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Abstract

The plane strain problem of a single circular cylindrical inclusion embedded in an unbounded matrix
subjected to a remote uniform uniaxial transverse tension is studied. A theoretical model for the simulta-
neous prediction of the initial size of a crack originated at the inclusion/matrix interface (or equivalently
the initial polar angle of this crack) and of the critical remote tension required to originate this crack is
developed. Isotropic and linear elastic behaviour of both materials, with the inclusion being stiffer than
the matrix, is assumed. The interface is considered to be strong (providing continuity of displacements
and tractions across the interface surface) and brittle. The model developed is based on the classical
analytic solutions for the above-mentioned inclusion problem without and with a crack situated at the in-
clusion/matrix interface and a recently introduced coupled stress and energy criterion of failure by Leguillon
(Eur. J. Mech. A/Solids, 21, pp. 61–72, 2002 ). A new dimensionless structural parameter γ, depending
on bimaterial and interface properties together with the inclusion radius a, which plays a key role in char-
acterizing the interface crack onset, is introduced. Asymptotic behaviour of the predicted critical remote
tension and the interface crack length/polar angle at the onset are characterized for small and large values
of γ and a. A size effect inherent to this problem is predicted and analysed. The following asymptotic
characteristics of this size effect are noteworthy: i) for small inclusion radii a, the polar angle of the crack
at onset is constant (independent of a), whereas the critical remote tension increases with decreasing a,
being inversely proportional to the square root of a; ii) for large inclusion radii a, the length of the crack
at onset and the critical remote tension are approximately constant.

Keywords: inclusion debond, interface crack, crack nucleation, strength, fracture toughness, finite fracture
mechanics, size effect, scaling, brittleness number, composites.

1 Introduction

It is well known that stiff circular cylindrical inclusions embedded in a compliant matrix subjected to a remote
transverse tension act as stress concentrators of radial and shear stresses, σr and σrθ (referring to a polar coordi-
nate system centered at each inclusion), at the inclusion/matrix interfaces. The most representative industrial
application of this inclusion/matrix system are Fibre Reinforced Composites (FRC). The failure mechanism in
FRC under traverse tension loads, called ‘matrix cracking’ or ‘interfibre failure’, typically initiates as partial
debonds at fibre/matrix interfaces (or as matrix voids near this interface) due to the above-mentioned stress
concentrations therein. These debonds (voids) grow as cracks along (close to) the fibre/matrix interface, even-
tually, under certain conditions, leaving the interface and penetrating into the matrix, where the coalescence
of these cracks originates macrocracks in the composite. Any improvement in the capability of predicting the
development of these cracks in FRC would be of great importance for the design and evaluation of composite
structures.

The above-described failure mechanism, one of the common modes of failure of FRC, has been studied
from the micromechanical point of view, considering a single fibre embedded in a matrix, in many previous
theoretical, numerical and experimental works, see for instance England (1966); Toya (1974); Paŕıs et al. (1996);
Chao (1997); Varna et al. (1997a,b); Zhang et al. (1997); Prasad (2003); Paŕıs et al. (2007). Nevertheless, the
question of the partial debond initiation at the originally undamaged fibre/matrix interface has still not been
addressed in a satisfactory manner, to the best knowledge of the author.

In general, either a stress based criterion or an energy based criterion is used to analyse a failure initiation
and its further growth. Nevertheless, the crack onset at the (originally undamaged) inclusion/matrix interface
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cannot be correctly predicted by an individual application of either of these two criteria. Each one has its own
difficulties, when used in the present problem, to predict the critical remote load originating a partial debond
at the originally undamaged inclusion/matrix interface.

The normal stress criterion predicts rupture at those interface points where the local value of the normal
traction is greater than the tensile strength of the interface. Hence, due to the non constant distribution of
the normal tractions along the undamaged inclusion/matrix interface (known from works by Goodier (1933);
Hardiman (1954); Honein and Herrmann (1990)), the predicted polar angle of the crack at onset depends on
the predicted critical value of the remote load and viceversa. Thus, the dilemma of this criterion lies in the
fact that it provides only one equation for two unknowns.

The energy criterion, in the framework of classical Fracture Mechanics, compares the Energy Release Rate
(ERR) evaluated for a hypothetical infinitesimal crack at the inclusion/matrix interface with a finite value of
the interface fracture toughness. However, a consequence of the fact that no stress singularity is present at the
originally undamaged interface is that this ERR vanishes for an infinitesimally small crack (see Toya (1974)).
This paradoxically implies that an infinitesimal crack nucleation is not possible according to this criterion.

To solve difficulties of this kind Leguillon (2002) proposed a coherent approach combining both criteria
in the framework of Finite Fracture Mechanics (for a review see Taylor et al. (2005)), which, as opposed to
the usual Fracture Mechanics models, does not need an initial crack length to work properly. Two necessary
conditions, given by a pointwise stress criterion and an incremental global energy criterion, for an abrupt
formation of a crack of a finite extension, are established in this approach. In this way both above-described
difficulties of the individually applied criteria are solved, providing two equations for two unknowns, the critical
load and the finite crack length at onset.

Although similar approaches based on coupling stress and energy criteria to predict fracture or void nucle-
ation have been known for a relatively long time, e.g. Fisher and Gurland (1981) (see also Tszeng (1993) for a
review), it seems that only the recent Leguillon’s (2002) proposal has been widely accepted, and several new
successful applications of this approach to fracture onset in problems with singularities and stress concentra-
tions have appeared in recent years, see e.g. Leguillon and Siruguet (2002); Cornetti et al. (2006); Leguillon
et al. (2007); Carpinteri et al. (2008). Nevertheless, to the author’s best knowledge, the full potential of this
coupled stress and energy criterion to characterize the fracture onset at the inclusion/matrix interface, and
particularly in the present case of circular cylindrical inclusion, has still not been fully explored.

Moreover, Leguillon et al. (2007) have shown that this coupled stress and energy criterion can explain a
size effect for blunt notches and cavities. With reference to composites, the effect of inclusion size on their
mechanical performance has been addressed by many authors (see e.g. Leidner and Woodhams (1974); Fisher
and Gurland (1981); Cho et al. (2006)), demonstrating that, in general, the tensile strength of composites
increases as the size of inclusions decreases, which is associated to the fact that a higher level of load is
required to nucleate cracks at smaller inclusions than at larger ones. The interest in this inclusion size effect
has recently been revived with the appearance of nanocomposites, where higher failure loads are expected
in comparison with traditional composites. Thus, an analysis of the expected size effect predictions by the
coupled stress and energy criterion can significantly contribute to understanding composite strength.

The purpose of the present work is to contribute to modeling the abrupt formation of an inclusion/matrix
debond in FRC. In particular, it aims to provide a new look (based on the coupled stress and energy criterion)
at the debond onset at a circular cylindrical inclusion embedded in a matrix subjected to a remote uniaxial
transverse tension. The crack onset is assumed to happen in a symmetric situation with respect to the load
direction and at one side of the inclusion only. This appears to be a frequently observed configuration in real
unidirectional plies subjected to a sufficiently large transverse tension load (see experimental results shown in
Zhang et al. (1997); Paŕıs et al. (2007)). Recall that a further debond growth as an interface crack, not studied
here, can be analysed in a similar way to that carried out by Paŕıs et al. (2007).

In the present work, isotropic and linear elastic behaviour of both materials, with the inclusion being stiffer
than the matrix, is assumed. The inclusion/matrix interface is considered to be strong (providing continuity
of displacements and tractions across the interface surface) and brittle. The interface is characterized by its
tensile strength and fracture toughness curve. The debond onset at this interface is assumed to have the
form of a sharp crack. Hence, the present inclusion/matrix debonding is treated in the framework of Interface
Fracture Mechanics. Two basic models have been developed in the past for the analysis of interface cracks: the
open model, which assumes traction free crack faces, Williams (1959), and the contact model, which assumes
a contact zone adjacent to each crack tip, Comninou (1977). For a comprehensive review of these models,
in particular of their relations and limitations, see Rice (1988); Hutchinson and Suo (1992); Hills and Barber
(1993); Hills et al. (1996); Gerberich and Yang (2003); Mantič et al. (2006). With reference to the present
problem of the interface crack onset, hence considering relatively small debond angles, for instance semidebond
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angles below 60◦, the open model is considered appropriate for the required fracture assessment. This is due to
the very small zone of non-compatible interpenetrations adjacent to the crack tip (inherent to the open model)
for such semidebond angles, as follows from the analysis performed by several authors, e.g. Toya (1974); Paŕıs
et al. (1996); Chao (1997); Varna et al. (1997a). Nevertheless, a study of the further debond growth (not
intended in the present work), corresponding to greater semidebond angles, may require the application of the
contact model as well, cf. Paŕıs et al. (2007).

The procedure developed in the present work, applying the approach introduced by Leguillon (2002) to the
present problem, uses several solutions, enumerated below, which are available in closed analytic form in the
literature:

(i) The analytic solution for stresses along the undamaged inclusion/matrix interface (Goodier (1933); Hardi-
man (1954); Honein and Herrmann (1990)), to be applied in the stress criterion.

(ii) The analytic solution of the open model for stresses ahead of a crack at the inclusion/matrix interface
(England (1966); Toya (1974)), to be applied for the evaluation of the fracture mode mixity of the
interface crack in the energy criterion.

(iii) The ERR in the open model for a crack at the inclusion/matrix interface (Toya (1974)), to be used in
the energy criterion.

(iv) A phenomenological law estimating the fracture toughness curve—the variation of the interface fracture
toughness as a function of the fracture mode mixity of an interface crack (Hutchinson and Suo (1992)),
to be used in the energy criterion.

It has been useful for the purposes of the present work to rewrite the solutions in i)–iii) in terms of the
Dundurs (1969) bimaterial parameters α and β, which in addition to an easy parametric study has allowed
some interesting and useful relationships between these solutions to be elucidated.

After a short review of the elastic bimaterial constants in Section 2, the stress solution along the undamaged
interface (i) is presented and studied in Section 3. The stress solution ahead of an interface crack (ii) and the
associated ERR (iii) are shown and analysed in Section 4. Although the present work is focused on the stiff
inclusion embedded in a compliant matrix (α, β > 0), the results shown in Sections 3 and 4 cover in fact the
whole range of isotropic bimaterials. The coupled stress and energy criterion is applied to the present problem
in Section 5, providing the critical values of the remote load and the crack angle/length as functions of a
dimensionless structural parameter and of the inclusion radius. The latter functions are in fact representations
of the predicted size effect studied in Section 6.

2 Constants for isotropic bimaterials

Following Dundurs (1969) the stress solution of a wide class of elastic plane strain problems for piecewise
homogeneous isotropic bimaterials depends only on two dimensionless parameters:

α =
µ1(κ2 + 1)− µ2(κ1 + 1)
µ1(κ2 + 1) + µ2(κ1 + 1)

=
E′1 − E′2
E′1 + E′2

, (1)

β =
µ1(κ2 − 1)− µ2(κ1 − 1)
µ1(κ2 + 1) + µ2(κ1 + 1)

, (2)

where µk = 0.5Ek/(1 + νk) and κk = 3 − 4νk are the shear modulus and the Kolosov’s constant of material
k = 1, 2, with Ek and νk denoting the Young elasticity modulus and Poisson ratio, respectively. Effective
elasticity modulus is defined as E′k = Ek/(1− ν2

k), and the harmonic mean of the effective elasticity moduli as

1
E∗

=
1
2

(
1
E′1

+
1
E′2

)
. (3)

Physically admissible values of α and β are restricted to a parallelogram in (α, β) plane enclosed by lines
defined as α = ±1, and by 4β = α± 1. Hence, |α| ≤ 1 and |β| ≤ 0.5.

The so-called oscillation index
ε =

1
2π

ln
1− β
1 + β

(4)

appears in the elastic solution for an interface crack. Notice that cosh−2(πε) = 1− β2.
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Two bimaterial systems, representing typical fibre reinforced composites, will be used as examples in the
present work: glass fibre/epoxy resin and carbon fibre1/epoxy resin, see Table 1 and Paŕıs et al. (2007). For
illustration purposes, other bimaterial systems with extreme values of the Dundurs constants will be considered
if useful.

Bimaterial E1 (GPa) ν1 E2 (GPa) ν2 α β ε E∗ (GPa)
glass/epoxy 70.8 0.22 2.79 0.33 0.919 0.229 -0.074 6.01

carbon/epoxy 13.0 0.20 2.79 0.33 0.624 0.136 -0.044 5.09

Table 1: Examples of isotropic bimaterial constants (1 - inclusion, 2 - matrix).

3 Stresses in a single inclusion under a remote transverse tension

Consider an infinitely long cylindrical inclusion, with a circular transversal section, embedded in an infinite
matrix and perfectly bonded along its lateral surface. Both inclusion and matrix are assumed to be linearly
elastic and isotropic materials identified by numbers 1 and 2 respectively. A uniform uniaxial remote tension
σ∞ > 0 is applied perpendicularly to the inclusion direction. Thus, a plane strain state is generated in
both inclusion and matrix. Let (x, y, z) and (r, θ, z) be suitably defined cartesian and cylindrical coordinate
systems, the z-axis being coincident with the inclusion (longitudinal) axis and the x-axis being parallel to the
load direction, see Figure 1.

x

y σ

τ

θ

r=a

∞σ ∞σ

2 - matrix

1 - inclusion

Figure 1: The inclusion problem configuration.

An analytic solution for stresses in this problem was deduced by Goodier (1933). As shown by Hardi-
man (1954), the stresses inside the inclusion, denoted here as σ(1)

ij , are constant. A compact expression of
these stresses was presented by Honein and Herrmann (1990), using two bimaterial constants. Rewriting the
aforementioned expression in terms of the Dundurs bimaterial constants α and β gives2(

σ
(1)
x σ

(1)
xy

σ
(1)
xy σ

(1)
y

)
=
σ∞

2
1 + α

1 + β

1
1 + α− 2β

(
2 + α− β 0

0 3β − α

)
. (5)

1The carbon fibre is in fact transversely isotropic. Nevertheless, for a plane strain state, equivalent isotropic Young elasticity
modulus E and Poisson ratio ν (appearing in Table 1) can be defined in the transversal isotropy plane as follows. Let the coordinate
plane 12 be the plane of transversal isotropy, and the axis 3 the rotational symmetry axis. The elastic constants of the carbon
fibre assumed are (in this footnote, subscripts denote axes): Ê1 = Ê2 = 13.5GPa, Ê3 = 201GPa, ν̂31 = 0.22 and ν̂12 = 0.25.

Then, considering a plane strain state, first the effective elasticity modulus and Poisson ratio are defined as E′ = Ê1/(1− ν̂13ν̂31)
and ν′ = (ν̂12 + ν̂13ν̂31)/(1− ν̂13ν̂31). Then, using definitions E′ = E/(1− ν2) and ν′ = ν/(1− ν), the equivalent isotropic Young

elasticity modulus and Poisson ratio in the transversal isotropy plane are evaluated as E = Ê1(1 + 2ν̂12 + ν̂13ν̂31)/(1 + ν̂12)2 and
ν = (ν̂12 + ν̂13ν̂31)/(1 + ν̂12). These equivalent isotropic constants for the carbon fibre, E and ν, will be used hereinafter in the
present work.

2The bimaterial constants αHH and βHH used by Honein and Herrmann (1990) can be expressed as αHH = −α+β
1−β

and

βHH = −α−β
1+β

.

4



According to the bounds for α and β, (2 + α − β) > 0 and (1 + α − 2β) ≥ 0 (the equality holds only in the
limit case α = −1 and β = 0), whereas the expression 3β − α can be positive or negative.

From (5), normal and tangential tractions, σ and τ , acting along the inclusion/matrix interface (r = a),
can be easily expressed as functions of the polar angle θ,

σ(θ) = σr(θ) = σ∞
(
k −m sin2 θ

)
, τ(θ) = −σrθ(θ) = σ∞m sin θ cos θ, (6)

where3

k(α, β) =
1
2

1 + α

1 + β

2 + α− β
1 + α− 2β

≥ 0, m(α, β) =
1 + α

1 + β
≥ 0. (7)

Looking at the left expression in (6), k(α, β) can be seen as the concentration factor of the normal tractions
defined along the inclusion/matrix interface, their maximum being achieved for θ = 0. Thus, it is useful to
check its behaviour, shown in Figure 2, as a function of α and β. In the particular case of equal inclusion and
matrix materials, k(0, 0) = 1. For α > 0 and β > 0 (the case the present work is focused on), k > 1, whereas
for α < 0 and β < 0, k < 1. The maximum value is k(1, 0.5) = 5

3 = 1.6̄. The minimum value k(−1, β) = 0 is
achieved if E′1 = 0, the inclusion in fact representing a void. A discontinuity of k can be observed at the point
(α, β) = (−1, 0), where the limits of k take values between 0 and 1 depending on the direction approaching
this point.
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Figure 2: k as a function of α and β in the Dundurs parallelogram.

The behaviour of m(α, β), defined by the right expression in (7), is easier to characterize: m = 1 for α = β
and m ≶ 1 for α ≶ β. The maximum and minimum values are m(1, 0) = 2 and m(−1, β) = 0, respectively.

It is instructive to rewrite σ(1)
ij in (5) in terms of k and m as(

σ
(1)
x σ

(1)
xy

σ
(1)
xy σ

(1)
y

)
= σ∞m

(
k
m 0
0 k

m − 1

)
. (8)

This expressions shows that the character of the inclusion stress state is basically determinate by the ratio k
m ,

in particular when referring to the position of its Mohr circumference with respect to the vertical τ axis.
Let α > −1, and consequently k > 0 and m > 0. Then, the angle θ0 for which the interface normal traction

vanishes, i.e. σ(θ0) = 0, is given by

θ0(α, β) = arcsin

√
k

m
. (9)

The expression on the right hand side of (9) makes sense only if k ≤ m, which is equivalent to the condition
σ

(1)
y ≤ 0 or, in terms of the Dundurs constants, to 3β ≤ α and α > −1. It will be convenient to define θ0 for
k > m as θ0 = ∞.

3For the sake of simplicity, the dependence of different functions on bimaterial or adjustable parameters will be shown explicitly
where the function is defined for the first time, but in subsequent usage of these functions these parameters will usually be omitted.
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According to the left expression in (6), see also (8), in inclusion/matrix bimaterial systems for which k > m,
only positive normal tractions take place along the whole interface, which at first sight can be a surprising
result. Again, in view of the importance of the ratio k

m for the interface traction distribution it seems useful
to check its behaviour, shown in Figure 3, as a function of α and β. It is easy to check analytically that the
ratio k

m is unbounded ( k
m → ∞) at the corner point (α, β) = (−1, 0) of the Dundurs parallelogram, whereas

its minimum value k
m = 3

4 is achieved at the side 4β = α − 1 of this parallelogram. The latter result implies
that θ0 defined in (9) has a minimum value θ0(α, 0.25(α− 1)) = arcsin

√
3

2 = 60◦. Hence,

60◦ ≤ θ0 ≤ 90◦, for k ≤ m. (10)
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Figure 3: k
m as a function of α and β in the Dundurs parallelogram.

For the bimaterials defined in Table 1, the values of the above defined constants characterizing the inclu-
sion/matrix interface traction distribution are presented in Table 2. In view of (9), very similar values of ratio
k
m , shown in Table 2, imply that the values of θ0 for these bimaterials are also very similar.

Bimaterial k m k/m θ0 [◦]
glass/epoxy 1.44 1.56 0.9205 73.63

carbon/epoxy 1.32 1.43 0.9200 73.57

Table 2: The values of k, m, k
m and θ0 for the examples of isotropic bimaterials.

4 The solution for a crack at the interface of a single inclusion
under a remote transverse tension

Consider now the single inclusion problem configuration from the previous section altered by the presence of a
debond—interface crack, symmetrically situated with respect to the load direction, with a semidebond angle
(θd ≥ 0) and an infinite length in the z-axis direction, see Figure 4.

This problem has been studied analytically and numerically by many authors, using both basic models of
Interface Fracture Mechanics (open model and contact model), see Paŕıs et al. (2007) for a review. A fully
analytic solution of this problem (in fact of a more general problem) was deduced by Toya (1974), using the
open model. A concise presentation and a parametric analysis of the Toya’s solution can be found in Murakami
(1988). Toya’s general expressions for the interface tractions ahead of the crack tip and for the Energy Release
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Figure 4: The interface crack problem configuration.

Rate (ERR) are particularized here for the present problem and newly rewritten in terms of the bimaterial
constants4 defined in Section 2. These expressions will be later used in Section 5.

The interface tractions at a point placed ahead of the crack tip at the polar angle θ = θd +θ`, where θ` > 0,
can be evaluated by the complex variable expression:

σ(θ)− iτ(θ) = −σ
∞

2
1− α
1− β

χ(θ)p(θ), (11)

where i =
√
−1 is the imaginary unit, and

χ(θ) =
(
eiθ − eiθd

)− 1
2−iε (

eiθ − e−iθd
)− 1

2+iε
, (12)

p(θ) = q(θd)
(
eiθ − (cos θd − 2ε sin θd)

)
− 1 + α

1− α
e−2ε(θd−π)

(
(cos θd + 2ε sin θd)e−iθ − e−2iθ

)
, (13)

with

q(θd) =
1− (cos θd − 2ε sin θd)e2ε(θd−π) + 1

2 (1 + α)(1 + 4ε2) sin2 θd

3 + α− (1− α)(cos θd − 2ε sin θd)e2ε(θd−π)
− 1

1− α
. (14)

The ratio of the interface shear and normal tractions ahead of the crack tip at a small (either geometry-
or material-based) reference length ` gives a measure of fracture mode mixity of an interface crack, see Rice
(1988); Hutchinson and Suo (1992); Banks-Sills and Ashkenazi (2000); Mantič and Paŕıs (2004). An approach
to experimentally determine a material-based characteristic reference length `m has recently been proposed
by Agrawal and Karlsson (2007) and discussed by Mantič (2008). Nevertheless, in the present study it seems
appropriate to adopt a small geometry-based reference length defined as `g = θ`a, where θ` is a small fixed
reference angle (independent of the debond angle θd).

Thus, it will be assumed that the angle ψ given by

tanψ(θd; θ`) =
τ(θd + θ`)
σ(θd + θ`)

, (15)

provides a suitable measure of the fracture mode mixity. Figure 5 shows the evolution of ψ(θd) for the
bimaterials defined in Table 1, considering θ` = 0.1◦. Taking different values of θ`, e.g. θ` = 0.01◦ or 1◦ also
considered in Section 5.3, would result in curves of the function ψ(θd) similar to those shown in Figure 5, with
the straight part shifted an angle.

It should also be noticed that interface tractions ahead of the crack tip, given by (11), and consequently
also the angle ψ(θd), are independent of the inclusion radius a.

The ERR of the interface crack propagating, for example, at its upper crack tip at an angle θd along the
interface can be expressed as

G(θd) =
(σ∞)2a
E∗

Ĝ(θd;α, β), (16)

4The bimaterial constants νT , βT , kT and λT used by Toya (1974) can be expressed as νT = 1−β
1+β

, βT = 1−α
1+β

, kT = 1−α
2

and

λT = −ε.

7



0

10

20

30

40

50

60

70

80

90

100

110

120

0 10 20 30 40 50 60 70 80 90
θ d [º]

ψ [º]
glass/epoxy

carbon/epoxy

glass/epoxy

Figure 5: Examples of the evolution of the fracture mode mixity angle ψ taking θ` = 0.1◦.

where the dimensionless function Ĝ (defining a normalized form of ERR) depends only on θd, α and β. It is
defined as

Ĝ(θd;α, β) = π
(
1 + 4ε2

)
(1 + α)2 sin θd

(
d(θd)(d(θd)− 2c(θd) cos θd) + c(θd)2

)
/8c(θd), (17)

and

c(θd) = 2e−2ε(θd−π), (18)

d(θd) = − 4− (1− α)(1 + 4ε2) sin2 θd

3 + α− (1− α)(cos θd − 2ε sin θd)e2ε(θd−π)
. (19)

It should be noticed that, according to (16), the ERR G(θd) varies linearly with the inclusion radius a.
Sometimes it is useful to approximate Ĝ(θd) for small values of θd by its Taylor series expansion at θd = 0:

Ĝ(θd) =
dĜ
dθd

∣∣∣∣∣
θd=0

θd +O(θ2d), (20)

where the fact that ERR vanishes for an infinitesimal crack extension, Ĝ(0) = 0, has been taken into account.
From (17) it can be shown that

Ĝ′(0;α, β) def=
dĜ
dθd

∣∣∣∣∣
θd=0

=
k2π(1 + 4ε2)
cosh2(πε)

. (21)

Then the derivative of G with respect to the crack semilength, evaluated for the infinitesimal crack length, is
expressed as

dG
d(aθd)

∣∣∣∣
θd=0

=
(kσ∞)2π(1 + 4ε2)
E∗ cosh2(πε)

. (22)

This expression agrees with the analogous derivative of ERR for a crack at a straight interface between two
half-spaces, see Rice (1988), except the factor k2. In fact, this result could be expected as kσ∞ is the value of
the normal tractions acting at θ = 0 before the infinitesimal crack appears therein.

Figure 6 shows evolution of Ĝ(θd) and its first order Taylor series expansion, obtained from (21), for the
bimaterials defined in Table 1.

5 Interface crack onset at a single inclusion under a remote trans-
verse tension.

A novel approach to solve the problem of a crack onset at a stress concentration (e.g. a blunt notch) or at a
weak stress singularity (e.g. a reentrant corner with traction free faces), where originally there is no crack, has

8



0

1

2

3

4

5

0 10 20 30 40 50 60 70 80 90
θ d

glass/epoxy

carbon/epoxy

asymptotes

[º]

Figure 6: Examples of the evolution of the normalized ERR and its linear approximation.

been developed by Leguillon (2002); Leguillon and Siruguet (2002); Leguillon et al. (2007) in the framework
of Finite Fracture Mechanics. The key idea of this approach is to use two coupled criteria, one strength based
and one energy based, either of them representing a necessary but not sufficient condition for the crack onset.
Applying each criterion individually leads to unresolvable questions, requiring the definition of a characteristic
length, in the following sense:

• The stress-strength criterion determines the minimum value of the applied load leading to rupture, but
it is unable to determine unambiguously the size of the crack originated.

• An application of the (infinitesimal) Griffith type energy criterion for crack growth requires an a priori
existing crack. Therefore, no fundament for determining the initial crack length is given.

However, when assuming an abrupt onset of a crack of a finite length, and applying both criteria simul-
taneously, they provide a system of two (typically nonlinear) equations for two unknowns: the length of the
crack originated and the critical load required for its onset.

In what follows, a generalization of the Leguillon’s coupled criterion for the interface cracks, where the
fracture toughness is a function of fracture mode mixity, is applied to the present problem of the interface
crack onset at a single circular cylindrical inclusion embedded in a matrix subjected to a remote transverse
uniaxial tension.

5.1 Tensile stress criterion

A stress criterion is usually invoked if no pre-existing debond exists at the inclusion surface. The tensile
stress criterion adopted here assumes the existence of a critical value σc > 0 of interface normal tensions—
interfacial tensile strength, defined as the maximum tension that the interface can sustain without fracture.
Thus, according to this stress criterion, the inclusion/matrix interface will break at those points where tension
exceeds σc:

σ(θ) ≥ σc. (23)

In the present problem of remote uniaxial tension, the normal stress σ(θ) is changing along the interface
with the position angle θ as shown in (6). Combining the left expression in (6) with (23) leads to the necessary
condition for rupture at an interface point defined by the angle θ:

σ∞

σc
≥ 1
k −m sin2 θ

. (24)

Inasmuch as the function on the right hand side of (24) increases with increasing |θ|, the interface debond
is expected to happen, for a sufficiently large particular value of ratio σ∞/σc, along the entire portion of
the inclusion surface, symmetrically with respect to the load direction, limited by the maximum angle θσ

c for
which (24), and equivalently the stress criterion (23), are fulfilled,

|θ| ≤ θσ
c . (25)

9



Maximum angle θσ
c ≥ 0 is well defined, and any interface breakage can be expected, if and only if a

sufficiently large remote tension σ∞ is applied, providing that the following condition holds:

σ∞

σc
≥ k−1. (26)

Then, assuming (26), θσ
c is defined as

θσ
c

(
σ∞

σc
;α, β

)
=

 arcsin
√

k
m

(
1− σc

kσ∞

)
, k ≤ m, or k > m and σ∞

σc
≤ 1

k−m ,

180◦, k > m and σ∞

σc
> 1

k−m .

(27)

The function in the first row on the right hand side of (27) is obtained by solving the equality in (24). The
second row in (27) indicates that for k > m and a sufficiently large remote tension the stress criterion predicts
the complete debonding of the inclusion.

If k ≤ m, then there is an upper bound for θσ
c given by θ0 defined in (9). Hence,

θσ
c < θ0(α, β) = arcsin

√
k

m
. (28)

A graphical representation of the stress criterion for the bimaterials defined in Table 1, an extremal bima-
terial system with (α, β) = (1, 0.5) giving k

m = 1.25, and for k
m = 1, corresponding e.g. to (α, β) = (1, 0.3̄),

is shown in Figure 7. The plotted curves define θσ
c for a given normalized remote load σc

σ∞ according to (27),
the traditional meaning of the horizontal and vertical axes being altered thinking of the application of these
curves in the following sections. An alternative interpretation of these curves, according to criterion (24), is
also useful. In simple terms, points placed over the stress criterion curve in Figure 7 correspond to the interface
rupture predicted, whereas points below this curve are in the safe zone.
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Figure 7: Graphical representation of the stress criterion.

One can realize from the above analysis, and in particular from (27), that the stress criterion alone is not
sufficient to unambiguously predict the critical value of the remote load σ∞c for which the interface debond
will occur, or equivalently which portion of the inclusion surface, defined by |θ| ≤ θσ

c , will initially debond.
The reason is that it provides only one equation for two unknowns, σ∞c and θσ

c .

5.2 Incremental energy criterion

The incremental Griffith criterion adopted here is based on an energy balance between an elastic initial state
prior to a crack onset and after the appearance of a finite crack of an angle 2∆θ > 0. The term ‘incremental’
refers to ‘a finite increment of the crack length’ here, as opposed to the classical assumption of ‘an infinitesimal
increment of the crack length’. On the assumption of a constant interface fracture toughness Gc, this energy
balance would be written as:

∆Π + ∆Ek +Gc a2∆θ = 0, (29)

10



where ∆Π is the change in potential energy and ∆Ek is the change in kinetic energy.
However, the previous assumption of a constant interface fracture toughness Gc does not seem to be realistic

in the present case of an interface crack onset. The fracture mode mixity at the tip of a hypothetical crack
situated along the inclusion/matrix interface significantly depends on the crack angle 2θd, as described by the
evolution of the angle ψ(θd) in Figure 5. It is well known, see Hutchinson and Suo (1992); Gerberich and Yang
(2003); Mantič et al. (2006), that such variations of fracture mode mixity in an interface crack are usually
associated to relevant variations of interface fracture toughness. In fact, Gc is considered as a function of ψ,
Gc(ψ), characterizing a particular bimaterial interface and being represented by the so called toughness curve.
Hutchinson and Suo (1992) proposed the following phenomenological law:

Gc(ψ;G1c, λ, ψ0) = G1c

(
1 + tan2[(1− λ)(ψ − ψ0)]

)
, (30)

which is widely accepted as a reasonable approximation of a real toughness curve. In (30), G1c is considered
as the fracture Mode I toughness (also called separation energy, associated to the minimum value of Gc(ψ)).
λ is a fracture mode-sensitivity parameter, whose value can be adjusted to fit experimental data, e.g. typical
range 0.2 ≤ λ ≤ 0.35 characterizes interfaces with moderately strong fracture mode dependence. Finally, ψ0

is a phase shift, which can be modified by taking a different reference angle θ` defining the distance from the
crack tip where ψ is evaluated, see (15). Thus, hereinafter, without loss of generality ψ0 = 0 will be assumed.
Figure 8 shows distributions of the interface fracture toughness as a function of θd, Gc(ψ(θd; θ`);G1c, λ),
obtained combining the distributions of ψ(θd) shown in Figure 5 and (30), for the bimaterials defined in
Table 1, taking λ = 0.3 and a small reference angle θ` = 0.1◦.
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Figure 8: Examples of the normalized interface fracture toughness curves Gc(ψ(θd))/G1c, taking λ = 0.3 and
θ` = 0.1◦.

According to the previous discussion, the following generalized form of the energy balance seems to be
better suited than (29) for the present case of an interface crack onset at the inclusion/matrix interface:

∆Π + ∆Ek +
∫ ∆θ

0

Gc(ψ(θd))2adθd = 0, (31)

where the integral term gives the total energy required to originate an interface crack of an angle 2∆θ sym-
metrically situated around θ = 0.

If the initial state is quasi-static, then there is a production of kinetic energy, ∆Ek ≥ 0, and the above
energy balance leads to the inequality:

−∆Π ≥
∫ ∆θ

0

Gc(ψ(θd))2adθd. (32)

Recall the relation, known from classical (differential) Fracture Mechanics, between the (differential) Energy
Release Rate (ERR) and the derivative of the potential energy with respect to the crack length,

G(θd) = − dΠ
d(2aθd)

. (33)
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Then, the finite variation of the potential energy ∆Π can be evaluated as follows:

−∆Π = −
∫ ∆θ

0

dΠ
d(2aθd)

2adθd =
∫ ∆θ

0

G(θd)2adθd. (34)

Combining (32) with (34) gives the necessary energetic condition for the onset of a crack of length 2a∆θ
at the (originally undamaged) inclusion/matrix interface:∫ ∆θ

0

G(θd)dθd ≥
∫ ∆θ

0

Gc(ψ(θd))dθd. (35)

The term on the left hand side in (35) corresponds to the energy available to be released during the interface
crack onset, whereas the term on the right hand side corresponds to the energy required for such a crack onset.
Recall that only a crack symmetric with respect to the angle θ = 0 is considered here. Notice that in contrast
with the corresponding classical Griffith condition, the inequality (35) involves an a priori unknown and finite
crack angle increment ∆θ.

Considering that G(0) = 0 and Gc(ψ(0)) > 0, there exists a minimum angle θE
c > 0 for which the

condition (35) is fulfilled. Consequently, (35) is not valid for any ∆θ < θE
c , while it holds for a range of

∆θ ≥ θE
c , not being valid for large values of ∆θ due to a strong increase of Gc, shown in Figure 8, and a

decreasing character of G after achieving its maximum, see Figure 6.
By substituting relationships (16) and (30) into (35), and after a rearrangement, this necessary energetic

condition writes as:
(σ∞)2 a
G1cE∗

≥ g(∆θ), (36)

where

g(∆θ;α, β;λ, θ`) =

∫∆θ

0

(
1 + tan2[(1− λ)ψ(θd)]

)
dθd∫∆θ

0
Ĝ(θd)dθd

> 0, (37)

is a universal dimensionless function of ∆θ > 0. Note that, as indicated on the left-hand side of (37), in
addition to the Dundurs parameters, g also depends, in a secondary manner, on the chosen values of the
parameters λ and θ`.

Figure 9 shows the function g(∆θ) for the examples of bimaterials defined in Table 1. The integrals of
smooth functions appearing in definition (37) can be efficiently computed by usual numerical quadratures.
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Figure 9: Universal dimensionless function g(∆θ), taking λ = 0.3 and θ` = 0.1◦.

As can be expected from the behaviour of the functions integrated on the right hand side of (37), and as
observed in Figure 9, the function g(∆θ) has a minimum achieved at an angle denoted as

θE
min(α, β;λ, θ`) > 0. (38)

As will be seen later, θE
min plays a key role in the characterization of the crack onset under study. Moreover, it

will be seen that the shape of the branch of g(∆θ) for ∆θ > θE
min is in fact not relevant for the interface crack

onset predictions presented.
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It will be useful to observe that the logarithmic derivative of the function g(∆θ) can be expressed (using
the definitions (16), (30) and (37)) by:

d log g
d∆θ

=
1

g(∆θ)
dg

d∆θ
=

Gc(ψ(∆θ))∫∆θ

0
Gc(ψ(θd))dθd

− G(∆θ)∫∆θ

0
G(θd)dθd

 < 0, for ∆θ < θE
min,

= 0, for ∆θ = θE
min,

> 0, for ∆θ > θE
min.

(39)

The relationships on the right hand side of (39) follow from the considering the sign of the derivative of g and
the fact that g > 0.

Taking into account that g(∆θ) is a decreasing function for ∆θ < θE
min, for a sufficiently large particular

value of σ∞ there exists a minimum angle denoted as θE
c (σ∞), θE

c ≤ θE
min, for which a debond is energetically

allowed. θE
c is defined by the equality in (36), and subsequently also in (35). Hence, in view of (39),

G
(
θE

c

)
> Gc

(
ψ
(
θE

c

))
for θE

c < θE
min, whereas G

(
θE

c

)
= Gc

(
ψ
(
θE

c

))
for θE

c = θE
min. (40)

Moreover, as follows from (39), also

G
(
θE
min

)
> Gc

(
ψ
(
θE
min

))
for θE

c < θE
min. (41)

In deduction of (41) the inequality
∫ θE

min
0

G(θd)dθd >
∫ θE

min
0

Gc(ψ(θd))dθd, obtained from the relations g(θE
c ) >

g(θE
min) and

∫ θE
c

0
G(θd)dθd =

∫ θE
c

0
Gc(ψ(θd))dθd, has been used.

Obviously, a debond is also energetically allowed for a certain range of ∆θ, whose lower bound is given by
θE

c ,
θE

c ≤ ∆θ, (42)

whereas its upper bound (being greater than θE
min) depends on the shape of g(∆θ) for ∆θ > θE

min.
In fact, the existence of a minimum in g(∆θ) at ∆θ = θE

min leads to the prediction of the minimum remote
tension value σ∞,E

c originating a debond, according to the present incremental energetic criterion (36), as

σ∞,E
c =

√
G1cE∗

a
g
(
θE
min

)
. (43)

Then, the predicted extension of the debond originated by this remote tension is given by ∆θ = θE
c = θE

min.
According to the above analysis, in this particular case the following two equalities hold:∫ θE

min

0

G(θd)dθd =
∫ θE

min

0

Gc(ψ(θd))dθd and G
(
θE
min

)
= Gc

(
ψ
(
θE
min

))
. (44)

Moreover, as shown in Appendix A,

dG(θd)
dθd

∣∣∣∣
θd=θE

c =θE
min

<
dGc(ψ(θd))

dθd

∣∣∣∣
θd=θE

c =θE
min

, (45)

which implies, in view of (44), that according to either energy criterion, the incremental or the classical
infinitesimal one, no further crack growth after the onset of a crack of a semiangle θE

min, originated by the load
σ∞,E

c , is expected.
The two different situations characterized by the equality in (35), and either by the inequalities or equalities

in (40), are illustrated in Figure 10 by examples of the distributions of G(θd) and Gc(ψ(θd) for the glass/epoxy
bimaterial defined in Table 1. Areas of the same size corresponding to the two integrals in (35) are indicated
in Figure 10 as well. Several other general relationships between G and Gc are illustrated in Figure 10, e.g.,
Figure 10(a) illustrates the inequality (41), whereas Figure 10(b) illustrates the inequalities (45) (or equiv-
alently (75)) and (73). The following particular values of problem parameters, chosen somewhat arbitrarily,
have been used to generate these plots: a = 7.5µm, σ∞ = 80.7MPa, G1c = 10Jm−2 and θE

c = 27.5◦ in
Figure 10(a), whereas G1c = 12.6Jm−2 and θE

c = θE
min = 48.2◦ in Figure 10(a).

It should be stressed that the remote tension σ∞,E
c , which implies that a sufficient amount of energy can

be released at the onset of a crack of a semiangle θE
min, may not be sufficiently large to guarantee that the

normal tractions along the interface portion defined by |θ| < θE
min are greater than the interface strength. This

difficulty will be solved in the next section.
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Figure 10: Examples of the evolutions of the ERR G(θd) and the interface fracture toughness Gc(ψ(θd)) (taking
λ = 0.3 and θ` = 0.1◦) for the glass/epoxy bimaterial. Cases: (a) θE

c < θE
min, (b) θE

c = θE
min.

Finally, it will be useful to have a simple approximation of g(∆θ) for small values of ∆θ. Taking into
account that, according to Figure 5, ψ(θd) is small for small θd, tan2(1− λ)ψ(θd) can be considered negligible
with respect to the unity in (30), giving Gc(ψ(θd)) ' G1c for small θd. Then, using the first order Taylor
expansion of Ĝ(θd) in (20) leads to

g(∆θ;α, β;λ, θ`) ' g̃(∆θ;α, β) =
2

Ĝ′(0;α, β)∆θ
for small ∆θ > 0, (46)

where it is indicated that the approximate function g̃(∆θ), also shown in Figure 9, always underestimates
g(∆θ). This is easy derived from the facts that Gc(ψ) ≥ G1c and that G(θd) is overestimated by its linear
approximation, given by its first order Taylor series expansion at θd = 0, as shown in Figure 6. For the
bimaterials considered, g̃(∆θ) reasonably approximates g(∆θ) for ∆θ less than 10◦ − 20◦. Notice, however,
that g̃(∆θ) has no minimum and does not allow θE

min to be estimated.

5.3 Coupled stress and energy criterion

Combining both above described necessary criteria for debond onset, it is obtained that, for a sufficiently large
value of σ∞ (guaranteeing the fulfilment of both criteria), the allowed semidebond angle ∆θ should verify:

θE
c ≤ ∆θ, and ∆θ ≤ θσ

c . (47)

When decreasing the value of σ∞, θE
c is increasing (see (36) and Figure 9) whereas θσ

c is decreasing (see (27)
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and Figure 7). Then, the following two scenarios (denoted A and B) are possible, depending on the bimaterial
and interface properties and the inclusion size.

In scenario A, a minimum value of σ∞ is found for which the equality

θc
def= θE

c = θσ
c (48)

is achieved. Thus, θc ≤ θE
min.

In scenario B, θE
c achieves its upper bound θE

min before becoming equal to θσ
c , i.e. it holds that θE

c < θσ
c .

As a further decrease of σ∞ is not allowed by the energy criterion, then

θc
def= θE

c = θE
min. (49)

The critical value of the remote tension σ∞c originating a debond of semiangle

∆θ = θc (50)

is evaluated, in scenario A, by the following equation, obtained by combining equalities in (24) and in (36):

σ∞c
σc

= γ
√
g(θc) =

1
k −m sin2 θc

, (θc ≤ θE
min) (51)

where a new governing dimensionless parameter5:

γ =
1
σc

√
G1cE∗

a
> 0 (52)

has been introduced. Parameter γ is a structural parameter, as it depends not only on a bimaterial property
E∗ and the interface properties G1c and σc, but also on the unique characteristic length of the present problem
geometry, the inclusion radius a.

In scenario B, σ∞c is evaluated by the expression:

σ∞c
σc

= γ
√
g(θc) >

1
k −m sin2 θc

(θc = θE
min). (53)

The two described scenarios are illustrated, for the bimaterial systems defined in Table 1, in Figure 11,
where the values of γ have been arbitrarily chosen, namely γ = 1 (scenario A) and 5 (scenario B). It can be
observed from these plots that σ∞c

σc
represents the minimum normalized remote load for which both stress and

energy criteria are fulfilled.
According to (40), in scenario A

G (θc) > Gc (ψ (θc)) , (54)

except for the upper limit angle θc = θE
min, where the equality holds, whereas in scenario B

G (θc) = Gc (ψ (θc)) . (55)

From the above analysis, the critical values of the semidebond angle and of the remote tension, θc and σ∞c ,
can be computed by the procedure outlined in Figure 12. As can be deduced from this procedure and from
the plots in Figure 11, while in scenario A the critical values θc and σ∞c are computed from the combination
of both stress and energy criteria, in scenario B these values are governed by the energy criterion only, the
stress criterion then being automatically fulfilled.

5Analogous dimensionless parameters for homogeneous materials have previously been introduced by several authors in different

contexts, e.g.: the parameter x = KIc

σY S

√
πD

for a circumferentially notched round metallic bar of diameter D, where where KIc

is the material fracture toughness and σY S is the uniaxial tensile yield stress, by Irwin (1960); the brittleness number s, for

linear elastic-perfectly plastic materials defined as s = KIc

σy
√

b
, where σy is the yield strength and b is a characteristic length of the

structure, and for brittle and quasibrittle materials defined as s = KIc

σu
√

b
, where σu is the ultimate strength, by Carpinteri (1981,

1982); the Irwin number for ductile materials, I =
σy
√

`

Kc
, correlated to the the square root of the ratio between a characteristic

length of the structure ` and the ultimate size of the plastic zone near the crack tip, 1
π

K2
c

σ2
y

, by Barenblatt (1993), cf. Irwin (1960).

Nevertheless, it seems that the present definition of γ is the first proposal of a dimensionless parameter of this kind for interface
cracks. In fact, γ could be considered as a generalization of the Carpinteri’s brittleness number s to interface cracks.
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Figure 11: Plots of coupled stress and energy criteria, scenario A defined by (51) with γ = 1, and scenario B
defined by (53) with γ = 5, taking λ = 0.3 and θ` = 0.1◦. (a) glass/epoxy, (b) carbon/epoxy.

Let a threshold value of γ be defined as

γth(α, β;λ, θ`) =
1√

g(θE
min)

1
k −m sin2 θE

min

. (56)

Then, scenario A corresponds to 0 < γ ≤ γth. In simple terms, small values of γ are associated to relatively
small values of the interface fracture toughness G1c or of the harmonic mean of the effective Young moduli
E∗, or to relatively large values of the interface strength σc or of the inclusion radius a. It can be deduced
from Figure 11 that

lim
γ→0+

θc = 0. (57)

Then, θc can be approximated by a quadratic function of γ,

θc
∼=

2k2

Ĝ′(0)
γ2 =

2 cosh2(πε)
π (1 + 4ε2)

γ2, for sufficiently small values of γ > 0, (58)

obtained by neglecting m sin2 θc with respect to k on the right hand side of (51), and by approximating g(θc)
by g̃(θc) defined in (46). In view of these results, it is obtained from (51) that

σ∞c
σc

& k−1, for sufficiently small values of γ > 0, (59)

σ∞c then being essentially strength governed. Notice that the upper bounds of ranges where (58) and (59) are
valid are not sharply defined.

16



Find min
∆θ

g(∆θ) def= g(θE
min)

If
(
θE
min < θ0 and γ

√
g(θE

min) < 1
k−m sin2 θE

min

)
or θE

min ≥ θ0 then

Solve the following equation for ∆θ < min
{
θE
min, θ0

}
:

γ
√
g(∆θ) = 1

k−m sin2 ∆θ

θc =the solution ∆θ of this equation
Else

θc = θE
min

Endif
Compute the critical load σ∞c by

σ∞c
σc

= γ
√
g(θc) or equivalently by σ∞c =

√
G1cE∗

a g(θc)
End

Figure 12: Computational procedure for the evaluation of θc and σ∞c .

Scenario B corresponds to γ > γth. In simple terms, large values of γ are associated to relatively large
values of the interface fracture toughness G1c or of the harmonic mean of the effective Young moduli E∗, or
to relatively small values of the interface strength σc or of the inclusion radius a. In this case, the interface
crack onset is essentially governed by the energy criterion. Then,

θc = θE
min, for γ > γth, (60)

and, in view of (43),
σ∞c
σc

=
σ∞,E

c

σc
= γ

√
g(θE

min), for γ > γth. (61)

Thus, while θc is constant for γ > γth, σ∞c is a linear function of γ.
The values of the characteristic parameters θE

min, g(θE
min) and γth for the examples of isotropic bimaterials

defined in Table 1 are presented in Table 3. To check how the choice of the values of the fracture-mode
sensitivity parameter λ, used in (30), and of the reference angle θ`, used in (15), may affect these characteristic
parameters, different values of λ and θ` are considered in Table 3.

Bimaterial λ θE
min g(θE

min) γth

glass/epoxy 0.2 37.7◦/42.5◦/46.8◦ 0.92/0.73/0.63 1.2/1.6/2.1
0.3 43.8◦/48.2◦/52.3◦ 0.77/0.64/0.56 1.7/2.2/2.9

carbon/epoxy 0.2 43.0◦/45.6◦/47.8◦ 0.85/0.77/0.71 1.7/1.9/2.2
0.3 48.3◦/50.7◦/52.7◦ 0.76/0.70/0.65 2.2/2.6/3.0

Table 3: The values of θE
min, g(θE

min) and γth for the examples of isotropic bimaterials, and two values of λ
(0.2/0.3) and three values of θ` (0.01◦/0.1◦/1◦).

The applicability of the Toya (1974) solution for the bimaterials considered can be easily checked by means
of a formula, deduced by Hills and Barber (1993) and generalized by Graciani et al. (2007), for the estimation of
the extension of the interpenetration zone adjacent to an interface crack tip, always existent in the open model
solution. Rewriting this formula to the present case, the angle θI(θd) defining the length of this interpenetration
zone can be obtained as the largest value of

θI(θd) = θ` exp
[{(

2n− 1
2

)
π − ψ(θd; θ`)sgnε+ arctan(2|ε|)

}
/|ε|
]
, (62)

which is lower than the debond angle 2θd, with n being an integer. By substituting into this formula the values
of the fracture mode mixity angle ψ computed by (15) (see also Figure 5) and corresponding to the values
of θ` and θd = θE

min from Table 3, it is obtained that for glass/epoxy θI < 0.052◦, whereas for carbon/epoxy
θI < 0.00046◦. Thus, these interpenetration zones are sufficiently small to validate the open model solution
from Toya (1974) in the procedure presented. The fact that θI(θd) is an increasing function of θd for the range
of θd considered has been taken into account in the interpenetration zone estimations.
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Figures 13(a) and (b) show θc and σ∞c
σc

as functions of the dimensionless structural parameter γ for the
bimaterials defined in Table 1, taking λ = 0.3 and θ` = 0.1◦. Inasmuch as some features of these functions,
in particular the asymptotic behaviour, are more easily identified in log-log scale, the corresponding log-log
plots are presented as well, Figure 14. One can easily check from these plots how the variation of one of the
problem parameters, e.g. σc or G1c, may affect the initial debond angle and the critical remote load value.

According to Table 3, choosing different values of λ and θ` from physically reasonable ranges results in,
at most, moderate variations of the characteristic parameters θE

min, g(θE
min) and γth. Thus, also in view of

the fact that the asymptotes shown in Figures 13 and 14 are independent of λ and θ`, the curves plotted in
these figures will vary only a little when different values of λ and θ` are chosen. These curves can be easily
approximated taking the pertinent values of θE

min, g(θE
min) and γth from Table 3.
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Figure 13: (a) Critical semiangle θc and (b) Critical remote tension as functions of the dimensionless structural
parameter γ, taking λ = 0.3 and θ` = 0.1◦.

After the abrupt crack onset of a semiangle θc predicted by the coupled stress and energy criterion, a further
growth of the sharp interface crack can be assessed by the criterion of the classical ‘infinitesimal’ Interfacial
Fracture Mechanics, in a similar way to that carried out, for instance, in Paŕıs et al. (2007). This means that
the crack of a semidebond angle θd is assumed to grow along the interface if

G(θd) ≥ Gc(ψ(θd)). (63)

Let θa (θa ≥ θc) denote the arrest angle, defined as the maximum angle θd for which (63) holds. According
to the analysis of relationships between G and Gc in Section 5.2, and in particular according to the examples
shown in Figure 10, the following two post crack-onset scenarios can be expected:

a) If θc < θE
min (scenario A without the upper limit case), then G(θc) > Gc(ψ(θc)) and also G(θE

min) >
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Figure 14: (a) Critical semiangle θc and (b) Critical remote tension as functions of the dimensionless structural
parameter γ in log-log scale, taking λ = 0.3 and θ` = 0.1◦.

Gc(ψ(θE
min)). Thus, the interface crack is expected to continue growing unstably from θc to θa > θE

min,
cf. Figure 10(a).

b) If θc = θE
min (scenarioB and the upper limit of scenarioA), thenG(θc) = Gc(ψ(θc)) and dG(θd)/dθd|θd=θc

< dGc(ψ(θd))/dθd|θd=θc
. Thus, no further unstable crack growth along the interface is expected and

θa = θE
min, cf. Figure 10(b).

6 Size effect

A size effect in the problem under study can be understood as a variation of the critical value of the remote
tension σ∞c with variations of the inclusion radius a, keeping all other problem parameters, namely the bima-
terial properties (α, β,E∗) and the interface properties (σc, G1c), constant. Thus, according to the previous
analysis, and particularly in view of the dependence of the key dimensionless parameter γ defined in (52) on the
inclusion radius a, some size effect governing the crack onset at the cylindrical inclusion/matrix interface can
be expected. This predicted size effect appears basically due to the fact that from the four basic magnitudes
appearing in the coupled stress and energy criterion, interface traction distribution (6), interface strength σc,
ERR (16), and the interface fracture toughness (30), the only magnitude dependent on the inclusion radius a
(assuming a physically reasonable range for a) is the ERR G(θd).

Let a bimaterial characteristic length a0 be defined in terms of the interface properties σc and G1c and of

19



the elastic bimaterial property E∗ as follows6:

a0 =
G1cE

∗

σ2
c

, thus γ =
√
a0

a
. (64)

Hence, a = a0 is equivalent to γ = 1. Additionally, let a threshold value of a be defined as

ath =
a0

γ2
th

. (65)

For a < ath, the interface crack onset is essentially governed by the energy criterion, and relationships (60)
and (61) directly imply, in view of (43), that

θc = θE
min, and

σ∞c
σc

=
σ∞,E

c

σc
=
√
g(θE

min)
√
a0

a
. (66)

Thus θc is constant, whereas σ∞c ∼ 1√
a
. According to the left equation in (66), the initial semilength of the

interface crack, aθc, is varying linearly with a for a < ath.
For sufficiently large a, relationships (58) and (59) yield

θc
∼=

2 cosh2(πε)
π (1 + 4ε2)

a0

a
, and

σ∞c
σc

& k−1, (67)

thus θc ∼ 1
a , whereas σ∞c is essentially governed by the stress criterion and is approaching a constant. From

the left equation in (67) it follows that the initial semilength of the interface crack is approaching a constant
for sufficiently large a,

aθc
∼=

2 cosh2(πε)
π (1 + 4ε2)

a0. (68)

This result corresponds to the fact that, for a very small θc, the crack onset problem at the concentration
point of normal tensions at the inclusion/matrix interface is locally similar to the problem of a crack situated
at an infinite straight interface subjected to a remote tension kσ∞.

For the bimaterials defined in Table 1, Figure 15 shows θc, aθc and σ∞c
σc

as functions of the inclusion radius a,
taking θ` = 0.1◦ and λ = 0.3. Notice that ath

a0
= 0.21 and 0.15 for glass/epoxy and carbon/epoxy, respectively.

The corresponding plots in log-log scale are presented in Figure 16.
From the above analytic results and from Figures 15 and 16, one can conclude that, for the same bimaterial

and the same quality of the interface,

- the critical crack semiangle θc is constant for small a, and decreases, proportionally to 1
a , for increasing

and large a,

- the critical crack semilength aθc varies linearly for small a, and approaches a constant for large a,

- the critical remote tension σ∞c is increasing as 1√
a

for decreasing and small a, and is approaching a
constant for large a.

Finally, for the bimaterials defined in Table 1, values of the parameters defined in the procedure developed
are shown in Table 4. These parameters have been computed assuming the inclusion radius a = 7.5µm (taken
from Paŕıs et al. (2007)), with λ = 0.3 and θ` = 0.1◦. As the interface strength σc and fracture toughness
G1c parameters are difficult to know precisely, roughly estimated minimum and maximum values of these
parameters from the data available in Varna et al. (1997b); Zhang et al. (1997); Soden et al. (1998) are used
in Table 4. In fact, σc values are only estimated from the bulk epoxy tensile strength values given in these
references. Taking either the minimum σc and maximum G1c or viceversa, the minimum and maximum values
of each parameter presented are obtained. It can be seen that for both bimaterials γ < γth (cf. Table 3), or
equivalently a > ath, thus in all the cases shown the critical values θc and σ∞c are determined by combining
both stress and energy criteria (the situation corresponding to scenario A described in Section 5.3).

6Analogous material characteristic lengths have previously been introduced by several authors in different contexts, e.g., the
critical length for quasibrittle materials `c = EGc

f2
t

, ft being the tensile strength, by Hillerborg et al. (1976). The length a0 is also

related to the plastic zone correction factor in a ductile material, rY S = 1
2π

K2

σ2
Y S

, by Irwin (1960). Nevertheless, it seems that

the present definition of a0 is the first proposal of a characteristic length of this kind for interface cracks. In fact, a0 could be
considered as a generalization of the Hillerborg’s critical length `c to interface cracks.
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Bimaterial σc [MPa] G1c [Jm−2] a0 [µm] ath [µm] a
a0

γ θc [◦] σ∞c
σc

glass/epoxy 60 10 16.7 3.5 0.4 1.5 39 1.2
90 2 1.5 0.3 5.1 0.4 7.4 0.7

carbon/epoxy 60 10 14.1 2.1 0.5 1.4 35.7 1.2
90 2 1.3 0.2 6.0 0.4 6.1 0.8

Table 4: Estimations of the maximum and minimum values of a0, ath, a/a0, γ, θc, σ∞c /σc for the examples of
isotropic bimaterials.

7 Concluding remarks

1) A theoretical model has been developed for the prediction of the crack onset at the interface between a
stiff circular cylindrical inclusion and a compliant unbounded matrix subjected to a remote uniaxial transverse
tension. This model is based on a coupled pointwise stress criterion and an incremental energy criterion, an
approach recently introduced by Leguillon (2002). The inclusion and matrix materials are assumed to be ho-
mogeneous isotropic linearly elastic, bonded along a strong and brittle interface. The interface is characterized
by two failure parameters: the tensile strength σc and the fracture toughness curve Gc(ψ), ψ being the fracture
mode mixity angle. At onset, an abrupt crack formation of a finite extension is assumed to occur around the
tensile traction concentration point at the interface. The present coupled stress and energy criterion predicts
the critical value of the remote load σ∞c and the initial crack angle θc at onset.

2) The predicted values of σ∞c (normalized by σc) and θc are determined as functions of the Dundurs
bimaterial parameters α and β and of a new dimensionless microstructural parameter γ (52). The parameter
γ has shown to be suitable for characterization of the present crack onset problem. It is closely related to
a characteristic length parameter a0 (64), defined in terms of the interface tensile strength σc, the interface
fracture toughness G1c associated to the fracture Mode I, and the harmonic mean E∗ of the effective elastic
moduli of the inclusion and matrix. The parameter γ can be defined as the square root of the ratio of a0 to
the inclusion radius a. Therefore, a size effect, i.e. variations of predicted values of σ∞c and θc with a keeping
all other problem parameters constant, is inherent to the predictions obtained. Basically, this size effect is
associated to the fact that the crack Energy Release Rate (ERR) decreases as a decreases for the same remote
load applied, whereas the effect of a variation (in a physically reasonable length range) on the interface fracture
toughness is negligible. Notice also that the stress criterion alone is not able to predict any size effect, as the
interfacial stress distribution is independent of a, considering that the effect of a variation on the interface
strength is negligible.

3) The asymptotic behaviour of the predicted values of σ∞c and θc for small and large values of a can be
characterized in simple terms as follows. For small values of a, the crack onset of a constant angle θc (inde-
pendent of a) is expected to occur, while the critical remote tension σ∞c is increasing as ∼ 1√

a
with decreasing

a. For large values of a, the semilength of the crack aθc at onset and the critical remote tension σ∞c are ap-
proximately constant. The former size effect feature seems to be in accordance with the experimental evidence
that, in general, the tensile strength of composites increases as the inclusion size decreases. Nevertheless, it
might be possible that although for very small values of a the interface debond will not occur, rupture of the
matrix near the inclusion could instead become the preferred mode of failure.

4) With reference to the size effect studied, considering different inclusion radii a, one could argue that the
application of a fixed material-based reference length `m to define the fracture mode mixity angle ψ would be
a more consistent choice than the geometry-based reference length `g = θ`a (θ` being a small fixed reference
angle) used in the present work. The reference length `g is adopted in the present work for the sake of simplicity
and the universality of the analysis performed, being perfectly consistent for the study carried out in Section 5.
Nevertheless, to check the influence of this choice on the size effect studied in Section 6, additional calculations
have been performed for a small and physically reasonable `m = 0.1◦ × 7.5µm = 0.013µm. The four limit
cases of the characteristic length parameter a0 presented in Table 4 have been analysed. Only slight deviations
have been observed from the plots shown in Figures 15 and 16 for glass/epoxy, these deviations being even
smaller for carbon/epoxy. In fact, in large parts of some plots the differences are hardly visible. Considering a
physically reasonable range 0.1 ≤ a/a0 ≤ 10, the maximum relative differences between the values of the three
quantities presented in these plots (θc, θca/a0 and σ∞c /σc) obtained using `m and `g have been less than 9%
for glass/epoxy and less than 3% for carbon/epoxy. In particular, with reference to the predicted behaviour
σ∞c ∼ 1√

a
for small values of a, the least squares fitting of power law in the range 0.1 ≤ a/a0 ≤ ath/a0 gives

the exponents whose relative differences from −0.5 are less than 6% and close to 1%, respectively, for the
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couples of large and small values of a0 in Table 4. Thus, the choice of a small and physically reasonable `m
affects only weakly the size effect predicted by using `g. It can be expected that the size effect characteristics
extracted from the behaviour of θc, θca and σ∞c in Figures 15 and 16, obtained using `g, represent a good
universal approximation of the behaviour of these quantities when obtained using other physically reasonable
choices of `m.

5) It should be mentioned that, although the present work has mainly focused on the interface crack onset,
a simple analysis of the post crack-onset behaviour has also been introduced. The key parameter of this
analysis is the angle θE

min (38), the upper bound for θc. If θc < θE
min then a further unstable crack growth along

the inclusion/matrix interface can be expected up to an arrest angle greater than θE
min. However, if θc = θE

min,
no further crack growth along the interface is expected for the remote load value considered. A more detailed
and realistic analysis of this post crack-onset behaviour can be carried out by the suitable analytical and
numerical tools presented in Paŕıs et al. (2007). In fact, according to the results of the numerical study
presented therein, it can be expected that the interface crack will grow unstably up to semidebonding angles
of values 60◦−70◦, where it will either stop or continue growing along the interface or kink towards the matrix,
then continuing its unstable growth as a matrix crack in the direction perpendicular to the load. If the latter
scenario represents reasonably the real progression of damage in a unidirectional ply under transverse tension,
assuming the coalescence of the matrix cracks initiated at the fibre/matrix interfaces, then the critical load for
the interface crack onset predicted in the present work could be quite directly related to the critical transverse
tension for the whole ply.

6) It is expected that the present work can contribute to clarifying which relations of the bimaterial
and fibre/matrix interface properties play an important role in the resulting transverse tensile strength of
a unidirectional ply. These relations can be very useful in the fibre/matrix interface characterization. In
particular, knowledge of the value of the parameter γ (or equivalently of the characteristic length parameter
a0), governing the interface crack onset, seems to be fundamental in this sense. Thus, it could be very useful
to develop some specific experiments, for example, using single fibre specimens, to determine the value of γ
for a particular fibre/matrix system.

7) The present formulation of the coupled stress and energy criterion can be easily modified by incorporating
the average instead of the pointwise tensile stress criterion employed here, as suggested by Cornetti et al. (2006)
and Carpinteri et al. (2008). It has been checked that visible differences between the predictions obtained by
the coupled criteria, using one of these two tensile stress criteria, appear only in the transition regime between
the two asymptotic regimes, corresponding to small and large inclusion radii a. In fact, there is no difference
between the application of these stress criteria once sufficiently small inclusion radii a are considered, as for
these a the debond onset is governed by the energy criterion only. Also, the differences between the predictions
obtained using these stress criteria are hardly visible for large a, as these predictions are governed by the same
asymptotes. The main difference between the application of these stress criteria is the threshold value ath,
which is several times greater for the average than for the pointwise tensile stress criterion (e.g. about 3.3
times for glass/epoxy and 4.1 times for carbon/epoxy, taking λ = 0.3 and a small reference angle θ` = 0.1◦).

An application of the Mohr-Coulomb pointwise stress criterion in the coupled stress and energy criterion
could also be of interest, considering large shear tractions acting along the inclusion/matrix interface for the
values of the polar angle θ close to 45◦. As the Mohr-Coulomb criterion can predict the position of the debond
initiation at an angle θ different from 0◦, such an application would be more challenging, requiring to analyse
asymmetric configurations of the load and an asymmetrically growing debond.

Experimental evidence would be necessary to determine which of these criteria is the best suited to the
present problem.

8) The present approach can also be extended to the cylindrical inclusion/matrix configuration subjected
to other kinds of remote transverse loads, like compression, Correa et al. (2008a,b), or biaxial loads, Paŕıs
et al. (2003), to obtain pertinent predictions of the critical load initiating an interface debond. Such studies
could further contribute to a better understanding of the FRC strength under transverse loads.
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A Proof of inequality dG(θd)
dθd

< dGc(ψ(θd))
dθd

for θd = θEc = θEmin

Let θE
c = θE

min. By the definition of θE
c , as the minimum angle ∆θ > 0 for which equality holds in (35),∫ ∆θ

0

G(θd)dθd <

∫ ∆θ

0

Gc(ψ(θd))dθd, for 0 < ∆θ < θE
min, (69)∫ θE

min

0

G(θd)dθd =
∫ θE

min

0

Gc(ψ(θd))dθd. (70)

Hence, by subtracting (70) from (69),∫ θE
min

∆θ

G(θd)dθd >

∫ θE
min

∆θ

Gc(ψ(θd))dθd, for 0 < ∆θ < θE
min. (71)

According to definitions (16) and (30), see also Figures 6 and 8, the functions −G(θd) and Gc(ψ(θd)) are
strictly convex in the range of angles of interest for the present study, say θd ≤ 80◦. Then, the left part of
the Hermite-Hadamard inequality for strictly convex functions applied to the members of the inequality (71)
yields the following inequality chain for 0 < ∆θ < θE

min:

G

(
∆θ + θE

min

2

)
>

1
θE
min −∆θ

∫ θE
min

∆θ

G(θd)dθd >
1

θE
min −∆θ

∫ θE
min

∆θ

Gc(ψ(θd))dθd > Gc

(
ψ

(
∆θ + θE

min

2

))
.

(72)
Considering the first and the last terms in (72) leads directly to the following general inequality in the case
θE

c = θE
min:

G(θd) > Gc(ψ((θd)), for
θE
min

2
< θd < θE

min. (73)

Applying a basic property of differentiable strictly convex functions to the members of (73) gives

G
(
θE
min

)
+

dG
dθd

∣∣∣∣
θd=θE

min

(
θd − θE

min

)
> G(θd) > Gc(ψ(θd)) > Gc

(
ψ
(
θE
min

))
+

dGc

dθd

∣∣∣∣
θd=θE

min

(
θd − θE

min

)
, (74)

for θE
min
2 < θd < θE

min. Then, in view of the equality in (40),

dG
dθd

∣∣∣∣
θd=θE

min

<
dGc

dθd

∣∣∣∣
θd=θE

min

. (75)
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Figure 15: (a) Critical semiangle θc, (b) Critical semilength of the crack aθc and (c) Critical remote tension
σ∞c as functions of the inclusion radius a, taking λ = 0.3 and θ` = 0.1◦.
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Figure 16: (a) Critical semiangle θc, (b) Critical semilength of the crack aθc and (c) Critical remote tension
σ∞c as functions of the inclusion radius a in log-log scale, taking λ = 0.3 and θ` = 0.1◦.
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