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Abstract

The relationship between monotonicity and accretivity on Riemannian man-

ifolds is studied in this paper and both concepts are proved to be equivalent in

Hadamard manifolds. As a consequence an iterative method is obtained for ap-

proximating singularities of Lipschitz continuous, strongly monotone mappings.

We also establish the equivalence between the strong convexity of convex func-

tions and the strong monotonicity of its subdifferentials on Riemannian mani-

folds. These results are then applied to solve the minimization problem of convex

functions on Riemannian manifolds.

Keywords: Hadamard manifold, monotone vector field, accretive vector field,

singularity, fixed point, iterative algorithm, convex function, minimization prob-

lem.
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1 Introduction

The concepts of monotonicity and accretivity constitute a valuable tool in studying

important operators, such as the gradient or subdifferential of a convex function, which

appear in many problems in optimization, equilibrium, variational inequality problems

or differential equations; see, for instance, [1, 2, 3, 4] and references therein.

Given a Banach space E with dual space E∗, recall from [1] that a set-valued operator

A : E → 2E∗
is said to be monotone provided that, for any x, y ∈ D(A),

〈x∗ − y∗, x− y〉 ≥ 0 for any x∗ ∈ A(x) and y∗ ∈ A(y),

where D(A) denotes the domain of A defined by D(A) := {x ∈ E : A(x) 6= ∅}. On

the other hand, a set-valued operator A : E → 2E is said to be accretive if, for each

x, y ∈ D(A) and r ≥ 0,

‖x− y‖ ≤ ‖(x + ru)− (y + rv)‖ for any u ∈ A(x) and v ∈ A(y).

One of the most relevant facts in the theory of monotone and accretive operators is that

in Hilbert spaces the two classes of operators coincide; see [1].

Some nonconvex constrained minimization problems can be solved by writing them as

convex minimization problems in Riemannian manifolds; see, for example, [5, 6, 7, 8, 9].

This fact, together with natural progress in mathematics, have led researchers from dif-

ferent areas, such as optimization, differential equations or fixed point theory, to extend

the concepts and techniques which fit in Euclidean spaces to Riemannian manifolds; see,

for example, [10, 11, 12]. These extensions have been developed in the last few years
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often in order to obtain effective algorithms of optimization on Riemannian manifolds;

see, for instance, [6, 7, 13, 14, 15]. In particular, in [7], an algorithm is provided for

solving constrained problems in Rn having a constant curvature Hadamard manifold as

constraint set. One of the simplest and most powerful among these methods is Newton’s.

The convergence properties of Newton’s method on Riemannian manifolds have been ex-

tensively explored in [16, 17, 18, 19, 20, 21] and the references therein. On the other

hand, various derivative-like and subdifferential constructions for nondifferentiable func-

tions on spaces with nonlinear structure have been developed and applied to the study

of constrained optimization problems, nonclassical problems of the calculus of variations

and optimal control; see [6, 14, 15, 22]. They generalized solutions to first-order partial

differential equations on Riemannian manifolds and other important classes of spaces

without linear structure. Moreover, the extension of the maximal monotonicity to the

setting of Riemannian manifolds renders feasible the development of a proximal-type

method to approximate singularities of set-valued vector fields on a class of Rieman-

nian manifolds with nonpositive sectional curvatures (i.e., on Hadamard manifolds); see

[6, 23, 24].

The purpose of this paper is to study the relationship among the different concepts

of monotone vector fields which previously have been introduced in the framework of

Riemannian manifolds, as well as the notion of accretive vector field which is introduced

here for the first time in this setting. We also provide an explicit iteration scheme

for approximating singularities of strongly monotone vector fields, which is applied for
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solving minimization problems.

The organization of the paper is as follows. In section 2 we introduce basic concepts,

results and notations on Riemannian manifolds. In sections 3 and 4, the equivalence of

the different definitions of monotonicity on Riemannian manifolds which appear in the

literature (e. g., [5, 12, 25]) is proved. As a consequence we show that in the setting of

Hadamard manifolds the classes of monotone and strong monotone vector fields coincide,

respectively, with the classes of accretive and strongly accretive vector fields introduced

in this work. Section 5 is devoted to the study of the existence and approximation

of singularities of strongly monotone vector fields. In the last section, section 6, we

introduce the concept of strongly convex functions on Riemannian manifolds and we

prove that the subdifferential of this type of functions is strongly monotone. This result

is a counterpart of the one proved by Rockafellar in Hilbert spaces [26]. Finally the

results of section 5 are applied to obtain the convergence of an iterative method to the

minimum of a subprogram to get a minimizer of a convex function [23].

2 Preliminaries

In this section we introduce some of the fundamental definitions, properties and notations

needed for a comprehensive reading of this paper. This can be found in any text book

on Riemannian geometry, for example [13, 27, 28].

Let M be a connected m-dimensional manifold and let x ∈ M . The tangent space of

M at x is denoted by TxM and the tangent bundle of M by TM =
⋃

x∈M TxM , which
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is naturally a manifold. We always assume that M can be endowed with a Riemannian

metric 〈·, ·〉, with the corresponding norm denoted by ‖ · ‖, to become a Riemannian

manifold. Given a piecewise smooth curve γ : [a, b] → M joining x to y (i.e. γ(a) = x and

γ(b) = y), we can define the length of γ by l(γ) =
∫ b

a
‖γ′(t)‖dt. Then the Riemannian

distance d(x, y), which induces the original topology on M , is defined by minimizing

this length over the set of all such curves joining x to y.

Let ∇ be the Levi-Civita connection associated with (M, 〈·, ·〉). Let γ be a smooth

curve in M . A vector field X is said to be parallel along γ if ∇γ′X = 0. If γ′ itself is

parallel along γ, we say that γ is a geodesic, and in this case ‖γ′‖ is constant. When

‖γ′‖ = 1, γ is said to be normalized. A geodesic joining x to y in M is said to be minimal

if its length equals d(x, y).

A Riemannian manifold is complete if for any x ∈ M all geodesics emanating from

x are defined for all −∞ < t < ∞. By the Hopf-Rinow Theorem, we know that if M is

complete then any pair of points in M can be joined by a minimal geodesic. Moreover,

(M, d) is a complete metric space and bounded closed subsets are compact.

We use Pγ,·,· to denote the parallel transport on the tangent bundle TM along γ with

respect to ∇, which is defined by

Pγ,γ(b),γ(a)(v) = V (γ(b)) for any a, b ∈ R and v ∈ Tγ(a)M,

where V is the unique vector field satisfying ∇γ′(t)V = 0 for all t and V (γ(a)) = v. Then,

for any a, b ∈ R, Pγ,γ(b),γ(a) is an isometry from Tγ(a)M to Tγ(b)M . We will write Py,x

instead of Pγ,y,x in the case when γ is a minimal geodesic joining x to y so no confusion
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arises.

Assuming that M is complete, the exponential map expx : TxM → M at x is defined

by expx v = γv(1, x) for each v ∈ TxM , where γ(·) = γv(·, x) is the geodesic starting at x

with velocity v. Then expx tv = γv(t, x) for each real number t. Note that the mapping

expx is differentiable on TxM for any x ∈ M .

We will denote by B(x, r) the open metric ball centered at x with radius r. Note

that (cf. [27, p.72]) there exist r > 0 and δ > 0 such that, for each y ∈ B(x, r),

expy(B(0, δ)) ⊃ B(x, r) and expy(·) is a diffeomorphism on B(0, δ) ⊂ TyM . It is cus-

tomary to call B(x, r) a totally normal neighborhood of x. The biggest radius r is

denoted by rx, that is,

rx := sup{r > 0 : B(x, r) is a totally normal neighborhood of x}.

A complete simply-connected Riemannian manifold of nonpositive sectional curva-

ture is called a Hadamard manifold. The following proposition, taken from [28], shows

that rx = +∞ for each x ∈ M if M is a Hadamard manifold.

Proposition 2.1. Let M be a Hadamard manifold and x ∈ M . Then expx : TxM → M

is a diffeomorphism and, for any two points x, y ∈ M , there exists a unique normalized

geodesic joining x to y which is in fact minimal.

Given a nonempty subset K ⊂ M , we denote the closure of K by clK. The following

definition gathers the notions of the different kinds of convexity; items (a) and (b) were

defined in [29] whereas items (c) and (d) were, respectively, introduced in [30] and [13].
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Definition 2.2. A nonempty subset K ⊂ M is said to be

(a) weakly convex if, for any x, y ∈ K, there exists a minimal geodesic joining x to y

contained in K;

(b) strongly convex if, for any x, y ∈ K, there is just one minimal geodesic of M joining

x to y and it is contained in K;

(c) locally convex if, for any x ∈ clK, there exists a positive number ε > 0 such that

K ∩B(x, ε) is strongly convex;

(d) totally convex if, for any x, y ∈ K, every geodesic of M joining x to y is contained

in K.

Clearly, for any nonempty set K in M , the following implications hold:

strong convexity (or total convexity) =⇒ weak convexity =⇒ local convexity. (1)

Let f : M → (−∞, +∞] be a proper extended real-valued function. The effective

domain of the function f is denoted by D(f) and defined by D(f) := {x ∈ M | f(x) 6=

+∞}. Given x, y ∈ M , we will denote

Γxy := {γ : [0, 1] → M is geodesic such that γ(0) = x and γ(1) = y} (2)

and

Γ(f)
xy := {γ ∈ Γxy : γ([0, 1]) ⊆ D(f)}. (3)
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Definition 2.3. The function f is said to be convex if D(f) is weakly convex and for

any x, y ∈ D(f) and γ ∈ Γ
(f)
xy the composition function f ◦ γ : [0, 1] → R is convex; that

is,

(f ◦ γ)(ta + (1− t)b) ≤ t(f ◦ γ)(a) + (1− t)(f ◦ γ)(b)

for any a, b ∈ [0, 1] and 0 ≤ t ≤ 1.

The following proposition, taken from [28], describes the convexity property of the

distance function on Hadamard manifolds.

Proposition 2.4. Let M be a Hadamard manifold and d : M × M → R the distance

function. Then d is a convex function with respect to the product Riemannian metric;

that is, given any pair of geodesics γ1 : [0, 1] → M and γ2 : [0, 1] → M , the following

assertion holds for each t ∈ [0, 1]:

d(γ1(t), γ2(t)) ≤ (1− t)d(γ1(0), γ2(0)) + td(γ1(1), γ2(1)).

In particular, for each y ∈ M , the function d(·, y) : M → R is convex.

3 Monotone vector fields on Riemannian manifolds

In the sequel, we always assume that M is a complete connected m-dimensional Rieman-

nian manifold. Let X (M) denote the set of all set-valued vector fields A : M → 2TM

such that A(x) ⊆ TxM , for each x ∈ M , and the domain D(A) is closed and weakly

convex. Given x, y ∈ M , we will denote Γ
(A)
xy := {γ ∈ Γxy : γ([0, 1]) ⊆ D(A)}.
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The following definition extends the concepts of monotonicity for operators on Hilbert

spaces to set-valued vector fields on Riemannian manifolds, see [24] for the case of single-

valued vector fields and [5, 23] for the case of set-valued vector fields.

Definition 3.1. Let A ∈ X (M) and α > 0. The vector field A is said to be

(a) monotone if for any x, y ∈ D(A) and γ ∈ Γ
(A)
xy , we have

〈u, γ′(0)〉 ≤ 〈v, γ′(1)〉 for any u ∈ A(x) and v ∈ A(y); (4)

(b) α-strongly monotone if for any x, y ∈ D(A) and γ ∈ Γ
(A)
xy , we have

〈u, γ′(0)〉 − 〈v, γ′(1)〉 ≤ −α l2(γ) for any u ∈ A(x) and v ∈ A(y); (5)

(c) maximal monotone if it is monotone and the following implication holds for any

x ∈ M and u ∈ TxM :

〈u, γ′(0)〉 ≤ 〈v, γ′(1)〉, ∀y ∈ D(A), γ ∈ Γ(A)
xy and v ∈ A(y) =⇒ u ∈ A(x). (6)

Remark 3.2. Suppose that A is a monotone vector field and x ∈ int D(A). Then, by

definition, one has that, for each v ∈ TxM , there exists µ > 0 such that 〈u, v〉 ≤ µ for

all u ∈ A(x). This shows that A(x) is bounded for any x ∈ int D(A).

For our purpose we need to introduce the local version of the previous concepts.

Definition 3.3. Let A ∈ X (M), z0 ∈ D(A) and α > 0. The vector field A is said to be

locally monotone (locally α-strongly monotone) at z0 if there exists r > 0 such that, for

any x, y ∈ B(z0, r) ∩D(A), inequality (4) (inequality (5)) holds.
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Remark 3.4. Let A ∈ X (M), z0 ∈ D(A)and α > 0. By the definition of rz0 , one has that

γ′(0) = exp−1
x y and γ′(1) = − exp−1

y x for any x, y ∈ B(z0, rz0) ∩ D(A) and γ ∈ Γ
(A)
xy .

Hence the inequalities in (4) and (5) for the local version can be replaced, respectively,

by

〈u, exp−1
x y〉 ≤ 〈v,− exp−1

y x〉

and

〈u, exp−1
x y〉 − 〈v,− exp−1

y x〉 ≤ −αd2(x, y).

Clearly, for A ∈ X (M), the global monotonicity implies the corresponding local

monotonicity at any point of D(A). The following proposition shows that the converse

is also true.

Theorem 3.5. Let A ∈ X (M) and α > 0. Then A is monotone (α-strongly monotone)

if and only if A is locally monotone (locally α-strongly monotone) at each point of D(A).

Proof. Only the assertion for the monotonicity case is proved here, since the proof for

the strongly monotonicity case is similar.

It is obvious that if A is monotone then it is locally monotone at each point of D(A).

Conversely, assume that A is locally monotone at each point of D(A). In order to prove

that A is monotone, let x, y ∈ D(A) and consider u ∈ A(x), v ∈ A(y) and γ ∈ Γ
(A)
xy . We

have to show that

〈Px,yv − u, γ′(0)〉 ≥ 0. (7)

Since A is locally monotone at each point of D(A), it follows that for each t ∈ [0, 1],

there exists rt > 0 such that B(γ(t), rt) is a totally normal neighborhood of γ(t) and for
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any z1, z2 ∈ B(γ(t), rt) ∩D(A), the following assertion holds:

〈Pz1,z2w2 − w1, exp−1
z1

z2〉 ≥ 0 for each w1 ∈ A(z1) and w2 ∈ A(z2). (8)

Noting that γ([0, 1]) is a compact subset of D(A), there exist 0 ≤ t1 < t2 < · · · < tn ≤ 1

such that the family {B(γ(ti), rti) ∩D(A)} is a cover of γ([0, 1]); that is,

γ([0, 1]) ⊂ ∪n
i=1(B(γ(ti), ri) ∩D(A)).

Without loss of generality, we may assume that {B(γ(ti), rti) ∩ D(A)} is minimal, in

other words, any proper sub-family of {B(γ(ti), rti) ∩ D(A)} is not a cover of γ([0, 1]).

Thus we can choose 0 = s0 < s1 < s2 < . . . < sn−1 < sn = 1 such that

γ(si) ∈ B(γ(ti), rti) ∩B(γ(ti+1), rti+1
) ∩D(A) for each 1 ≤ i ≤ n− 1.

Take vi ∈ A(γ(si)) for each 1 ≤ i ≤ n − 1 and write v0 = u, vn = v. Note that

(si − si−1)γ
′(si−1) = exp−1

γ(si−1) γ(si) for each 1 ≤ i ≤ n. This together with (8) imply

that

〈Pγ(si−1),γ(si)vi − vi−1, (si − si−1)γ
′(si−1)〉 ≥ 0 for each 1 ≤ i ≤ n. (9)

Consequently,

〈Px,yv − u, γ′(0)〉 =
n∑

i=1

〈Pγ(si−1),γ(si)vi − vi−1, (si − si−1)γ
′(si−1)〉 ≥ 0

and inequality (7) is proved.

The following lemma is an essential tool to study the relationship between mono-

tonicity and accretivity.
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Lemma 3.6. Let z0 ∈ M and let x, y ∈ B(z0, rz0) with x 6= y. Then(
d

ds
d(expx su, expy sv)

)
s=0

=
1

d(x, y)

(
−〈u, exp−1

x y〉+
〈
v,− exp−1

y x
〉)

, (10)

for any u ∈ TxM and v ∈ TyM .

Proof. Let ε > 0 be such that for each s ∈ (−ε, ε), expx su, expy sv ∈ B(z0, rz0). Let

f : (−ε, ε)× [0, 1] → M be the function defined by

f(s, t) = expexpx su t(exp−1
expx su expy sv) for each (s, t) ∈ (−ε, ε)× [0, 1].

Let γ ∈ Γxy be a minimal geodesic. Then γ ⊂ B(z0, rz0) and γ can be expressed as

γ(t) = expx t(exp−1
x y) for each t ∈ [01].

It follows that

γ′(0) = exp−1
x y and γ′(1) = − exp−1

y x. (11)

Since the exponential map exp is differentiable and f(0, ·) = γ(·), f is a variation of γ

and V (·) = ∂f
∂s

(0, ·) is the variational field of f . In particular,

V (0) =
∂f

∂s
(0, 0) = u and V (1) =

∂f

∂s
(0, 1) = v. (12)

Note that for each s ∈ (−ε, ε), the parameterized curve fs : [0, 1] → M given by

fs(·) = f(s, ·) is a geodesic and so
∥∥∂f

∂t
(s, ·)

∥∥ is a constant. Therefore∥∥∥∥∂f

∂t
(s, ·)

∥∥∥∥ = ‖ exp−1
expx su expy sv‖ = d(expx su, expy sv) for each s ∈ (−ε, ε). (13)

Define L : (−ε, ε) → R by

L(s) =

∫ 1

0

∥∥∥∥∂f

∂t
(s, t)

∥∥∥∥ dt for each s ∈ (−ε, ε). (14)
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Then, by the first variational formula, see e.g. [28, p.38, Proposition 2.5],(
d

ds
L(s)

)
s=0

=
1

l(γ)

(
−

∫ 1

0

〈
V (t),

D

dt

dγ

dt

〉
dt−

〈
V (0),

dγ

dt
(0)

〉
+

〈
V (1),

dγ

dt
(1)

〉)
=

1

d(x, y)

(
−

〈
∂f

∂s
(0, 0), γ′(0)

〉
+

〈
∂f

∂s
(0, 1), γ′(1)

〉)
,

(15)

where the second equality holds because γ is a geodesic and
D

dt

dγ

dt
= 0. Then, bearing

in mind that (
d

ds
d(expx su, expy sv)

)
s=0

=

(
d

ds
L(s)

)
s=0

,

equality (10) follows from (11), (12) and (15).

The following characterization of the local monotonicity is a direct consequence of

Definition 3.3 and Lemma 3.6.

Theorem 3.7. Let A ∈ X (M), z0 ∈ M and α > 0. Then the following assertions hold.

(i) A is locally monotone at z0 if and only if there exists r > 0 such that, for any

x, y ∈ B(z0, r) ∩D(A),(
d

ds
d(expx(su), expy(sv))

)
s=0

≥ 0 for any u ∈ A(x) and v ∈ A(y). (16)

(ii) A is locally α-strongly monotone at z0 if and only if there exists r > 0 such that,

for any x, y ∈ B(z0, r) ∩D(A),(
d

ds
d(expx(su), expy(sv))

)
s=0

≥ αd(x, y) for any u ∈ A(x) and v ∈ A(y).

(17)

In the particular case when M is a Hadamard manifold, as noted earlier, rz0 = +∞

for each z0 ∈ M . Thus, by Lemma 3.6, we have the following corollary.
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Corollary 3.8. Let A ∈ X (M) and α > 0. Suppose that M is a Hadamard manifold.

Then A is monotone (α-strongly monotone) if and only if, for any x, y ∈ D(A), inequality

(16) (inequality (17)) holds.

Remark 3.9. It is worth mentioning that in [12] a vector field A ∈ X (M) is said to

be monotone if inequality (16) holds for any x, y ∈ D(A). In the case when M is a

Hadamard manifold, we see from Corollary 3.8 that this alternative definition coincides

with the one considered in this paper.

4 Accretive vector fields on Riemannian manifolds

We begin with the following definition which extends the concepts of accretivity to

set-valued vector fields on Riemannian manifolds.

Definition 4.1. Let A ∈ X (M) and α > 0. The vector field A is said to be

(a) accretive if for any x, y ∈ D(A) and each r ≥ 0 we have that

d(x, y) ≤ d(expx(ru), expy(rv)) for any u ∈ A(x) and v ∈ A(y); (18)

(b) α-strongly accretive if for any x, y ∈ D(A) and each r ≥ 0 we have that

(1 + αr)d(x, y) ≤ d(expx(ru), expy(rv)) for any u ∈ A(x) and v ∈ A(y); (19)

(c) m-accretive if it is accretive and

⋃
x∈D(A)

 ⋃
u∈A(x)

expx u

 = M. (20)
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Definition 4.2. Let A ∈ X (M), z0 ∈ D(A) and α > 0. The vector field A is said to be

locally accretive (locally α-strongly accretive) at z0 if there exists r1, r2 > 0 such that,

for any x, y ∈ B(z0, r1) ∩ D(A) and each 0 ≤ r ≤ r2, inequality (18) (inequality (19))

holds.

The following theorem describes the relationships between the notions of accretivity

and the monotonicity.

Theorem 4.3. Let A ∈ X (M), z0 ∈ D(A) and α > 0. Then the following assertions

hold.

(i) If A is locally accretive at z0 then A is locally monotone at z0.

(ii) If A is locally α-strongly accretive at z0 then A is locally α-strongly monotone at z0.

Conversely, if A is locally α-strongly monotone at z0 then A is locally α′-strongly

accretive at z0 for each 0 < α′ < α.

Proof. (i). Assume that A is locally accretive at z0. Then there exists r1, r2 > 0 such

that for any x, y ∈ B(z0, r1) ∩D(A) and each u ∈ A(x) and v ∈ A(y), we have that

d(x, y) ≤ d(expx(ru), expy(rv)) for each r2 ≥ r ≥ 0,

which means that (
d

ds
d(expx su, expy sv)

)
s=0

≥ 0. (21)

This together with Theorem 3.7 implies that A is locally monotone.

(ii). Assume that A is localy α-strongly accretive at z0. Then the same argument

we did for the proof of (i) shows that A is locally α-strongly monotone at z0.
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Conversely, assume that A is local α-strongly monotone at z0 and let 0 < α′ < α.

Then, there exists r1 > 0 such that for any x, y ∈ B(z0, r1)∩D(A), and any u ∈ A(x),v ∈

A(y), one has

−〈u, exp−1
x y〉+ 〈v,− exp−1

y x〉 ≥ αd2(x, y). (22)

Let x, y ∈ B(z0, r1) ∩ D(A). Without loss of generality, assume that x 6= y and so

d(x, y) > 0. Let u ∈ A(x) and v ∈ A(y) be arbitrary. Then by Lemma 3.6 we get that

(
d

ds
d(expx su, expy sv)

)
s=0

=
1

d(x, y)

(
−〈u, exp−1

x y〉+
〈
v,− exp−1

y x
〉)
≥ αd(x, y).

This means that there exists r2 > 0 such that

d(expx ru, expy rv)− d(x, y) > rα′d(x, y) for each 0 < r ≤ r2;

hence

(1 + α′r)d(x, y) ≤ d(expx ru, expy rv) for each 0 ≤ r ≤ r2.

Therefore, A is local α′-strongly accretive at z0 and the proof is complete.

Combining Theorems 3.5 and 4.3, we have the following corollary.

Corollary 4.4. Let A ∈ X (M) and α > 0. If A is accretive (α-strongly accretive), then

A is monotone (α-strongly monotone).

In the particular case when M is a Hadamard manifold, the notions of accretivity

and monotonicity can be proved to be equivalent, as we show in Theorem 4.6 below.
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Lemma 4.5. Let M be a Hadamard manifold. Let x, y ∈ M with x 6= y and let

u ∈ TxM, v ∈ TyM . Then the following inequality holds for each r > 0:

d(expx(ru), expy(rv)) ≥ d(x, y) + r

(
d

ds
d(expx(su), expy(sv))

)
s=0

. (23)

Proof. Define the function g : [0, +∞) → [0, +∞) by

g(s) := d(expx su, expy sv) for each s ∈ [0, +∞).

Then g(·) is convex by Proposition 2.4 (as M is a Hadamard manifold). Let r > 0. Then

g(r)− g(0)

r
≥ inf

r≥0

g(r)− g(0)

r
=

(
d

ds
d(expx(su), expy(sv))

)
s=0

. (24)

This shows (23) and completes the proof.

Theorem 4.6. Let M be a Hadamard manifold, A ∈ X (M) and α > 0. Then the

following assertions hold.

(i) A is accretive (α-strongly accretive) if and only if A is monotone (α-strongly mono-

tone).

(ii) If A is m-accretive, then A is maximal monotone. The converse is true provided

that D(A) = M .

Proof. (i). Since the proof for the case of α-strong accretivity is similar, we only keep

the proof here for the case of accretivity. Furthermore, by Corollary 4.4, it is sufficient

to prove the sufficient part. To this end, we assume that A is monotone. Let x, y ∈ D(A)

and u ∈ A(x), v ∈ A(y). Then, by Corollary 3.8,(
d

ds
d(expx(su), expy(sv))

)
s=0

≥ 0. (25)
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This together with Lemma 4.5 shows that A is accretive.

(ii). Assume that A is m-accretive. In particular, A is accretive and so A is monotone

by (i). In order to prove the maximality, we take x ∈ M and u ∈ TxM , and assume that

〈u, exp−1
x y〉 ≤ −〈v, exp−1

y x〉 for any y ∈ D(A) and v ∈ A(y). (26)

We have to verify that x ∈ D(A) and u ∈ A(x). Suppose on the contrary that it is not

the case. Then x 6= y for each y ∈ D(A). Thus Lemma 3.6 is applicable to getting that

(
d

ds
d(expx(su), expy(sv))

)
s=0

≥ 0 for any y ∈ D(A) and v ∈ A(y).

This together with Lemma 4.5 implies that

d(x, y) ≤ d(expx u, expy v) for any y ∈ D(A) and v ∈ A(y). (27)

On the other hand, since A is m-accretive, by (20), there exist y ∈ D(A) and v ∈ A(y)

such that expx u = expy v. This together with (27) yields that x = y, which is a

contradiction.

Conversely, assume that A is maximal monotone and D(A) = M . Then A is mono-

tone, and so accretive by (i). In order to proved that A is m-accretive we need to

show that (20) is true. To this end,let y ∈ M and define the set-valued vector field

B : M → 2TM by

B(x) := A(x)− exp−1
x y for each x ∈ M. (28)

It turns out that B is maximal 1-strongly monotone (cf. Example 6.1 of section 6) and

D(B) = M . Therefore, by [23, Theorem 4.3], there exists a unique singularity x0 of B,
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that is, 0 ∈ A(x0) − exp−1
x0

y. This means that y ∈ ∪u∈A(x0) expx0
u. Hence (20) is seen

to hold as y ∈ M is arbitrary.

Remark 4.7. By definition, it is straightforward to see that the accretivity (strongly

accretivity) implies the corresponding local accretivity (strongly accretivity) at each

point of D(A). Combining Theorems 3.5 and 4.6, one can deduce that the converse is

true in the case when M is a Hadamard manifold. However, we do not know if this is

also true in general Riemannian manifolds.

5 Singularities of α-strongly monotone vector fields

In the setting of Banach spaces, iterative methods to approximate singularities of strongly

monotone vector fields or, equivalently, fixed points of α-strongly pseudo-contractive

mappings have been studied by many authors; see, for instance, [31, 32, 33]. The aim

of this section is to define and study the convergence of an iterative scheme which is an

extension to Riemannian manifolds of the one studied by Chidume (cf. [31]) in Banach

spaces.

For the main theorem of this section, we need to extend the notion of the L-Lipschitz

continuity to the setting of general Riemannian manifolds. Given L > 0, a single-valued

vector field A ∈ X (M) is said to be L-Lipschitz continuous if

‖Pγ,x,yA(x)− A(y)‖ ≤ L l(γ) for any x, y ∈ D(A) and any γxy ∈ Γ
(A)
xy .

Theorem 5.1. Let A ∈ X (M) be a single-valued, L-Lipschitz continuous and α-strongly
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monotone vector field with D(A) = M . Given x0 ∈ M , let {xn} be the sequence defined

by the algorithm

xn+1 = expxn
(−rA(xn)), (29)

where 0 < r < 2α
L2 . Then {xn} converges to the unique singularity of A.

Proof. Note that the uniqueness of singularity follows from the strong monotonicity of

A. Below we prove the convergence of the sequence {xn} generated by (29). To do this,

let n ∈ N and let γn ∈ Γxn,xn+1 be defined by

γn(t) := expxn
(t(−rA(xn))) for each t ∈ [0, 1].

Write Pxn,xn+1 = Pγn,xn,xn+1 for simplicity. Since A is α-strongly monotone, it follows

that

〈Pxn,xn+1A(xn+1)− A(xn), γ′n(0)〉 ≥ αl2(γn). (30)

Since γ′n(0) = −rA(xn) and l(γn) = r‖A(xn)‖, the inequality (30) implies that

〈Pxn,xn+1A(xn+1)− A(xn), A(xn)〉 ≤ −αr‖A(xn)‖2. (31)

On the other hand, we have

‖A(xn+1)‖2 = ‖Pxn,xn+1A(xn+1)− A(xn) + A(xn)‖2

= ‖Pxn,xn+1A(xn+1)− A(xn)‖2 + ‖A(xn)‖2+

+2〈Pxn,xn+1A(xn+1)− A(xn), A(xn)〉.

(32)

Then, from inequality (31) we obtain that

‖A(xn+1)‖2 ≤ ‖Pxn,xn+1A(xn+1)− A(xn)‖2 + ‖A(xn)‖2 − 2αr‖A(xn)‖2. (33)
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Since A is L-Lipschitz continuous, one has

‖Pxn,xn+1A(xn+1)− A(xn)‖ ≤ L l(γn) = Lr‖A(xn)‖.

Combining this with the inequality (33), we get that

‖A(xn+1)‖ ≤ (1 + r(L2r − 2α))
1
2‖A(xn)‖ = q‖A(xn)‖,

where, thanks to the fact that 0 < r < 2α
L2 ,

q := (1 + r(L2r − 2α))
1
2 < 1.

Hence, limn A(xn) = 0. On the other hand, by (29), we have that

d(xn+1, xn) ≤ r‖A(xn)‖ ≤ rqn‖A(x0)‖.

This means that the sequence {xn} converges to some point x∗ satisfying A(x∗) = 0

because limn A(xn) = 0 and A is Lipschitz continuous.

6 Application to minimization

In the linear case, an important class of convex functions is the one of the strongly convex

functions introduced by Polyak, in [34]. Consider the special case of a Hilbert space H

and let α > 0. Recall that a function f : H → (−∞, +∞] is said to be α-strongly convex

if

f((1− t)x + ty) ≤ (1− t)f(x) + tf(y)− 1

2
αt(1− t)‖x− y‖2
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for any x, y ∈ H and 0 < t < 1. Rockafellar, in [26], proved that a function f : H →

(−∞, +∞] is α-strongly convex if and only if its subdiferential ∂f is α-strongly mono-

tone. This section is devoted to an extension of the notion of α-strongly convexity and

the corresponding equivalence with the strongly monotonicity in the setting of Rieman-

nian manifolds. Throughout the whole section, let f : M → (−∞, +∞] be a proper

convex function. Recall from [13] that the subdifferential ∂f : M → 2TxM of f is defined

by

∂f(x) := {u ∈ TxM | 〈u, γ̇(0)〉 ≤ f(y)− f(x), ∀y ∈ D(f) and γ ∈ Γ(f)
xy },

for each x ∈ D(f) (otherwise, ∂f(x) := ∅). Let x ∈ D(f) and v ∈ TxM . Define the

directional derivative at x in the direction v by

f ′(x; v) := lim
t→0+

f(expx tv)− f(x)

t

Then we have the following assertions:

Proposition 6.1. Let f : M → (−∞, +∞) be convex and x ∈ M . Then the following

assertions hold.

(i) ∂f(x) =
{
u ∈ TxM | 〈u, v〉 ≤ f ′(x; v) for all v ∈ TxM

}
.

(ii) f ′(x, v) = supu∈∂f(x)〈u, v〉, for each v ∈ TxM .

Proof. (i) has been proved in [35]. We next show that (ii) is true. Recall from [35, Propo-

sition 3.5(iii)] that the support function of the subdifferential is the lower semicontinuous

hull of the directional derivative f ′(x; ·) of f at x; that is,

sup
u∈∂f(x)

〈u, ·〉 = cl f ′(x; ·).
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Note that D(f) = M . We have D(f ′(x; ·)) = TxM . Recall also from [35, Proposition

3.5(i)] that f ′(x; ·) is convex. Thus it follows that

cl f ′(x; ·) = f ′(x; ·).

Hence (ii) is seen to hold.

Definition 6.2. Let α > 0. The function f is said to be α-strongly convex if, for any

x, y ∈ D(f) and any geodesic γ ∈ Γ
(f)
xy , the following inequality holds:

f(γ(t)) ≤ (1− t)f(x) + tf(y)− 1

2
αt(1− t)l2(γ) for each 0 < t < 1.

The following theorem is an extension of Rockafellar´s result to the setting of Rie-

mannian manifolds.

Theorem 6.3. Let f : M → R be a convex function and let α > 0. Then f is α-strongly

convex if and only if ∂f is α-strongly monotone.

Proof. Let x, y ∈ D(f) and γ ∈ Γ
(f)
xy . Define the function Fγ : [0, 1] → R by

Fγ(t) := f(γ(t)) for each t ∈ [0, 1].

Then, for each t ∈ [0, 1], we have that

F ′
γ(t,−1) = f ′(γ(t),−γ̇(t)), F ′

γ(t, 1) = f ′(γ(t), γ̇(t))

and

∂Fγ(t) = [−F ′
γ(t,−1), F ′

γ(t, 1)] = [−f ′(γ(t),−γ̇(t)), f ′(γ(t), γ̇(t))].
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It follows that ∂Fγ is α l2(γ)-strongly monotone if and only if

(−f ′(γ(t2),−γ̇(t2))− f ′(γ(t1), γ̇(t1)))(t2 − t1) ≥ α l2(γ)(t2 − t1)
2 (34)

holds for any 0 ≤ t1 ≤ t2 ≤ 1. By Proposition 6.1 we have that

−f ′(γ(t2),−γ̇(t2))−f ′(γ(t1), γ̇(t1)) = inf
w2∈∂f(γ(t2))

〈w2, γ
′(t2)〉− sup

w1∈∂f(γ(t1))

〈w1, γ
′(t1). (35)

Combining (34) and (35), one sees that ∂Fγ is α l2(γ)-strongly monotone if and only if

(〈w2, γ
′(t2)〉−〈w1, γ

′(t1)〉)(t2−t1) ≥ α l2(γ)(t2−t1)
2, ∀w2 ∈ ∂f(γ(t2)), ∀w1 ∈ ∂f(γ(t1))

(36)

holds for any 0 ≤ t1 ≤ t2 ≤ 1. Hence, we get the following fact that for any x, y ∈ D(f)

and any geodesic γ ∈ Γ
(f)
xy , ∂Fγ is α l2(γ)-strongly monotone if and only if ∂f is α-

strongly monotone. Furthermore, by definition, it’s easy to verify that f is α-strongly

convex if and only if, for any x, y ∈ D(f) and any geodesic γ ∈ Γ
(f)
xy , the function Fγ is

α l2(γ)-strongly convex on [0, 1]. By [26, Proposition 6] (applied to the function Fγ), one

sees that Fγ is α l2(γ)-strongly convex if and only if ∂Fγ is α l2(γ)-strongly monotone.

Thus the conclusion of this theorem follows.

Below, we show that, for each fixed y ∈ M , the vector field T : M → TM defined by

T (x) := − exp−1
x y, for each x ∈ M,

is 1-strongly monotone. This fact has been previously proved in [36]. However, as an

example of the application of Theorem 6.3, we give a different proof.
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Example 6.1. Let M be a Hadamard manifold and let y ∈ M be fixed. Consider the

function φ : M → R defined by

φ(x) =
1

2
d2(y, x), for each x ∈ M.

Then by [29], φ is differential and its derivative is

φ′(x) = ∂φ(x) := − exp−1
x y for each x ∈ M.

Hence we have that T = φ′. We will prove that φ is 1-strongly convex on M and

therefore, by Theorem 6.3, φ′ is 1-strongly monotone on M . For this aim, take x, z ∈ M

and γ ∈ Γxz. Then γ(0) = x and γ(1) = z. Consider the geodesic triangle ∆(xyz) and

the corresponding comparision one ∆(x̄ȳz̄) in R2 (cf. [37, p.24]) such that

d(x, y) = ‖x̄− ȳ‖, d(y, z) = ‖ȳ − z̄‖ and d(x, z) = ‖x̄− z̄‖. (37)

Let t ∈ [0, 1] and let γ(t) := (1− t)x̄ + tz̄ denote the point in R2 corresponding to γ(t).

Then, by [38, Lemma 4.3],

d2(y, γ(t)) ≤ ‖ȳ − γ(t)‖2 = ‖ȳ − [(1− t)x̄ + tz̄]‖2. (38)

Since

‖ȳ − [(1− t)x̄ + tz̄]‖2 = (1− t)‖x̄− ȳ‖2 + t‖z̄ − ȳ‖2 − t(1− t)‖x̄− z̄‖2,

It follows from (37) and (38) that

d2(y, γ(t)) ≤ (1− t)d2(y, x) + td2(y, z)− t(1− t)d2(x, z),

which implies that φ is strongly convex with modulus α = 1.
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By Theorems 5.1 and 6.3, the following theorem is immediate.

Theorem 6.4. Let f : M → R be α-strongly convex. Suppose that f is continuously

differentiable and its gradient ∇f is L-Lipschitz continuous. Then, for any x0 ∈ M , the

sequence {xn} defined by the algorithm

xn+1 = expxn
(−r∇f(xn)),

where 0 < r < 2α
L2 , converges to a minimizer of f in M .
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vector fields, Balkan Journal of Geometry and its Applications. 5, 69-79 (2000)

27



[6] Ferreira, O. P., Oliveira, P. R.: Proximal point algorithm on Riemannian manifolds.

Optim. 51, 257-270 (2002)
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