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In this article we consider optimization problems where the objectives are
fuzzy functions (fuzzy-valued functions). For this class of fuzzy optimization
problems we discuss the Newton method to find a non-dominated solution. For
this purpose, we use the generalized Hukuhara differentiability notion, which is
the most general concept of existing differentiability for fuzzy functions. This
work improves and correct the Newton Method previously proposed in the lit-
erature.
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Abstract

In this article we consider optimization problems where the objectives are fuzzy func-

tions (fuzzy-valued functions). For this class of fuzzy optimization problems we discuss

the Newton method to find a non-dominated solution. For this purpose, we use the gen-

eralized Hukuhara differentiability notion, which is the most general concept of existing

differentiability for fuzzy functions. This work improves and correct the Newton Method

previously proposed in the literature.
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1 Introduction

Fuzzy optimization problems have been studied by many researchers in several

directions with a lot of applications. The collection of papers on fuzzy optimization
edited by Delgado et al. [11], Lodwick and Kacprzyk [19], Inuiguchi and Ramı́k
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[15], Rommelfanger and Slowiński [26], Slowiński and Teghem [27], and the books
by Lai and Hwang [16,17] provide reviews about this topic from a very broad point

of view.

It is usually difficult to determine the coefficients of an objective function as a
real number since, most often, these possess inherent uncertainty and/or inaccu-

racy. Given that this is the usual state, we consider fuzzy-valued objective function
as one approach to tackle uncertainty and inaccuracies in the objective function
coefficients of mathematical programming models (see, e.g., Lodwick [18]). Opti-

mization problems with fuzzy-valued objective functions were studied by many
researchers. For instance, see [5,8,23,20,30–37,39]. In particular, in [5,9,33,37]
Karush-Kuhn-Tucker type optimality conditions for this class of fuzzy optimiza-

tion problems were obtained. More recently, Pirzada and Pathak in [21] proposed a
Newton method to find a non-dominated solution of a fuzzy optimization problem

using the Hukuhara differentiability of fuzzy-valued functions.

The concept of Hukuhara differentibility (H-differentiability, for short) for fuzzy
functions is very restrictive. For instance, F(x) = C · x, where C is any fuzzy inter-
val and x is a real number, is not H-differentiable being that F is a generalization of

a linear function. In general, a fuzzy function defined by F(x) = C·g(x), where g is a
differentiable real function and C is a fuzzy interval, is not always H-differentiable.
However, it is always gH-differentiable. It is well-known that the concept of gH-

differentiable fuzzy function (generalized Hukuhara differentiable fuzzy function)
is a more general concept than level-wise differentiability [37,38], Hukuhara dif-

ferentiability [14], and G-differentiability [1–3,6,7]. Thus, the more useful concept
of differentiability for fuzzy functions is gH-differentiability.

The conditions imposed to implement the Newton method introduced by Pirzada
and Pathak in [21] in Theorem 4.1 are very restrictive because they ask that in the

neighborhood of a nondominated solution, all points must be comparable, but the
order relation used is only partial. Moreover, it is also required that the nondom-
inated solution is an ideal point of the endpoint functions of the objective fuzzy

functions. The examples presented in the same paper do not obey the conditions
required by Theorem 4.1. In addition, the objective functions of all examples they

consider are not H-differentiable. Even so, they apply the Newton method to the ex-
amples. Not surprisingly, when they apply to the Example 4.1, they obtain a point
that is not a non dominated solution, although the authors claim it is.

In this paper we formulate the Newton method to find a non-dominated solu-

tion of fuzzy optimization problems without the requirement that all feasible so-
lutions in the neighborhood of a nondominated solution be comparable and use
gH-differentibility instead of H-differentiability. Finally, we correct the examples

considered in [21].
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2 Notation and the space of fuzzy intervals

A fuzzy set on Rn is a mapping u : Rn → [0, 1]. For each fuzzy set u, we denote

its α-level set as [u]α = {x ∈ Rn | u(x) ≥ α} for any α ∈ (0, 1]. The support of u is
denoted by supp(u), where supp(u) = {x ∈ Rn | u(x) > 0}. The closure of supp(u)

defines the 0-level of u, .i.e. [u]0 = cl(supp(u)), where cl(M) means the closure of
the subset M ⊂ Rn.

Definition 1 A fuzzy set u on R is said to be a fuzzy interval if:

(1) u is normal, i.e. there exists x0 ∈ R such that u(x0) = 1;

(2) u is an upper semi-continuous function;

(3) u(λx + (1 − λ)y) ≥ min{u(x), u(y)}, x, y ∈ R, λ ∈ [0, 1];
(4) [u]0 is compact.

Let FC denote the family of all fuzzy intervals. So, for any u ∈ FC we have that

[u]α ∈ KC for all α ∈ [0, 1], where KC denotes the space of all compact intervals in
R, and thus the α-levels of a fuzzy interval are given by [u]α =

[

u
α
, uα

]

, u
α
, uα ∈ R

for all α ∈ [0, 1]. If [u]1 is a singleton then we say that u is a fuzzy number. Trian-
gular fuzzy numbers are a special type of fuzzy numbers which are well determined
by three real numbers a ≤ b ≤ c and we write u = (a, b, c) and

[u]α = [a + (b − a)α, c − (c − b)α],

for all α ∈ [0, 1].

For fuzzy intervals u, v ∈ FC represented by
[

u
α
, uα

]

and
[

v
α
, vα

]

, respectively, and

for any real number λ, we define the addition u + v and scalar multiplication λu as
follows:

(u + v)(x) = sup
y+z=x

min{u(y), v(z)}

(λu)(x) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

u
(

x
λ

)

, if λ ! 0,

0, if λ = 0.

It is well known that, for every α ∈ [0, 1],

[u + v]α =
[

(u + v)α, (u + v)α
]

=
[

u
α
+ v
α
, uα + vα

]

(1)

and

[λu]α =
[

(λu)α, (λu)α
]

=
[

min{λu
α
, λuα},max{λu

α
, λuα}

]

. (2)

A crucial concept in obtaining a useful working definition of derivative for fuzzy
functions is deriving a suitable difference between two fuzzy intervals. Toward this

end we have the following definition.
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Definition 2 ([29]) Given two fuzzy intervals u, v, the generalized Hukuhara dif-

ference (gH-difference for short) is the fuzzy interval w, if it exists, such that

u ⊖gH v = w⇔

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(i) u = v + w,

or (ii) v = u + (−1)w.

It is easy to show that (i) and (ii) are both valid if and only if w is a crisp number.

Note that the case (i) is coincident to Hukuhara difference (see [14]) and so the
concept of gH-difference is more general than H-difference.

If u ⊖gH v exists then, in terms of α-levels, we have

[u ⊖gH v]α = [u]α ⊖gH [u]α =
[

min{u
α
− v
α
},max{uα − vα}

]

,

for all α ∈ [0, 1], where [u]α ⊖gH [u]α denotes the gH-difference between two inter-

vals (see [28,29]).

Given u, v ∈ FC, we define the distance between u and v by

D(u, v) = sup
α∈[0,1]

H ([u]α, [v]α)

= sup
α∈[0,1]

max
{∣

∣

∣u
α
− v
α

∣

∣

∣ , |uα − vα|
}

.

So, (FC ,D) is a complete metric space.

3 Differentiable fuzzy functions

Henceforth, K denotes an open subset of Rn. A function F : K → FC is said to be
a fuzzy function. For each α ∈ [0, 1], we associate with F the family of interval-

valued functions Fα : K → KC given by Fα(x) = [F(x)]α. For any α ∈ [0, 1], we
denote

Fα(x) =
[

f
α
(x), f α(x)

]

.

Here, the endpoint functions f
α
, f α : K → R are called upper and lower functions

of F, respectively.

Next we present the concept of gH-differentiability of fuzzy functions in the one
dimensional case.

Definition 3 ([3]) Let K ⊂ R with F : K → FC a fuzzy function and x0 ∈ K and h

be such that x0+h ∈ K. Then the generalized Hukuhara derivative (gH-derivative,

4
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for short) of F at x0 is defined as

F′(x0) = lim
h→0

F(x0 + h) ⊖gH F(x0)

h
. (3)

If F′(x0) ∈ FC satisfying (3) exists, we say that F is generalized Hukuhara differ-

entiable (gH-differentiable, for short) at x0.

The gH-derivative for an interval-valued function [28] is similar to Definition 3.

More precisely, an interval-valued function F : K → KC is gH-differentiable at
x0 ∈ K, with gH-derivative F

′

(x0) ∈ KC , if (3) exists with respect to the limit in the
metric space (KC ,H), where the difference is given by the gH-difference between

intervals (see [28]).

Theorem 1 Let F : K → FC be a fuzzy function. If F is gH-differentiable then

the interval-valued function Fα : K → KC is gH-differentiable for each α ∈ [0, 1].

Moreover
[

F′(x)
]α
= F′α(x). (4)

Proof. The proof is a consequence of the definition of gH-differentiability.

Example 1 Consider the fuzzy mapping F : R → FC defined by F(x) = C · x,

where C is a fuzzy interval and [C]α = [C
α
,Cα] with C

α
< Cα. Note that F is a

generalization of a linear function and for each α ∈ [0, 1] we have

Fα(x) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

[

C
α
x,Cαx

]

if x ≥ 0;
[

Cαx,C
α
x
]

if x < 0.

Thus the endpoint functions f
α

and f α are not differentiable at x = 0. However F

is gH-differentiable on R and F
′

(x) = C for all x ∈ R. In general, if F(x) = C ·g(x),
where g : R → R is a differentiable function and C ∈ FC, then it follows relatively

easy that the gH-derivative exists and it is F′(x) = C · g′(x), but the endpoint

functions f
α

and f α are not necessarily differentiable.

In general we have the following result which connects gH-differentiability of F

and the differentiability of its endpoint functions f
α

and f α.

Theorem 2 Let F : K → FC be a fuzzy function. If F is gH-differentiable at x0 ∈ K

then, for each α ∈ [0, 1], one of the following cases hold:

(a) f
α

and f α are differentiable at x0 and

[F
′

(x0)]α =
[

min
{

( f
α
)
′

(x0), ( f α)
′

(x0)
}

,max
{

( f
α
)
′

(x0), ( f α)
′

(x0)
}]

;

5
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(b) ( f
α
)′−(x0), ( f

α
)′+(x0), ( f α)

′
−(x0) and ( f α)

′
+(x0) exist and satisfy ( f

α
)′−(x0) = ( f α)

′
+(x0)

and ( f
α
)′+(x0) = ( f α)

′
−(x0). Moreover

[F
′

(t0)]α =
[

min
{

( f
α
)
′

−(x0), ( f α)
′

−(x0)
}

,max
{

( f
α
)
′

−(x0), ( f α)
′

−(x0)
}]

=
[

min
{

( f
α
)
′

+(x0), ( f α)
′

+(x0)
}

,max
{

( f
α
)
′

+(x0), ( f α)
′

+(x0)
}]

Proof. The proof is a consequence of Theorem 9 in [6] and Theorem 1.

Remark 1 Note that the gH-differentiability is coincident with the H-differentia-

bility (differentiability in the sense of Hukuhara introduced by Puri and Ralescu

[22] as a generalization of the Hukuhara derivative for set-valued functions [14])

only when f
α

and f α are differentiable and ( f
α
)′(x) ≤ ( f α)

′(x) for all α ∈ [0, 1].

Thus, the gH-differentiability is a more general concept of differentiability for fuzzy

functions than the H-differentiability. The gH-differentiability concept is also more

general than G-differentiability, see [1].

We are now going to define the partial derivative for a fuzzy function F defined
on K ⊂ Rn, i.e., F(x) = F(x1, ..., xn) ∈ FC for each x = (x1, ..., xn) ∈ K. For

this, given a fuzzy function F : K → FC, we denote the fuzzy interval F(x) by
F(x) =

[

f (x), f (x)
]

and, for each α ∈ [0, 1],

Fα(x) =
[

f
α
(x), f α(x)

]

.

Definition 4 Let F be a fuzzy function defined on K ⊂ Rn and let x0 =
(

x(0)
1 , ..., x

(0)
n

)

be a fixed element of K. We consider the fuzzy function hi(xi) = F(x(0)
1 , ..., x

(0)
i−1, xi, x

(0)
i+1, ..., x

(0)
n ).

If hi is gH-differentiable at x(0)
i , then we say that F has the ith partial gH-derivative

at x0 (denoted by (∂F/∂xi) (x0)) and (∂F/∂xi)(x0) = (hi)
′(x(0)

i ).

Definition 5 Let F be a fuzzy function defined on K and let

x0 =
(

x(0)
1 , ..., x

(0)
n

)

∈ K be fixed. We say that F is gH-differentiable at x0 if all the

partial gH-derivatives (∂F/∂x1) (x0),..., (∂F/∂xn) (x0) exist on some neighborhood

of x0 and are continuous at x0.

Note that if F is gH-differentiable at x0, then (∂F/∂xi) (x0) is a fuzzy interval. So,
for each α ∈ [0, 1], we denote

[

∂F

∂xi

(x0)

]α

=
∂Fα

∂xi

(x0) =

⎡

⎢

⎢

⎢

⎢

⎣

∂Fα

∂xi

(x0),
∂Fα

∂xi

(x0)

⎤

⎥

⎥

⎥

⎥

⎦

.

We obtain
(

∂Fα/∂xi

)

(x0) and
(

∂Fα/∂xi

)

(x0) from Theorem 2.

Next we present an interesting proposition which will be used to obtain our main

results.

6
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Proposition 1 Let F : K → FC be a fuzzy function. If F is gH-differentiable at

x0 ∈ K then, for each α ∈ [0, 1], the real-valued function f
α
+ f α : K → R is

differentiable at x0. Moreover,

∂Fα

∂xi

(x0) +
∂Fα

∂xi

(x0) =
∂
(

f
α
+ f α

)

∂xi

(x0). (5)

Proof. The proof is a consequence of Theorem 2.

From previous definition we can define the gradient of a fuzzy function as follows.

Definition 6 Given the fuzzy function F : K → FC, the gradient of F at x0, denoted

by ∇̃F(x0), is defined by

∇̃F(x0) =

((

∂F

∂x1

)

(x0), ...,

(

∂F

∂xn

)

(x0)

)

, (6)

where (∂F/∂x j)(x0) is the jth partial G-derivative of F at x0.

Note that ∇̃F(x) is a n-dimensional fuzzy vector. For the gradient of a fuzzy func-
tion we use the symbol ∇̃, whereas for the gradient of a real-valued function we use

the symbol ∇.

Definition 7 Let F : K ⊂ Rn → FC be a fuzzy function, where K ⊂ Rn is an open

set. Suppose now that there is x0 ∈ K such that gradient of F, ∇̃F, is itself gH-

differentiable at x0, that is, for each i, the function ∂F
∂xi

: K → FC is gH-differentiable

at x0. Denote the gH-partial derivative of ∂F
∂xi

by

D2
i jF(x0) or

∂2F

∂xix j

(x0), if i ! j,

and

D2
iiF(x0) or

∂2F

∂x2
i

(x0), if i = j.

If F is twice gH-differentiable at each x0 in K, we say that F is twice gH-differentiable

on K, and if for each i, j = 1, 2, ..., n, the cross-partial derivative ∂2F
∂xi x j

is continuous

function from K to FC, we say that F is twice continuously gH-differentiable on K.

We define a m-times continuously gH-differentiable fuzzy function in way similar
to Definition 7, that is, F : K → FC is m-times continuously gH-differentiable
on K if and only if all of the partial gH-derivatives of order m ∈ N exist and are

continuous (in the sense of fuzzy function).

If F is gH-differentiable we have that the endpoint function f
α

and f α are not

necessarily differentiable. However, from Proposition 1, we have that f
α
+ f α is

7
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always differentiable for all α ∈ [0, 1]. This property holds for the case of m-times
gH-differentiability of f

α
+ f α.

Proposition 2 Let F : K → FC be a fuzzy function. If F is m-times gH-differentiable

at x0 ∈ K then, for each α ∈ [0, 1], the real-valued function f
α
+ f α : K → R is m-

times differentiable at x0.

Proof. The proof follows from Proposition 1.

4 Fuzzy optimization

We consider the following order relations on the space FC . Let u and v be two fuzzy
intervals, so [u]α =

[

u
α
, uα

]

and [v]α =
[

v
α
, vα

]

are two intervals for all α ∈ [0, 1].
We write:

u ≼ v, iff [u]α ≼ [v]α, for all α ∈ [0, 1]; (7)

which is equivalent to writing u
α
≤ v

α
and uα ≤ vα for all α ∈ [0, 1].

u ≺ v, iff u ≼ v and u ! v; (8)

which is equivalent to [u]α ≼ [v]α for all α ∈ [0, 1] and there exists α∗ ∈ [0, 1] such
that u

α∗
< v

α∗
or uα∗ < vα∗ .

Now we consider the following optimization problem with fuzzy-valued objective

function

(FO) min F(x), x ∈ X

where X ⊂ Rn and F : X → FC is a fuzzy function.

Since “≼” and “≺” are partial orderings on FC, we may follow the similar solution

concept used in multiobjective programming problems.

Definition 8 Let X ⊂ Rn be an open set. We say that x∗ ∈ X is a locally non-

dominated solution of problem (FO) if there exists no x ∈ Nϵ(x∗) ∩ X such that

F(x) ≺ F(x∗), where Nϵ(x∗) is a ϵ-neighborhood of x∗.

The following result has been proved in [21] and it is essential to Newton method
implementation which was also proposed in the same article.

Theorem 3 Let F : X → FC be a fuzzy function, where X ⊂ Rn is an open set. If

x∗ ∈ X is a locally non-dominated solution of (FO) and for any direction d and for

any δ > 0 there exists λ ∈ (0, δ) such that F(x∗ + λ · d) and F(x∗) are comparable,

then x∗ is a local minimizer of the real-valued functions f
α

and f α, for all α ∈ [0, 1].

8
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In Theorem 3, the condition: x∗ ∈ X is a locally non-dominated solution of (FO)
and for any direction d and for any δ > 0 there exists λ ∈ (0, δ) such that F(x∗+λ ·d)

and F(x∗) are comparable, is very restrictive.

In fact, the order relation ≼ is a partial order in the space of fuzzy intervals. For

example, if we consider F(x) = u ·x, where u = (−1, 0, 1), we have that the previous
condition is not satisfied, i.e,. for all x and y, F(x) and F(y) are not comparable,

where 0 is a nondominated solution of F

On the other hand, to require that the nondominated solution x∗ be a local minimizer
of both real-valued functions f

α
and f α, for all α ∈ [0, 1], is very restrictive. If

this point existed, it would be an ideal point, as it is known in the multiobjective

literature. It is very difficult to find fuzzy functions that possess ideal points. In fact,
the Examples 4.1, 4.2, 4.3 and 4.4 of the article [21] do not have ideal point for all
α ∈ [0, 1]. For instance, take the Example 4.2, in which it has been introduced the

fuzzy function

F(x1, x2) = (−1, 1, 3) · x2
1 + (0, 1, 2) · x1x2 + (1, 2, 4) · x2

2,

with x1, x2 ∈ R. In this case, x∗ = (0, 0) is a non-dominated solution of F, however

x∗ = (0, 0) is not a local minimizer of the endpoint function f
0

since f
0
(ϵ, 0) < 0 =

f
0
(0, 0), for all ϵ > 0 near zero.

Next we provide a sufficient condition for a nondominated solution of F based only
on the sum of the objective endpoint functions. This result generalizes the previous
theorem and is more suitable for application of the Newton method.

Theorem 4 Let F : X → FC be a fuzzy function, X ⊂ Rn is an open set. If x∗ is a

local minimizer of the real-valued function f
α
+ f α, for all α ∈ [0, 1] then x∗ is a

locally non-dominated solution of (FO)

Proof. Suppose that x∗ is not a locally non-dominated solution of (FO). Then, there
exist x ∈ Nϵ(x∗) such the F(x) ≺ F(x∗). So, there exist α∗ ∈ [0, 1] such that

f
α∗

(x) ≤ f
α∗

(x∗) and f α∗(x) ≤ f α∗(x∗),

where at least one of the inequality is strict. So

( f
α∗
+ f α∗)(x) < ( f

α∗
+ f α∗)(x∗).

Therefore, x∗ is not a local minimizer of the real-valued function f
α∗
+ f α∗ . This

complete the proof.

9
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5 Newton method

In this section we propose a Newton method to find a non-dominated solution of

(FO). For this, we assume that at each measurement point x(k) we can calculate
F

(

x(k)
)

, ∇̃F
(

x(k)
)

and ∇̃2F
(

x(k)
)

. Thus, taking into account Propositions 1 and 2,

we can also calculate f
α

(

x(k)
)

, f α
(

x(k)
)

, ∇
(

f
α
+ f α

) (

x(k)
)

and ∇2
(

f
α
+ f α

) (

x(k)
)

for all α ∈ [0, 1]. Hence, for each α ∈ [0, 1], we can approximate the real-valued

function f
α
+ f α by a quadratic real-valued function hα, with the help of Taylor’s

formula and obtain

hα(x)=
(

f
α
+ f α

) (

x(k)
)

+ ∇
(

f
α
+ f α

) (

x(k)
)

·
(

x − x(k)
)

+

{

1

2

(

x − x(k)
)T
· ∇2

(

f
α
+ f α

) (

x(k)
)

·
(

x − x(k)
)

}

,

for all α ∈ [0, 1].

If x∗ is a minimizer of f
α
+ f α, for all α ∈ [0, 1], given x(k) we try to approximate a

minimizer of f
α
+ f α by finding a minimizer of hα, for all α ∈ [0, 1]. From first-order

necessary condition for hα we have

∇hα(x∗) = 0,

for all α ∈ [0, 1]. This implies that

∫ 1

0

∇
(

f
α
+ f α

) (

x(k)
)

dα +

∫ 1

0

∇2
(

f
α
+ f α

) (

x(k)
)

dα
(

x − x(k)
)

= 0. (9)

Define the real-function H : Rn → R by

H(x) =

∫ 1

0

(

f
α
+ f α

)

(x) dα.

If the fuzzy function F is twice continuously gH-differentiable then, from Proposi-
tion 2, f

α
+ f α is twice continuously gH-differentiable for all α ∈ [0, 1]. Thus H is

also twice continuously gH-differentiable. Therefore, from (9) we have

∇H
(

x(k)
)

+ ∇2H
(

x(k)
)

·
(

x − x(k)
)

= 0, (10)

By putting x = x(k+1) in (10), we arrive at

x(k+1) = x(k) − ∇H(x(k)) ·
[

∇2H
(

x(k)
)]−1
, (11)

where
[

∇2H
(

x(k)
)]−1

is the inverse of matrix∇2H
(

x(k)
)

. Thus, starting with an initial

approximation to a minimizer of F, we can generate a sequence of approximations

10
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to this minimizer of F by using formula (11). The procedure is terminated when
∥x(k+1) − x(k)∥ < ϵ, where ϵ is a pre-specified termination scalar.

Note that by using formula (11) we are able to find stationary points of f
α
+ f α for

all α ∈ [0, 1]. However, to determine if these points are minimizers of f
α
+ f α, one

needs second order sufficient conditions or some other type of conditions, such as

convexity or generalized convexity of f
α
+ f α, for all α ∈ [0, 1].

5.1 Convergence of the Newton Method

In this subsection we will show convergence of the Newton method.

Theorem 5 Suppose that F is a three times continuously gH-differentiable fuzzy

function defined on Rn and x∗ ∈ Rn is a point such that

(i) ∇H(x∗) = 0;

(ii) ∇2H(x∗) is invertible;

Then for all x(0)sufficiently close to x∗, the Newton method is well defined for all k,

and converges to x∗ with order of convergence at least 2.

Proof. Since F is three times continuously gH-differentiable fuzzy function then H

is three times continuously differentiable function. So, the proof follows as in the
classical proof of the newton method.

5.2 Numerical Examples

In this section we present some examples to justify the proposed method. In addi-

tion we correct the examples given in [21].

Example 2 (Example 4.1, [21]) Consider the following nonlinear fuzzy optimiza-

tion problem,

min F(x1, x2) = 1̃ · x3
1 ⊕ 2̃ · x3

2 ⊕ 1̃ · x1 · x2, x1, x2 ∈ R,

where 1̃ = (−1, 1, 3) and 2̃ = (1, 2, 3) are triangular fuzzy numbers. So, for each

α ∈ [0, 1], we have

11
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[F(x1, x2)]α

= [1̃]αx3
1 + [2̃]αx3

2 + [1̃]αx1x2

= [−1 + 2α, 3 − 2α]x3
1 + [1 + α, 3 − α]x3

2 + [−1 + 2α, 3 − α]x1x2

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

[(−1 + 2α)x3
1, (3 − 2α)x3

1] + [(1 + α)x3
2, (3 − α)x3

2]

+[(−1 + 2α)x1x2, (3 − 2α)x1x2], if x1 ≥ 0, x2 ≥ 0;

[(−1 + 2α)x3
1, (3 − 2α)x3

1] + [(3 − α)x3
2, (1 + α)x3

2]

+[(3 − 2α)x1x2, (−1 + 2α)x1x2], if x1 ≥ 0, x2 < 0;

[(3 − 2α)x3
1, (−1 + 2α)x3

1] + [(3 − α)x3
2, (1 + α)x3

2]

+[(−1 + 2α)x1x2, (3 − 2α)x1x2], if x1 < 0, x2 < 0;

[(3 − 2α)x3
1, (−1 + 2α)x3

1] + [(1 + α)x3
2, (3 − α)x3

2]

+[(3 − 2α)x1x2, (−1 + 2α)x1x2], if x1 < 0, x2 ≥ 0.

Therefore the endpoint functions f
α

and f α are defined by

f
α
(x1, x2) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(−1 + 2α)x3
1 + (1 + α)x3

2 + (−1 + 2α)x1x2, if x1 ≥ 0, x2 ≥ 0;

(−1 + 2α)x3
1 + (3 − α)x3

2 + (3 − 2α)x1x2, if x1 ≥ 0, x2 < 0;

(3 − 2α)x3
1 + (3 − α)x3

2 + (−1 + 2α)x1x2, if x1 < 0, x2 < 0;

(3 − 2α)x3
1 + (1 + α)x3

2 + (3 − 2α)x1x2, if x1 < 0, x2 ≥ 0.

and

f α(x1, x2) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(3 − 2α)x3
1 + (3 − α)x3

2 + (3 − 2α)x1x2, if x1 ≥ 0, x2 ≥ 0;

(3 − 2α)x3
1 + (1 + α)x3

2 + (−1 + 2α)x1x2, if x1 ≥ 0, x2 < 0;

(−1 + 2α)x3
1 + (1 + α)x3

2 + (3 − 2α)x1x2, if x1 < 0, x2 < 0;

(−1 + 2α)x3
1 + (3 − α)x3

2 + (−1 + 2α)x1x2, if x1 < 0, x2 ≥ 0.

In the Example 4.1 in [21], the authors have obtained other endpoint functions

which are not the correct ones.

In our developments, we can clearly see that f
α

and f α are not differentiable and

thus F is not H-differentiable. Therefore we can not apply the procedure of the

Newton method given in [21].

Nonetheless, we note that F is three times gH-differentiable and from Proposition

2 we have that f
α
+ f α is three times differentiable and

(

f
α
+ f α

)

(x1, x2) = 2x3
1 + 4x3

2 + 2x1x2,
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for all α ∈ [0, 1]. Therefore

H(x) =

∫ 1

0

(

f
α
+ f α

)

(x1, x2)dα = 2x3
1 + 4x3

2 + 2x1x2.

Then

∇H(x1, x2) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

6x2
1 + 2x2

12x2
2 + 2x1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

and

∇2H(x1, x2) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

12x1 2

2 24x2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Now we obtain a sequence {x(k)}, k = 1, 2, ... by using the following equation

x(k+1) = x(k) − ∇H(x(k)) ·
[

∇2H
(

x(k)
)]−1
, (12)

and get that x∗ = (0, 0) is a stationary point of f
α
+ f α, for all α ∈ [0, 1], with

accuracy 10−3. Since f
α
+ f α is not invex then we can not ensure that x∗ = (0, 0) is

a non-dominated solution of F. In fact, x∗ = (0, 0) is not a non-dominated solution

since F(0,−ϵ) ≺ F(0, 0). This corrects Example 4.1 in [21], where the authors

claim that x∗ = (0, 0) is a non-dominated solution.

Example 3 Consider the following problem

min F(x1, x2) = (−1, 1, 3) · x3
1 ⊕ (0, 1, 2) · x1 · x2 ⊕ (1, 2, 4) · x2

2, x1, x2 ∈ R.

In this case F is not H-differentiable but it is three times gH-differentiable. Also
(

fα + fα
)

(x1, x2) = 2x2
1 = 2x1x2 + (5 − α)x2

2.

We search for the stationary point of fα + fα, for all α ∈ [0, 1], using the Newton

method previously proposed. For this, we consider the initial point x0 = (2,−2) and

calculate the sequence {x(k)}, k = 1, 2, ... by making use of equation (11). We obtain

x∗ = (0, 0) as a stationary point of fα + fα, for all α, with accuracy 10−3. Since

fα + fα is convex, x∗ is minimizer of fα + fα. So, from Theorem 4, we have x∗ is a

nondomited point of F.

The Newton method proposed in [21] could not be applied for this example, be-

cause F is not H-differentiable and does not satisfy the required conditions for the

implementation of this method.

The fuzzy functions of the other examples considered by Pirzada and Pathak in

[21] are also not H-differentiable and do not possess the required conditions for
the implementation of the Newton method they proposed. Nonetheless, these ex-
amples do satisfy the conditions to the Newton method proposed here and, as in the

previous examples, we may obtain nondominated solutions.
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[7] Chalco-Cano Y., Román-Flores H., Jiménez-Gamero M.D., Generalized derivative and

π-derivative for set-valued functions, Information Sciences 181, 2177-2188 (2011).

[8] Chalco-Cano Y., Rufián-Lizana A., Román-Flores H., Osuna-Gómez R., A note on
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