This

observation is prevalent in the experimental results since the indirect adaptive con-

troller suffers from the longest computation time out of all the control techniques.

The indirect adaptive fuzzy controller realized the lowest end effector deviation

when compared to all eight control techniques, but it was also more prone to slight

oscillations while performing the desired trajectory, hence causing the circular tra-

jectory tracking to yield unsatisfactory results. As for the fuzzy PD controller, it

could not compensate for the complexities of the parallel robot structure without

introducing serious oscillations to the trajectory tracking. The direct adaptive fuzzy

controller performed nearly exactly as the simulation results predicted. It achieved

very low displacement error, yet the symmetry of the circle was not as desirable as

the fuzzy adaptive backstepping controller.

Overall, the controller that outputted the most impressive experimental results

were found in the fuzzy adaptive backstepping controller. The joint angles yielded

a maximum angular error of 1.5 degrees, which is approximately 0.5 degrees smaller

than any of the non-fuzzy logic controllers and on par with the indirect and direct

adaptive fuzzy controllers. The end effector trajectory figures portrayed a maximum

of 0.006 metres of deviation in the x-axis and y-axis, but it is the tracking perfor-

mance which sets this controller apart from the rest. It has the smoothest tracking
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performance when compared to all the other controllers discussed in this thesis

without conceding a large displacement error and it tracks an acutely symmetrical

circle. Another significant advantage of the fuzzy adaptive backstepping controller

when compared to all the other control techniques is the computation time required

to generate the control signals. The trajectory tracking of the progressive arc path

needed approximately 17 microseconds to compute each sample, while the circular

trajectory tracking needed approximately 5 microseconds to compute each sample.

The trajectory tracking of the progressive arc path is 8 microseconds quicker and

the circular trajectory tracking is 13 microseconds faster than the direct adaptive

fuzzy controller.

Therefore, based on the generated simulation and experimental results along

with the comparisons between all eight controllers, the candidate controller which

best suits the needs of the planar two degrees of freedom parallel robot is the fuzzy

adaptive backstepping controller. The simulation and experimental results both

show how accurate this control technique is, which is exemplified by the fact that

it contains the greatest number of tuneable parameters of any of the controllers

discussed in this thesis without being computationally intensive.
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Chapter 8

Conclusion

8.1 Conclusion

The purpose of this thesis was to compare the simulation and experimental results

of the non-adaptive and adaptive PD and backstepping controllers along with the

fuzzy PD, indirect adaptive fuzzy, direct adaptive fuzzy and fuzzy adaptive back-

stepping controllers and garner a recommendation for the most suitable control

technique to employ on the planar two degrees of freedom parallel robot structure.

A summary of the differences between serial and parallel robot structures intro-

duced the background of robotics, while the literature review provided a detailed

account of the beginning of robotics. It focused on the main contributors in the field

of parallel robots, whom began an unstoppable force of ingenuity that produced the

vast varieties of parallel robot structures that play key roles in our society today.

The planar two degrees of freedom parallel robot was introduced and modelled

using the dynamic equations, inverse kinematics and non-singular region in order

to adequately define the parameters of the non-linear system. The derivations of

eight controllers were solved to ensure stability of the closed loop system, which all

eight controllers achieved a negative semi-definite solution for V̇2 or V̇ . This led

to the simulation of the non-fuzzy and fuzzy controllers in MATLAB to analyze

whether the actual circular trajectory could satisfactorily track the desired circu-
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lar trajectory. Once this task was completed, the electrical and mechanical design

of the physical parallel robot structure was discussed in detail. The final portion

consisted of the experimentation of the eight controllers on the planar two degrees

of freedom parallel robot in order to conclusively determine the most appropriate

controller to employ on the physical structure.

In conclusion, the fuzzy adaptive backstepping controller yielded the most re-

markable results. The controller attained accurate end effector tracking results

without compromising the amount of computation time and control effort usually

found in more complex control techniques. It is highly recommended that the

fuzzy adaptive backstepping control technique be utilized in various parallel robot

structures to determine if similar results can be achieved.

8.2 Future Work

Due to the success of the fuzzy adaptive backstepping controller, the next step

would comprise of programming the common point to perform more complex ma-

noeuvres. This would lead to the implementation of a proper end effector that

could manipulate an object by the pick and place procedure.

Another issue that must be addressed concerns the proof for the stability of the

indirect and direct adaptive fuzzy controllers using the interconnection terms. The

performance of the adaptive controllers can also be improved by implementing the

term −σΘ̂ to prevent the parameters from going to infinity, which would destabilize

the system over a long duration of operation.
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Appendix A

DSP Circuit Board Layout

This appendix will entail specific details about the DSP board. It will consist of the

pinout tables of the DSP board followed by the schematic and PCB layout of the

DSP board using the EAGLE Layout Editor (Version 5.4). The schematic diagram

of the DSP board will be split up into smaller segments in order to accurately see

the connections between the components. The PCB layout for the DSP board will

be split up into three segments in order to visualize the trace connections between

the components.
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ADC_LS 
174 172 170 168 2 4 6 8 - 1, 13, 

14, 166 
ADCINA0 ADCINA2 ADCINA4 ADCINA6 ADCINB0 ADCINB2 ADCINB4 ADCINB6 - VDDAIO,  

AVDDREF, 
VDDA1, VDDA2 

PF1 PF3 PF5 FF1 FF3 CF1 CF3 CF5 LS 3.3V 
1 3 5 7 9 11 13 15 17 19 
2 4 6 8 10 12 14 16 18 20 

PF 2 PF 4 PF 6 FF2 FF4 CF2 CF4 CF6 AGND 3.3V 
ADCINA1 ADCINA3 ADCINA5 ADCINA7 ADCINB1 ADCINB3 ADCINB5 ADCINB7 AVSSREF, 

VSSA1, VSSA2, 
VSSAIO 

VDDAIO,  
AVDDREF, 
VDDA1, VDDA2 

173 171 169 167 3 5 7 9 12, 15,  
165, 176 

1, 13, 
14, 166 

PF = Position Feedback; FF = Force Feedback; CF = Current Feedback; LS = Limit Switch;  
AGND = Analog Ground; 3.3V = Analog Power 
 
DIR_PWM 

116 122 124 92 98 47 28 26 22 72 
TDIRA 

(GPIOA11) 
|C1TRIP| 

(GPIOA13) 
|C3TRIP| 

(GPIOA15) 
PWM1 

(GPIOA0) 
PWM5 

(GPIOA4) 
PWM9 

(GPIOB2) 
MCLKXA 
(GPIOF8) 

MFSXA 
(GPIOF10) 

MDXA 
(GPIOF12) 

TCLKINB 
(GPIOB12) 

DIR1 DIR3 DIR5 PWM1 PWM5 PWM9 TF1 TF3 TF5 Break 
1 3 5 7 9 11 13 15 17 19 
2 4 6 8 10 12 14 16 18 20 

DIR2 DIR4 DIR6 PWM3 PWM7 PWM11 TF2 TF4 TF6 Relay Out 
TCLKINA 
(GPIOA12) 

|C2TRIP| 
(GPIOA14) 

TDIRB 
(GPIOB11) 

PWM3 
(GPIOA2) 

PWM7 
(GPIOB0) 

PWM11 
(GPIOB4) 

MCLKRA 
(GPIOF9) 

MFSRA 
(GPIOF11) 

MDRA 
(GPIOF13) 

- 
- 

117 123 71 94 45 49 25 29 20 - 
PWM = Pulse Width Modulation; DIR = Direction; TF = Thermal Flag;  
 
QEP 

106 109 59 31, 64, 81, 114, 145 69 
CAP1_QEP1 

(GPIOA8) 
CAP3_QEPI1 
(GPIOA10) 

CAP5_QEP4 
(GPIOB9) 

VDDIO VDD3VFL 

QEP1 QEPI1 QEP4 3.3V 3.3V 
1 3 5 7 9 
2 4 6 8 10 

QEP2 QEP3 QEPI2 GND GND 
CAP2_QEP2 

(GPIOA9) 
CAP4_QEP3 

(GPIOB8) 
CAP6_QEPI2 
(GPIOB10) 

VSS TESTSEL, 
VSS1 

107 57 60 19, 32, 38, 52, 58, 70, 78, 86, 99, 105, 113, 120, 129, 142, 153 134, 163  
3.3V and VSS =  Digital Power; QEP = Quadrature Encoder Pulse; GND = Digital Ground;  
 

Table A.1: DSP Board Pinout 1
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SPI_RT 
40 34 53 61 115 

SPISIMOA 
(GPIOF0) 

SPICLKA 
(GPIOF2) 

T3PWM_T3CMP 
(GPIOB6) 

|C4TRIP| 
(GPIOB13) 

|T2CTRIP| / |EVASOC| 
(GPIOD1) 

SPISIMOA SPICLKA SPISTEA2 RT1 RT3 
1 3 5 7 9 
2 4 6 8 10 

SPISOMIA SPISTEA1 SPISTEA3 RT2 RT4 
SPISOMIA 
(GPIOF1) 

SPISTEA 
(GPIOF3) 

T4PWM_T4CMP 
(GPIOB7) 

|T1CTRIP_PDPINTA| 
(GPIOD0) 

|T3CTRIP| / |PDPINTB| 
(GPIOD5) 

41 35 55 110 79 
RT =  Relay Trigger 
 
JTAG 

126 131 Same as QEP 127 136 136 137 
TMS TDI VDDIO TDO TCK TCK EMU0 
TMS TDI PD TDO TCK_RET TCK EMU0 

1 3 5 7 9 11 13 
2 4 6 8 10 12 14 

TRST TMS/TDI GND GND GND GND EMU1 
|TRST| VSS VSS VSS VSS VSS EMU1 

135 Same as QEP Same as QEP Same as QEP Same as QEP Same as QEP 146 
 
POWER 
Same as QEP Same as QEP Same as QEP Same as QEP Same as QEP 

VSS VSS VSS VSS VSS 
GND GND GND GND GND 

1 3 5 7 9 
2 4 6 8 10 

3.3V 3.3V 3.3V 5V 1.8V 
VDDIO VDDIO VDDIO - VDD, VDD1 

Same as QEP Same as QEP Same as QEP - 23, 37, 56, 75, 100, 112, 128, 143, 154, 162 
 
ANALOG_POWER 

12, 15, 165, 176 12, 15, 165, 176 12, 15, 165, 176 12, 15, 165, 176 12, 15, 165, 176 
AVSSREF,  

VSSA1, VSSA2, VSSAIO 
AVSSREF,  

VSSA1, VSSA2, VSSAIO 
AVSSREF,  

VSSA1, VSSA2, 
VSSAIO 

AVSSREF,  
VSSA1, VSSA2, VSSAIO 

AVSSREF,  
VSSA1, VSSA2, VSSAIO 

AGND AGND AGND AGND AGND 
1 3 5 7 9 
2 4 6 8 10 

3.3V 3.3V VREFLO ADCREFM ADCREFP 
VDDAIO,  AVDDREF, 

VDDA1, VDDA2 
VDDAIO, AVDDREF,  

VDDA1, VDDA2 
ADCLO ADCREFM ADCREFP 

1, 13, 14, 166 1, 13, 14, 166 175 10 11 
 

Table A.2: DSP Board Pinout 2
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The PCB layouts are as followed: Top Layer; Both Layers; Bottom Layer.
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Appendix B

Motor Driver Circuit Board
Layout

This appendix will entail specific details about the motor driver board. It will

consist of the pinout tables of the motor driver board followed by the schematic

and PCB layout of the motor driver board using the EAGLE Layout Editor (Version

5.4). The schematic diagram of the motor driver board will be split up into smaller

segments in order to accurately see the connections between the components. The

PCB layout for the motor driver board will be split up into three segments in order

to visualize the trace connections between the components.
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DIR_PWM_TF_BRK_REL (CON3) 
IC1 - #3 IC3 - #3 IC5 - #3 IC1 - #5 IC3 - #5 IC5 - #5 IC1 - #9 IC3 - #9 IC5 - #9 72 

DIR1 
(GPIOA11) 

DIR3 
(GPIOA13) 

DIR5 
(GPIOA15) 

PWM1 
(GPIOA0) 

PWM3 
(GPIOA4) 

PWM5 
(GPIOB2) 

TF1 
(GPIOF8) 

TF3 
(GPIOF10) 

TF5 
(GPIOF12) 

Break 
(GPIOB12) 

1 3 5 7 9 11 13 15 17 19 
2 4 6 8 10 12 14 16 18 20 

DIR2 
(GPIOA12) 

DIR4 
(GPIOA14) 

DIR6 
(GPIOB11) 

PWM2 
(GPIOA2) 

PWM4 
(GPIOB0) 

PWM6 
(GPIOB4) 

TF2 
(GPIOF9) 

TF4 
(GPIOF11) 

TF6 
(GPIOF13) 

Relay 
Output 

IC2 - #3 IC4 - #3 IC6 - #3 IC2 - #5 IC4 - #5 IC6 - #5 IC2 - #9 IC4 - #9 IC6 - #9 - 
PWM = Pulse Width Modulation; DIR = Direction; TF = Thermal Flag 
 
M123 

Motor 1+ Motor 1- Motor 2+ Motor 2- Motor 3+ Motor 3- 
1 2 3 4 5 6 

 
M456 

Motor 4+ Motor 4- Motor 5+ Motor 5- Motor 6+ Motor 6- 
1 2 3 4 5 6 

 

Table B.1: Motor Driver Board Pinout
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The PCB layouts are as followed: Top Layer; Both Layers; Bottom Layer.
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