
The P Versus NP Problem Through Cellular

Computing with Membranes

Mario J. Pérez-Jiménez, Alvaro Romero-Jiménez, and
Fernando Sancho-Caparrini

Abstract. We study the P versus NP problem through membrane sys-
tems. Language accepting P systems are introduced as a framework al-
lowing us to obtain a characterization of the P �= NP relation by the
polynomial time unsolvability of an NP–complete problem by means of a
P system.

1 Introduction

The P versus NP problem [2] is the problem of determining whether every
language accepted by some non-deterministic algorithm in polynomial time is
also accepted by some deterministic algorithm in polynomial time. To define the
above problem precisely we must have a formal definition for the concept of an
algorithm. The theoretical model to be used as a computing machine in this work
is the Turing machine, introduced by Alan Turing in 1936 [10], several years
before the invention of modern computers.

A deterministic Turing machine has a transition function providing a func-
tional relation between configurations; so, for every input there exists only one
computation (finite or infinite), allowing us to define in a natural way when an
input is accepted (through an accepting computation).

In a non-deterministic Turing machine, for a given configuration several suc-
cessor configurations can exist. Therefore, it could happen that for a given input
different computations exist. In these machines, an input is accepted if there
exists at least one finite accepting computation associated with it.

The class P is the class of languages accepted by some deterministic Turing
machine in a time bounded by a polynomial on the length (size) of the input. From
an informal point of view, the languages in the class P are identified with the
problems having an efficient algorithm that gives an answer in a feasible time;
the problems in P are also known as tractable problems.

The class NP is the class of languages accepted by some non-deterministic
Turing machine where for every accepted input there exists at least one accepting
computation taking an amount of steps bounded by a polynomial on the length
of the input.

Every deterministic Turing machine can be considered as a non-deterministic
one, so we have P ⊆ NP. In terms of the previously defined classes, the P versus
NP problem can be expressed as follows: is it verified the relation NP ⊆ P?

The P ?= NP question is one of the outstanding open problems in theoret-
ical computer science. The relevance of this question does not lie only in the
inherent pleasure of solving a mathematical problem, but in this case an an-
swer to it could provide an information of a high practical interest. For instance,
a negative answer to this question would confirm that the majority of current
cryptographic systems are secure from a practical point of view. On the other
hand, a positive answer could not only entail the vulnerability of cryptographic
systems, but this kind of answer is expected to come together with a general pro-
cedure which will provide a deterministic algorithm solving any NP-complete
problem in polynomial time.

Moreover, the problems known to be in the class NP but not known to be
in P are varied and of highest practical interest. An NP–complete problem is a
hardest (in certain sense) problem in NP; that is, any problem in NP could be
efficiently solved using an efficient algorithm which solves a fixed NP–complete
problem. These problems are the suitable candidates to attack the P versus NP
problem.

In the last years several computing models using powerful and inherent tools
inspired from nature have been developed (because of this reason, they are known
as bio-inspired models) and several solutions in polynomial time to problems
from the class NP have been presented, making use of non-determinism or of
an exponential amount of space. This is the reason why a practical implemen-
tation of such models (in biological, electronic, or other media) could provide a
quantitative improvement for the resolution of NP-complete problems.

In this work we focus on one of these models, the cellular computing model
with membranes, specifically, on one of its variants, the language accepting P
systems, in order to develop a computational complexity theory allowing us to
attack the P versus NP problem from other point of view than the classical
one.

The paper is structured as follows. The next section is devoted to the def-
inition of language accepting P systems. In section 3 a polynomial complexity
class for the above model is introduced. Sections 4 and 5 provides simulations of
deterministic Turing machines by P systems and language accepting P systems
by deterministic Turing machines. Finally, in section 6 we establish a character-
ization of the P versus NP problem through P systems.

2 Language Accepting P Systems

Until the end of 90’s decade several natural computing models have been in-
troduced simulating the way nature computes at the genetic level (genetic al-
gorithms and DNA based molecular computing) and at the neural level (neural
networks). In 1998, Gh. Păun [5] suggests a new level of computation: the cellular
level.

Cells can be considered as machines performing certain computing processes;
in the distributed framework of the hierarchical arrangement of internal vesicles,
the communication and alteration of the chemical components of the cell are
carried out. Of course, the processes taking place in the cell are complex enough
for not attempting to completely model them. The goal is to create an abstract
cell-like computing model allowing to obtain alternative solutions to problems
which are intractable from a classical point of view.

The first characteristic to point out from the internal structure of the cell is
the fact that the different units composing the cell are delimited by several types
of membranes (in a broad sense): from the membrane that separates the cell
from the environment into which the cell is placed, to those delimiting the inner
vesicles. Also, with regard to the functionality of these membranes in nature, it
has to be emphasized the fact that they do not generate isolated compartments,
but they allow the chemical compounds to flow between them, sometimes in
selective forms and even in only one direction. Similar ideas were previously
considered, for instance, in [1] and [3].

P systems are described in [4] as follows: a membrane structure consists of
several membranes arranged in a hierarchical structure inside a main membrane
(called the skin) and delimiting regions (each region is bounded by a mem-
brane and the immediately lower membranes, if there are any). Regions contain
multisets of objects, that is, sets of objects with multiplicities associated with
the elements. The objects are represented by symbols from a given alphabet.
They evolve according to given evolution rules, which are also associated with
the regions. The rules are applied non-deterministically, in a maximally parallel
manner (in each step, all objects which can evolve must do so). The objects
can also be moved (communicated) between regions. In this way, we get tran-
sitions from one configuration of the system to the next one. This process is
synchronized: a global clock is assumed, marking the time units common to all
compartments of the system. A sequence (finite or infinite) of transitions be-
tween configurations constitutes a computation; a computation which reaches
a configuration where no rule is applicable to the existing objects is a halting
computation. With each halting computation we associate a result, by taking
into consideration the objects collected in a specified output membrane or in the
environment.

For an exhaustive overview of transition P systems and of their variants and
properties, see [4].

Throughout this paper, we will study the capacity of cellular systems with
membranes to attack the efficient solvability of presumably intractable decision
problems. We will focus on a specific variant of transition P systems: language
accepting P systems. These systems have an input membrane, and work in such
a way that when introducing in the input membrane a properly encoded string,
a “message” is sent to the environment, encoding whether this string belongs or
not to a specified language.

Definition 1. A membrane structure is a rooted tree, where the nodes are called
membranes, the root is called skin, and the leaves are called elementary mem-
branes.

Definition 2. Let µ = (V (µ), E(µ)) be a membrane structure. The membrane
structure with external environment associated with µ is the rooted tree such
that: (a) the root of the tree is a new node that we denote by env; (b) the set of
nodes is V (µ) ∪ {env}; and (c) the set of edges is E(µ) ∪ {{env, skin}}.
The node env is called environment of the structure µ. So, every membrane
structure has associated in a natural way an environment.

Definition 3. A language accepting P system (with input membrane and ex-
ternal output) is a tuple

Π = (Σ, Γ, Λ, #, µ
Π

,M1, ...,Mp, (R1, ρ1), ..., (Rp, ρp), iΠ)

verifying the following properties:

– The input alphabet of Π is Σ.
– The working alphabet of Π is Γ , with Σ � Γ and # ∈ Γ − Σ.
– µ

Π
is a membrane structure consisting of p membranes, with the membranes

(and hence the regions) injectively labelled with 1, 2, . . . , p.
– iΠ is the label of the input membrane.
– The output alphabet of Π is Λ = {Y es, No}.
– M1, ...,Mp are multisets over Γ −Σ, representing the initial contents of the

regions of 1, 2, . . . , p of µ
Π
.

– R1, ..., Rp are finite sets of evolution rules over Γ associated with the regions
1, 2, . . . , p of µ

Π
.

– ρi, 1 ≤ i ≤ p, are partial order relations over Ri specifying a priority relation
among rules of Ri.

An evolution rule is a pair (u, v), usually represented u → v, where u is a string
over Γ and v = v′ or v = v′δ, with v′ a string over

Γ × ({here, out} ∪ {ini | i = 1, . . . , p}).

Consider a rule u → v from a set Ri. To apply this rule in membrane i means
to remove the multiset of objects specified by u from membrane i (the latter
must contain, therefore, sufficient objects so that the rule can be applied), and
to introduce the objects specified by v, in the membranes indicated by the target
commands associated with the objects from v.

Specifically, for each (a, out) ∈ v an object a will exit the membrane i and
will become an element of the membrane immediately outside it (that is, the
father membrane of membrane i), or will leave the system and will go to the en-
vironment if the membrane i is the skin membrane. If v contains a pair (a, here),
then the object a will remain in the same membrane i where the rule is applied

(when specifying rules, pairs (a, here) are simply written a, the indication here
is omitted). For each (a, inj) ∈ v an object a should be moved in the membrane
with label j, providing that this membrane is immediately inside membrane i
(that is, membrane i is the father of membrane j); if membrane j is not directly
accesible from membrane i (that is, if membrane j is not a child membrane of
membrane i), then the rule cannot be applied. Finally, if δ appears in v, then
membrane i is dissolved; that is, membrane i is removed from the membrane
structure, and all objects and membranes previously present in it become el-
ements of the immediately upper membrane (the father membrane) while the
evolution rules and the priority relations of the dissolved membrane are removed.
The skin membrane is never dissolved; that is, no rule of the form u → v′δ is
applicable in the skin membrane.

All these operations are done in parallel, for all possible applicable rules
u → v, for all occurrences of multisets u in the membrane associated with the
rules, and for all membranes at the same time.

The rules from the set Ri, 1 ≤ i ≤ p, are applied to objects from membrane
i synchronously, in a non-deterministic maximally parallel manner; that is, we
assign objects to rules, non-deterministically choosing the rules and the objects
assigned to each rule, but in such a way that after this assignation no further
rule can be applied to the remaining objects. Therefore, a rule can be applied in
the same step as many times as the number of copies of objects allows it.

On the other hand, we interpret the priority relations between the rules in
a strong sense: a rule u → v in a set Ri can be used only if no rule of a higher
priority exists in Ri and can be applied at the same time with u → v.

A configuration of Π is a tuple (µ, ME , Mi1 , . . . , Miq), where µ is a membrane
structure obtained by removing from µ

Π
all membranes different from i1, . . . , iq

(of course, the skin membrane cannot be removed), ME is the multiset of objects
contained in the environment of µ, and Mij is the multiset of objects contained
in the region ij .

For every multiset m over Σ (the input alphabet of the P system), the initial
configuration of Π with input m is the tuple (µ

Π
, ∅,M1, ...,MiΠ ∪ m, ...,Mp).

That is, in any initial configuration of Π the environment is empty. We will
denote by IΠ the collection of possible inputs for the system Π .

Given a configuration C of a P system Π , applying properly the evolution
rules as described above, we obtain, in a non-deterministic way, a new configu-
ration C ′. We denote by C ⇒

Π
C′, and we say that we have a transition from C

to C′. A halting configuration is a configuration in which no evolution rule can
be applied.

A computation C of a P system is a sequence of configurations, {Ci}i<r,
where: C0 is an initial configuration of the system; Ci ⇒

Π
Ci+1, for every i < r;

and, either r ∈ N+ (that is, it is a non-zero natural number) and Cr−1 is a
halting configuration, or r = ∞, in which case it is said that C is not halting.

For a computation C = {Ci}i<r we will denote by M j
E the content of the

environment in the configuration Cj . Next we define the output of the P system.

Definition 4. The output of a computation C = {Ci}i<r is:

Output(C) =






Yes, if C is halting, Y es ∈ M r−1
E and No 	∈ M r−1

E ,
No, if C is halting, No ∈ M r−1

E and Y es 	∈ M r−1
E ,

not defined, otherwise.

If C satisfies any of the two first conditions, then we say that it is a successful
computation.

Definition 5. A language accepting P system is said to be valid if every halting
computation is a successful computation and every halting computation, and only
them, sends out the symbol # (and only in the last step).

We denote by LA the class of valid language accepting P systems.
Next we define what it means that such P systems accept or decide a lan-

guage.

Definition 6. Let L be a language over an alphabet Ω. We say that the system
Π ∈ LA accepts the language L if the following properties are verified:

– There exists a total function, cod : Ω∗ → IΠ , computable and injective,
encoding strings over Ω by means of multisets over the input alphabet of Π.

– For every string w ∈ Ω∗ it is verified that:
• If w ∈ L, then there exists a computation C of Π with input cod(w) such

that C is halting and Output(C) = Y es.
• If there exists a computation C of Π with input cod(w) such that C is

halting and Output(C) = Y es, then w ∈ L.

Definition 7. Let L be a language over an alphabet Ω. We say that the system
Π ∈ LA decides the language L if the following properties are verified:

– Every computation of Π is halting.
– There exists a total function, cod : Ω∗ → IΠ , computable and injective,

encoding strings over Ω by means of multisets over the input alphabet of Π.
– For every string w ∈ Ω∗ it is verified that:

• If w ∈ L, then for every computation C of Π with input cod(w) it is
verified that Output(C) = Y es.

• If w 	∈ L, then for every computation C of Π with input cod(w) it is
verified that Output(C) = No.

3 A Polynomial Complexity Class in Cellular Systems

In order to give a formal definition of computational complexity classes in this
model, we have to first specify what we mean by a decision problem.

Definition 8. A decision problem, X, is a pair (IX , θX) such that IX is a lan-
guage (over a finite alphabet) whose elements are called instances of the problem
and θX is a total Boolean function over IX .

A decision problem X is solvable by a Turing machine TM if IX is the set
of inputs of TM , for any w ∈ IX the Turing machine halts over w, and w is
accepted if and only if θX(w) = 1.

To solve a problem by means of P systems, we usually construct a family of
such devices so that each element decides the instances of equivalent size, in a
certain sense which will be specified below.

Definition 9. Let g : N+ → N+ be a total computable function. We say that a
decision problem X is solvable by a family of valid language accepting P systems,
in a time bounded by g, and we denote this by X ∈ MCLA(g), if there exists a
family of P systems, Π =

(
Π(n)

)
n∈N+ , with the following properties:

1. For every n ∈ N it is verified that Π(n) ∈ LA.
2. There exists a Turing machine constructing Π(n) from n in polynomial time

(we say that Π is polynomially uniform by Turing machines).
3. There exist two functions, cod : IX → ⋃

n∈N+ IΠ(n) and s : IX → N+,
computable in polynomial time, such that:
– For every w ∈ IX , cod(w) ∈ IΠ(s(w)).
– The family Π is bounded, with regard to (X, cod, s, g); that is, for each

w ∈ IX every computation of the system Π(s(w)) with input cod(w) is
halting and, moreover, it performs at most g(|w|) steps.

– The family Π is sound, with regard to (X, cod, s); that is, for each w ∈ IX

if there exists an accepting computation of the system Π(s(w)) with input
cod(w), then θX(w) = 1.

– The family Π is complete, with regard to (X, cod, s); that is, for each
w ∈ IX if θX(w) = 1, then every computation of the system Π(s(w))
with input cod(w) is an accepting computation.

Note that we impose a certain kind of confluence of the systems, in the sense
that every computation with the same input must return the same output.

As usual, the polynomial complexity class is obtained using as bounds the
polynomial functions.

Definition 10. The class of decision problems solvable in polynomial time by a
family of cellular computing systems belonging to the class LA, is

PMCLA =
⋃

g poly.

MCLA(g).

This complexity class is closed under polynomial-time reducibility.

Proposition 1. Let X and Y be two decision problems such that X is poly-
nomial-time reducible to Y . If Y ∈ PMCLA, then X ∈ PMCLA.

4 Simulating Deterministic Turing Machines by P
Systems

In this section we consider deterministic Turing machines as language decision
devices. That is, the machines halt over any string on the input alphabet, with
the halting state equal to the accepting state, in the case that the string belongs
to the decided language, and with the halting state equal to the rejecting state
in the case that the string does not belong to the language.

It is possible to associate with a Turing machine a decision problem, and
this will permit us to define what means that such a machine is simulated by a
family of P systems.

Definition 11. Let TM be a Turing machine with input alphabet ΣTM . The
decision problem associated with TM is the problem XTM = (I, θ), where I =
Σ∗

TM , and for every w ∈ Σ∗
TM , θ(w) = 1 if and only if TM accepts w.

Obviously, the decision problem XTM is solvable by the Turing machine TM .

Definition 12. We say that a Turing machine TM is simulated in polynomial
time by a family of systems of the class LA, if XTM ∈ PMCLA.

Next we state that every deterministic Turing machine can be simulated in
polynomial time by a family of systems of the class LA.

Proposition 2. Let TM be a deterministic Turing machine working in polyno-
mial time. Then XTM ∈ PMCLA.

See chapter 9 of [8], which follows ideas from [9], for details of the proof.

5 Simulating Language Accepting P Systems by
Deterministic Turing Machines

In this section we are going to prove that if a decision problem can be solved in
polynomial time by a family of language accepting P systems, then it can also
be solved in polynomial time by a deterministic Turing machine.

For the design of the Turing machine we were inspired by the work of C.
Zandron, C. Ferretti and G. Mauri [11], with the difference that the mentioned
paper deals with P systems with active membranes.

Proposition 3. For every decision problem solvable in polynomial time by a
family of valid language accepting P systems, there exists a Turing machine
solving the problem in polynomial time.

Proof. Let X be a decision problem such that X ∈ PMCLA. Then, there exists
a family of valid language accepting P systems Π =

(
Π(n)

)
n∈N+ such that:

1. The family Π is polynomially uniform by Turing machines.
2. There exist two functions cod : IX → ⋃

n∈N+ IΠ(n) and s : IX → N+,
computable in polynomial time, such that:
– For every w ∈ IX , cod(w) ∈ IΠ(s(w)).
– The family Π is polynomially bounded, with regard to (X, cod, s).
– The family Π is sound and complete, with regard to (X, cod, s).

Given n ∈ N+, let An be the number of symbols in the input alphabet of
Π(n), Bn the number of symbols in the working alphabet, Cn the number of
symbols in the output alphabet, Dn the number of membranes, En the maximum
size of the multisets initially associated with them, Fn the total number of rules
of the system, and Gn the maximum length of them. Since the family Π is
polynomially uniform by Turing machines, these numbers are polynomial with
respect to n.

Let m be an input multiset of the system Π(n). Given a computation C of
Π(n) with input m, we denote by Hn(m) the maximum number of digits, in
base 2, of the multiplicities of the objects contained in the multisets associated
with the membranes of the systems and with the environment, in any step of C.
Naturally, this number depends on C, but what we are interested in, and we will
prove at the end of the proof, is that any computation of the system Π(s(w))
with input cod(w) verifies that Hs(w)(cod(w)) is polynomial in the size of the
string w.

Next, we associate with the system Π(n) a deterministic Turing machine,
TM(n), with multiple tapes, such that, given an input multiset m of Π(n), the
machine reproduces a specific computation of Π(n) over m.

The input alphabet of the machine TM(n) coincides with that of the system
Π(n). On the other hand, the working alphabet contains, besides the symbols
of the input alphabet of Π(n) the following symbols: a symbol for each label as-
signed to the membranes of Π(n); the symbols 0 and 1, that will allow to operate
with numbers represented in base 2; three symbols indicating if a membrane has
not been dissolved, has to be dissolved or has been dissolved; and three symbols
that will indicate if a rule is awaiting, is applicable or is not applicable.

Subsequently, we specify the tapes of this machine.

– We have one input tape, that keeps a string representing the input multiset
received.

– For each membrane of the system we have:
• One structure tape, that keeps in the second cell the label of the father

membrane, and in the third cell one of the three symbols that indicate if
the membrane has not been dissolved, if the membrane has to dissolve,
or if the membrane has been dissolved.

• For each object of the working alphabet of the system:
∗ One main tape, that keeps the multiplicity of the object, in base 2,

in the multiset contained in the membrane.
∗ One auxiliary tape, that keeps temporary results, also in base 2, of

applying the rules associated with the membrane.

• One rules tape, in which each cell starting with the second one corre-
sponds to a rule associated with the membrane (we suppose that the set
of those rules is ordered), and keeps one of the three symbols that indi-
cate whether the rule is awaiting, it is applicable, or it is not applicable.

– For each object of the output alphabet we have:
• One environment tape, that keeps the multiplicity of the object, in base

2, in the multiset associated with the environment.

Next we describe the steps performed by the Turing machine in order to
simulate the P system. Take into account that, making a breadth first search
traversal (with the skin as source) on the initial membrane structure of the
system Π(n), we obtain a natural order between the membranes of Π(n). In the
algorithms that we specify below we consider that they always traverse all the
membranes of the original membrane structure and that, moreover, they do it
in the order induced by the breadth traversal of that structure.

I. Initialization of the system. In the first phase of the simulation process fol-
lowed by the Turing machine the symbols needed to reflect the initial configura-
tion of the computation with input m that is going to be simulated are included
in the corresponding tapes.

for all membrane mb of the system do
if mb is not the skin membrane then

– Write in the second cell of the structure tape of mb the label corres-
ponding to the father of mb

end if
– Mark mb as non-dissolved membrane in the third cell of the structure

tape of mb
for all symbol ob of the working alphabet do

– Write in the main tape of mb for ob the multiplicity, in base 2, of ob
in the multiset initially associated with mb

end for
end for
for all symbol ob of the input alphabet do

– Read the multiplicity, in base 2, of ob in the input tape
– Add that multiplicity to the main tape of the input membrane for ob

end for

II. Determine the applicable rules. To simulate a step of the cellular computing
system, what the machine has to do first is to determine the set of rules that are
applicable (each of them independently) to the configuration considered in the
membranes they are associated with.

for all membrane mb of the system do
if mb has not been dissolved then

for all rule r associated with mb do
– Mark r as awaiting rule

end for

for all rule r associated with mb do
if – r is awaiting and

– mb contains the antecedent of r and
– r only sends objects to child membranes of mb that have not been

dissolved and
– r does not try to dissolve the skin membrane

then
– Mark r as applicable rule
for all rule r′ associated with mb of lower priority than r do

– Mark r′ as non-applicable rule
end for

else
– Mark r as non-applicable rule

end if
end for

end if
end for

III. Apply the rules. Once the applicable rules are determined, they are applied
in a maximal manner to the membranes they are associated with. The fact
that the rules are considered in a certain order (using local maximality for each
rule, according to that order) determines a specific applicable multiset of rules,
thus fixing the computation of the system that the Turing machine simulates.
However, from Definition 9 of complexity class it will follow that the chosen
computation is not relevant for the proof, due to the confluence of the system.

for all membrane mb of the system do
if mb has not been dissolved then

for all rule r associated with mb that is applicable do
for all object ob in the antecedent of r do

–Compute the integer quotient that results from dividing the mul-
tiplicity of ob in the main tape of mb by the multiplicity of ob in
the antecedent of r

end for
– Compute the minimum of the values obtained in the previous loop

(that minimum is the maximum number of times that the rule r
can be applied to membrane mb). Let us call it index of the rule r.

for all object ob in the antecedent of r do
– Multiply the multiplicity of ob in the antecedent of r by the index

of r
– Erase the result obtained from the main tape of mb for the

object ob
end for
for all object ob in the consequent of r do

– Multiply the multiplicity of ob in the consequent of r by the index
of r

– Add the result obtained to the auxiliary tape for ob in the corre-
sponding membrane

end for
if r dissolves mb then

– Mark mb as membrane to dissolve in the third cell of the structure
tape of mb

end if
end for

end if
end for

IV. Update the multisets. After applying the rules, the auxiliary tapes keep the
results obtained, and then these results have to be moved to the corresponding
main tapes.

for all membrane mb of the system do
if mb has not been dissolved then

– Copy the content of the auxiliary tapes of mb into the corresponding
main tapes

end if
end for

V. Dissolve the membranes. To finish the simulation of one step of the computa-
tion of the P system it is necessary to dissolve the membranes according to the
rules that have been applied in the previous phase and to rearrange accordingly
the structure of membranes.

for all membrane mb of the system do
if – mb has not been dissolved and

– the father of mb is marked as membrane to dissolve
then

– Make the father of mb equal to the father of the father of mb
end if

end for
for all membrane mb of the system do

if mb is marked as membrane to dissolve then
– Copy the contents of the main tapes of mb into the main tapes of

the (possibly new) father of mb
– Mark mb as dissolved membrane in the third cell of the structure

tape of mb
end if

end for

VI. Check if the simulation has ended. Finally, after finishing the simulation of
one transition step of the computation of Π(n), the Turing machine has to check
if a halting configuration has been reached and, in that case, if the computation
is an accepting or a rejecting one.

if the environment tape contains the symbol # then
if the environment tape contains the symbol Y es then

– Halt and accept the multiset m

else
– Halt and reject the multiset m

end if
else

– Simulate again a step of the computation of the P system
end if

It is easy to check that the family
(
TM(n)

)
n∈N+ can be constructed in an

uniform way and in polynomial time from n ∈ N+.
Let us finally consider the deterministic Turing machine TMΠ that works as

follows:

Input: w ∈ IX

– Compute s(w)
– Construct TM(s(w))
– Compute cod(w)
– Simulate the functioning of TM(s(w)) with input cod(w)

Then, the following assertions are verified:

1. The machine TMΠ works in polynomial time over |w|.
Since the functions cod and s are polynomial in |w|, the numbers As(w),
Bs(w), Cs(w), Ds(w), Es(w), Fs(w), and Gs(w) are polynomial in |w|.
On the other hand, the family Π is polynomially bounded, with regard
to (X, cod, s). Therefore, every computation of the system Π(s(w)) with
input cod(w) performs a polynomial number of steps on |w|. Consequently,
the number of steps, Pw, performed by the computation simulated by the
machine TM(s(w)) over cod(w) is polynomial in |w|.
Hence, the maximal multiplicity of the objects contained in the multisets
associated with the membranes is in the order of O(Es(w) · GPw

s(w)). This
implies that Hs(w)(cod(w)) is in the order of O(Pw · log2(Es(w) ·Gs(w))); that
is, polynomial in |w|.
It follows that the total time spent by TMΠ when receiving w as input is
polynomial in |w|.

2. Let us suppose that TMΠ accepts the string w. Then the computation of
Π(s(w)) with input cod(w) simulated by TM(s(w)) is an accepting compu-
tation. Therefore θX(w) = 1.

3. Let us suppose that θX(w) = 1. Then every computation of Π(s(w)) with
input cod(w) is an accepting computation. Therefore, it is also the compu-
tation simulated by TM(s(w)). Hence TMΠ accepts the string w.

Consequently, we have proved that TMΠ solves X in polynomial time.

6 Characterizing the P �= NP Relation Through P
Systems

Next, we establish characterizations of the P 	= NP relation by means of the
polynomial time unsolvability of NP–complete problems by families of language
accepting P systems.

Theorem 1. The following propositions are equivalent:

1. P 	= NP.
2. ∃X

(
X is an NP–complete decision problem ∧ X 	∈ PMCLA

)
.

3. ∀X
(
X is an NP–complete decision problem → X 	∈ PMCLA

)
.

Proof. To prove the implication 1 ⇒ 3, let us suppose that there exists an NP–
complete problem X such that X ∈ PMCLA. Then, from Proposition 3 there
exists a deterministic Turing machine solving the problem X in polynomial time.
Hence, X ∈ P. Therefore, P = NP, which leads to a contradiction.

The implication 3 ⇒ 2 is trivial, because the class of NP–complete problems
is non empty.

Finally, to prove the implication 2 ⇒ 1, let X be an NP–complete problem
such that X 	∈ PMCLA. Let us suppose that P = NP. Then X ∈ P. Therefore
there exists a deterministic Turing machine TM that solves the problem X in
polynomial time.

By Proposition 2, the problem XTM is in PMCLA. Then there exists a family
ΠTM =

(
ΠTM (k)

)
k∈N+ of valid language accepting P systems simulating TM

in polynomial time (with associated functions codTM and sTM).
We consider the function codX : IX → ⋃

k∈N+ IΠT M (k), given by codX(w) =
codTM (w), and the function sX : IX → N+, given by sX(w) = |w|. Then:

– The family ΠTM is polynomially uniform by Turing machine, and polyno-
mially bounded, with regard to (X, codX , sX).

– The family ΠTM is sound, with regard to (X, codX , sX). Indeed, let w ∈ IX

be such that there exists a computation of the system ΠTM (sX(w)) =
ΠTM (sTM (w)) with input codX(w) = codTM (w) that is an accepting com-
putation. Then θTM (w) = 1. Therefore θX(w) = 1.

– The family ΠTM is complete, with regard to (X, codX , sX). Indeed, let w ∈
IX be such that θX(w) = 1. Then TM accepts the string w. Therefore
θTM (w) = 1. Hence, every computation of the system ΠTM (sTM (w)) =
ΠTM (sX(w)) with input codTM (w) = codX(w) is an accepting computation.

Consequently, X ∈ PMCLA, and this leads to a contradiction.

Acknowledgement. The authors wish to acknowledge the support of the project
TIC2002-04220-C03-01 of the Ministerio de Ciencia y Tecnoloǵıa of Spain, cofi-
nanced by FEDER funds.

References

1. Berry, G.; Boudol, G. The chemical abstract machine. Theoretical Computer Sci-
ence, 96, 1992, pp. 217–248.

2. Cook, S. The P versus NP problem. Manuscript prepared for the Clay Mathematics
Institute for the Millennium Prize Problems (revised November, 2000).

3. Manca, V. String rewriting and metabolism: A logical perspective. In Computing
with Bio-Molecules. Theory and Experiments (Gh. Păun, ed.), Springer-Verlag,
Singapore, 1998, pp. 36–60.

4. Păun, G. Membrane Computing. An Introduction, Springer-Verlag, Berlin, 2002.
5. Păun G. Computing with membranes, Journal of Computer and System Sciences,

61 (1), 2000, pp. 108–143, and Turku Center for Computer Science-TUCS Report
Nr. 208, 1998.

6. Păun, G.; Rozenberg, G. A guide to membrane computing, Theoretical Computer
Science, 287, 2002, pp. 73–100.

7. Pérez–Jiménez, M.J.; Romero-Jiménez, A.; Sancho-Caparrini, F. Teoŕıa de la Com-
plejidad en Modelos de Computación con Membranas, Ed. Kronos, Sevilla, 2002.

8. Romero-Jiménez, A. Complexity and Universality in Cellular Computing Models,
PhD. Thesis, University of Seville, Spain, 2003.

9. Romero-Jiménez, A.; Pérez Jiménez, M.J. Simulating Turing machines by P sys-
tems with external output. Fundamenta Informaticae, vol. 49 (1-3), 2002, pp. 273–
287.

10. Turing, A. On computable numbers with an application to the Entscheid-
nungsproblem. Proceeding London Mathematical Society, serie 2, 42, 1936-7, pp.
230–265.

11. Zandron, C.; Ferreti, C.; Mauri, G. Solving NP-complete problems using P systems
with active membranes. In Unconventional Models of Computation, UMC’2K (I.
Antoniou; C. Calude; M.J. Dinneen, eds.), Springer-Verlag, Berlin, 2000, pp. 289–
301.

	Introduction
	Language Accepting P Systems
	A Polynomial Complexity Class in Cellular Systems
	Simulating Deterministic Turing Machines by P Systems
	Simulating Language Accepting P Systems by Deterministic Turing Machines
	Characterizing the {bf P $not =$ NP} Relation Through P Systems

