
Towards SLA modeling for RESTful APIs

Antonio Gámez-Díaz, Pablo Fernandez, and Antonio Ruiz-Cortés

University of Sevilla?

{agamez2,pablofm,aruiz}@us.es

Abstract. The term of API Economy is becoming increasingly used to
describe the change of vision in how APIs can add value to the organiza-
tions. Furthermore, a greater automation of RESTful APIs management
can suppose a competitive advantage for the company. New proposals
are emerging in order to automatize some API governance tasks and
increase the ease of use (e.g. generation of code and documentation).
Despite that, the non-functional aspects are often addressed in a highly
specific manner or even there not exists any solution for an automatic
governance. Nevertheless, these properties are already defined in natural
language at the Service Level Agreement (SLA) that both customer and
provided have established.
In this paper, we carry out a study on the *aaS industry and analyze
the current both API modeling and SLA modeling proposals in order to
identify the open challenges for an automatic RESTful API governance.

1 Introduction

Distribution models of information systems are moving to *aaS paradigms where
customers no longer need to buy a perpetual license, host the software or main-
tain the infrastructure. As part of the current Service Oriented Computing
paradigm, the micro-service architectures are rapidly emerging [5]. In this model,
an application is divided into a set of small services deployed independently. They
communicate each other with some lightweight protocol (e.g. HTTP) thus, each
resource could be accessed by a URI following, therefore, the REST principles.

The term of API Economy is being increasingly used to describe the move-
ment of service computing from academia towards the industry since people
expect the technologies to be more practical [22]. Moreover, industries are con-
sidering the positive effects of exposing their business units through APIs in
order that they can be used by third parties. In this context, we found market-
places where providers get paid for the API usage that their clients made. As
part of this business goals alignment, companies often identify two key aspects
to be more competitive: ease of use and service guarantees.
? This work has been partially supported by the European Commission (FEDER), the
Spanish and the Andalusian R&D&I programs (grants TIN2015-70560-R (BELI) and
P12–TIC-1867 (COPAS)) and TIN2014-53986-REDT (RCIS).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/51410725?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

From an ease of use perspective, third party developers need to understand
how to use the exposed APIs so it becomes necessary to provide a good doc-
umentation. Indeed, one of the main reasons for the failure of projects is the
lack of good documentation. Moreover, API providers do not often make a good
documentation of their products [6]. Nevertheless, as the API Economy model is
being strengthened in the market, some industry proposals have emerged trying
to model these RESTful APIs and then generate the documentation.

From a guarantees perspective, the Service Level Agreements (SLAs) have
been the documents used in the industry to define the responsibilities and rights
of each party, i.e. both the consumer and provider of the service, according to
their business model (e.g. a free plan with a limit of 100 requests per minute
and a premium plan with no request limitation) [15]. Specifically, a typical SLA
introduces some guarantees over the service provision as much as some compen-
sations in the case of the provision is under-fulfilled or over-fulfilled.

SLAs are normally included in the general service conditions in natural lan-
guage [12], thus making unfeasible an automatic computational processing. Al-
though a number of SLA modeling proposals have emerged [17], the problem
has not been studied from an API perspective.

In this work, we analyze the current situation in both SLA and API modeling
in order to evaluate and address a joint modeling mechanism to perform an au-
tomated management over RESTful APIs by establishing some open challenges
endorsed by a study over 27 SaaS offerings.

This paper is organized as follows: Section 1 shows an analysis over some
RESTful APIs in the *aaS industry. In Section 2, we describe some important
proposals in API modeling area. Next, Section 3 points out the current context in
SLA modeling languages. Finally, Section 4 shows some remarks and conclusions.

2 SLAs in the *aaS industry

In this section, we present a study1 over 27 SaaS with RESTful APIs which was
carried out in two different stages:

In the first stage: data acquisition by students: i) about 30 students were
given two API repositories (ProgrammableWeb2 and Mashape3); ii) stu-
dents chose a *aaS service; iii) they filled out a form regarding some *aaS
characteristics manually identified.

In the second stage: Subsequent analysis by researcher: i) data manual val-
idation and classification, giving a a result 55 analyzed *aaS offerings (40
SaaS, 1 PaaS and 14 IaaS); ii) selection of these ones which provide a REST-
ful API, giving a set of 27 elements. iii) we developed a comparative frame-
work based upon 3 different attributes:

1 Data of this study is available at http://dx.doi.org/10.17632/ybrp8mgk96.1
2 https://www.programmableweb.com
3 https://market.mashape.com

http://dx.doi.org/10.17632/ybrp8mgk96.1

Plans: number of plans that defines the service level delivered to the customer,
existence of custom plans, in order that they can fit the business needs and
the existence of free plans such a starter or a trial plan.

Billing: maximum cost and minimum cost, in US Dollars, of every set of plans;
billing period, e.g. monthly, yearly, etc. and billing type that shows the man-
ner in how a customer is billed per service usage. For instance, a pay-as-
you-go plan charges the customer just for its usage whereas a flat rate plan
will charge the same amount of money independently of its usage. There
exist other billings models that can combine the previous ones or charge the
customer once a time (usually because the offering is coupled to a hardware
acquisition and it is just a value added service).

Limitations: the existence of functionality limitations, i.e. whether an offer-
ing enables or disables some features depending upon the acquired plan,
the existence of operation limitations, i.e. whether the provider limits the
transactions or operations of the service. This limitation can be managed
by applying rates or quotas. Both of them are thresholds used to limit the
operations or requests when they are reached; the difference resides in the
static window for quotas (e.g. 100 requests per day) and the sliding window
for rates (e.g. 100s requests per each minute).

A 49.09% of the 65 *aaS studied offerings have a RESTful API. The average
number of plans that these offerings provide is 3.85, with a σ = 1.81. A 62.96%
provide a free plan, whereas a 40.74% offer custom plans. Regarding the billing
models, a 48.15% opt for a flat rate billing model, a third choose a pay-as-you-go
model whereas a 18.51% pick out combined and other models. Since the *aaS
offerings are much diverse, the average cost ranges from $44.35 to $726.56.

On the other hand, a 85.19% of these offerings limit the number of requests
or operations allowed, whereas a 59.26% limit the features. It is remarkable that
quotas and rates usage is not distributed homogeneously, as depicted in the
Figure 1, since it is more common to have quotas in flat rate plans contrariwise
to the pay-as-you-go plans, where use to limit using rates. Concerning to the
periods used in both quotas and rates, a large majority opts to have a minute-
based temporal window, as shown in Figure 2.

Fig. 1. Distribution of quotas and rates usage.

Fig. 2. Distribution of periods in quotas and rates.

After this analysis, it is possible to conclude that real-world *aaS offerings
frequently have non-functional properties like billing cycles, rate and quota lim-
itation, pricing plans, etc. In Section 2 we analyze a set of modeling techniques
to study how to deal with these properties.

3 API modeling

In this section, we discuss different API modeling techniques used both in the
industry and academia to define RESTful systems. API modeling languages have
evolved from a classical SOA perspective, such as WSDL (2001), to become a
tool to automatize the documentation generation process, such as API Blueprint
(2013). Specifically, we have analyzed 6 proposals, used in both industry and
academia. Finally, Table 1 depicts the differences between these languages.

WSDL [3] is a W3C recommendation since 2001 to represent the contract be-
tween the both service provider and service consumer using XML. Due to its
complexity, WSDL usage is continuously decreasing in favor of more simple
alternatives with tool support.

WADL [10] is a Sun Microsystems initiative to describe, in an XML format,
web services invoked through HTTP. Although this proposal was submitted
in 2009 to the W3C, it never became a standard. Its complexity may have
contributed to the continuously decreasing usage.

OAI (formerly known as Swagger, initiated in 2010) [24] in an open specifica-
tion created by a consortium integrated by organizations like Google, IBM,
Microsoft, PayPal, Apigee, Apiary, Restlet and Mashape. OAI aims to sup-
port to the whole API life-cycle and improve the traceability between the
documentation and the auto-generated code by releasing multiple open tools
for both code and documentation generation.

RAML (RESTful API Modeling Language) [21] is language based on YAML
syntax [19] and created in 2013 by Mulesoft, AngularJS, Inuit, Airware, Pro-
grammableWeb, Akana, Cisco, VMware y Akamai. It covers the whole API

life-cycle [4]: design, construction, testing, documentation and publishing. It
is a well-assented language in the industry and some specification-complaint
tools have been developed, ranging from IDE plugins to ease the modeling
stage to both code and documentation generation tools.

IO Docs [25], created in 2011 by Mashery, is a description language oriented
to the generation of documentation through a JSON Schema [7]. It defines
all the necessaries resources, methods and parameters in order that an auto-
generated JavaScript client could consume the API.

API Blueprint [2] is a description language for APIs, created by Apiary in
2013, oriented to the generation of documentation. It is made up of some
semantic assumptions about Markdown syntax. It is possible to create doc-
umentation, prototype APIs and test existing APIs.

Table 1 depicts a comparative analysis considering these 6 proposals. Each
column corresponds to a certain analyzed feature, so that a Xin cell Ci,j means
the proposal i has the property j.

1. Resources. In a RESTful context, URIs, resource representations and API
operations are all built around the concept of resources. The language has
to be expressive enough in order that it can model the resources at the
right granularity. Furthermore, HTTP methods (i.e. GET, POST, PUT and
DELETE) should be able to be modeled.

2. HTTP headers. Ability to model custom headers, such as Authorization
or Content-Type.

3. Authentication. Capability to model API security mechanisms, such as
basic authentication or bearer token.

4. Documentation generation. Automatic generation of documentation por-
tals.

5. Tool support. The existence of ecosystems of tools that allows automatizing
some tasks, such as automatic testing or code generation for prototyping
purposes.

Re
so
ur
ce
s

HT
TP

he
ad
ers

Au
th
en
tic
at
ion

Do
cu
me
nt
at
ion

ge
n.

To
ol
su
pp
or
t

WSDL X X

WADL X X X X

OAI X X X X X

RAML X X X X X

IO Docs X X X X X

API Blueprint X X X X X

Table 1. Modeling capabilities of analyzed proposals.

As shown in Table 1, all the most recent proposals fully support the modeling
of functional aspects of the APIs. Furthermore, they use to offer a way to generate
documentation portals and code automatically. In contrast, languages such as
WSDL or WADL do not have advanced tool support that allows documentation
generation. Finally, we have ascertained that none of these languages allows
modeling non-functional aspects, such as billing cycles or operations limitation.

4 SLA modeling

Throughout this section, we present the analysis of different academic proposals
to define and model SLAs. In particular, we try to determine whether these
proposals are expressive enough to deal with an API-oriented SLA scenario, as
discussed in section 2.

Specifically, we have analyzed 8 languages for SLA modeling, ranging from
some initial proposals such as WSLA (2003), the precursor of WS-Agreement,
to others which try to improve expressiveness in some contexts, such as SLAC
or CSLA (2014), including L-USDL Agreement (2016), which introduces a se-
mantic perspective in SLA modeling area. Finally, Table 2 illustrates the main
differences between these proposals.

Web Services Agreement Language (WSLA) [16] is a proposal made in
2003 by IBM. Nowadays it is no longer an active project, but it is considered
as the precursor of the WS-Agreement standard. This proposal sought to
provide a framework for monitoring and evaluation of SLAs. The language
core offers ways to define some QoS terms and the consequences derived
from them. However, unlike WS-Agreement, the publication and negotia-
tion of contracts were not supported. An agreement in WSLA is an XML
document that consists of: 1) description of the parties involved; 2) applicable
parameters and guarantees; 3) metrics definition; 4) service level objectives
(SLOs).

SLAng [14] is a language, created in 2003, for agreement modeling proposed
by University College London. This language intends to associate penalties
with QoS properties defined in the agreement. In addition, it allows applying
these restrictions dynamically at the time or by some state variable visible
by all the parties to the agreement.

Web Services Agreement (WS-Agreement) [1] is a specification presented
in 2007 by the Grid Resource Allocation and the Open Grid Forum. It is
based upon XML and a web service protocol to: 1) to promote through
agreement templates an accepted set of agreement offers from the service
responder; 2) generate a proposal of agreement offer from an agreement
template of the service initiator; 3) negotiate the specific limitations at each
step; 4) create an agreement between both the service provider and consumer
with the conditions and limitations established and allow the observation of
compliance. One of the main advantages of WS-Agreement is the possibil-
ity of being extended with specific domain languages. Nevertheless, it does

not support the definition of ontologies, so metrics can not be precisely de-
fined. However, some authors have proposed semantic extensions [18] to this
specification.

SLA* [11] is part of the European project SLA@SOI, concluded in 2011, which
sought to increase the automation and predictability of all phases of the
agreement life cycle. The syntax is domain independent and describes agree-
ment templates documents and agreement documents through a generaliza-
tion of other specifications such as WS-Agreement, WSLA or WSDL. It is
not especially focused on web services but allows it to be extended with the
requirements of each domain. As in other proposals, an agreement template
contains five sections: 1) template attributes; 2) the parties involved in the
agreement; 3) service description; 4) variable declarations; 5) terms of the
agreement and guarantees.

Service-Level-Agreement for Clouds (SLAC) [26] is a language, proposed
in 2014, to define SLA in a cloud environment. Since it is WS-Agreement-
inspired, it shares many characteristics, structure and definitions. This lan-
guage offers multiple predefined metrics, inspired by cloud computing, e.g.
better multi-party support, group definitions, and parties involved for each
term. Unlike other agreement models, SLAC does not differentiate between
service description terms and QoS requirements.

Cloud Service Level Agreement (CSLA) [13] is a language, created in 2014,
that seeks to express in greater detail the violations in SLAs in a cloud con-
text. This proposal has been influenced by other related works like WSLA
[16] and SLA@SOI [11]. This language is able to model the agreement be-
tween a consumer and a cloud provider, i.e. quality of service (QoS) or elas-
ticity management based on service level objectives (SLOs). In addition, they
also allow describing the usual concepts in WS-Agreement as the validity,
the parts of the contract, the definition of the service, etc.

rSLA [23] is a language, created in 2015, for specifying, monitoring and enforc-
ing SLAs for cloud services. The language describes basic metrics are to be
obtained and how they are aggregated in terms of composite metrics. It is
possible to define how to proceed if SLOs are met or violated.

Linked-USDL Agreement [9] is an extension to the Linked-USDL [20] pro-
posed in 2016. It can capture agreement terms, business aspects, liability,
compensations, and time constraints. Specifically, Linked-USDL Agreement
is designed to be used to establish and share agreements among customers
and providers that seek to perform automated service trading in a web con-
text.

Table 1 depicts a comparative analysis considering these 8 proposals. Each
column corresponds to a certain analyzed feature, so that a Xin cell Ci,j means
the proposal i has the property j.

1. Metrics. Ability to model measuring point counters for the SLA items.
2. Guarantees. Capability to model a set of Service Level Objectives (SLO)

that should be enforced by one party, i.e. the guarantor, to another party,
i.e. the beneficiary.

3. Compensations. Representation of SLAs a set of compensations that rep-
resent the consequences of under-fulfilling (penalties) or over-fulfilling (re-
wards) the SLOs.

4. Billing. Support to model billing models (e.g. pay-as-you-go, flat rates or
up-fronts), including billing cycles and periods.

5. Scopes. Ability to model and interpreter the particular element of the agree-
ment that the scoped element applies to.

6. Semantic approach. Representation of the SLA concepts using semantic
languages (e.g. RDF) which leverage the queries over the model to perform
a question answering over SLA documents and some analysis operations.

M
etr
ics

Gu
ar
an
tee
s

Co
mp

en
sa
tio
ns

Bi
llin
g

Sc
op
es

Se
ma
nt
ic
ap
ro
.

WSLA X X

SLAng X X X

WS-Agreement X X X *
SLA* X X X

SLAC X X X X

CSLA X X X X X

rSLA X X X

L-USDL Agreement X X X X X

Table 2. Modeling capabilities of analyzed proposals.

As depicted in Table 2, most of the proposals cover metrics, guarantees and
compensation modeling, since they are the basis of an SLA. Moreover, recent
languages, such as SLAC and CSLA, tend to cover some cloud computing partic-
ularities: they offer some default metrics and make easier the definition of SLO in
a cloud context, specifically in IaaS offerings. The aim of WS-Agreement scopes
is just to describe what service element specifically a guarantee term applies to,
hence the asterisk mark. Otherwise, CLSA try to generalize the scope usage.
Finally, there exists a semantic approach to model SLAs in order to address an-
alytics operations over the SLA. Nevertheless, none of these proposals are able
to utterly model the non-functional properties shown in Section 1.

5 Conclusions

In this paper, we have studied 27 RESTful APIs of SaaS offerings and we have
shown that a number of the studied APIs often define some properties such
as quota/rate limitation or complex billing models. Despite of that, the current
modeling languages for APIs do not take into account these non-functional prop-
erties. Furthermore, even though these properties can be contained in an SLA,

current modeling languages do not provide a full expressiveness to represent
them.

This work is closely aligned to the idea of SLA-Driven API Gateways that
we proposed in [8] since it is needed to have a fully expressive SLA modeling
language, which can fit in the real world *aaS offerings, in order to open the
door to automatic and domain-independent governance tools for RESTful APIs.

In the industry, there exists some examples of more complex SLA models and
complex scopes: for instance, Amazon AWS offers multiple billing models (e.g.
on-demand, reserved and spot instances). In a similar way, it is possible to find
APIs which describe a metric (e.g. number of requests/min) but define multiple
limit levels according to whom it may be applied to (e.g. there could be a 1000
requests/min limit for the whole organization, but a 100 requests/min for each
organization user). Consequently, as future work, we plan to develop new SLA
models that address the lack of expressiveness in other proposals, specifically,
i) quotas and rates limitation definition; ii) support to multiple billing cycles,
taking into account the derived compensations of the over-fulfillment or the
under-fulfillment; iii) definition of complex scopes.

6 Acknowledgments

The authors would like to thank all the students of Service Oriented Computation
2015/2016 course for taking the survey, whose results have been the basis of the
presented RESTful API analysis.

References

1. Alain Andrieux, Karl Czajkowski, Kate Keahey, A. Dan, Kate Keahey, H. Ludwig,
J. Pruyne, J. Rofrano, S. Tuecke, and M. Xu. Web Services Agreement Specification
(WS-Agreement). Technical report, Open Grid Forum, 2004.

2. API Blueprint. API Blueprint. https://apiblueprint.org/, 2016.
3. E Christensen, F Curbera, G Meredith, and S Weerawarana. Web Services De-

scription Language (WSDL). Technical Report 2008-01-07, 2001.
4. Yucong Duan. A survey on service contract. In Proceedings - 13th ACIS Inter-

national Conference on Software Engineering, Artificial Intelligence, Networking,
and Parallel/Distributed Computing, SNPD 2012, pages 805–810. IEEE, aug 2012.

5. Martin Flower. Microservices. http://martinfowler.com/articles/
microservices.html, 2014.

6. Forrester. API Management Solutions , Q3 2014. Technical report, 2015.
7. Francis Galiegue, Kris Zyp, and Gary Court. JSON Schema. https://tools.

ietf.org/html/draft-zyp-json-schema-04, 2013.
8. Antonio Gámez-Díaz, Pablo Fernández-Montes, and Antonio Ruiz-Cortés. Towards

SLA-Driven API Gateways. In Actas de las XI Jornadas de Ingeniería de Ciencia
e Ingeniería de Servicios, 2015.

9. J. M. Garcia, P. Fernandez, C. Pedrinaci, M. Resinas, J. Cardoso, and A. Ruiz-
Cortes. Modeling Service Level Agreements with Linked USDL Agreement. IEEE
Transactions on Services Computing, PP(99):1–1, jan 2016.

https://apiblueprint.org/
http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
https://tools.ietf.org/html/draft-zyp-json-schema-04
https://tools.ietf.org/html/draft-zyp-json-schema-04

10. Marc J Hadley. Web Application Description Language (WADL). Technical Report
TR-2006-153, 2006.

11. Keven T. Kearney, Francesco Torelli, and Constantinos Kotsokalis. SLA*: An Ab-
stract Syntax for Service Level Agreements. In 2010 11th IEEE/ACM International
Conference on Grid Computing, pages 217–224. IEEE, oct 2010.

12. Alexander Keller and Heiko Ludwig. The WSLA Framework: Specifying and Moni-
toring Service Level Agreements for Web Services. Journal of Network and Systems
Management, 11(1):57–81, 2003.

13. Yousri Kouki, Frederico Alvares De Oliveira, Simon Dupont, and Thomas Ledoux.
A language support for cloud elasticity management. In Proceedings - 14th
IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing,
CCGrid 2014, pages 206–215. IEEE, may 2014.

14. D. D. Lamanna, J. Skene, and W. Emmerich. SLAng: A language for defining
service level agreements. In Proceedings of the IEEE Computer Society Workshop
on Future Trends of Distributed Computing Systems, volume 2003-January, pages
100–106, 2003.

15. Avraham Leff, James T. Rayfield, and Daniel M. Dias. Service-level agreements
and commercial grids. IEEE Internet Computing, 7(4):44–50, jul 2003.

16. H. Ludwig, A. Keller, A. Dan, and R. King. A service level agreement language for
dynamic electronic services. In Proceedings - 4th IEEE International Workshop on
Advanced Issues of E-Commerce and Web-Based Information Systems, WECWIS
2002, pages 25–32. IEEE Comput. Soc, 2002.

17. Adil Maarouf, Abderrahim Marzouk, and Abdelkrim Haqiq. A review of SLA
specification languages in the cloud computing. 2015 10th International Conference
on Intelligent Systems: Theories and Applications, SITA 2015, pages 1–6, 2015.

18. Nicole Oldham, Kunal Verma, Amit Sheth, and Farshad Hakimpour. Semantic WS-
Agreement Partner Selection. In Proceedings of the 15th international conference
on World Wide Web, pages 697–706, 2006.

19. Ben-Kiki Oren, Clark Evans, and Ingy dot Net. Yaml specification. http://www.
yaml.org/spec/1.2/spec.html, 2009.

20. Carlos Pedrinaci, Jorge Cardoso, and Torsten Leidig. Linked USDL: A vocabulary
for web-scale service trading. In Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
volume 8465 LNCS, pages 68–82. Springer, Cham, 2014.

21. Uri Sarid, Misko Hevery, Ivan Lazarov, Peter Rexer, John Musser, Tony Gullotta,
Jaideep Subedar, Kevin Duffey, and Rob Daigneau. RAML Version 1.0. https:
//github.com/raml-org/raml-spec, 2016.

22. Wei Tan, Yushun Fan, Ahmed Ghoneim, M. Anwar Hossain, and Schahram Dust-
dar. From the Service-Oriented Architecture to the Web API Economy. IEEE
Internet Computing, 20(4):64–68, jul 2016.

23. Samir Tata, Mohamed Mohamed, Takashi Sakairi, Nagapramod Mandagere,
Obinna Anya, and Heiko Ludwig. rSLA : A service level agreement language
for cloud services. 2016 IEEE 9th International Conference on Cloud Computing
(CLOUD), pages 415–422, jun 2016.

24. The Open API Initiative. OAI. https://openapis.org/, 2016.
25. Tibco Mashery. Mashery I/O Docs. http://www.mashery.com/api/io-docs,

2013.
26. Rafael Brundo Uriarte, Francesco Tiezzi, and Rocco De Nicola. SLAC: A for-

mal service-level-agreement language for cloud computing. In Proceedings - 2014
IEEE/ACM 7th International Conference on Utility and Cloud Computing, UCC
2014, pages 419–426. IEEE, dec 2014.

http://www.yaml.org/spec/1.2/spec.html
http://www.yaml.org/spec/1.2/spec.html
https://github.com/raml-org/raml-spec
https://github.com/raml-org/raml-spec
https://openapis.org/
http://www.mashery.com/api/io-docs

	Towards SLA modeling for RESTful APIs
	Introduction
	SLAs in the *aaS industry
	API modeling
	SLA modeling
	Conclusions
	Acknowledgments

