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In a previous paper we introduced the concept of s-convex fuzzy mapping and
established some properties. In this work we study the continuity for s-convex
fuzzy processes.

1 Introduction

The notion of convex process was introduced by Rockafellar [19] (see also [20]).
These processes are set-valued maps whose graphs are closed convex cones.
They can be seen as the set-valued version of a continuous linear operator.
Derivatives of some set-valued maps are closed convex processes, which is a
desirable property for a derivative (see [1]). An important property of convex
processes is that it is possible to transpose closed convex processes and to use
the benefits of duality theory. As it is well known, these facts are very useful
in optimization theory (see for example [2], [16], [17], [18], [3]). The extension
of this notion to the fuzzy framework was done by MatÃloka [15]. Recently,
Syau, Low and Wu [26] observed that MatÃloka’s definition is very strict. They
gave another definition that extends MatÃloka’s one. The concept of m-convex
fuzzy mapping was introduced in [7]. When m = 1 this concept and the
definition of convex fuzzy process given in [26] coincide (see Theorem 3.4, p.
195 in [26]). As a generalization of convex functions, Breckner [4] introduced s-
convex functions and in [5] he studied the set-valued version of these functions.
Convex processes are a particular case of s-convex set-valued maps. Breckner
also proved the important fact that a set-valued map is s-convex if and only if
its support function is a s-convex function. Other related works are [6], [24],
[25]. The fuzzy version of Breckner’s definition was introduced in [8], that was
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called s-convex fuzzy process. In this work it was proved the equivalence with
the s-convexity of the support fuzzy function and other properties were also
studied. Generalizations of the Hadamard and Jensen inequalities for s-convex
fuzzy process were established in [22]. In this work we will continue the study
of these processes.

In convex analysis it is well known the relation between continuity and
boundedness for convex functions (see for instance [13], [9], [10]). These re-
sults have been generalized for multifunctions by several authors. An impor-
tant work in this line is the one in [5], where the author define the generalized
convex and generalized concave set-valued mappings. Later, [23] introduced
the concept of Hölder continuity of a set valued mapping between topological
linear spaces, using the mean of Minkowski function. He studied the rela-
tionship between this concept and the continuity of a s-convex set-valued
mapping.

In this work, we extend the above cited continuity results to the fuzzy
context. These questions have not been considered in the works [15] and [26].
Here we give results for the finite dimensional case. Actually, we are studying
the infinite dimensional case and the obtained results will be published in a
future paper.

The structure of this paper is as follows. In section 2 we introduce some
notation and give the basic concepts. In Section 3 we show the main results.

2 Preliminaries

Let Rn denote the n-dimensional Euclidean space and let C ⊆ Rn be a convex
set. Let s ∈]0, 1] and let f : C ⊆ Rn → R be a function such that for all
a ∈ [0, 1] and for all x, y ∈ C, the following inequality holds

f(ax + (1− a)y) ≤ asf(x) + (1− a)sf(y). (1)

These functions are called s-convex and they have been introduced by Breck-
ner [4], where it is also possible to find examples of such functions (see also
[11]).

Let P (Rn) denote the set of all nonempty subsets of Rn. In [5], Breckner
generalized the notion of s-convexity for a set-valued mapping F : C ⊆ Rm →
P (Rn). F is said to be a s-convex set-valued mapping on C if the following
relation is verified

(1− a)sF (x) + asF (y) ⊆ F {(1− a)x + ay} (2)

for all a ∈ [0, 1] and all x, y ∈ Rm. Also, if a ∈ Q∩ [0, 1], that is, a is a rational
number, we say that F is a rational s-convex set-valued mapping.

We denote by K(Rm) the subset of P (Rm) whose elements are compact and
nonempty and by Kc(Rm) the subset of K(Rm) whose elements are convex. If
A ∈ K(Rm), then the support function σ(A, ·) : Rm → R is defined as
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σ(A,ψ) = sup
a∈A

< ψ, a >, ∀ψ ∈ Rm.

It is important to remark that if A,B ∈ Kc(Rm), then, as a direct con-
sequence of the separation Hahn-Banach theorem, we obtain that σ(A, ·) =
σ(B, ·) ⇔ A = B.

A fuzzy subset of Rn is a function u : Rn → [0, 1]. Let F(Rn) denote the
set of all fuzzy sets in Rn. We define the addition and the scalar multiplication
on F(Rn) by the usual extension principle as follows:

(u + v)(y) = sup
y1,y2: y1+y2=y

min{u(y1), v(y2)}

and

(λu)(y) =
{

u( y
λ ) if λ 6= 0,

χ{0}(y) if λ = 0,

where for any subset A ⊂ Rn, χA denotes the characteristic function of A.
We can define a partial order ⊆ on F(Rn) by setting

u ⊆ v ⇔ u(y) ≤ v(y), ∀y ∈ Rn.

Let u ∈ F(Rn). For 0 < α ≤ 1, we denote by [u]α = {y ∈ Rn / u(y) ≥
α} the α-level set of u. [u]0 = supp(u) = {y ∈ Rn / u(y) > 0} it is called
the support of u.

A fuzzy set u is called convex if (see [14])

u {λy1 + (1− λ)y2} ≥ min{u(y1), u(y2)},

for all y1, y2 ∈ supp(u) and λ ∈]0, 1[.
A fuzzy set u : Rn → [0, 1] is said to be a fuzzy compact set if [u]α is

compact for all α ∈ [0, 1]. If u ∈ F(Rn) is convex, then [u]α is convex for all
α ∈ [0, 1].

We denote by FK(Rn) (FC(Rn)) the space of all fuzzy compact (compact
convex) sets. Given u, v ∈ FK(Rn), it is verified that

(a) u ⊆ v ⇔ [u]α ⊆ [v]α, ∀α ∈ [0, 1],
(b) [λu]α = λ[u]α, ∀λ ∈ R, ∀α ∈ [0, 1],
(c) [u + v]α = [u]α + [v]α, ∀α ∈ [0, 1].

Any application F : Rm → F(Rn) is called a fuzzy process. For each
α ∈ [0, 1] we define the set-valued mapping Fα : Rm → P (Rn) by

Fα(x) = [F (x)]α.

For any u ∈ FC(Rn) the support function of u, S(u, (·, ·)) : [0, 1]×Sm → R,
where Sm = {ψ ∈ Rm/ ‖ψ‖ ≤ 1} and ‖.‖ denotes the Euclidean norm, is
defined as

S(u, (α,ψ)) = σ([u]α, ψ).
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For details about support functions see for example [21].
A fuzzy process F : Rm → F(Rn) is called convex if it satisfies the follow-

ing relation

F {(1− a)x1 + ax2} (y) ≥ sup
y1,y2:(1−a)y1+ay2=y

min{F (x1)(y1), F (x2)(y2)},

for all x1, x2 ∈ Rm, a ∈]0, 1[ and y ∈ Rn. This notion of convex fuzzy process
was recently introduced in [26] and it extends MatÃloka’s definition given in
[15].

Definition 1. Let M ⊂ Rm and x0 ∈ M . Let F : M → F(Rn) be a fuzzy
valued mapping and let {Fα}α∈[0,1] be the family of the α-level set-valued map-
pings associated to F . Then F is said to be

1) lower semicontinuous (lsc) at x0 if for all ρ > 0 there exists δ > 0 such
that

Fα(x0) ⊆ Fα(x) + Bn(0; ρ),

for all α ∈ [0, 1] and x ∈ M ∩ Bm(x0; δ), where Bn(x; ρ) = {ψ ∈
Rn/ ‖ψ − x‖ < ρ}.

2) upper semicontinuous (usc) at x0 if all for all ρ > 0 there exists δ > 0
such that

Fα(x) ⊆ Fα(x0) + Bn(0; ρ),

for all α ∈ [0, 1] and x ∈ M ∩Bm(x0; δ).
3) continuous at x0 if it is usc and lsc at x0.
4) locally bounded at x0 if for each ρ > 0 there exist δ > 0 and a > 0 such

that ⋃

α∈[0,1]

Fα(Bm(x0; δ) ∩M) ⊆ aBn(0; ρ).

5) bounded at x0 if the set ∪α∈[0,1]Fα(x0) is bounded, that is, if for each
γ > 0 there exists a > 0 such that

⋃

α∈[0,1]

Fα(x0) ⊆ aBn(0; γ).

6) locally s-Hölder continuous at x0 if for all ε > 0 there exists a > 0 such
that

H(Fα(x), Fα(y)) ≤ a ‖ x− y ‖s,

for all α ∈ [0, 1] and all x, y ∈ Bm(x0; ε)∩M , where H(·, ·) is the Hausdorff
metric defined by

H(A,B) = sup{sup
b∈B

inf
a∈A

‖a− b‖, sup
a∈A

inf
b∈B

‖a− b‖}.

The fuzzy valued mapping F is continuous (respectively locally bounded,
bounded, locally s-Hölder continuous) on M if it is continuous (respectively
locally bounded, bounded, locally s-Hölder continuous) at each point of M .
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3 Main results

In this Section, we prove some continuity results for s-convex processes.

Proposition 1. Let M be a nonempty subset of Rm, let x0 be a point in M
and let F : M → F(Rn) be a fuzzy valued mapping. Then

a) If F is usc and bounded at x0, then it is locally bounded at x0.
b) If F is locally s-Hölder continuous at x0, then it is continuous at x0.

Proof. (a) Since F is usc at x0, for all γ > 0 there exists δ > 0 such that

Fα(x) ⊆ Fα(x0) + Bn(0; γ/2),

for all α ∈ [0, 1] and x ∈ M ∩Bm(x0; δ). Consequently,
⋃

α∈[0,1]

Fα (M ∩Bm(x0; δ)) ⊆
⋃

α∈[0,1]

Fα(x0) + Bn(0; γ/2).

Also, by using the fact that F is bounded at x0, we have that for all γ > 0
there exists a ≥ 1 such that

⋃

α∈[0,1]

Fα(x0) ⊆ aBn(0; γ/2).

Therefore,
⋃

α∈[0,1]

Fα(M ∩Bm(x0; δ)) ⊆ aBn(0; γ/2) + Bn(0; γ/2) ⊆ aBn(0; γ),

which completes the proof of a).
(b) The assertion in b) is an immediate consequence of the definition of

the Hausdorff metric. ¤

Proposition 2. Let M be a nonempty convex subset of Rm, let x0 be an
interior point in M and let F : M → F(Rn) be a rationally s-convex process,
which is locally bounded at x0. Then F is continuous at x0.

Proof. Let ρ > 0. Since F is locally bounded at x0, there exist a > 0 and
δ > 0 such that Bm(x0; δ) ⊂ M and

⋃

α∈[0,1]

Fα (Bm(x0; δ)) ⊆ aBn(0; ρ/2).

Choose a rational number r ∈ (0, 1) such that

rsa < 1, [1− (1− r)s] a < 1 and
[
1−

(
1

r + 1

)s]
a < 1.
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We claim that
Fα(x0) ⊆ Fα(x) + Bn(0; ρ)

and
Fα(x) ⊆ Fα(x0) + Bn(0; ρ)

for all α ∈ [0, 1] and all x ∈ Bm(x0; δr).
To prove this, we fix α ∈ [0, 1] and x ∈ Bm(x0; δr). Then, the points

y = x0 + 1
r (x − x0) and z = x0 + 1

r (x0 − x) lie both in Bm(x0; δ). As F is
s-convex, we have

(1− r)sFα(x0) + rsFα(y) ⊆ Fα(x).

Thus,
(1− r)sFα(x0) ⊆ Fα(x)− rsFα(y).

Let v ∈ Fα(x0) be arbitrary, then

v = [1− (1− r)s] v + (1− r)sv

∈ [1− (1− r)s] Fα(x0) + Fα(x)− rsFα(y)
⊆ [1− (1− r)s]Bn(0; ρ/2) + Fα(x)− rsBn(0; ρ/2)
⊆ Fα(x) + Bn(0; ρ),

which proves that F is lsc. Analogously, one can see that F is usc. ¤

Proposition 3. Let M be a nonempty convex subset of Rm, let x0 be an
interior point in M and let F : M → F(Rn) be a rationally s-convex process,
which is continuous at x0. If, in addition, either s = 1 or s ∈ (0, 1) and F is
bounded at x0, then F is locally s-Hölder continuous at x0.

Proof. Let ρ > 0. If s ∈ (0, 1), using the fact that F is bounded at x0, we
have that there exists a number a > 0 such that

⋃

α∈[0,1]

Fα(x0) ⊆ a

4
Bn(0; ρ).

By other hand, the continuity of F at x0 implies that there exists δ > 0 such
that

Fα(x0) ⊆ Fα(x) + Bn(0; ρ/4) (3)

and
Fα(x) ⊆ Fα(x0) + Bn(0; ρ/4) (4)

for all α ∈ [0, 1] and all x ∈ Bm(x0; δ) ⊆ M .
We claim that

sup
v∈Fα(y)

inf
w∈Fα(x)

‖u− v‖ ≤ a‖x− y‖s, (5)

for all α ∈ [0, 1] and for all x, y ∈ Bm(x0; δ/2), where
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a =
{

1 if s = 1,
max{a, 1} if s ∈ (0, 1).

To prove (5) we fix α ∈ [0, 1] and x, y ∈ Bm(x0; δ/2). Let r be any rational
number such that r > ‖x−y‖. Let v be any point in Fα(y). Consider the point
z = x + (x − y)/r. Select a number t ∈ (0, r) such that x − y ∈ tBm(0; δ/2).
We have

z = x +
t

r

1
t
(x− y) ∈ Bm(x0; δ/2) +

t

r
Bm(x0; δ/2) ⊆ Bm(x0; δ).

Now, from x = r
r+1z + 1

r+1y, we get

Fα(x) ⊇
(

r

r + 1

)s

Fα(z) +
(

1
r + 1

)s

Fα(y) (6)

⊇
(

r

r + 1

)s

Fα(z) +
(

1
r + 1

)s

v.

Since y ∈ Bm(x0; δ/2) ⊆ Bm(x0; δ), from (3) it follows that v ∈ Fα(x0) +
Bn(0; ρ/4), hence there exists a point v0 ∈ Fα(x0) such that v − v0 ∈
Bn(0; ρ/4). As z ∈ Bm(x0; δ), we deduce by virtue of (4) that v0 ∈ Fα(z) +
Bn(0; ρ/4), hence there exists a point w ∈ Fα(z) such that v0−w ∈ Bn(0; ρ/4).
From (6) it follows that there exist a point u ∈ Fα(x) such that

u =
(

r

r + 1

)s

w +
(

1
r + 1

)s

v.

If s = 1, we have

u− v =
(

r

r + 1

)
(w − v) =

(
r

r + 1

)
(w − v0)−

(
r

r + 1

)
(v − v0)

∈
(

r

r + 1

)
Bn(0; ρ/4) +

(
r

r + 1

)
Bn(0; ρ/4) ⊆ arBn(0; ρ).

If s ∈ (0, 1), we have

u− v =
(

r

r + 1

)s

w +
[(

1
r + 1

)s

− 1
]

v =
(

r

r + 1

)s

(w − v0)−

−
[
1−

(
1

r + 1

)s]
(v − v0) +

[(
r

r + 1

)s

+
(

1
r + 1

)s

− 1
]

v0

∈
(

r

r + 1

)s

Bn(0; ρ/4) +
[
1−

(
1

r + 1

)s]
Bn(0; ρ/4)

+
[(

r

r + 1

)s

+
(

1
r + 1

)s

− 1
]

Fα(x0)

⊆
(

r

r + 1

)s

Bn(0; ρ/4) +
[
1−

(
1

r + 1

)s]
Bn(0; ρ/4)

+a

(
r

r + 1

)s

Bn(0; ρ/4) + a

[
1−

(
1

r + 1

)s]
Bn(0; ρ/4).
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Since 0 ≤ 1− ( 1
r+1 )s ≤ ( r

r+1 )s, we deduce that u− v ∈ arsBn(0; ρ).
Thus, in both cases we have u− v ∈ arsBn(0; ρ). Therefore,

inf
u∈Fα(x)

‖u− v‖ ≤ ‖u− v‖ ≤ ars.

As v was arbitrarily chosen in Fα(y), it follows that

sup
v∈Fα(y)

inf
w∈Fα(x)

‖v − w‖ ≤ ars.

Since r is any rational number satisfying the inequality r > ‖x − y‖, the
inequality (5) must be valid.

Analogously, it can be proved that

sup
v∈Fα(x)

inf
w∈Fα(y)

‖v − w‖ ≤ a‖x− y‖s (7)

for all α ∈ [0, 1] and for all x, y ∈ Bm(x0; ρ/2). From (5) and (7) it follows
that F is locally s-Hölder continuous at x0. ¤

The following results are consequences of the above propositions.

Theorem 1. Let M be a nonempty convex subset of Rm, let x0 be an interior
point in M , and let F : M → F(Rn) be a rationally s-convex process. If
s = 1 or s ∈ (0, 1) and F is bounded at x0, then the following assertions are
equivalent:

(1) F is continuous at x0.
(2) F is locally s-Hölder continuous at x0.

If F is bounded at x0, the above assertions are equivalent to

(3) F is locally bounded at x0.

Theorem 2. Let M be a nonempty convex subset of Rm, let x0 be an interior
point in M and let F : M → F(Rn) be a rationally s-convex process, which is
locally bounded at a point of M . Then F is locally s-Hölder continuous on M .
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10. Giles JR (1982) Convex analysis with application in the differentiation of convex

functions. Pitman.
11. Hudzik H, Maligranda L (1994) Some remarks on s-convex functions, Aequa-

tiones Math. 48:100–111.
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Théor. Approx. 15:167–172.

25. Toader GH (1988) On a generalization of the convexity, Mathematica 1:83–87.
26. Syau YR, Low CY, Wu TH (2002) A note on convex fuzzy processes, Appl.

Math. Lett. 15:193–196.


